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A Faraday rotation experiment can set limits on the magnetic moment of a electrically-neutral, dark-

matter particle, and the limits increase in stringency as the candidate-particle mass decreases.

Consequently, if we assume the dark-matter particle to be a thermal relic, our most stringent constraints

emerge at the keV mass scale. We discuss how such an experiment could be realized and determine the

limits on the magnetic moment as a function of mass which follow given demonstrated experimental

capacities.
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1. INTRODUCTION

Disparate astronomical observations provide compelling
evidence for additional, nonluminous matter, or dark mat-
ter, in gravitational interactions. The evidence includes the
persistence of the galactic rotation curves to distances for
which little luminous matter is present [1,2], the relative
strength and shape of the galaxy-distribution power spec-
trum at large wave numbers [3], and the pattern of acoustic
oscillations in the power spectrum of the cosmic micro-
wave background [4]. The cosmological evidence, in ag-
gregate, points to the assessment that dark matter
comprises some 23 percent of the energy density of the
universe with a precision of a few percent [5]. Yet we know
little about the nature of dark matter—we do not know its
mass, its quantum numbers, or even with surety that it is
indeed composed of isolated elementary particles. A recent
gravitational lensing study does disfavor a modification of
gravity in explanation of its effects [6]: we shall assume [7]
in this paper that dark matter exists and is matter.

We do know other things about dark matter [8,9];
namely, that it is not hot [10], and that it appears to lack
both electric and color charge [11–16]. Here we use tem-
perature, i.e., whether dark matter is ‘‘cold’’ or ‘‘hot,’’ to
connote whether dark matter is nonrelativistic or relativis-
tic, respectively, at the redshift at which it decouples from
matter in the cooling early Universe. For so-called thermal
relics, this criterion selects the mass of the dark candidate
as well, so that colder particles are heavier. However,
alternative production scenarios can exist, and very light
particles can also act as cold dark matter, as in the case of
the axion [18]. Nevertheless, model-dependent constraints
do exist on the mass of the candidate particle, and we
consider them in Sec. II.

The evidence for dark matter emerges from astrophys-
ical observations of gravitational interactions, but estab-
lishing its couplings to standard model (SM) particles has
proven elusive. Nevertheless, such a quest is of great im-

port, for it is through such means that its mass and quantum
numbers can ultimately be determined. Indeed all direct
and indirect means of detecting dark matter rely on the
notion that it does indeed experience weak or electromag-
netic interactions to some degree. Turning to the known
particles of the SM for guidance, the neutron shows us that
a particle can have both a vanishing electric charge and a
significant magnetic moment. Thus we wish to constrain
the possibility that dark matter has a small electromagnetic
coupling, via its magnetic moment. We review the existing
constraints on this possibility in Sec. III.
In this paper we consider a new technique for the direct

detection of dark matter, namely, through use of the gyro-
magnetic Faraday effect [19]. Alternatively, this effect can
be used to limit a possible magnetic moment � of a dark-
matter particle of mass M. Let us consider how this could
work. An electrically-neutral medium of particles which
possesses a net magnetization in an external magnetic field
is circularly birefringent, even if the medium is isotropic.
This implies that the propagation speed of light in the
medium depends on the state of its circular polarization,
so that light prepared in a state of linear polarization will
suffer a rotation of the plane of that polarization upon
transmission through the medium [20,21], as long as it
does not travel at right angles to the external magnetic
field. We term this the gyromagnetic Faraday effect, after
Ref. [22]. Note that we need not rely on any existing
magnetization of the dark matter in order to realize an
effect. Rather we imagine a Faraday rotation experiment
mounted in a region with a large external magnetic induc-
tion B0 and dark matter of spin S incident on it in the
direction of B0. If the value of �B0 is larger than the dark
matter particle’s kinetic energy in the Earth’s rest frame,
then the field region acts as a spin-filter, or longitudinal
Stern-Gerlach, device—at least the highest energy spin
configuration cannot enter the field region. This technique
is used to polarize ultracold neutrons (UCNs) in the UCNA
experiment at Los Alamos with near 100% efficiency [23].
Thus, viewed in the Earth’s rest frame, the dark matter
which sweeps through the field region can possess a net*Permanent Address
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magnetization. If light transits this medium in the direction
of the magnetic field, and if we define k� to be the wave
number for states with right-handed (þ) or left-handed (�)
circular polarization, then the rotation linearly polarized
light suffers in its transit through the medium is given by
the angle � ¼ ðkþ � k�Þl=2, where l is the length of
transmission through the medium. If � is nonzero once
all systematic effects which could mimic the signal are
excluded, we have evidence for dark matter with a nonzero
magnetic moment.

The direct detection of dark matter with a magnetic
moment could be realized in a variety of ways. For ex-
ample, one could search for anomalous recoil events in
scattering from nuclei, in just the manner one searches for
spin-independent and spin-dependent dark matter-nucleon
interactions [24–26]. Indeed, an experimental signal of the
latter, from the DAMA experiment [27], has been inter-
preted as a limit on a putative dark-matter magnetic mo-
ment, namely, of �< 1:4 � 10�4�N for a dark-matter
candidate of 100 GeV in mass [28]. In such experiments,
however, the light dark-matter candidates we discuss give
rise to momentum transfers which are much too small to be
detected, even if the channeling effect proposed by
Ref. [29] and studied in Ref. [30] is operative for the events
studied in the DAMA/LIBRA NaI detector [31]—note
Ref. [32] for further discussion. Alternatively, a dark-
matter magnetic moment can be found through either
nuclear magnetic resonance (NMR) or Faraday rotation
studies. A NMR signal is typically realized through the
detected change in magnetic field incurred through a spin-
flip transition of the magnetic-moment-carrying particle,
induced by an applied radio frequency. However, very
small magnetic fields are more efficiently discovered
through magnetoptical studies [33,34]. Thus we focus on
the use of Faraday rotation to detect dark matter. Precision
optical rotation studies have also been conducted in which
the external magnetic field is oriented at right angles to the
direction of the propagating light, to the end, e.g., of testing
the optical birefringence of the vacuum, or, alternatively, of
limiting the photon-axion coupling [35–37]. Such an ex-
perimental configuration does not support a nonzero
Faraday effect, yet the empirical parameters used in these
studies are useful to us, for we employ them to estimate the
limit on the magnetic moment as a function of mass in the
setup we consider.

