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We simulate two dynamical, mass-degenerate light quarks on 163 � 32 lattices with a spatial extent of

2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the

action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator

we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and

vector mesons as well as for the nucleon and delta baryons are presented.
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I. INTRODUCTION

Lattice Dirac operators that obey the so-called Ginsparg-
Wilson (GW) relation [1] implement a lattice version of the
chiral symmetry transformations [2]. Presently only one
explicit formulation of lattice fermions, the overlap Dirac
operator [3,4], is GW exact in that sense. There are, how-
ever, several formulations approaching GW exactness in
various ways. Among them is the domain-wall formulation
[5,6], which approaches the overlap operator in the limit of
infinite extent of an artificial fifth dimension. Another one
is the so-called perfect Dirac operator [7,8], which if con-
structed explicitly, would obey the GW condition, and
which has been approximated by a parametrized fixed-
point form. Here we discuss a simulation with the so-called
chirally improved (CI) Dirac operator [9,10], which is also
a parametrization of a Dirac operator obeying the GW
relation approximately.

An advantage of GW exact fermions is that there is no
additive mass renormalization and thus no spurious zero
modes at nonzero quark masses. Operators are protected by
chiral symmetry, which is convenient for the determination
of certain matrix elements. Technically, the GW exact
overlap operator involves taking the square root of a sim-
pler kernel operator (e.g., the Wilson operator), which is
computationally roughly 2 orders of magnitude more ex-
pensive than simulations with non-GW operators. This is
not only due to the technical implementation (through, e.g.,
polynomial series or rational functions) but also to tunnel-
ing problems between sectors of different topologies.
Therefore, only a few groups have attempted to implement
dynamical overlap fermions [11–22].

On the other hand, GW-type operators, fulfilling the GW
condition in some approximation, although more expen-
sive than simpleWilson-Dirac operators, have been studied
in quenched calculations within the BGR Collaboration for
some time. There we demonstrated that, at least for baryon
masses, the Oða2Þ corrections are quite small [23] and that

field renormalization constants behave almost like in the
chirally symmetric case [24]. Motivated by these results we
have started to implement CI fermions for a dynamical
simulation on smaller lattices [25] and are now presenting
details and results of our simulations on larger lattices.
The first results involving dynamical CI fermions on

163 � 32 lattices were published in [26,27], and results
for smaller lattices can be found in [25,28]. In this paper we
concentrate on technical aspects of the simulation and
present the first results for the hadron mass spectrum for
three sets of parameters, corresponding to three different
pion masses, giving an overview of the current project
status. We start with an explanation of all the technicalities,
i.e., simulation details and equilibration behavior, followed
by the first analysis results for ground state masses of
mesons and baryons. We finish with a discussion of the
results and a summary.

II. SETUP AND SIMULATION

A. CI Dirac operator and action

For the fermions we use the so-called CI Dirac operator
DCI [9,10]. It obeys chiral symmetry only approximately,
depending on the truncation in the extent of the interaction
terms. Plugging a general ansatz into the Ginsparg-Wilson
equation leads to a set of algebraic equations for the
coefficients, which can be solved to obtain DCI. The paths
and coefficients used in our simulation are given in
Appendix A 1. Whereas in the quenched simulations the
DCI coefficients were adapted to the values of the gauge
coupling such as to have (almost) no mass renormalization,
we now decided to use the same DCI parameters for all
dynamical runs. This implies an additive mass renormal-
ization; i.e., the ‘‘mass parameter’’ m0 does not give the
bare mass directly. We adjust the value ofm0 such as to get
suitable PCAC masses (from the partially conserved axial
current relation; these masses are also called AWI masses
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since their definition comes from the axial Ward identity).
The numbers will be discussed in more detail below.

It was shown in a quenched calculation using DCI [10]
that the Lüscher-Weisz gauge action [29] produces
smoother gauge configurations than the Wilson gauge
action, and thus is used in our simulation. For
completeness we also list details of the gauge action in
Appendix A 2.

Another important ingredient in our simulation is smear-
ing, since the smearing procedure results in better chiral
properties of the operator, as can be seen from the eigen-
value spectrum of the Dirac operator [30]. In earlier
quenched studies with DCI, so-called hypercubic (HYP)
smearing [31] was applied. Since such a smearing proce-
dure is not differentiable and thus not well suited for
Hybrid Monte Carlo (HMC) simulations, we decided to
use the ‘‘differentiable’’ stout smearing [32]. In our simu-
lation we have been using one level of stout smearing, such
that the value of the plaquette is maximized (� ¼ 0:165 in
the notation of Ref. [32]). This smearing is considered to
be part of the definition of the full Dirac operator.

More recently, other suggestions for efficient differen-
tiable smearing methods have been published [33,34]. For
consistency, we continue to use the stout-type smearing
with which we started our study.

B. Run parameters

For the simulation presented here we use lattices of size
163 � 32 at three different values of the gauge coupling �1

and the bare mass parameter m0, all of which can be found
in Table I. The physical volume is always �2:4 fm. The
pion mass ranges from approximately 530 MeV down to
320 MeV. The total number of gauge configurations pro-
duced, Nconf , can also be found in Table I.

C. Algorithm

The algorithm we use for generating our gauge configu-
rations is a HMC [35] algorithm plus some additional
features. The HMC seems to be the most suitable algorithm
for our goal.

