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We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion

and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark

potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic

perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the

same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely

proportional to the temperature. We obtain numerical solutions of the three-dimensional Schrödinger

equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and

expansion rate, and that the anisotropy leads to polarization of the P-wave states.
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INTRODUCTION

In the era of the relativistic heavy ion collider at
Brookhaven and the large hadron collider at CERN the
theoretical understanding of in-medium modifications of
QCD bound states is expected to progress significantly. In
this paper we focus on the properties of bound states of
heavy quarks (quarkonia) in an anisotropic plasma.

In quantum chromodynamics with small t’ Hooft cou-
pling at short distances nonrelativistic quarkonium states
exist. Their binding energies are much smaller than the
quark massmQ � �QCD (Q ¼ c; b), and their size is much

larger than 1=mQ. At zero temperature, since the velocity

of the quarks in the bound state is small, v � 1, quark-
onium can be understood in terms of nonrelativistic poten-
tial models [1] using the Cornell potential [2]. The
potential model can actually be derived directly from
QCD as an effective field theory (potential nonrelativistic
QCD - pNRQCD) by integrating out modes above the
scales mQ and then mQv, respectively [3].

At high temperatures, the deconfined phase of QCD
exhibits screening of static color-electric fields [4]. It is
expected that this screening leads to the dissociation of
quarkonium states, which can serve as a signal for the
formation of a deconfined quark-gluon plasma in heavy-
ion collisions [5]. Inspired by the success at zero tempera-
ture, potential model descriptions have also been applied to
understand quarkonium properties at finite temperature.
The pioneering paper of Matsui and Satz [5] was followed
by the work of Karsch, Mehr and Satz (KMS) [6], which
presented the first quantitative calculation. In recent works

more involved calculations of quarkonium spectral func-
tions and meson current correlators obtained from potential
models have been performed [7–12]. The results have been
compared to first-principle QCD calculations performed
numerically on lattices [13–16]. A summary and review of
the current understanding of these potential models is
presented in [17], and different aspects of quarkonium in
collider experiments can be found in [18]. More recently
the imaginary part of the potential due to Landau damping
has been calculated [19,20]. Also, the derivation of poten-
tial models from QCD via effective field theory methods
has been extended to finite T [21]. All of these works,
however, have been performed with the assumption of an
isotropic thermal medium.
Here, we attempt a first assessment of the properties of

quarkonium states in a QCD plasma which exhibits an
anisotropy in momentum space. Such anisotropy may arise
due to a locally anisotropic hydrodynamic expansion of a
plasma with nonvanishing shear viscosity. It leads to an

angular dependence of theQQ potential [22]. We note that
the nonequilibrium effect described here arises beyond the
linear response approximation in that the operators corre-
sponding to various properties of quarkonium states need
to be evaluated in an ensemble of anisotropic (in momen-
tum space) gauge field configurations.
After reviewing the anisotropic plasma in Sec. II, we

formulate the first potential model for an anisotropic me-
dium in Sec. III. The solution of the three-dimensional
Schrödinger equation is described in Sec. IV, and the
numerical results are presented in Sec. 9. We note that by
now it is understood that merely solving the Schrödinger
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equation for the individual states is not enough, especially
close to the continuum threshold. Here many-body inter-
actions should be taken into consideration by solving the
Schrödinger equation for the nonrelativistic Green’s func-
tion [12]. However, for the purpose of the present work the
simple analysis suffices. We summarize our results and
draw our conclusions in Sec. VI.

THE ANISOTROPIC PLASMA

The phase-space distribution of gluons is assumed to be
given by the following ansatz [22–26]:

fðpÞ ¼ fisoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �ðp � nÞ2

q
Þ: (1)

Thus, fðpÞ is obtained from an isotropic distribution
fisoðjpjÞ by removing particles with a large momentum
component along n, the direction of anisotropy. We shall
restrict ourselves here to a plasma close to equilibrium,
which is motivated by the fact that in a heavy-ion collision
quarkonium states are expected to form when the tempera-
ture has dropped to (1-2) Tc; by then, the plasma may have
equilibrated at least partly. Hence, we assume that the
function fisoðjpjÞ is a thermal ideal-gas distribution.

The parameter � determines the degree of anisotropy,

� ¼ 1

2

hp2
?i

hp2
zi

� 1; (2)

where pz � p � n and p? � p�nðp � nÞ denote the parti-
cle momentum along and perpendicular to the direction n
of anisotropy, respectively. If � is small then it is also
related to the shear viscosity of the plasma; for example,
for one-dimensional boost-invariant expansion [27]

� ¼ 10

T�

�

s
; (3)

where T is the temperature, � is proper time (and 1=� is the
Hubble expansion rate), and �=s is the ratio of shear
viscosity to entropy density. In an expanding system, non-
vanishing viscosity (finite momentum relaxation rate) im-
plies an anisotropy of the particle momenta which
increases with the expansion rate 1=�. For �=s ’ 0:1 –
0.2 and �T ’ 1 – 3 one finds that � ’ 1.