A great variety of dark matter candidates, consistent
with the various astrophysical constraints, exist in the
literature [38,39]. Indeed, their masses vary from some
10�32 to 1015 GeV, and their interaction cross sections—
with nucleons—vary over orders of magnitude as well.
Typical direct detection strategies rely on the observation
of ‘‘anomalous’’ nuclear recoils [25,26,39], so that their
sensitivity is typically to candidates of Oð100 GeVÞ in
mass scale. The experiment we suggest is sensitive to a
completely different window in parameter space—to dark-

matter candidates of crudely Oð1 MeVÞ or less in mass.
Although constraints can be set through cosmological
studies [19], terrestrial studies are amenable to better con-
trol, for the existence of cosmological magnetic fields has
not yet been established [40].
Let us conclude our introduction by outlining the sec-

tions to follow. We begin by describing, in Secs. II and III,
respectively, the mass and magnetic moment constraints
which exist on a light dark-matter candidate with a nonzero
magnetic moment. We then proceed to review the gyro-
magnetic Faraday effect in Sec. IV and to describe in
concrete terms the experimental limits on � one might
possibly attain in Sec. V. We conclude with a summary in
Sec. VI.

II. MASS CONSTRAINTS

In standard big-bang cosmology, the nature of dark
matter impacts the formation of the large-scale structure
of the Universe. In particular, if dark matter is cold and
collisionless, then galaxy formation proceeds via a hier-
archical clustering, namely, from the merging of small
protogalactic clumps on ever larger scales [41–44]. In
contrast, if dark matter is hot, the hierarchy is inverted,
so that large protogalactic disks form first and then clump
[42,43]. Galaxies, however, are observed at much larger
redshifts than such simulations predict [42,43]. Moreover,
observations of particular classes of quasar absorption
lines, the so-called damped Lyman-� systems, thought to
be the evolutionary progenitors of galaxies today, also
favor the former scenario [45]. It has also been argued
that hot dark matter, i.e., most notably, light, massive
neutrinos, cannot explain the galactic rotation curves
[46]. However, the cold-dark-matter paradigm does have
difficulties in confronting small-scale structure; it yields, in
effect, too much clumpiness below the Mpc scale. Warm
dark matter has been advocated as a way to alleviate these
difficulties [47]. Limits on the mass of warm dark matter
emerge from the comparison of the observations of the
Lyman-� absorption spectrum with numerical simulations
[48–51]; the limits depend on the particle considered and
the manner in which it is produced [52], yielding [51], at
2�, M * 4 keV for a thermal relic and M * 28 keV for a
massive sterile neutrino [53].
Cosmological constraints also exist on the mass of a

dark-matter particle. If the particles annihilate via the weak
interaction, then �annv is parametrically set byN AG

2
FM

2,
where GF is the Fermi constant, N A is a dimensionless
factor, and we assume �ann / 1=v. In this case avoiding a
dark-matter abundance in excess of the observed relic
density bounds M from below. Indeed, under these con-
ditions the mass of the cold dark-matter particle must
exceed Oð2 GeVÞ to avoid closing the Universe [54].
The resulting lower bound onM can be relaxed in different
ways. Feng and Kumar [55], e.g., have emphasized that the
appearance of GF in �annv is simply parametric, that GF
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can be replaced with geff , and that the effective coupling
geff can be small without having the precise numerical
value of GF. Thus if geff >GF, the bound on M is weak-
ened. Indeed, such considerations permit dark matter can-
didates which confront the relic density and big-bang
nucleosynthesis constraints successfully but range from
the keV to the TeV scale in mass [55,56].

In this paper we consider what empirical constraints can
be placed on the magnetic moment of a dark-matter parti-
cle. This hypothesis gives rise to a new annihilation mecha-
nism, though both a dark-matter particle and its antiparticle
must be present to realize it. We recall that particles with
magnetic moments are invariably described by complex
field representations, so that such a particle and its anti-
particle are physically distinct—by the CPT theorem we
expect the magnetic moments of such particles to differ
only in sign. If the particle-antiparticle annihilation is
mediated by a magnetic moment interaction, then �annv
is parametrically set by N 0

A�
2�2 with N 0

A a dimension-

less parameter, as long as M * me, the electron mass. The
annihilation of still lighter mass dark matter candidates
follows a different parametric form. That is, if the particles
annihilate to standard model particles, then �annv is sup-
pressed by higher powers of the coupling constant—at
least. Alternatively, if they annihilate to ‘‘secluded’’ dark-
matter particles, note, e.g., Ref. [57], then �annv is of form
N 0

A��
0�2, where �0 is the electromagnetic coupling of

the secluded particles andN 0
A is a dimensionless parame-

ter. Generally, we expect the magnetic moment � to be of
form � ¼ �e@=2M, where � is the anomalous magnetic
moment, so that �annv scales as 1=M2. The presence of an
additional annihilation mechanism should make the light
dark matter candidates we consider decouple as matter and
not radiation, so that constraints on the number of relativ-
istic degrees of freedom during the epoch of big-bang
nucleosynthesis also do not apply. This new annihilation
mechanism becomes more effective as the candidate mass
grows lighter. Nevertheless it is still possible to saturate the
dark-matter density with such a candidate particle, for the
efficacy of the annihilation process can be mitigated by a
particle-antiparticle excess [58,59]. Thus the dark-matter
relic density need not bound the magnetic moment from
above. Moreover, we emphasize that dark matter could
have multiple components, so that an upper bound on the
magnetic moment could also be evaded by diluting the
magnetic-moment-carrying particle with other sorts of
dark matter. We shall assume these various annihilation
mechanisms are effective enough to permit dark matter
candidates as light as Oð1 keVÞ in mass.

The intensity and morphology of galactic positron emis-
sion, as studied by the INTEGRAL satellite [60], has
prompted much discussion of dark matter candidates
with electromagnetic interactions [55,61–67], which are
ofOð1 MeVÞ scale in mass, as well as of other possibilities
[68–71]. If the pattern of the INTEGRAL spectra are in-

deed explained by dark matter, then additional constraints
follow on its nature. For example [62,63], observational
constraints on the diffuse photon flux also impose limits on
the mass of the dark-matter candidate � through internal
bremsstrahlung corrections to the annihilation process
�� ! eþe�. Such constraints apply to our scenario as
well; the upshot is that the dark particle’s mass is limited
to be less than a few MeV [62,63]. In our case internal
bremsstrahlung contributions can also be generated by the
magnetic-moment-carrying particle. However, we note
that soft photon emission via a M1 transition of an isolated
magnetic dipole is slow compared to the rate set by the
inverse age of the universe, as we discuss in greater detail
in Sec. IV, so that no meaningful limit follows on its
magnetic moment. In what follows we consider candidate
particles which range from Oð1 keVÞ to Oð100 MeVÞ in
mass, though our limits are most effective at sub-MeV
mass scales.