For the HMC we need a generalization of the
Hamiltonian evolution for a system of classical mechanics
in a fictitious HMC time to our system of fields Un;�. For

that purpose we introduce traceless Hermitian matrices
Pn;� 2 suð3Þ which act as conjugate momenta for the

Un;�, with n, � being the lattice site and the direction of

the link, respectively. We now can define the time deriva-
tive of Un;� as

_U n;� ¼ iPn;�Un;�: (1)

Then, a Hamiltonian H can be defined as

H ¼ 1

2

X
n;�

TrðP2
n;�Þ þ Sg þ�yðDyDÞ�1�; (2)

where Sg denotes the gauge action and � is the pseudo-

fermion field. The equation of motion for P is obtained via
the relation _H ¼ 0,

_H ¼ X
n;�

TrðPn;�
_Pn;�Þ þ _Sg þ�y d

dt
ðDyDÞ�1� ¼ 0;

(3)

which gives the evolution equation in HMC time _P ¼
fðU; _U;PÞ. Evaluating this function for, e.g., Wilson or
staggered quarks is not complicated since such types of
quarks involve only one link field Un;� connecting neigh-

boring sites. In our case, however, paths up to length 4,
coming from DCI, have to be considered. A more detailed
description of the procedure can be found in [36]. For the
evolution in HMC time we used the reversible and area
preserving leapfrog integration scheme.
To be able to go to smaller quark masses we utilize

Hasenbusch mass preconditioning [37]. The basic idea is
to split the pseudofermion action into two (or more) parts,
separating the small and the large eigenvalues of the Dirac
matrix. In our case we always use two pseudofermions.
The parameter mHB, which amounts to an additional mass,
is deduced from an educated guess [36]. Using NPF pseu-
dofermions, the mass shift is given by

mðiÞ
HB ¼

� ð2NPF�i�i
minÞ1=NPF 1 � i < NPF

0 i ¼ NPF:
(4)

Here, �min is the assumed smallest eigenvalue of the Dirac
matrix.
For the inversion of DyD we use the standard conjugate

gradient (CG) inverter. These inversions take by far most of
the computer time. Thus, several attempts were made to
increase the performance of this part of our code. First of
all, we use a chronological inverter by minimal residue
extrapolation [38], taking into account 12 previous solu-
tions. In Fig. 1 we plot the number of conjugate gradient
iterations against the leapfrog step iLF. What we see is a
rapid decrease in the CG iteration number when more
solutions from previous steps become available.
However, we find that a plateau is reached already at iLF ¼
5. The overhead caused by the 8 additional matrix vector
multiplications is negligible, however.

TABLE I. The parameters for the different runs. The number
of pseudofermions is NPF ¼ 2, and the total length of the
trajectories is 1 in HMC time units. In the sixth column the
parameter for the Hasenbusch mass preconditioning is given (see
Sec. II C for more details).

Run m0 �1 �2 �3 mHB Nconf Pacc

A �0:050 4.70 �0:3941 �0:060 63
ffiffiffiffiffiffiffiffiffi
0:03

p
100 0.904

B �0:060 4.65 �0:3899 �0:059 98
ffiffiffiffiffiffiffiffiffi
0:02

p
200 0.911

C �0:077 4.58 �0:3841 �0:059 08
ffiffiffiffiffiffiffiffiffi
0:02

p
200 0.858
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In a recent paper [39] Dürr et al. presented a mixed
precision inverter for the Dirac matrix. In order to ensure
reversibility in the molecular dynamics (MD) evolution,
one should work with double precision accuracy. The
method suggested there allows one to iteratively improve
the inversion accuracy, working partly with single preci-
sion and thus faster arithmetic. We choose a final accuracy
of " ¼ 10�7. The gain in run time per gauge configuration
was, e.g., about 33% for run C.

D. Autocorrelation time

A measure for the statistical efficiency of an observable
O is the integrated autocorrelation time �int, defined by

�int ¼ 1

2
þX1

t¼1

�ðtÞ
�ð0Þ ; (5)

where the autocorrelation function � is given by

�ðtÞ ¼ hðOðt0Þ � hOiÞðOðt0 þ tÞ � hOiÞi: (6)
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FIG. 1 (color online). The average number of conjugate gra-
dient iterations needed is plotted against the first leapfrog steps
for each run.
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FIG. 2. Left panels: The spatially averaged plaquette against the HMC time; from top to bottom we plot runs A, B, and C. The
dashed line in the plots indicates a change in the algorithm: From that point on we changed to the mixed precision inverter and used
Hasenbusch mass preconditioning. In run C the Hasenbusch mass preconditioning was used from the beginning; we only changed to
the mixed precision inverter. The solid lines in run A and run B indicate a split in the particular run into two separate trajectories to
increase the production of gauge configurations per (real) time. Right panels: The number of CG iterations, Ninv, in the accept/reject
step; the notation is the same as in the left panels.
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In practice, the sum (5) has to be truncated at some upper
value tmax, which we choose at that point where the auto-
correlation data become noisy. We discuss several observ-
ables to be able to figure out the point of equilibration and
the statistical independence of our measurements.

In the left panel of Fig. 2 we plot the plaquette values for
the three runs. One can clearly see that the runs A and B,
starting from ‘‘cool’’ quenched configurations, are equili-

brated after roughlyOð100Þ configurations. Run C does not
show a significant equilibration process for the following
reason. We started from a configuration B and slowly
changed the parameters �1 and m0 to the values of
run C. This was the starting configuration of the new run
sequence C.
Another indicator of equilibrium behavior is the number

of CG steps in the final accept/reject step of the MD
evolution, Ninv. We show these numbers in the right panels
of Fig. 2. Here one can also see that the runs are equili-
brated after the above-mentioned number of HMC updates.
Based on these observations, in our analysis we discarded
the first 100, 115, and 50 configurations for runs A, B, and
C, respectively.
Starting thus with the equilibrated configuration, we

computed the integrated autocorrelation time �int for the
plaquette values and for Ninv. The resulting numbers are
given in Table II and are all below 5. Therefrom we decided
to analyze every fifth configuration, i.e., configurations
separated by 5 units of HMC time.
In Fig. 3 we show the history of the pion mass, calcu-

lated separately for each analyzed configuration. Details of
the pion interpolator used are discussed in the spectroscopy
section. No noticeable correlation can be found in the plots.