We should stress that in this paper we restrict to solving
the time-independent Schrödinger equation, i.e. we assume
that the plasma is at a constant temperature T and anisot-
ropy �. This approximation is useful if the time scale
associated with the bound state, �1=jEbindj, is short com-
pared to the time scales over which T and � vary. Indeed,
for sufficiently large quark mass mQ this condition should

be satisfied.

THE KARSCH-MEHR-SATZ MODEL AT FINITE
TEMPERATURE

Isotropic medium (� ¼ 0)

Lacking knowledge of the exact heavy-quark potential
at finite temperature, different phenomenological poten-
tials, as well as lattice-QCD based potentials have been
used in potential models to study quarkonium.
The KMS model [6] assumes the following form of the

heavy-quark potential at finite temperature in an isotropic
plasma with � ¼ 0:

Fðr; TÞ ¼ ��

r
expð�mDrÞ þ �

mD

½1� expð�mDrÞ�: (4)

Here, � � 0:385 is an effective Coulomb coupling at
(moderately) short distances,� ¼ 0:223GeV2 is the string
tension and mDðTÞ is the Debye screening mass.
Equation (4) is a model for the action of aWilson loop of

size 1=T and r in the temporal and spatial directions,
respectively, (see [28] and references therein). This poten-
tial has been used before to study quarkonium bound states
[7]. However, it was realized shortly after that Eq. (4)
cannot be taken directly as the heavy-quark potential be-
cause it contains an entropy contribution; see, for example,
the discussion in Refs. [12,17,28,29]. Rather, Eq. (4) cor-

responds to the free energy due to the presence of a QQ in
the medium. We emphasize that the entropy term in the
lattice data is merely a perturbative entropy contribution
present at large distances1, r ! 1, and it is absent at short
distances [28]. One can remove this entropy term from the
lattice data by parametrizing Fðr ! 1; TÞ � F1ðTÞ in the
form F1ðTÞ ¼ a=T � bT and then adding the term bT to
Fðr; TÞ at large distance, thereby obtaining what has been
called the physical potential in [11,12].
Alternatively, one could calculate the full entropy S ¼

�@F=@T and add it to the free energy, which leads to the
internal energy U ¼ Fþ TS. The internal energy calcu-
lated in lattice QCD [30] shows a large increase inU1 near
Tc, due to the large increase of the entropy near Tc.
Furthermore, at temperatures T ’ Tc a potential model
based on the internal energy becomes much more binding
than the T ¼ 0 Cornell potential (we refer to this as ‘‘over-
shooting’’). For these reasons, the internal energy Uðr; TÞ
obtained on the lattice should neither be identified with the
heavy-quark potential, although it has been used in poten-
tial models before [7,10,29]. Nevertheless, the internal
energy provides a useful upper limit for the potential at
finite T. A version of the internal energy in which the
overshooting problem was eliminated, was designed in
[11,12] and called the most confining potential.
In this paper we also construct a model for a potential

which could be viewed as an upper limit for the heavy-
quark potential, i.e. V1 ’ U1. Our present model is very

1We evaluate it in anisotropic HTL resummed perturbation
theory in Sec. 3.
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simple and contains a minimum number of parameters, as
the primary goal is to generalize the finite-T potential to
anisotropic media. In our model we add the full entropy
contribution to the KMS ansatz (4):

Vðr; TÞ ¼ Fðr; TÞ � T
@Fðr; TÞ

@T
(5)

� ��

r
ð1þmDrÞ expð�mDrÞ

þ 2
�

mD

½1� expð�mDrÞ� � �r expð�mDrÞ: (6)

In the second line we have used that mD is approximately
proportional to T at high temperatures. Since the effect of
the running of the coupling is important only at distances
<0:1 fm, not relevant for quarkonium studies, here we do
not consider running-coupling corrections. Figure 1 com-
pares the potential at finite temperature to that at mD ¼ 0
which is a Cornell potential.

This potential, just as its original form (4), essentially
represents an interpolation from the well-known Cornell
potential at short distance to an exponentially Debye-
screened string attraction at large r. With g ’ 2, mD ’
gT and Tc ’ 200 MeV, the length scale where medium
effects become large is roughly given by rmedðTÞ ’
Tc=ð2TÞ fm, in approximate agreement with lattice results
from Ref. [31]. In (6) corrections to the Cornell potential
are suppressed at distances r < 1=mD, i.e. they appear only
at order ðmDrÞ2. This is due to the fact that we subtracted
the derivative @F=@ logT even at intermediate distances; it
appears to give a better representation of the lattice poten-
tial at r < rmedðTÞ, which in fact coincides with the Cornell
ansatz. One can see in Fig. 1 that our potential VðrÞ is very
close to the Cornell potential for distances up to r ’ 0:4 fm,
in agreement with lattice results [31]. The finite-

temperature potential (6) does not overshoot the Cornell
potential significantly at any r [11], at least up to tempera-
tures on the order of 1:5Tc. This is actually the temperature
range where most bound states (except perhaps 1S botto-
monium) are expected to dissociate in an isotropic medium
[11,12]. On the other hand, Fig. 1 shows that at rather high
temperatures of order 3Tc, the model (6) does overshoot
the Cornell potential at short distances. This indicates that
this simple form of the finite-T potential is not appropriate
when the Debye mass mD is large. However, this regime is

not of interest here since even the bb states are no longer
bound. Overall, the potential (6) appears to provide a
reasonable model for the interquark potential in the decon-
fined phase at (moderately) high temperatures.
At r ! 1 the potential (6) approaches