III. MAGNETIC MOMENT CONSTRAINTS

Various constraints on the magnetic moment of a dark-
matter particle for masses in excess of 1 MeV have been
considered in Ref. [59]. We review these and more to
provide a context for the direct detection experiment we
suggest. In the mass window of interest to us, two experi-
mental constraints are important—one comes from preci-
sion electroweak measurements [59], and the other comes
from low-energy eþe� collider data, namely, from the
process eþe� ! � ��� [72,73]. This last constrains the
magnetic moment of the invisible particle directly and
thus offers a constraint on a dark-matter magnetic moment
as well. The authors of these studies use data at center-of-
mass energies sufficient to produce a �	 ��	 pair, given
accelerator constraints on its mass [72]—this easily in-
cludes our mass range of interest. Interpreting their results
as a limit on the anomalous magnetic moment of the tau
neutrino, the low-energy analyses conclude ��	

< 4 �
10�6�B at 90% CL [72], and ��	

< 9:1 � 10�6�B at 90%

CL [73] from distinct data sets. A more severe limit on the
�	 magnetic moment does exist [74]; however, the nature
of the eþe� limits allows us to interpret them in a manner
useful to our current study. For a discussion of how low-
energy eþe� collider data can probe particular MeV dark
matter models [61], see Ref. [75].
Precision electroweak measurements also constrain the

magnetic moment [59]. The quantity �r̂ captures radiative
corrections to the relationship between the fine-structure
constant �, the Fermi constant GF, and the W� and Z
masses, MW and MZ [76]. The difference between the
empirically determined value of �r̂ and that computed
in the standard model provides a window �r̂new to
which a dark-matter particle can contribute. Following
Refs. [59,77], we assume �r̂new is given by the vacuum
polarization correction to the photon self-energy from a
dark-matter particle with a magnetic moment with no other
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adjustments. We choose to study the quantity �r̂ as its
uncertainty is dominated by that in the running of � [78].
Thus we consider [76]

M2
W ¼ 
�ffiffiffi

2
p

GF

1

ŝ2zð1� �r̂Þ ; (1)

where ŝz is computed in the MS scheme and is ð1�
M2

W=M
2
ZÞ up to small corrections. To compute �r̂new, we

first recall the general form of the electromagnetic vertex
with Dirac and Pauli form factors [79], namely, ��ðkþ
q; kÞ ¼ ��F1ðq2Þ þ i���q�F2ðq2Þ=2M, where in our case
F1 ¼ 0 and F2 ¼ �. Using the conventions of Ref. [79],
we introduce the polarization tensor

i���
2;ttðqÞ ¼ �2e2

Z d4k

ð2
Þ4 tr

�
��� q�

2M

ðk6 þmÞ
ðk2 �M2Þ�

��

� q�
2M

ðk6 þ q6 þmÞ
ððkþ qÞ2 �M2Þ

�
; (2)

with ��� � i½��; ���=2. Noting �
��
2;ttðqÞ ¼ ðq2g�� �

q�q�Þ�2;ttðq2Þ and

�r̂new ¼ �2;ttðM2
ZÞ ��2;ttð0Þ �M2

Z

�
@�2;ttðk2Þ

@k2

��������k2¼0

�
;

(3)

we use standard techniques [79] to determine

�r̂new ¼ ��2�

4


Z 1

0
dx

��
1þ xð1� xÞM2

Z

M2

�

� log

�
1� xð1� xÞM2

Z

M2

�
þ xð1� xÞM2

Z

M2

�
(4)

and in the limit a � ðMZ=MÞ2 � 1 that [80]

�r̂new ���2 �

4


�
a

6
loga� a

9
þOð1Þ

�
: (5)

With �r̂new < 0:0010 at 95% CL [78], we find with M ¼
me, the electron mass, that j�j< 4:1 � 10�6, whereas if
M ¼ me=10 that j�j< 3:4 � 10�6 [19].

A variety of astrophysical constraints exist on the mag-
netic moment of the neutrino, and they can be adapted to
our current case as well. Most emerge from the impact of
the additional cooling mechanism rendered on stellar evo-
lution and lifetimes and on supernovae [81,82]. An addi-
tional, albeit somewhat weaker, constraint comes from
confronting element abundances with the predictions of
big-bang nucleosynthesis, yielding �� < 2:9 � 10�10�B

[83]. These constraints can be significantly weakened by
the candidate particle’s mass [72]; the ability to produce
particles of Oð10 keVÞ in mass and more in plasma at
stellar temperatures is limited. In the case of big-bang
nucleosynthesis, the constraints on the magnetic moment
of a massive tau neutrino are also weakened, though values
as large as �� � 10�6�B are nevertheless excluded [83].

The constraints we have considered in this section can
be weakened by other means as well. Since they arise from
the effects of particle production, the most economical
mechanism is compositeness; to include this, we need
only include a form factor at each electromagnetic vertex.
Thus we replace � ! �=ð1�M2

Z=M
2
cÞ2, where Mc is the

compositeness scale, in our earlier formulas. Thus forM ¼
me=10 our earlier bound of j�j< 3:4 � 10�6 [19] from �r̂
relaxes to j�j< 1:5 ifMc ¼ 2 GeV. In this scenario, how-
ever, the electrically charged constituents may well give
rise to other observable effects. One possibility which
avoids this would be to give a known charged particle,
such as an electron, a small hidden sector interaction, so
that it can help constitute dark matter, though its contribu-
tion to�r̂ has already been taken into account. We proceed
to consider the manner in which direct constraints can be
set on �.

IV. GYROMAGNETIC FARADAY EFFECT

A medium of free electric charges in an external mag-
netic field is circularly birefringent and gives rise to a
Faraday effect [84], as long as the light doe not propagate
at right angles to the magnetic field. This effect has long
been used in radio astronomy to study the properties of the
interstellar medium [85]. A Faraday effect can also arise in
an electrically-neutral medium in an external magnetic
field if the constituents carry magnetic moments and if
they are polarized by that magnetic field to give the me-
dium some net magnetization [20,21]. We consider the
latter possibility exclusively.
To derive the gyromagnetic Faraday effect, we apply a

magnetic induction B0 in a magnetizable medium with
circularly polarized electromagnetic waves propagating
parallel to it. The external field induces a magnetization
Mtot, i.e., a net magnetic moment/volume, where Mtot ¼
M0 þM and M0 results from B0 alone. The total mag-
netization of a medium at rest in the laboratory frame
obeys the Larmor precession formula

dMtot

dt
¼ g�M

@
Mtot �Btot; (6)

so that g�M=@, noting �M � e@=2M with e > 0 for a
particle of mass M, is the gyromagnetic ratio of the
magnetic-moment-carrying particle. We note � ¼ Sg�M,
where S is the spin of the particle. The gyromagnetic
Faraday effect was first derived for a ferromagnetic mate-
rial [20,21] for which use of the magnetic field H is
appropriate. Since dark matter is only weakly self-
interacting at most, our hypothesized dark matter should
be treated as a paramagnetic material—so that we employ
the magnetic induction B throughout, though the use of H
is also commonplace [86]. Corrections to the Larmor
formula result if the medium’s particles move at a signifi-
cant fraction of the speed of light, or if the particles possess
a nonzero electric dipole moment [87]. We shall neglect
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the latter possibility and, moreover, shall consider dark-
matter candidates for which relativistic effects are ulti-
mately small corrections.