E. The change in the Hamiltonian

Since we introduced the conjugate momenta P, we
describe a microcanonical ensemble of a classical system
with a Hamiltonian H. For exact solutions of the equations
of motion (MD equations) the Hamiltonian would be a
constant of motion and the configurations all would lie on a
surface of constant energy. Thus, each configuration cre-
ated would be accepted. However, due to the discretization
with an MD time step �t, numerical errors are introduced
and the Hamiltonian energy is not invariant. We denote the
change as�H. Each calculated gauge configuration is then
accepted with a probability e��H. The area-preserving
property of MD leads to an inequality [40],

eh��Hi � he��Hi ¼ 1: (7)

Because of this inequality h�Hi has to be positive, and this
is indeed the case in our simulations (cf. Table III and
Fig. 4 for our values). For run B we have quite a large value

TABLE II. Integrated autocorrelation times for the three runs.
Nequi is the number of configurations discarded until equilibra-

tion.

Run Nequi �int (plaq.) �intðNinvÞ
A 100 3.5 4.2

B 115 2.4 2.7

C 50 3.7 3.6
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FIG. 3. Time histories of the pion mass determined from single
configurations using the interpolator �uw�5dw (see Sec. IVC).
The horizontal dashed line indicates the mass value obtained
from fits to the ww propagators in the range t ¼ 4–15 (runs A, B)
or t ¼ 5–15 (run C). The vertical lines in runs A and B indicate a
split into separate sequences such as to enhance statistics by
parallel runs.

TABLE III. Averages of �H and their exponentials for each
run. We only included the equilibrated configurations in our
calculations. The third row contains the data of run B without
including configuration 730, which is responsible for the spike in
�H.

Run h�Hi e�h�Hi he��Hi
A 0.038(11) 0.963 0.989(11)

B 2.01(1.95) 0.134 0.986(10)

B’ 0.055(10) 0.947 0.988(10)

C 0.089(59) 0.915 1.034(12)
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of h�Hi, coming from a huge spike in �H in configuration
730 which is of the order of Oð105Þ bigger than the rest.
Also, in run C we have a spike at configuration 850, which
is about Oð103Þ bigger than the other values. Such spikes
have already been observed in other simulations with
dynamical fermions [13,41]. There are two possible rea-
sons for such a spike. One is the instability of HMC for
large step sizes in the MD evolution; cf. Ref. [42]. The
other one, and this is most likely the case here, is that the
Dirac operator can develop very small eigenvalues which
lead to these spikes in the derivative of the action.

We want to conclude with a remark on the relation
between �H and the acceptance rate. In Fig. 5 we plot
the acceptance rate against the averaged �H. In our case,
at least run A and run C are lying (within error bars) on the
predicted curve [43],

Pacc ¼ erfc

� ffiffiffiffiffiffiffiffi
�H

p
2

�
; (8)

where erfc is the complementary error function.

F. Dirac eigenvalues

An indicator of the ‘‘GW quality’’ of the Dirac operator
is its eigenvalue distribution in the complex plane.
Whereas Dirac operators obeying the GW condition in its
simplest form have eigenvalues on a unit circle centered at
1, approximate GW operators like DCI deviate from that
simple shape, showing some scattering of the eigenvalues.
Figure 6 shows the (in absolute values) smallest 150 ei-
genvalues superimposed for 20% of the configurations of
run A. Obviously the fluctuation is predominantly towards
values inside the unit circle and so-called exceptional
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FIG. 4. We plot �H against the HMC time starting from the
point of equilibration (runs A, B, and C are ordered from top to
bottom).
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FIG. 6 (color online). The smallest 150 eigenvalues superim-
posed for 20% of the configurations of run A.

HADRON SPECTROSCOPY WITH DYNAMICAL CHIRALLY . . . PHYSICAL REVIEW D 79, 054501 (2009)

054501-5



configurations (exceptionally small eigenvalues) are
suppressed.

Figure 7 shows histograms for the smallest values of
purely real � and for the minimal Reð�Þ for all three
parameter sets. Both types of histograms give an indication
on the permissible values of the smallest quark mass we

may obtain for that action, lattice spacing, and lattice size.
Concerning exceptional configurations, we find a mass gap
indicating that we are in a safe region of parameter values.
Several observations can be made from the eigenvalue

distributions. Low lying eigenvalues are depleted as ex-
pected for dynamical fermions due to the effect of the
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FIG. 7 (color online). Histograms for the smallest values of real � (left panels) and the smallest values of Reð�Þ (right panels) for
parameter sets A–C (from top to bottom). The measured AWI mass (in lattice units) is indicated by the vertical, dashed line.
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determinant in the measure. The boundary close to the
circular shape is rather sharp towards larger values of
j�� 1j. This allows us to simulate smaller pion masses
on coarse lattices.

The distribution density towards the inner region is, for a
given scale parameter, narrower than that for the Wilson
action but not as close to the boundary as for quenched
simulations with DCI [10].

In the quenched simulation HYP smearing was used,
whereas for the dynamical simulation we applied stout
smearing. This latter type of smearing has a weaker
smoothing effect than the hypercubic type. We could
have applied several subsequent stout smearing steps in-
stead, but we did not want to change the effective action in
the middle of our runs. Also, for the quenched ensembles
we optimized the action parameters for each value of�1. In
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FIG. 8 (color online). History of the estimated topology sector 	 and corresponding distribution histogram for parameter sets A–C
(from top to bottom).
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the dynamical simulation we stayed with the same parame-
trization of the DCI (except for the bare ‘‘mass’’ parameter
m0) in order to be able to qualitatively compare different
runs.