V1ðTÞ ¼ 2
�

mD

’ 0:16GeV2

T
: (7)

Again, this is in approximate agreement with the V1 ’
1=T ansatz used in Ref. [11]. Note, in particular, that (7) is
about the same as the internal energyU1ðTÞ obtained from
the lattice data [11]. We take this as an indication that our
potential (6) represents an upper limit for the possible
finite-temperature potentials.
The main assumption of the KMS model is that the very

same screening scale mD which emerges in the Debye-
Coulomb potential also appears in the nonperturbative,
long-distance contribution due to the string. In the follow-
ing, we take over this assumption to anisotropic plasmas.
It is interesting to note that the KMS ansatz for the free

energy from Eq. (4) can be obtained in the usual way from
the Fourier transform of the static propagator, provided that
a nonperturbative contribution

m2
G

ðk2 þm2
DÞ2

(8)

is added to the standard HTL resummed propagator [32].
Here, m2

G is a constant of dimension two which can be

related to the string tension � by matching onto a Cornell
potential at small mDr. The presence of such an additional
dimensionful scale (besides T) also leads to a nonvanishing
trace of the energy-momentum tensor [33].

Anisotropic medium (� > 0)

Our fundamental assumption is that the modified KMS
potential (6), which provides a reasonable upper-limit
model for the heavy-quark potential in isotropic media,
retains its basic form also when the local momentum
distribution of the plasma particles is anisotropic (� > 0).
However, the isotropic Debye massmDðTÞ is now replaced
by an angular dependent screening scale �ð�;�; TÞ as
discussed in the next section.
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FIG. 1 (color online). The model potential from Eq. (6) at zero
and at finite temperature as a function of distance. Temperature
is normalized to Tc ¼ 192MeVand the temperature dependence
of the Debye mass is parametrized as given in Eq. (31) below.
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Angular dependence of the potential at short distances

The potential from one-gluon exchange at short distance
can be evaluated perturbatively. At tree level the potential
corresponds to the Fourier transform of the static gluon
propagator which resums screening effects at high tem-
perature2. For � > 0 the potential depends not only on the

distance between the Q and Q but also on the angle �
between their separation r and the direction n of anisotropy
[22].

To linear order in �, the potential can be expressed as

Vðr; �Þ ¼ VisoðrÞ

� g2CF�m
2
D

Z d3p

ð2�Þ3 e
ip�r

2
3 � ðp � nÞ2=p2

ðp2 þm2
DÞ2

(9)

¼ VisoðrÞð1� �F ðr̂; �ÞÞ; (10)

where r̂ � rmD and mDðTÞ denotes the screening mass in
the isotropic medium at a given temperature T, as before.
Also, VisoðrÞ is the Debye-screened Coulomb potential in
an isotropic medium, as given by the first term in Eq. (4),
and the function

F ðr̂; �Þ � f0ðr̂Þ þ f1ðr̂Þ cosð2�Þ (11)

with

f0ðr̂Þ ¼ 6ð1� er̂Þ þ r̂½6� r̂ðr̂� 3Þ�
12r̂2

¼ � r̂

6
� r̂2

48
þ � � � ;

(12)

f1ðr̂Þ ¼ 6ð1� er̂Þ þ r̂½6þ r̂ðr̂þ 3Þ�
4r̂2

¼ � r̂2

16
þ � � � :

(13)

Note that Eqs. (9)-(13) do not apply at large distances r̂ �
1, which is a shortcoming of the Taylor expansion of the
full potential in powers of �. This is of no importance in the
following because these expressions are used at short
distances only in order to determine the angular depen-
dence of the screening scale, which will then replacemD in
Eq. (6).

We can now define the �-dependent screening mass in
the anisotropic medium as the inverse of the distance scale
rmedð�Þ over which jrVðrÞj drops by a factor of e:

log
��

rmedVðrmed; �;�; TÞ ¼ 1; (14)

�ð�;�; TÞ ¼ r�1
medð�;�; TÞ: (15)

In (14) we have used the fact that rV ! �� as r ! 0. To
leading order in � this leads to

r̂ med ¼ 1� �F ðr̂med; �Þ: (16)

An approximate solution to Eq. (16) is given by

r̂ med ’ 1þ �
3þ cos2�

16
) �

mD

’ 1� �
3þ cos2�

16
:

(17)