To determine the relativistic corrections to Eq. (6), we
first construct the covariant classical equation of motion for
a single spin in homogeneous electromagnetic fields. This
is germane as we can and indeed do neglect the mutual
interactions of the dark-matter particles, so that the mag-
netization is given by the quantum-mechanical expectation
value of the spin operator for a single particle times the
number density; and the time evolution of the expectation
value is itself described by that of the associated classical
equation of motion. The latter, for a charged particle with a
spin, is given by the Bargmann-Michel-Telegdi equation
[87]. We cannot use this result directly because no forces
act on electrically-neutral particles in homogeneous elec-
tromagnetic fields, so that no Thomas precession term is
present [88]. Nevertheless, well-known treatments [84] can
be readily adapted to this case. Requiring dU�=d	 ¼ 0,
whereU ¼ c�ð1;�Þ is the 4-velocity of the particle in the
laboratory frame and S is its spin, namely S ¼ ðS0;SÞ, we
find that

dS�

d	
¼ g�M

@

�
F��S� þU�

c2
ðS�F

��U�Þ
�
; (7)

where F�� is the field-strength tensor in SI units and 	 is
the proper time of the particle. Thus in the laboratory frame
the magnetization evolves as

�
dMtot

dt
¼ g�M

@

�
Mtot �

�
Btot � ��Etot

c

�

þ �2�ð��MtotÞ �
�
Btot � ��Etot

c

��
; (8)

where we emphasize � is the Lorentz factor, namely � �
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. To proceed, we separate Btot and Etot as

Btot ¼ B0 þ B and Etot ¼ E0 þE, so that M0 results
exclusively from the external electromagnetic fields B0

and E0. Working to leading order in the small quantities
M, B, and E, which arise in the presence of electromag-
netic radiation, we have

�
dM
dt

¼ g�M

@

�
M0 �

�
B0 � ��E0

c

�

þM�
�
B0 � ��E0

c

�

þM0 �
�
B� ��E

c

�

þ �2�

�
ð��M0Þ �

�
Btot � ��Etot

c

�

þ ð��MÞ �
�
B0 � ��E0

c

���
: (9)

We can consider the evolution of the dark matter magne-
tization in vacuum, i.e., in the absence of ordinary matter,

or in matter. Since the largest external fields we can apply
obeyB0 � E0=c in vacuum, we setE0 ¼ 0 henceforth. We
note, however, that the atomic-scale separation of electric
charges in matter permit the opposite limit, B0 	 E0=c, so
that the analysis of the magnetization in that case can be
altogether distinct. We set this possibility aside for later
discussion and continue with the analysis in vacuum. We
note that the ability to establish a vacuum relies on the
presence of matter with conventional electromagnetic and
strong couplings; dark matter is sufficiently weakly inter-
acting that vacuum technology does not affect it. Hence we
use ‘‘vacuum’’ to connote the absence of ordinary matter.
In this case we apply B0 in the x̂-direction and choose � to
be parallel or antiparallel to x̂ as well. As we have men-
tioned, the entry of dark matter into the magnetic field
region acts as a spin filter device. The dark matter which
does enter the apparatus can thus possess a net magnetiza-
tion, so that M0 is in the x̂-direction.1 As a result Eq. (9)
reduces to

�
dM
dt

¼ g�M

@

�
M�B0 þM0 �

�
B� ��E

c

��
:

(10)

Choosing the wave vector k of the light in the x̂-direction
as well, we recall E ¼ �cx̂� B and let Bðx; tÞ ¼
B�e� expðik�x� i!tÞ, where e� � ŷ� iẑ. We define
the polarization state with positive helicity, eþ, to be
right-handed, which differs from the convention used in
optics. In steady state, we find M ¼ M�e� and finally
that

M� ¼ �!Mð1þ �Þ
�!�!B

B� � ��B�; (11)

where we have chosen � ¼ ��x̂ and defined !M �
g�MM0=@ and !B � g�MB0=@. Since k� ¼ ð!=cÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��

p
, we have

k� ¼ !

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!Mð1þ �Þ

�!�!B

s
; (12)

or that

kþ � k� ¼ !Mð1þ �Þ
�c

�
1þO

�
!2

B

�2!2

��
; (13)

where we note for conceivable light sources that ! � !B,
!M. Physically, the magnetic field associated with the
passing electromagnetic wave tugs on the spinning particle
in a direction perpendicular to M0, prompting it to emit
radiation which interferes with the light traveling in the
forward direction, generating the birefringence. The
Faraday rotation angle � is simply � ¼ ðkþ � k�Þl=2,
where l is the total distance travelled by the photon. The

1This follows irrespective of the sign of g. For g<
>
0, however,

the spins preferentially point in the �x̂ direction.
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quantity !M is signed, so that the sense of the rotation
angle determines the sign of g. If � ¼ 0, we recover the
result of Ref. [19], whereas in the extreme relativistic limit,
i.e., as � ! 1, �� ! 0 and thus � vanishes as well. The
average value of k� is not altered to leading order in small
quantities, namely,

kavg � 1

2
ðkþ þ k�Þ ¼ !

c

�
1þO

�
!B!M

�2!2

��
; (14)

so that an appreciable Faraday rotation can accrue in the
absence of an effect on the average group velocity. Thus far
we have considered the Faraday rotation of linearly polar-
ized light consequent to passage a distance l through a
medium; practical considerations demand that we deter-
mine its properties under reflection as well. If we reverse
the direction of the light, Eq. (11) is unaltered save for the

sign of the term in �. The last does change sign since E ¼
�ck̂� B. Thus if we set � ¼ 0, an initially right-handed
circularly polarized wave, e.g., travels both forward and
backward with wave number kþ, so that the rotation angle
accrues coherently under momentum reversal. The addi-
tional Faraday rotation associated with the explicit
�-dependent term in Eq. (12), however, cancels under a
round-trip transit. Such contrasting behavior is long famil-
iar from the study of birefringence in chiral media [22],
which break macroscopic parity invariance. Similar con-
clusions have been drawn from an analysis of parity-
violating photon-external-field interactions as well [89].
Thus the net rotation angle after a round-trip, or after
many, of a total travel length l is