The number of exactly real modes 	, counted according
to their chirality hc j�5jc i, may be related to the topologi-
cal charge via the Atiyah-Singer index theorem [44].
Although we certainly miss some of the inner real modes
(cf. Fig. 7), we still get some information on the tunneling
between topological sectors from this quantity. Figure 8
demonstrates frequent tunneling and consistency with a
Gaussian-like shape of the distribution.

III. RESULTS FOR LOW ENERGY PARAMETERS

A. Setting the scale

For the determination of the lattice spacing we used the
Sommer parameter [45], determined by the lattice poten-
tial, which was derived from Wilson loops Wðr; tÞ. For
improving the signal the gauge configurations have been
smeared with hypercubic blocking [31] with parameter
values a1 ¼ 0:75, a2 ¼ 0:6, and a3 ¼ 0:3.

We have extracted the potential VðrÞ for each value of r
from linear fits to lnWðr; tÞ in the range 4 � t � 7. The
potential was then fitted in the range 1 � r � 7 to

VðrÞ ¼ Aþ B

r
þ 
rþ C�VðrÞ with

�VðrÞ �
�
1

r

�
� 1

r
(9)

(all quantities given in lattice units). The perturbative
lattice Coulomb potential ½1=r� serves as a correction to
the continuum Coulomb potential as discussed in [46–49].
It has been used in the form corrected for hypercubic
blocking [50,51],�

1

r

�
¼ �

Z �

��

d3k

ð2�Þ3
cosðk � rÞ � SHYPðkÞ
4
P

3
i¼1 sin

2ðki=2Þ
: (10)

The smearing factor SHYPðkÞ is detailed in [50]. The cor-
rection term allows for a perfect fit, even including the r ¼
1 value; see Fig. 9. Actually, as observed by other authors,
the result lies very close to what one gets when fitting only
the continuum shape of the potential to a restricted range
2 � r � 7.
From the resulting potential without the correction term

�V and the condition

r2
dVðrÞ
dr

��������r¼r0

¼ 1:65; (11)

we obtain the Sommer parameter in lattice units,

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:65þ B




s
¼ r0;exp

a
: (12)

The lattice spacing is thus given by a ¼ r0;exp=r0. Using

r0;exp ¼ 0:48 fm, our values for the lattice spacing are

given in Table IV.
The physical value of r0;exp for our situation (two mass-

degenerate quarks) is not accessible. Often the scale is set
by extrapolating the measured values of the lattice spacing
to vanishing quark mass and using the extrapolated value
for all mass values [52] (mass independent scheme). In the
present state of our simulations we have only one mass
value for each gauge coupling. We therefore rely on the
mass dependent definition, which differs by OðaÞ correc-
tions. We also could use the nucleon mass to set the scale.
In some of the mass plots shown below we therefore plot
the masses in units of the nucleon mass.

B. The axial Ward identity mass

Another important observable in lattice QCD calcula-
tions is the (unrenormalized) quark mass from the axial
Ward identity and the PCAC relation, the so-called AWI
mass (or PCAC mass). Therefore, we compute the ratio
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FIG. 9 (color online). Fits to the potential in the range 1 � r � 7 (symbols represent data points, whereas solid black lines are fits to
these points). The dashed black line in each plot indicates the distance r in lattice units where Eq. (11) holds.
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mAWI ¼ 1

2

cA
cP

h@tA4ðp ¼ 0; tÞPð0Þi
hPðp ¼ 0; tÞPð0Þi : (13)

Both interpolators,

A4 ¼ �d�4�5u; P ¼ �d�5u; (14)

couple to the pseudoscalar meson channel (here, the 4-
direction corresponds to the Euclidean time direction). In

relating the lattice measurements to the MS scheme, these
operators are usually defined with pointlike quark sources.
The normalization factors cA, cP relate the smeared source

lattice operators to the point source lattice operators,

cX ¼ hXðpÞðtÞPðpÞð0Þi
hXðsÞðtÞPðpÞð0Þi ; (15)

where the upper index ðsÞ or ðpÞ indicates smeared or point
sources, respectively, and X refers to A4 or P. The ratio
cA=cP is read off from the plateau range as exhibited in
Fig. 10 for the case of the wide sources.
For the ratio in Eq. (13) we need derivatives of the

correlator with respect to t. We obtain the numerical de-
rivatives from local 3-point fits to the expected cosh be-
havior of the correlator, involving values at
ðt� 1; t; tþ 1Þ.
In Fig. 10 we show the AWI-mass ratio, Eq. (13), vs t

and give the corresponding numbers in Table IV. The
values are symmetrized with regard to T=2 and the error
is estimated by single elimination jackknife. To obtain the
final value for mAWI, the ratio was averaged from t ¼
4; . . . ; 16, weighted according to the statistical errors.

TABLE IV. Lattice spacing as defined via the Sommer pa-
rameter and AWI mass in lattice units and in physical units
via that scale setting.