For � ¼ 0:5 (1.0) this solution achieves a relative accuracy
of	 4% ( 	 18%) over the entire range of �. The accuracy
of this result can be improved systematically by going
beyond Oðr̂2Þ in the expansion of the functions f0 and f1
introduced in Eqs. (12),(13).
The ‘‘minimal’’ extension of the KMS model to nonzero

anisotropy consists of replacingmDðTÞ in (6) by�ð�;�; TÞ
from above:

VðrÞ ¼ ��

r
ð1þ�rÞ expð��rÞ þ 2�

�
½1� expð��rÞ�

� �r expð��rÞ: (18)

At short distances this reduces to the Cornell potential
VðrÞ ¼ ��=rþ �r, as it should be.
Corrections to Eq. (18) due to the finite quark mass can

be accounted for by adding a temperature- and spin-
independent correction proportional to �=ðm2

QrÞ [34].

This improves the accuracy of the wave functions of
quarkonium states obtained from the solution of the non-
relativistic Schrödinger equation. The potential finally
takes the form

VðrÞ ¼ ��

r
ð1þ�rÞ expð��rÞ þ 2�

�
½1� expð��rÞ�

� �r expð��rÞ � 0:8�

m2
Qr

: (19)

Perturbative heavy-quark free energy in an anisotropic
medium

In the limit of infinite mass, the free energy of a heavy
quark in a thermal plasma is related to the expectation
value of Polyakov loops. At high temperature, this can be
calculated within hard-thermal loop resummed perturba-
tion theory. The leading-order contribution is given by

FQð�; TÞ ¼ � 1

2
ðigÞ2CF

Z d3k

ð2�Þ3 ½�
00ðkÞ � 1

k2
�; (20)

where�00ðkÞ is the ‘‘hard thermal loop’’ resummed propa-
gator of static A0 fields. We have subtracted the
temperature-independent contribution to FQ which is not

of interest here. Also, this renders the integral UV-finite.
For the case of an anisotropic medium, �00ðkÞ has been
calculated in Ref. [22]; see, also, Ref. [35]. The expression
(20) then turns into

2In the first part of this section we are only interested in
distances up to �1=�. It is therefore not crucial to distinguish
carefully whether the potential is identified with the Fourier
transform of the propagator or with the internal energy. We shall
add the entropy contribution later, c.f. Eqs. (18)-(19), to suppress
corrections to the Cornell potential at short distances.
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FQð�; TÞ ¼ � 1

2
�sCFmDhð�Þ; (21)

with a temperature-independent function hð�Þ. For small
anisotropy the following expansion in � applies:

hð�Þ ¼ 1� 1

6
�þ 18� �2

240
�2 þ � � � (22)

We identify this expression with the free energy of a quark
due to its interaction with the medium (i.e., half the free

energy of a QQ pair at large separation). However, the
perturbative entropy contribution TS ¼ �T@FQ=@T
should be added again in order to obtain the potential.
Since (21) is linear in T (at fixed coupling), it follows
that the perturbative contribution to V1 vanishes3. On the
other hand, lattice data (for an isotropic medium) indicate
that the free energy of a quark-antiquark pair at infinite
separation also contains a nonperturbative contribution of
the form V1ðTÞ ¼ rmedðTÞ� [12], which agrees qualita-
tively with the prediction of the KMS model, V1 � �=mD.
Within the framework of the KMS model, this implies that
at � � 0, V1ð�;�; TÞ depends on angle as screening be-
comes anisotropic.

SOLVING THE 3D SCHRÖDINGER EQUATION

To determine the wave functions of bound quarkonium
states, we solve the Schrödinger equation

Ĥ	
ðxÞ ¼ E
	
ðxÞ; Ĥ ¼ � r2

2mR

þ VðxÞ þm1 þm2;

(23)

on a three-dimensional lattice in coordinate space with the
potential given in Eq. (19). Here m1 and m2 are the masses
of the two heavy quarks andmR is the reduced mass:mR ¼
m1m2=ðm1 þm2Þ. The index 
 on the eigenfunctions, 	
,
and energies, E
, represents a list of all relevant quantum
numbers, e.g. n, l, and m for a radial Coloumb potential.
Because of the anisotropic screening scale, the wave func-
tions are no longer radially symmetric if � � 0. Since we
consider only small anisotropies we nevertheless label the
states as 1S (ground state) and 1P (first excited state),
respectively.

To find solutions to Eq. (23) we use the finite difference
time domain method (FDTD) [36]. In this method we start
with the time-dependent Schrödinger equation

i
@

@t
c ðx; tÞ ¼ Ĥc ðx; tÞ; (24)

which can be solved by expanding in terms of the eigen-
functions, 	
:

c ðx; tÞ ¼ X



c
	
ðxÞe�iE
t: (25)

If one is only interested in the lowest energy states (ground
state and first few excited states) an efficient way to pro-
ceed is to transform (24) and (25) to Euclidean time by a
Wick rotation, � � it:

@

@�
c ðx; �Þ ¼ �Ĥc ðx; �Þ; (26)

and

c ðx; �Þ ¼ X



c
	
ðxÞe�E
�: (27)

For details of the algorithm we refer to Ref. [36].