�0 ¼ !Ml

2�c

�
1þO

�
!2

B

�2!2

��
: (15)

Neglecting the Oð!�2Þ corrections and working in the
� ! 0 limit, this becomes simply

�0 ¼ g�MM0l

2@c
ð1þOð�2ÞÞ; (16)

which agrees with the result of the nonrelativistic treatment
in Ref. [19]. For a system at rest in thermal equilibrium, the
magnetization M0 is a simple function of the applied
magnetic field. We recall that for a system of spin 1=2
particles, e.g., each with magnetic moment �, the magne-
tization for a system with number density nM at tempera-
ture T is [90]

M 0 ¼ nM� tanh

�
�B0

kBT

�
; (17)

though it is of little practical relevance to the current
circumstance, for the system we consider approaches ther-
mal equilibrium extremely slowly. That is, a dilute gas in
an external magnetic field polarizes through spontaneous
emission, and the rateW for this process is given by that of
a magnetic dipole transition [91]:

W ¼ 4

3@

�
!

c

�
3ðg�MÞ2; (18)

where ! ¼ g�MB=@. Thus even if �M ¼ �B, the Bohr
magneton, and B ¼ 25 T, we would have W � 1 �
10�6 s�1, which is trivial compared to the average rate
with which dark matter is expected to transit an experi-
mental apparatus. Although dark matter may possess some
primordial magnetization, it is likely so small [19] that it is
important to realize other means of polarizing it. For the
particular geometry we consider, as we have noted, the
onset of the magnetic field region acts as a spin-filter
device. Although this method should yield some net mag-
netization for any nonzero spin S, we explicitly assume a
spin 1=2 candidate in what follows. If the velocity vM of
the incoming particles is aligned with the direction of the
magnetic field, then particles with vM � �c < vstop can

only enter the magnetic field region if their magnetic mo-
ment is aligned with it, where vstop is such that

1

2
Mv2

stop ¼ j�jB0: (19)

We have set any external electric field to zero and have
neglected corrections of Oð�2Þ. Physically, at vM ¼ vstop

the antialigned magnetic moments are brought to a stop at
the top of the potential-energy barrier generated by the
magnetic field. The dark matter which does enter the
apparatus can thus possess a net magnetization; namely,

M 0 ¼ nM�P ; (20)

where P is the polarization of the spins. We define P �
ðNþ � N�Þ=ðNþ þ N�Þ, where Nþ and N� are the num-
ber of spins pointing in and against the direction of B0,
respectively. If � ! �� then M0 ! M0 just as in
Eq. (17). We study the value of P as a function �B0, M,
and astrophysical parameters in the next section.
Before proceeding, we return to the notion of studying

the Faraday rotation of dark matter passing through ordi-
nary matter. In this regard, we wish to consider matter
comprised of atoms with closed electron shells, so that
there are no unpaired electrons present to engender a
gyromagnetic Faraday effect. The exceptionally large elec-
tric fields associated with atoms and nuclei [92]2 make it
possible for j��E0j=c to exceed presently achievable
external magnetic fields [93]. Such considerations yield
significant limits on the neutron electric dipole moment
[94], e.g., from neutron-noble gas scattering [92,95].

Returning to Eq. (9), we choose x̂ k k̂ as in previous case
but now choose � ? x̂ so that ��E0 can also be in the x̂
direction. Counting j��E0j=c as a parameter ofOð1Þ and
neglecting terms of Oð�2Þ and higher, we have

2In H-atom, e.g., a test charge a Bohr radius away from the
proton sees E=c 
 2 � 103 T.
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dM
dt

¼ g�M

@

�
�M�

�
��E0

c

�
þM0 �

�
B���E

c

��
;

(21)

and the steady-state solution

M� ¼ � !M

!�!E

B�; (22)

where !E � g�Mj��E0j=@c, which yields the rotation
angle

�0 ¼ g�MM0l

2@c

�
1þO

�
!2

E

!2
; �2

��
; (23)

irrespective of whether round-trip paths are executed by
the light. In this context, then, the effective magnetic field
is relevant simply to the value ofM0. Here, too, we need to
determine the polarization of the dark matter which pene-
trates the material. Suppose � ¼ �ŷ and that it is possible
to choose a material for which E0z � E0x, so that the
effective magnetic field is in the x̂ direction. The force
on the dark-matter particle in entering the medium isrð� �
ð��E0=cÞÞ; since we can expect the magnitude of E0 to
depend on y, a longitudinal Stern-Gerlach effect is still
possible in this geometry. A force in the z direction can
engender the more familiar transverse Stern-Gerlach ef-
fect, but the increasing diameter of the laser beam as a
result of scattering in its passage through the material may
make it impossible to exploit this feature. Thus we tenta-
tively conclude that it ought be possible to realize a mean-
ingful Faraday rotation study in matter as well, with
potential gains in sensitivity to a possible dark-matter
magnetic moment. We now return to the vacuum case to
describe how such an experiment can be realized and to
estimate the limits on � one could possibly obtain.

V. A FARADAY ROTATION EXPERIMENT

Although the Faraday rotation effect we discuss can be
found through correlation studies of the polarization of the
cosmic microwave background [19], a terrestrial Faraday
rotation experiment offers a number of advantages. Current
bounds on primordial magnetic fields [40] make any pri-
mordial magnetization associated with dark matter small
[19] and difficult to probe, particularly in experiments
executed over terrestrial length scales. However, in this
case, as we shall demonstrate, one can apply a very strong
magnetic field of known strength and polarize the dark
matter to an appreciable degree. Moreover, as we have
seen, the Faraday rotation associated with a magnetic mo-
ment accrues coherently under momentum reversal, so that
the measurement can be made in a small cavity and yet
have a long effective path length. Measurements of very
small rotation angles are also possible; the recent PVLAS
experiment, for example, was able to achieve sensitivity to
rotation angles of Oð10�8Þ [36]—this stands in contrast to

a sensitivity of Oð10�4Þ anticipated with the future
CMBpol satellite [96].
A schematic of the Faraday rotation experiment we

propose is illustrated in Fig. 1. Its ingredients comprise a
laser, a linear polarizer, an evacuated optical cavity through
which the light makes multiple passes and to which a
longitudinal, steady magnetic field has been applied, and
an analyzer. The technical requirements of a sensitive
Faraday rotation measurement may demand a more sophis-
ticated setup; however, such details are not needed for our
estimate of the limit on � for a given sensitivity to the
rotation angle. We emphasize that since dark-matter carries
neither electric charge nor suffers strong interactions [9], it
is unaffected by vacuum pumps and, indeed, can pass into
cavities free from ordinary matter. The generic set-up we
propose, save for the nature of the magnetic field, is
common to the PVLAS experiment [36], which investi-
gated the optical properties of the vacuum, as well. As that
experiment was sensitive to extremely small changes in the
photon polarization, we adopt it as a reference, and we use
certain of the parameters chosen in that experiment in order
to estimate the achievable bounds on the magnetic moment
as a function of the mass of the dark-matter candidate. A
remark concerning the orientation of the apparatus in our
schematic is in order. In our derivation of Eq. (16) we chose