Run a (fm) a=r0;exp amAWI mAWI (MeV)

A 0.1507(17) 0.3139(35) 0.0327(3) 42.8(4)

B 0.1500(12) 0.3126(24) 0.0259(2) 34.1(2)

C 0.1440(12) 0.3000(24) 0.0111(2) 15.3(3)
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FIG. 10 (color online). Left panels: Ratio cA=cP for each run. Right panels: The AWI-mass ratios from Eq. (13) (runs A, B, and C,
from top to bottom).
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To relate this lattice value of mAWI to anMS value (e.g.,
at � ¼ 2 GeV) we still need to extrapolate to the chiral
limit and compute the corresponding renormalization con-
stants of the axial and the pseudoscalar operators,

mMS ¼ mAWIZA=ZP: (16)

The Gell-Mann-Oakes-Renner (GMOR) relation estab-
lishes (in leading order in the quark mass) the connection
between the pion mass m� and the quark mass m, with F�

and � denoting the pion decay constant and the chiral
condensate, respectively,

F2
�m

2
� ¼ �2m�: (17)

From Fig. 11 one sees that the expected linear dependence
of m2

� on mAWI is nicely reproduced. In addition to the
three fully dynamical points we also show the partially
quenched values, where the valence quark mass is larger
than the sea quark mass. These points, including the par-
tially quenched ones, are all compatible with a common
behavior.

C. Pion decay constant

The pion decay constant F� can be extracted from the
correlator hA4A4i via

c2AZ
2
AhA4ðp ¼ 0; tÞA4ðp ¼ 0; 0Þi ���!large t

m�F
2
�e

�m�t: (18)

Here, we also use the normalization factor cA from Eq. (15)
in order to remove the dependence on the quark smearing.
The axial vector lattice field operators have to be multi-
plied with normalization constants ZA in order to ensure
correct current conservation in the chiral limit. For the
quenched results these were determined for DCI in [24],
resulting in values close to 1. In Fig. 12 we plot F� vs the
AWI mass.

IV. RESULTS FOR THE HADRON GROUND
STATES

A. Spectrum analysis: Variational method

Over the last two decades lattice QCD has turned into a
powerful tool for computing the mass spectrum of hadrons.
Such a reproduction of experimental evidence from an
ab initio calculation is a strong test for the correctness of
QCD. However, one is mostly restricted to the ground state
masses, since excited state contributions only appear as
subleading terms in the Euclidean correlators. Thus, a
reliable separation of excited and ground states, but also
of different excited states themselves, is a rather challeng-
ing enterprise.
Nowadays several different approaches towards that

goal are used in hadron spectroscopy. One could do a
brute-force least-squares fit to a finite sum of exponentials,
but this is known to give conclusive results only if high
statistics are available. Other methods are based on
Bayesian fitting [53–57], subtractions [58], or evolutionary
fitting methods [59,60]. Here, however, we use a different
state-of-the-art approach, namely, the variational method
[47,61] which has been used quite extensively within the
BGR Collaboration [62–70]. For a recent review on results
for the variational method, see [71].
In the variational method a matrix built from different

correlators is used. These correlators contain interpolators
with different Dirac structure and quarks smeared with
different widths. Such a choice allows for a better overlap
of the interpolating fields with the physical states. Given a
set of N basis interpolatorsOi, i ¼ 1; . . . ; N, we compute a
matrix of cross correlations,

CijðtÞ ¼ hOiðtÞ �Ojð0Þi: (19)

Considering the generalized eigenvalue problem, normal-
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FIG. 11 (color online). Gell-Mann-Oakes-Renner plot for the
three runs. Filled symbols represent the fully dynamical points,
whereas open symbols are data points for which mval >msea.
The curves represent fits to amþ bm2.
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FIG. 12 (color online). F� in lattice units with a linear fit to the
three dynamical points. These values have not been corrected by
multiplication with ZA.
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ized at some time slice t0 < t,

CðtÞvk ¼ �kðt; t0ÞCðt0Þvk; (20)

one can show, along the lines of [61,72], that the eigenval-
ues �k behave as

�kðt; t0Þ / e�ðt�t0Þmk½1þOðe�ðt�t0Þ�mkÞ�: (21)

In general, �mk is the mass difference to the closest lying
state. For a more detailed discussion of the error terms, see
[72]. Each of the interpolatorsOi has the quantum numbers
of the corresponding hadron channel and is projected to a
certain spatial momentum, which is always zero in our
case. For all considered hadron channels we use t0 ¼ 1.

For a sufficiently large set of basis interpolators, each
eigenstate decays exponentially with its energy according
to Eq. (21). The eigenstate with the slowest decay (i.e., the
largest eigenvalue) corresponds to the ground state, the
second largest to the first excited state, and so on. We
now can fit the states by stable two-parameter fits of the
eigenvalues in a range of t values where the correlator is
dominated by a single exponential. In order to identify the
corresponding range for the fit, we analyze effective
masses for the eigenvalues,

mðeffÞ
k ðtþ 1=2Þ ¼ ln

�
�kðtÞ

�kðtþ 1Þ
�
: (22)

For sufficiently large values of t the effective masses form
plateaus, which then give us the range for the fit.

Another important instrument to estimate the quality of
the signal are the eigenvectors vk of Eq. (20), acting as
fingerprints for each state. The components also should
show a plateau behavior with regard to the correlation
distance where the channel is dominated by a single state.
Thus, the fits of the eigenvalues should only be performed
in a t range where both effective masses and eigenvectors
show a reliable plateau.

B. Jacobi smearing of quark sources

Hadron correlation functions are built from quark propa-
gators D�1 acting on some quark source S. In order to
improve the signal and to extend the operator basis, we
work with extended sources obtained by Jacobi smearing
[73,74]: A pointlike source S0 is smeared out by acting
with a smearing operator M,

S ¼ MS0; M ¼ XN
n¼0

ð�HÞn; (23)

where H is a hopping term,

H ¼ X3
j¼1

½Ujðx; tÞ�xþĵ;y þUy
j ðx� ĵ; tÞ�x�ĵ;y�: (24)

The smearing extends only over individual time slices; i.e.,
t is fixed. The parameters � (hopping parameter) and N

(number of smearing steps) are tuned to get an approxi-
mately Gaussian shape of the quark source with a certain
width. We use the values for � and N given in [68] for the
163 � 32 lattice to obtain a narrow (index n) and a wide
(index w) source.