Finding the ground state

By definition the ground state is the state with the lowest
energy eigenvalue, E0. Therefore, at late imaginary time
the sum over eigenfunctions (27) is dominated by the
ground state eigenfunction

lim
�!1c ðx; �Þ ! c0	0ðxÞe�E0�: (28)

Because of this one can obtain the ground state wave
function, 	0, and energy, E0, by solving Eq. (26) starting
from a random three-dimensional wave function,
c initialðx; 0Þ, and evolving forward in imaginary time.
This initial wave function should have nonzero overlap
with all eigenfunctions of the Hamiltonian; however, due
to the damping of higher-energy eigenfunctions at suffi-
ciently late imaginary times we are left with only the
ground state, 	0ðxÞ. Once the ground state wave function
(or, in fact, any other wave function) is found we can
compute its energy eigenvalue via

E
ð� ! 1Þ ¼ h	
jĤj	
i
h	
j	
i ¼

R
d3x	



Ĥ	
R
d3x	



	


: (29)

To obtain the binding energy of a state, E
;bind, we

subtract the quark masses and the potential at infinity

E
;bind � E
 �m1 �m2 � h	
jVð�; jrj ! 1Þj	
i
h	
j	
i :

(30)

For the isotropic KMS potential the last term is indepen-
dent of the quantum numbers 
 and equal to �=mD. In the
anisotropic case, however, this is no longer true since the
operator V1ð�Þ carries angular dependence, as already
discussed above. Its expectation value is of course inde-
pendent of � but does depend on the anisotropy parameter
�.

Finding the excited states

The basic method for finding excited states is to first
evolve the initially random wave function to large imagi-

3A term FQ � a=T could be generated by a nonperturbative
contribution of the form m2

G=ðk2 þm2
DÞ2 to the static gluon

propagator, as already mentioned above. m2
G is a constant of

dimension two [32].
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nary times, find the ground state wave function, 	0, and
then project this state out from the initial wave function
and reevolve the partial-differential equation in imaginary
time. However, there are (at least) two more efficient ways
to accomplish this. The first is to record snapshots of the
three-dimensional wave function at a specified interval
�snapshot during a single evolution in �. After having ob-

tained the ground state wave function, one can then go back
and extract the excited states by projecting out the ground
state wave function from the recorded snapshots of
c ðx; �Þ.
An alternative way to select different excited states is to

impose a symmetry condition on the initially random wave
function which cannot be broken by the Hamiltonian evo-
lution. For example, one can select the first excited state of
the (anisotropic) potential by antisymmetrizing the initial
wave function around either the x, y, or z axes. In the
anisotropic case this trick can be used to separate the
different polarizations of the first excited state of the
quarkonium system and to determine their energy eigen-
values with high precision. This high precision allows one
to more accurately determine the splitting between polar-
ization states which are otherwise degenerate in the iso-
tropic Debye-Coulomb potential.

Whichever method is used, once the wave function of an
excited state has been determined one can again use the
general formulas (29) and (30) to determine its binding
energy.

RESULTS AND DISCUSSION

In this section we present the solutions of the three-
dimensional Schrödinger Eq. (23) in a weakly anisotropic
medium. In particular, we determine the temperature de-
pendence of the binding energies of different charmonium
and bottomonium states obtained with the anisotropic po-
tential (19) that has been constructed from themost binding
isotropic potential. The anisotropy- and temperature-
dependent screening mass �ð�;�; TÞ is given in Eq. (17).
To illustrate the effect of the anisotropy of the medium
more clearly we shall also compare the results to those
obtained for an isotropic medium. In the latter case � ¼ 0
and so �ð�;�; TÞ ¼ mDðTÞ, where the temperature depen-
dence of the Debye mass is given by

mDðTÞ ¼ AgT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ nf=6Þ

q
: (31)

For nf ¼ 2 number of massless quark flavors the parameter

A ¼ 1:4 has been determined in lattice calculations [37].
We choose a fixed gauge coupling of g ¼ 1:72 which
yields mDðTÞ=T � 2:8. This agrees approximately with
lattice estimates of mD=T for temperatures on the order
of T=Tc � 1:5, and it also gives a reasonable estimate of
the free energy at infinite separation [37]. The values of the
charm and bottom quark masses are chosen such that at low
temperature the correct masses of MJ=c ¼ 3:1 GeV and

M� ¼ 9:4 GeV for the J=c and the �, respectively, are
recovered. Accordingly,

mc ¼ 1:3GeV and mb ¼ 4:7GeV: (32)