�̂ ¼ x̂, though our result is of more general validity. That
is, if we return to Eq. (9), setting E0 ¼ 0 and working to
Oð�2Þ, we see that the absence of theOð�Þ term in Eq. (16)

FIG. 1. Schematic of the Faraday rotation experiment de-
scribed in text.
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results from the transformation properties of E under
momentum reversal—regardless of the direction of �.
Consequently, we need not orient the direction of the
magnetic field with respect to the dark matter ‘‘wind’’ in
any particular way, as we indicate in Fig. 1. It will turn out,
however, that the choice of the orientation of the apparatus
with respect to the Earth’s velocity can modify the efficacy
of the longitudinal Stern-Gerlach device.

In order to evaluate the sensitivity of the scheme we
suggest to a dark-matter magnetic moment, we need to
make assumptions concerning its local velocity distribu-
tion and number density. Both of the latter quantities are
relevant to the computation of M0 via Eq. (20), which
gives rise to the rotation angle in Eq. (16). To do this we
adopt the ‘‘canonical model’’ [97,98] employed in the
analysis of direct detection experiments [24–26] for cold
dark matter. That is, we assume that the dark matter in our
galaxy resides in a nonrotating halo and that the velocity
distribution function fðvÞ in that halo is that of an isother-
mal sphere. This assumption is motivated by simplicity.
More realistic distributions can affect the expected event
rates, as well as their temporal variation [99–101]. We note
that v ¼ vM þ vE, where vM is the velocity of dark matter
relative to the Earth, which we introduced earlier, and vE is
the velocity of the Earth relative to the nonrotating halo of
the galaxy. The value of v can range up to the galactic
escape velocity, roughly 650 km=s [97], though we do not
impose this cutoff in what follows, because the normaliza-
tion of the resulting distribution differs by less than 1%
[98]. Thus the form of f is that of a Maxwell-Boltzmann
distribution:

fðvM;vEÞ ¼ 1


3=2v3
0

exp

�
�ðvM þ vEÞ2

v2
0

�
: (24)

The velocity v0 is related to the root-mean-square velocity
of the distribution; for a galaxy with a flat rotation curve it
is argued to be equal to the radial velocity of the galactic
disk [102] and thus in practice is taken to be v0 

220 km=s [97]. The velocity vE is determined by the
sum of

v E ¼ ur þ us þ ue; (25)

where ur is the velocity of the galactic disk in an inertial
reference frame, us is the velocity of the Sun with respect
to the galactic disk, and ue is the velocity of the Earth about
the Sun. Assuming the Milky Way is axisymmetric, ur is
fixed by the circular velocity at the Sun’s radius from the
galactic center, which is 220� 20 km=s [103,104]. In

galactic coordinates ð�r̂; l̂; ẑÞ [105], in km/s, we thus
employ [97]: ur ¼ ð0; 220; 0Þ, which follows if the
Milky Way is axisymmetric, and us ¼ ð9; 12; 7Þ. The ap-
proximate speed of the Earth about the Sun is 30 km/s,
whereas its approximate speed about its axis is 0.5 km/s.
We ignore the effects of the Earth’s rotation about its axis

in our analysis, as it is no larger than the error in us
[105,106]. Moreover, vE is dominated by motion along

the longitudinal coordinate l̂. Noting this and that the
ecliptic is oriented at an angle of roughly 60� with respect
to the galactic equatorial plane means we can approximate

the piece of uE in the longitudinal direction l̂ as

30 cos60� cosð2
ððt� 152:5Þ=365:25ÞÞ, to estimate vE 

ð232þ 15 cosð2
ððt� 152:5Þ=365:25ÞÞÞl̂ [97]. We retain
this approximation for simplicity, though the presence of
the other components of vE, as well as a more realistic
velocity distribution, are important to an assessment of the
event rates, the size and phase of any temporal variations
therein, and dark-matter exclusion limits to better than
Oð100%Þ [99,100,107]. We note, too, that more precise
determinations of the astronomical inputs also exist
[105,106].
Finally, to complete our description of the model, we

choose a dark matter mass density of  ¼ 0:3 GeV=cm3

[97]. The currently accepted range for  is
0:2–0:4 GeV=cm3 [108,109] for a smooth matter distribu-
tion with a spherical halo. Models of galaxy formation
which relax the smoothness assumption can give rise to
local dark matter densities both larger and smaller than this
range [110], where we refer to Ref. [111] for a succinct
summary of the possibilities. Some of the uncertainties in
the model we outline can be correlated. For example, an
elliptical halo with its concomitant triaxial velocity distri-
bution can yield somewhat higher local densities
[112,113]. Unfortunately, direct information on the dark-
matter mass density in our solar system is sparse, and
observational bounds exceed the estimate we employ by
orders of magnitude [114–119].
To realize a limit on �, we assert in what follows that

dark matter is comprised of a single type of spin 1=2
particle with fixed M and �, though we emphasize that
the detection of a signal does not require that the particle
have spin 1=2. Our numerical estimate is in two distinct
parts. Operating in the canonical model, we first assess the
polarization of the dark matter in the magnetic field region
as function of M and �. With this in hand, we can then
determine the limit on j�j with M which follows from a
given limit on the magnitude of the Faraday rotation angle.
We now proceed to estimate the polarization.We assume

that the magnetic field is uniform in some direction x̂. If
this is realized in a finite volume with no magnetic field
external to it, then a longitudinal Stern-Gerlach effect
exists at each field boundary—i.e., the ‘‘wrong’’ spin state
suffers a repulsive force at each surface. In what follows
we assume a slab geometry and estimate the polarization
resulting from crossing a single interface; we assume the
magnetic field is perpendicular to the interface. In this case

the polarization condition is on vM � B̂0  vstop, where

vstop is fixed by Eq. (19). Thus the fraction of particles

which enter the magnetic field region with 100% polariza-
tion is
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fpol ¼ 1