C. Hadron interpolators

Working with the variational method, one strives for a
good basis of interpolatorsOi from which one can obtain a
combination coupling strongly to the hadron of interest.
These interpolators should simultaneously be linearly in-
dependent, as orthogonal as possible, and sufficient to
represent the physical states reasonably well. Thus, the
crucial point is the design of different interpolators.
A complete list of our meson interpolators can be found

in Table V. All considered interpolators represent isovector
(I ¼ 1) mesons.
Interpolators for baryons are slightly more complicated

since there are three quarks involved. The general form of a
local interpolator for the nucleon is given by

ON ¼ abc�1uaðuTb�2dc � dTb�2ucÞ; (25)

where a, b, c are color indices and �1, �2 are combinations
of � matrices. In Table VI the different possibilities are
listed.
The delta baryon has a simpler structure, since only one

Dirac structure is analyzed there. Its interpolator has the
following form,

O�;k ¼ abcuaðuTbC�kucÞ; k ¼ 1; 2; 3: (26)

We project this to spin 3
2 and average the correlators as

discussed in [69].
We introduce a shorthand notation for the different

baryon interpolators. We denote them by s1ðs2s3Þ, where
si represents the smearing type of quark i; e.g., in nðwwÞ

TABLE V. Meson interpolators used in this study. We use
�t ¼ �4; i.e., the 4-direction corresponds to the Euclidean
time direction. The subscripts n or w denote the narrow or
wide smeared quark source.

Meson JPC Number Operator

Pseudoscalar 0þ� 1 �un�5dn
2 �un�5dw
3 �uw�5dw
4 �un�t�5dn
5 �un�t�5dw
6 �uw�t�5dw

Vector 1�� 1 �un�kdn
2 �un�kdw
3 �uw�kdw
4 �un�k�tdn
5 �un�k�tdw
6 �uw�k�tdw
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the first quark has a narrow smearing, and the second and
third have wide smearings. The interpolators for the bary-
ons studied here can be found in Tables VI and VII. All
baryon correlators are projected to definite parity.

For subsequent configurations the quark sources (and
thus the hadron interpolators) are placed at alternating
positions di ¼ ðt; xÞ with

d1 ¼ ð 0; 0; 0; 0 Þ; d2 ¼ ð 16; 0; 0; 0 Þ;
d3 ¼ ð 0; 8; 8; 8 Þ; d4 ¼ ð 16; 8; 8; 8 Þ;

(27)

in order to get better statistical decorrelation of the data.
All hadron interpolators are projected to vanishing spatial
momentum.

D. Effective masses and fit ranges

Only a posteriori can one judge the amount of indepen-
dence of the interpolators used. Including too many inter-
polators in the correlation matrix increases the statistical
noise in the diagonalization. Our aim is to get the best
signal in each channel, and this is obtained by having the
best plateaus in the effective masses. We therefore, after
studying the quality of results with different subsets of

interpolators, decided on as few of them as seemed suffi-
cient for a stable signal. For example, for the positive parity
nucleon we only included the interpolators 4–6 and 16–18.
The optimal selection may be different when we study
higher excitations and may include differently smeared
quark sources.

E. The meson sector

Since we simulate two mass-degenerate light quarks,
interpolators of the form �un�dw and �uw�dn are identical.
Table V lists the interpolators used. Because of the two
different choices for � we have for the pseudoscalar and
vector particle six interpolators at hand. Only a subset of
these is used for the final analysis.
We restricted ourselves to fit only plateaus with three or

more consecutive points. In addition to that, we started fits
only at points for which t� t0 � 2. Table VIII gives the
information on the interpolators and the fit ranges used in
the final analysis.

1. The pseudoscalar meson

Let us start our discussion with the particle where the
best signal can be extracted, the pseudoscalar meson
(JPC ¼ 0�þ).
Figure 13 demonstrates a peculiarity of the generalized

eigenvalue problem, as it was observed already in, e.g.,
Refs. [70,75]. On the periodically closed lattice, mesons
propagate forward and backward in time. An interpolator
which couples to a particular state at small t will also
couple to the same, but backward running, state at high t.
In the standard eigenvalue problem, depending on the time
extent and the masses of ground state and excited state,
above some value of 0< t1 � nt=2 the backward running
ground state will have a larger eigenvalue than the first
excited state. In that region of t values the second largest
eigenvalue increases towards nt=2. In the generalized ei-
genvalue problem the eigenvalues are all normalized to
unity at time slice t0. Thus the second largest eigenvalue
signal is shifted upwards and the upwards increasing ei-
genvalue discussed may now even become, at some value
t2, larger than the eigenvalue of the ground state. This

TABLE VI. Nucleon IðJPÞ ¼ 1
2 ð12þÞ interpolators. The refer-

ence numbers of the interpolators are chosen to be consistent
with earlier publications [68,69].

�1 �2 Number Smearing

1 C�5 1 nðnnÞ
2 nðnwÞ
3 nðwnÞ
4 nðwwÞ
5 wðwnÞ
6 wðwwÞ

i1 C�4�5 13 nðnnÞ
14 nðnwÞ
15 nðwnÞ
16 nðwwÞ
17 wðwnÞ
18 wðwwÞ

TABLE VII. Delta baryon IðJPÞ ¼ 3
2 ð32þÞ interpolators. The

reference numbers of the interpolators are chosen to be consis-
tent with earlier publications [68,69].