All of the results reported below were obtained from
lattices with lattice spacings approximately 20 times

smaller than the root-mean-square radius hr2i1=2
 �
ðT; �;mQÞ of the state under consideration, defined by the

quantum number 
. The lattice size L was chosen to be
about 6 times larger than the RMS radius4. Discretization
errors and finite-size effects are thus expected to be rea-
sonably small and nearly independent of T, �, mQ, and 
.
We stopped the time evolution when the energy E
ð�Þ of
the state had stabilized to within 10�8. A more detailed
investigation of numerical errors is beyond the scope of the
present paper. Our goal here is to show how quarkonium
states may be affected by the anisotropy of the medium.
The temperature dependence of the binding energies of

charmonium and bottomonium ground states in the vector
channel5 are depicted in Fig. 2. The figure shows the results
obtained for isotropic � ¼ 0 and anisotropic � ¼ 1 media.
The former are in agreement with those obtained in
Ref. [11] with the so-called most-confining isotropic po-
tential. As expected, the binding energy decreases as the
screening mass mDðTÞ increases with temperature T. This
plot also indicates that jEbindj increases with the anisotropy
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FIG. 2 (color online). Temperature-dependence of the binding
energies jEbindj for the ground states of charmonium (lower
curves) and bottomonium (upper curves) in the vector channel
for two values of the plasma anisotropy parameter �. The
straight line corresponds to a binding energy equal to the
temperature.

4Since we restrict the analysis to only weak medium anisot-
ropies, we employ isotropic lattices with uniform lattice spacing
in all three Cartesian directions.

5Spin effects are neglected in our treatment and the ground
state could be identified with either the pseudoscalar or the
vector state. For definiteness, we shall refer to the vector
channel.

DUMITRU, GUO, MÓCSY, AND STRICKLAND PHYSICAL REVIEW D 79, 054019 (2009)

054019-6



�. This can be understood from the fact that in an aniso-
tropic plasma the screening scale �ð�Þ at a given tempera-
ture is smaller than the corresponding Debye massmD; see
Eq. (17). As a consequence, the screening of the attractive
Coulomb and string contributions is less accentuated in the
anisotropic plasma and so quarkonium states are bound
more strongly than in an isotropic medium. The magnitude
of this effect is substantial even for the moderate anisot-
ropy considered here. Near the critical temperature Tc, for
example, the binding energy of the 1S vector c �c ground
state increases by about 50%, and that of the 1S b �b ground
state increases by roughly 30% compared to the binding
energies calculated in an isotropic medium (the only case
addressed previously in the literature).

It is important to highlight another aspect of the reduced
screening. In the KMS model the asymptotic value of the
potential is intrinsically related to the screening mass via
the relation hV1iðTÞ ¼ h
j���1ð�;�; TÞj
i. This implies
that in the anisotropic medium less screening translates
into an increase of the potential at infinite separation, V1.
The above is illustrated in Fig. 3 which shows the expec-
tation value of V1 in the � state6. V1, in turn, determines
the continuum threshold, which, at a given T is at higher
energy than in the isotropic case. This implies that at a
given temperature the energy gap between the bound state
and the continuum, which is the binding energy, is in-
creased compared to the isotropic case.

Comparing the behavior of hV1i to that of the binding
energy of the � from Fig. 2 shows that the decrease of
jEbindj with T is largely due to the decrease of the contin-
uum threshold hV1i. Indeed, we have confirmed that the
wave function of the b �b ground state is essentially unaf-

fected by the medium, i.e. it is almost independent of T (for
T & 2Tc) and � (for � & 1). This has interesting implica-
tions for phenomenology: On one hand, the center of the
�-peak in the dilepton invariant mass distribution may not
shift much (since V1 ¼ 0 for decay into dileptons) even for
temperatures>Tc where the binding energy is significantly
lower than in vacuum. On the other hand, when jEbindj � T
we expect substantial broadening of the states due to direct
thermal activation [11,38]. The thermal width can be esti-
mated from the binding energy [38]. When the width is
larger than the binding energy, a state decays faster than it
binds [11]. Note, that in the same temperature domain
collisions with thermal particles of the medium would
further broaden the width of a state. Thus, the dissociation
of the bound states may be expected to occur roughly when
jEbindj � T [17]. With the potential investigated in this
paper, which likely represents an upper limit for the attrac-
tive interaction, the condition jEbindj � T is met for the
J=c by 1:2Tc for � ¼ 0, in agreement with previous
results [11], and by 1:4Tc for � ¼ 1. We stress furthermore
that the thermal density of a given state,

�� expð�Ebind

T
Þ; (33)

is not enhanced significantly when jEbindj< T. In other
words, since T decreases with time in a heavy-ion colli-
sion, quarkonium states with quantum numbers 
 should
appear at a temperature T
 � jE
;bindj 7. From Fig. 2 it is

plausible that in a viscous plasma quarkonium synthesis
occurs at higher temperature than in a perfectly equili-
brated medium. For the J=� for example, �Tsynth=Tc ’
20% for � ¼ 1 as compared to � ¼ 0.
In Fig. 4 we show the root-mean-square (RMS) radii

hr2i1=2ðT; �Þ of the c �c and b �b ground states as functions of
temperature. The former grows rather rapidly about the
dissociation point where jEbindj � T. The size of the �, on
the other hand, increases only little with temperature. We
can understand these results, qualitatively, as follows. For
charmonium the string part of the potential dominates, and
the growth of its RMS radius with T indicates that screen-
ing of the string is strong8. We observe a similar behavior
of the first 1P excited state of bottomonium. On the other
hand, 1S bottomonium is too small to be affected strongly
by screening (for T & 2Tc), it is essentially a Coulomb
state. The weaker binding as compared to low temperature
is largely due to a decrease of the continuum threshold V1,
as already mentioned above.
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FIG. 3 (color online). Expectation value of V1 in the J=� or�
states as a function of temperature for two values of the plasma
anisotropy parameter �.