2

Z
d3vMfðvM;vEÞ�ðvstop � jvM � B̂0jÞ; (26)

so that its polarization in the magnetic field region is P ¼
ðsgn�Þfpol=ð1� fpolÞ, and its number density is nM ¼
ð1� fpolÞ=M. The evaluation of Eq. (26) yields two

pieces, which are distinguished by whether jvMj is larger
or smaller than vstop. The term with jvMj  vstop can be

evaluated irrespective of the orientation of the magnetic
field region, whereas the term with jvMj � vstop depends

on the value of vE �B0. With Eq. (24), we see that f is
maximized for vM in the neighborhood of �vE, so that if
vstop 	 vE, the term with jvMj � vstop dominates fpol, and

the relative orientation of vE and B0 becomes important.
If, moreover, we make vE ? B0, then we can have both

vM ¼ �vE þ � and vM � B̂0 ¼ � � B̂0 with � small—we
expect fpol to be maximized for this geometry. Thus to set a

limit on � irrespective of the orientation of vE and B0, we

choose vE k B̂0, as this geometry gives the smallest value
of fpol for fixed � andM. Ultimately the assessment of the

limit on � in a real experiment will depend on the geome-
try and orientation of the magnetic field, but our procedure
should bound from above the limit on� to be found from a
given sensitivity to the Faraday rotation angle per unit
length. In this, we implicitly assume that dark matter is
described by a single constituent. In this special case we
find

fkpol ¼
1

4

�
erf

�
vstop � vE

v0

�
þ erf

�
vstop þ vE

v0

��
: (27)

Since erfðzÞ ! 1 as z ! 1, fpol ! 1=2 as vstop ! 1, as

required. The form of Eq. (27) emerges from a partial
cancellation of the contributions from the vM  vstop and

vM � vstop regimes, so that we pause to consider whether

the inclusion of an escape velocity in this particular case
could modify our results. In this event, the normalization of
Eq. (26) changes slightly, but negligibly [98], and the
integrand accrues a factor of �ðvesc � jvM þ vEjÞ. For
vstop 	 vE, this additional factor does not restrict the

region of integration unless vM * 600 km=s; finally, we
conclude that the continued neglect of vesc is justified.
Solving Eq. (19), we find vstop 
 4:51 km=sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B0½T�

p ðme=MÞ, where B0½T� is in tesla and me is the
electron mass. Employing a 7 T magnet, as used in the
UCNA experiment [120], though magnets of up to 20 T are
commercially available [121], we find for M ¼ me and
� ¼ 1, with� ¼ ��M, that vstop 
 6 km=s. The polariza-

tion fraction jP j as a function of day, using fpol from

Eq. (27), is shown for various vstop and v0 in Fig. 2. Day-

by-day variations in the polarization exist since fpol grows

larger as jvEj decreases. The time variation is more marked
for the vE k B0 geometry we have chosen, as the precise
value of vE impacts the range of velocities which enter the
magnetic field region, and, hence, the polarization. For

definiteness, we choose day 335 to set limits on �. The
experiment we consider can be sensitive to both annual and
daily signal variations, in principle. This follows from the
duration of the photon–dark-matter interrogation time,
which, in turn, is set by the size and finesse of the cavity
in which the experiment is realized. We note that the total
travel length l of the laser light in the PVLAS experiment is
l ¼ 4:4 � 106 cm [36], which corresponds to an interroga-
tion time ofOð0:1 msÞ. This admits the possibility of using
pulsed magnetic fields, which can be much stronger—as
much as 89 T [122]. Irrespective of this, studies with the
magnetic field on and then off are important to establishing
a nonzero signal, if it is present.
We now consider how a limit on the magnetic moment

follows from our determined polarization and a given
sensitivity to the Faraday rotation angle per unit length.
For a spin-1=2 candidate, the rotation angle of Eq. (15) can
be written as

�0¼P�2

�
me

M

�
3
�2

B

nel

@c


ð6:84�10�23 cm2Þne ½cm�3�l ½cm�P�2

�
me

M

�
3
; (28)

with ne � ð1� fpolÞ=mec
2 and P from fpol as per

Eq. (27). We note, too, that if dark matter were a mixture
of particle and antiparticles of the same mass that the
rotation angle could cancel, at least in part. We can rewrite
Eq. (28) in terms of a limit on j�j by replacing �me=M
with �½�B�. The most stringent limits on j�j emerge for
M 	 me. For fixed M, its numerical value rests on the

FIG. 2 (color online). The polarization fraction jP j after
Eq. (27) plotted as a function of day for various vstop and v0.

Here vE has been assumed parallel to B0; this yields a geometry-
independent lower bound to the polarization, as described in text.
The solid lines have v0 ¼ 220 km=s and vstop ¼ 1, 5, 10, 15, 20,

and 25 km=s, respectively, as one moves in the direction of
increasing jP j. The dashed curves have vstop ¼ 5 km=s and

v0 ¼ 200 km=s and v0 ¼ 240 km=s, below and above, respec-
tively, the solid line with the same vstop.
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ability to determine �0=l. In the PVLAS experiment [36],
the error in �0=l is determined to be 0:5 � 10�12 rad=m.
Since l ¼ 4:4 � 104 m, �0 itself is determined to 2:2 �
10�8 rad. Assuming then that �0=l can be determined to
1 � 10�12 rad=m at 95% confidence interval, we find the
limit on j�j, or j�j, as a function of M. In Fig. 3 we show
the limit on j�j for candidate masses up to 1 MeV, whereas
in Fig. 4 we show the limit on j�j for masses from 1 to
100 MeV. The limits depend on the dark-matter polariza-
tion P as well. To illustrate the relative importance of P
and the determination of �0=l to the limit on j�j, we show
not only how the limits change if B0 is increased from 7 to
20 T but also, in Fig. 5, the value of jP j associated with
each limiting value of j�j in Fig. 3. The increase in B0

makes little difference at the lightest mass scales we con-
sider, simply because the polarization at these scales is
already near unity. Indeed, increasing the value of B0

simply increases the largest value of M for which we can
reasonably constrain the value of j�j. Our assessment of
the polarization as per Eq. (27) is that of a lower bound, yet
the polarizations we find are large enough that our upper
bounds on j�j are no more than a factor of a few larger than
what we would find after a realistic simulation of the
geometry and orientation of the magnetic field region. It
thus emerges that the limits to be set depend overwhelm-
ingly on the ability to determine�0=l. Let us consider then
the determination of this quantity and its consequences
carefully.