Number Smearing

1 nðnnÞ
2 nðnwÞ
3 nðwnÞ
4 nðwwÞ
5 wðwnÞ
6 wðwwÞ

TABLE VIII. Here we show the interpolators entering the final
analysis and the best fit ranges for the different runs. We also
give the resulting mass values using the lattice spacing given in
Table IV.

Meson Interpolator(s) Run Fit range Mass (MeV)

Pseudoscalar 3 A 4–15 526(7)

B 4–15 469(4)

C 5–15 318(5)

Vector 4, 5, 6 A 3–10 922(17)

B 3–13 897(13)

C 4–9 810(28)
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behavior is observed in Fig. 13 where we plot the first two
eigenvalues of the pseudoscalar state resulting from the
generalized eigenvalue problem analysis. For our choice of
t0 ¼ 1 the backward (in time) running ground state be-
comes the second largest eigenvalue near t1 ¼ 6 and the
largest eigenvalue near t2 ¼ 13. Near the crossing this
leads to a misidentification (the real ground state signal
becomes the second largest eigenvalue) which explains the
bump in the effective mass jameffj.

These properties can be seen very nicely in the two-
dimensional model of [76]. This behavior of the eigenval-
ues is a fundamental feature of the variational method; the
signals of ground and excited states are disentangled up to
that point in time where these signals are crossing with the
lightest backward running state. The larger the difference
in the ground and excited states, the earlier this crossing
takes place.

For simplicity, and since the results for the correspond-
ing plateau regions agree within errors, we choose the
single correlator (no. 3) value where we find the longest
plateau. The effective mass for this case is computed
assuming cosh behavior. In Fig. 13 we compare the effec-

tive masses of the ground states for two different choices of
interpolators. One can clearly see that the two sets of
effective masses can be fitted reliably in an appropriate
region.

2. The vector meson

In the case of the vector meson we can take the eigen-
vector components as a tool to determine fit ranges (cf.
Table VIII). The interpolators we included in the correla-
tion matrix are nos. 4, 5, 6. In Fig. 14 we plot the eigen-
vector components and effective mass of the ground state.
One can see from the plots that the quality of the data is
sufficient to make a fit, but it is not as good as for the pion.
In the left panel of Fig. 15 we plot the fitted mass against

m2
�. The scale is set by the lattice spacing of Table IV.

Within error bars, all three runs agree nicely with each
other and run C extrapolates close to the experimental
value.
As discussed in Sec. III we set the scale by assuming a

Sommer parameter value of 0.48 fm for all three runs. In
the right panel of Fig. 15 we use the scale of the nucleon
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FIG. 13 (color online). In the first row the eigenvalues for the pseudoscalar channel (JPC ¼ 0�þ) are shown (runs A, B, C from left
to right). In each plot we show data for two different sets of interpolators: Circles represent the ground state using interpolator 3;
squares and diamonds show the ground state (GS) and the first excited state (1E) using the interpolator set 1, 3, 4, 6, respectively
(numbers according to Table V). In the second row the absolute values of the corresponding effective masses (in lattice units) of the
ground states are plotted as a function of t. The horizontal line indicates the fit range and mass value obtained by the fit of the ground
state eigenvalue of interpolator 3 over the specified range. The effective mass for the single correlator case (3 GS) is computed
assuming cosh behavior.
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FIG. 14 (color online). In the first row the normalized eigenvector components of the ground state vðiÞ
1 , i ¼ 4, 5, 6, of the vector

meson (JPC ¼ 1��) are plotted against the time distance t. From left to right we show runs A, B, and C. In the second row the effective
masses of the vector meson (in lattice units) are plotted as a function of t. The solid black lines indicate our fit range of the fit to the
corresponding leading eigenvalue and the upper and lower bounds of the extracted value. Also here, from left to right we show runs A,
B, and C.
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mass instead. Here the data of run B seem to be somewhat
higher than runs A and C.

We emphasize that the physical � is a resonance and that
multiple lattice volumes would be needed for a thorough
analysis.

F. The baryon sector

In this presentation we restrict ourselves to baryons with
positive parity. A more detailed analysis, also including
excited states, is in progress. The definitions for the nu-

cleon and delta baryons were given earlier in Eqs. (25) and
(26). Details of the interpolators used can be found in
Tables VI and VII.

1. The nucleon

For the diagonalization process we used the interpola-
tors 4, 5, 6, 16, 17, 18 according to Table VI. The results
are shown in Fig. 16. All of the data sets extrapolate
towards the physical point. The results of the extrapola-
tions are given in Table IX.

2. The delta resonance

For the � resonance we have a set of 6 different inter-
polators at hand (see Table VII), and in principle, we can
allow for 26 � 1 ¼ 63 combinations. All these combina-
tions give rise to reasonable fit results. In the end we used
the combination 1, 2, 4, 5, 6; see Fig. 17. However, a naive
(linear in m2

�) extrapolation overestimates the physical
value by about 10%–15% (see Table IX). In the right panel
of Fig. 17 we show the same plot, now scaled in units of the
nucleon mass. One may argue that in this plot some finite
size artefacts cancel such that the extrapolation to the
physical point is improved.

V. SUMMARYAND CONCLUSIONS

In this paper we presented first results from dynamical
simulations with CI fermions on lattices of size 163 � 32
with spatial extent of 2.4 fm. After detailing the technical
aspects of our simulation we showed that so-called excep-
tional configurations are suppressed in simulations with CI
fermions. This enables us to simulate at pion masses of
roughly 320 MeV on rather coarse lattices. We observe
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FIG. 16 (color online). The (positive parity) nucleon mass mN

is plotted against the pseudoscalar mass m2
� for the fully dy-

namical data (filled symbols) and for the partially quenched
dynamical data (open symbols) for runs A, B, C. The experi-
mental value is marked with a black cross.
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FIG. 17 (color online). Left panel: The (positive parity) delta baryon mass m� is plotted against the pseudoscalar mass m2
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panel: The same plot, now scaled by the nucleon mass mN , for the dynamical runs A, B, C. Both plots show the fully dynamical data
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frequent tunneling between topological sectors and reason-
ably small autocorrelation times.