6We recall that V1 is proportional to the identity at � ¼ 0 and
hence its expectation value is the same for all states. At � ¼ 1 we
obtain a very small difference between hJ=�jV1jJ=�i and
h�jV1j�i.

7The total number of formed quarkonium states depends on
how many heavy quarks are produced in the initial hard pro-
cesses, and on what fraction thereof is bound in D- and
B-mesons, respectively.

8Recall that the in the KMS model the string tension enters
with a factor of 1=mDðTÞ at intermediate distances on the order
of r� 1=mDðTÞ.
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In this vein, it is also instructive to look at the behavior
of the absolute energy of the J=� and � states versus
temperature, shown in Fig. 5. We recall that E� 2mQ ¼
hV1i þ Ebind. The energy of the � increases slightly with
temperature as is expected for a small-size state bound
mainly by the Debye-Coulomb part of the potential (plus
a constant): the first term on the right hand side of Eq. (19)
increases with the screening mass �. On the other hand,
EJ=� decreases with T because the second term in (19)

decreases as � increases.
Figure 6 shows the temperature dependence of the bind-

ing energies of the 1P states of bottomonium9, identified
with the �b. The anisotropy again leads to an increase of
jEbindj by about 50%, comparable to the behavior of the

J=� from above. It also leads to a preferred polarization of
the �b, with about 50 MeV splitting between states with
angular momentum Lz ¼ 0 and Lz ¼ �1, respectively. At
T � Tc, due to the Boltzmann factor (33), the population of
the state with Lz ¼ 0 is about 30% higher than that of
either one of the Lz ¼ �1 states. Here, the polarization is
with respect to the axis n of anisotropy, which coincides
with the direction of expansion of the plasma. In addition,
quarkonium states produced in high-energy collisions ini-
tially through semihard gluon fusion may exhibit polariza-
tion with respect to the particle velocity vector [39].

SUMMARYAND CONCLUSIONS

In a viscous plasma, anisotropic expansion of a fluid
element leads to an anisotropy of the quasiparticle momen-
tum distributions. The hard thermal loop resummed propa-
gator of static chromo-electric fields then carries angular
dependence which leads to anisotropic Debye screening.
In this paper we have proposed the first model for the

static potential between a very heavy quark and antiquark
in a hot anisotropic QCD plasma. Conceptually, we assume
that the time scale �1=jEbindj associated with the bound
state is short compared to the time scales over which the
temperature and the anisotropy evolve.
At distances on the order of the Debye length the poten-

tial can be calculated from perturbative QCD (at high
temperature). At larger distances it is however dominated
by the non-perturbative string attraction. Lattice gauge
theory simulations have shown that in the deconfined phase
the string is screened at a similar scale rmedðTÞ � 1=mDðTÞ
and that at infinite separation the free energy of a Q �Q pair
approaches a constant V1ðTÞ, equal to twice the free
energy of a single heavy quark in the plasma.
The essential features appear to be in qualitative agree-

ment with a model proposed by Karsch, Mehr and Satz [6]
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FIG. 6 (color online). Temperature-dependence of the binding
energy for the 1P state of bottomonium for two values of the
plasma anisotropy parameter �. The straight line corresponds to
a binding energy equal to the temperature.

9The 1P states of charmonium do not have binding energies
which exceed the temperature significantly for T * TC.
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long time ago. However, to obtain the heavy-quark poten-
tial we subtract the entropy contribution from their ansatz
for the free energy of a Q �Q pair. We thereby obtain the
internal energy of the Q �Q pair which should be viewed as
an upper limit for the physical potential. The latter may be
less binding than the KMS internal energy used here. We
note that in the relevant temperature region, up to about
2Tc, the potential at short and intermediate distances fol-
lows the zero-temperature Cornell-potential; i.e., the over-
shooting problem of the internal energy is eliminated, in
accordance with lattice data on the free energy.

The KMS model correctly reproduces the Cornell po-
tential at short distances and, moreover, does not introduce
any new parameters besides the string tension. This is
important for our present goal of extending the isotropic
potential to anisotropic plasmas. Knowledge of the aniso-
tropic screening scale obtained from the gluon propagator
is sufficient to generalize the KMS model to anisotropic
media.

We then proceed to solve the Schrödinger equation with
this potential to determine the wave functions of bound c �c
and b �b states in the plasma. The radial Schrödinger equa-
tion is no longer sufficient as the potential carries angular
dependence. We employ a finite difference time domain
method (in Euclidean time) on a three-dimensional lattice
to obtain the wave functions and the binding energies.
Some medium effects are neglected in this approach.
However, solving for the full nonrelativistic Green’s func-
tion (including threshold effects) in three dimensions is
beyond the scope of this paper.