In Figs. 3 and 4 we show how the limits improve as the
determination of �0=l improves by orders of magnitude.
This can be realized by either increasing l or by bettering
the measurement of the rotation angle. We note that better

determinations of �0 are possible [123] and that precision
polarimetry at the shot-noise limit has been demonstrated
[124,125]. In this limit the error in�0 is set, crudely, by the
number of photons counted, ��0 ’ 1=ð2 ffiffiffiffiffiffiffiffi

IoT
p Þ, where I0 is

the number of photons per second and T is the measure-
ment time. Assuming a 1 W laser in the optical regime so

that E� 
 1 eV, we have ��0 ’ 2 � 10�10 rad-s=
ffiffiffiffiffiffiffiffiffi
T½s�p

[123,125]. Moreover, it has been demonstrated that the
use of squeezed light makes it possible to evade this
quantum limit and realize yet more precise polarimetry
[125,126]. All this suggests that the significant gains in the

FIG. 3 (color online). The limit on j�j at 95% confidence
interval, where � ¼ ��M and �M ¼ e@=2M, as a function of
M up to 1 MeV for various limits on �0=l and for different
values of the magnetic field B0. The solid lines correspond to
B0 ¼ 7 T, whereas the dashed lines correspond to B0 ¼ 20 T.
The limit on �0=l in each case is 10�12, 10�13, 10�14, and
10�15 rad=m, respectively, at 95% confidence interval, as one
sweeps from the top to the bottom of the figure.

FIG. 4 (color online). The limit on j�j in units of �B at 95%
confidence interval, as a function ofM for masses ranging from 1
to 100 MeV for various limits on�0=l and for different values of
the magnetic field B0. We employ the notation of Fig. 3 through-
out and note that the dotted line corresponds to B0 ¼ 89 T and a
limit on �0=l of 10

�15 rad=m at 95% confidence interval.

FIG. 5 (color online). The assessed polarization fraction jP j
associated with the limiting value of j�j for fixed M shown in
Fig. 3. We assume, as in Fig. 2, that vE k B0, to yield a
geometry-independent lower bound to the polarization. The
conditions which specify the various curves are as given in
Fig. 3.
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determination of �0=l we consider and more are indeed
possible. Interestingly, as the determination of �0=l be-
comes more precise, increasing the value of B0 becomes
more important to an improved limit on j�j. For example,
if M ¼ 100 MeV and B ¼ 89 T, the polarization fraction
associated with the value of j�j which follows from a limit
of �0=l of 10

�15 rad=m at 95% confidence level is jP j 

0:09.

We have determined the direct limits on j�j, or j�j,
which would follow from a non-observation of Faraday
rotation at a given sensitivity. As they stand the limits
constrain the possibility that the dark-matter particle is a
composite built from electromagnetically charged constit-
uents. Significantly more severe limits would be needed to
challenge the possibility that a dark-magnetic magnetic
moment exists by dint of quantum-loop effects. Thus we
wish to consider the prospect of radical improvement in
our limits. Improvements can come from bettering the
determination of �0=l, increasing B0, or, finally, noting
Eq. (28), from increasing the number density ne. The
ability to limit the value of �0=l beyond that established
by the PVLAS experiment [36] has already been demon-
strated [124,125], and the ultimate limit to the determina-
tion of �0=l has not yet been established [126]. Moreover,
as discussed in Sec. IV, mounting the Faraday rotation
experiment in matter can yield magnetic fields which are
larger by orders of magnitude, and can possibly realize
larger values of the dark-matter polarization P at fixed �
andM. Figs. 3 and 5 give a sense of the outcome as a result
of such improvements. Let us now turn to the last
possibility.

For the usually assumed Galactic halo density, ne is only
some 600 cm�3, so that the number densities associated
with warm dark matter are still very low indeed. Wewish to
consider whether the value of ne can yield to experimental
manipulation. In particular, we would like to increase the
dark-matter number density in a particular region of mo-
mentum space. At first glance this would seem impossible
[127], because Liouville’s theorem demands that the den-
sity of the phase-space fluid for a system governed by a
Hamiltonian is a constant of motion. Yet the Maxwell-
Boltzmann velocity distribution we assume, cum gravita-
tional potential, is a solution of Liouville’s equation, so
that a modest increase of number density can be realized by
reducing the gravitational potential. Significant gains,
however, are also possible, if inelastic processes operate,
as in this case Liouville’s theorem no longer limits the
density. Such considerations are crucial to the construction
of superthermal, ultra-cold-neutron sources [127]; how-
ever, adapting this technology to our current context does
not appear to be practical.

VI. SUMMARY

A Faraday effect exists for light transiting a dark me-
dium of electrically-neutral particles with nonzero mag-

netic moments in an external magnetic field [19]. We have
used this notion to describe a Faraday rotation experiment
which can lead to the direct detection of dark matter were it
to possess a magnetic moment �. Alternatively, a null
result can be used to limit the magnetic moment of a
dark-matter particle. The setup involves an evacuated op-
tical cavity to which an external magnetic field has been
applied and through which the light makes multiple passes
in the direction of the magnetic field. We assume the dark-
matter wind in the Earth rest frame sweeps through the
apparatus. The size of the Faraday rotation angle is pro-
portional to the magnetization of the dark matter, so that it
is important to give the magnetic moments some net po-
larization. For particles with sufficiently low kinetic en-
ergy, the passage into the magnetic field region itself acts
as a longitudinal Stern-Gerlach device; the highest energy
state in the magnetic field can be barred from entering the
apparatus, engendering a net polarization. We note that
such a technique has been used to polarize ultracold neu-
trons with near 100% efficiency [23]. Employing the usual
assumptions [97] concerning the mass density and velocity
distribution of galactic dark matter employed in the analy-
sis of existing direct detection experiments, we have esti-
mated, for fixed astronomical input, the polarization of the
dark matter in the magnetic field region as a function of its
mass and magnetic moment, as well as of the applied
magnetic field. Given a local dark-matter mass density,
our limits on j�j then follow from the strength of the
applied magnetic field B0 and from the ability to measure
�0=l, the Faraday rotation angle accrued per unit length.
We have studied a range of candidate masses compatible

with dark matter as a warm thermal relic, namely, from
1 keV to 100 MeV. This window in candidate masses is not
accessible via other direct detection techniques and thus is
unique to our study. We find the strongest limits on j�j
emerge at the lightest mass scales we consider. In setting
our limits we have employed the specifics of existing,
related experiments as far as possible [23,36], though we
note that the possibility of more precise polarimetry has
already been demonstrated [124,125]. The sensitivity of
the limits we obtain are such that they constrain the pos-
sibility that dark matter is a composite with a magnetic
moment, akin to a stable neutron without its strong inter-
actions. Indeed this analogy has proven useful in adapting
technology used to manipulate neutrons to our current
case. The technical limits of the polarimetry measurements
have not yet been established [125,126], and mounting the
experiment in matter with concomitant gains in the applied
magnetic field may prove feasible, so that we can ulti-
mately expect better limits on j�j than those found in this
paper.
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