As a first physical application we presented results for
the pion decay constant F� and for the ground state masses
of selected mesons and baryons. While scale setting re-
mains an issue with dynamical simulations, the results
from all three runs are consistent and naive extrapolations
of our data are also consistent with experiment. Further
simulations at different lattice spacings and in larger vol-
umes will be needed in order to control the effects of the
lattice discretization and to estimate the finite volume
corrections, thereby making closer contact with experi-
mental results.

We are currently improving the basis for the variational
method and investigating the effects of quark and link
smearing on the quality of excited state signals, thus pro-

viding a systematic study of excited meson and baryon
states for a larger set of quantum numbers.
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APPENDIX A: CI OPERATOR AND LÜSCHER-
WEISZ GAUGE ACTION

1. The CI operator

Throughout the dynamical simulations we used the CI
Dirac operator introduced in [9,10,77]. The coefficients
multiply terms of the action according to the definition in

D ¼ m01þDCI; DCIðn;mÞ ¼ X16
i¼1

cðiÞnmðUÞ�i; (A1)

where the sum runs over all 16 elements �i of the Clifford

algebra. To each element we assign a coefficient cðiÞnm,
consisting of sums of path ordered products of the link
variables U which connect the lattice sites n and m.

TABLE IX. Interpolators and fit ranges used for the baryon
ground states. The mass values are obtained using the lattice
spacing given in Table IV.

Baryon Interpolator(s) Run

Fit

range

Mass

(MeV)

Nucleon (pos. parity) 4, 5, 6, 16, 17, 18 A 3–11 1311(22)

B 4–11 1215(18)

C 3–8 1108(23)

Delta (pos. parity) 1, 2, 4, 5, 6 A 3–6 1528(22)

B 3–6 1498(15)

C 3–6 1443(23)

TABLE X. Coefficients for the CI fermion action used in this simulation. The path shapes are
given symbolically; e.g., ½i; j� stands for a path in the i direction and then in the j direction
(i � j). The � matrices (fifth column) are also permuted as described in more detail in [10].

Coefficient number Name Value Path shape � Multiplicity

1 s1 1.481 599 252 ½ � 1 1

2 s2 �0:052 182 514 39 ½i� 1 8

3 s3 �0:014 736 438 47 ½i; j� 1 48

5 s5 �0:002 186 103 421 ½i; j; k� 1 192

6 s6 0.002 133 989 696 ½i; i; j� 1 96

8 s8 �0:003 997 001 821 ½i; j;�i� 1 48

10 s10 �0:0004951673735 ½i; j; k; l� 1 384

11 s11 �0:000 983 650 079 9 ½i; j;�i; k� 1 384

13 s13 0.007 529 838 581 ½i; j;�i;�j� 1 48

14 v1 0.197 222 930 9 ½i� �i 8

15 v2 0.008 252 157 565 ½i; j� �i 96

17 v4 0.005 113 056 314 ½i; j; k� �i 384

18 v5 0.001 736 609 425 ½j; i; k� �i 192

32 t1 �0:08792744664 ½i; j� �i�	 48

33 t2 �0:002 553 055 577 ½i; j; k� �i�j 384

34 t3 0.002 093 792 069 ½i; k; j� �i�j 192

36 t5 �0:005 567 377 075 ½i; j;�i� �i�j 48

46 t15 �0:003 427 310 798 ½j; i;�j;�i� �i�j 48

51 p1 �0:008 184 103 136 ½i; j; k; l� �5 384
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Plugging this ansatz into the Ginsparg-Wilson equation
leads to a set of algebraic equations, which can be solved
to obtainDCI. Additional restrictions come from the lattice
symmetries and �5 Hermiticity. The solution can, in prin-
ciple, be exact if one allows for an infinite number of terms.
For practical reasons the number of terms is finite and thus
the solution is a truncated series solution of the Ginsparg-
Wilson relation. In our simulation, paths up to length 4 are
used, as given in Table X.

2. The Lüscher-Weisz gauge action

The Lüscher-Weisz gauge action [29] is given by

Sg ¼ ��1

X
pl

1

3
Re trUpl � �2

X
re

1

3
Re trUre

� �3

X
tb

1

3
Re trUtb; (A2)

where Upl is the usual Wilson plaquette, Ure is a planar

ð2� 1Þ plaquette, andUtb is a closed loop of length 6 along
the edges of a 3-cube (‘‘twisted bent’’). Here, �1 is the
independent gauge coupling and the two other couplings
are determined from tadpole-improved perturbation theory
[78]. With

u0 ¼
�
1

3
Re TrhUpli

�
1=4

; � ¼ � 1

3:068 39
logu40;

(A3)

we get for �2, �3 the following expressions,

�2 ¼ �1

20u20
ð1þ 0:4805�Þ; �3 ¼ �1

u20
0:033 25�:

(A4)

By u0 in Eq. (A3) we denote the assumed plaquette,
ReTrhUpli; thus the coefficients have to be calculated

self-consistently.
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(2005) 75 [arXiv:hep-lat/0509051].

[65] T. Burch, C. Gattringer, L. Y. Glozman, C. Hagen, D.
Hierl, C. B. Lang, and A. Schäfer, Proc. Sci., LAT2005
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