We find that just above the critical temperature Tc ’ 192
MeV for deconfinement (in QCDwithNc ¼ 3 colors) in an
anisotropic medium both the 1S state of charmonium as
well as the 1S and 1P states of bottomonium have binding
energies larger than T; the temperature may serve as a
rough estimate for the width of the states. The binding
energies decrease with temperature and cease to exceed the
estimated width �� T at some higher temperatures. We
note, also, that the Boltzmann enhancement factor
expð�Ebind=TÞ for bound states is negligible anyway
when jEbindj & T.

The decrease of jEbindjwith T is due to two effects: First,
the continuum threshold V1ðTÞ decreases approximately
like �1=T. The energy gap between the bound state and
the continuum, which is the binding energy, therefore
decreases, too. In fact, for the model adopted here, we
find this to be the dominant effect on the 1S ground state
of bottomonium whose wave function is rather insensitive
to the presence of the medium. The state is too small to be
affected strongly by screening. Hence, the � peak in the
dilepton invariant mass distribution may not experience a

large shift although one should expect substantial broad-
ening near the dissociation temperature.
Larger states such as the 1S ground state of charmonium

and the 1P excited state of bottomonium, however, may
also experience some modifications due to screening. The
root-mean-square radii of these states increase rather rap-
idly with T around the dissociation point jEbindj � T.
The two main results of this work are as follows. At fixed

T, the screening mass decreases with increasing �. In the
KMS model, the asymptotic value of the potential is in-
trinsically related to the screening mass via V1ð�Þ �
1=�ð�;�; TÞ. Hence, less screening translates into an in-
crease of the potential at infinite separation. This implies
that the binding energies of bound states increase, too. The
effect is quite substantial even for moderate anisotropies
� ’ 1 considered here: we find that just above Tc the
binding energy of the bottomonium ground state increases
by about 30%, that of 1S charmonium and of 1P bottomo-
nium by 50%. Thus, such quarkonium states may exist up
to somewhat higher temperatures than in case of an iso-
tropic, perfectly equilibrated medium (for � ¼ 0 the J=c
and the � are expected to dissociate by 1:2Tc and 1:8Tc,
respectively, in agreement with previous potential model
calculations).
The other important new effect identified here is that the

angular dependence of the interquark potential in an an-
isotropic medium induces a polarization of states with
nonzero angular momentum. According to our estimates,
the splitting of the �b with Lz ¼ 0 and Lz ¼ �1, respec-
tively, is on the order of 50 MeV. At T ’ 200 MeV, the
population of the state with Lz ¼ 0 is Boltzmann-enhanced
by about 30% as compared to the states with angular
momentum along the direction of anisotropy, respectively.
The experimental confirmation of such a polarization at
RHIC or LHC may provide first evidence for a nonzero
viscosity of QCD near Tc.
The next step of our investigation is the determination of

the imaginary part of the potential, which will provide
insight into how the anisotropy of the medium affects the
widths of the states. We shall present results in a future
publication.

ACKNOWLEDGMENTS

We thank D. Kharzeev and P. Petreczky for reading the
manuscript prior to publication and for useful comments.
Y. G. thanks the Helmholtz foundation and the Otto Stern
School at Frankfurt university for their support and the
center for scientific computing (CSC) for computational
resources.

QUARKONIUM STATES IN AN ANISOTROPIC QCD PLASMA PHYSICAL REVIEW D 79, 054019 (2009)

054019-9



[1] W. Lucha, F. F. Schoberl and D. Gromes, Phys. Rep. 200,
127 (1991).

[2] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D.
Lane and T.M. Yan, Phys. Rev. Lett. 34, 369 (1975); 36,
1276 (1976); E. Eichten, K. Gottfried, T. Kinoshita, K. D.
Lane and T.M. Yan, Phys. Rev. D 17, 3090 (1978); 21,
313 (1980)21, 203 (1980).

[3] A. Pineda and J. Soto, Nucl. Phys. B, Proc. Suppl. 64, 428
(1998);N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev.
Mod. Phys. 77, 1423 (2005) .

[4] E. V. Shuryak, Phys. Rep. 61, 71 (1980);D. J. Gross, R. D.
Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).

[5] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[6] F. Karsch, M. T. Mehr and H. Satz, Z. Phys. C 37, 617

(1988).
[7] Á. Mócsy and P. Petreczky, Phys. Rev. D 73, 074007

(2006); Eur. Phys. J. C 43, 77 (2005).
[8] C. Y. Wong, Phys. Rev. C 72, 034906 (2005).
[9] W.M. Alberico, A. Beraudo, A. De Pace and A. Molinari,

Phys. Rev. D 75, 074009 (2007); Phys. Rev. D 77, 017502
(2008).

[10] D. Cabrera and R. Rapp, Phys. Rev. D 76, 114506 (2007).
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