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Exclusive �o electroproduction from nucleons is suggested for extracting the tensor charge and other

quantities related to transversity from experimental data. This process isolates C-parity odd and chiral-odd

combinations of t-channel exchange quantum numbers. In a hadronic picture it connects the meson

production amplitudes to C-odd Regge exchanges with final state interactions. In a description based on

partonic degrees of freedom, the helicity structure for this C-odd process relates to the quark helicity flip,

or chiral-odd generalized parton distributions. This differs markedly from deeply virtual Compton

scattering, and both vector meson and charged � electroproduction, where the axial charge can enter

the amplitudes. Contrarily, the tensor charge enters the �o process. The connection through the helicity

description of the process to both the partonic and hadronic perspectives is studied and exploited in model

calculations to indicate how the tensor charge and other transversity parameters can be related to cross

section and spin asymmetry measurements over a broad range of kinematics.
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I. INTRODUCTION

A dynamical mechanism for the process ��P ! �0P0 is
proposed that allows for the extraction of the tensor charge
from experiment. The basis for this approach is in the
relation between a hadronic description of the process, in
terms of Regge poles and cuts, and the partonic descrip-
tion, in terms of generalized parton distributions (GPDs)
[1–3]. The latter provides a formal connection to the trans-
versity distribution of the nucleon h1 and the helicity
amplitudes that are key to parameterizing the hadronic
description. In the following we will use this connection
as a guide in exploring the observables that isolate the
transversity. The two models, GPD (Fig. 1(a)) and Regge
(Fig. 1(b)), will illustrate how the extraction of transversity
and the tensor charge can proceed experimentally. A key
point in our approach is that deeply virtual �o (as well as
�, �0) production off a proton target is clearly distinct from
the other types of meson production processes in that it
involves the transition of a (virtual) photon with JPC ¼
1�� to a JPC ¼ 0�þ state (i.e. the final �o or �, �0)
requiring odd C-parity and chiral-odd t-channel quantum
numbers. As a consequence, in a partonic description such
as the one depicted in Fig. 1(a), the ‘‘outgoing’’ and
‘‘returning’’ quark helicities need to be opposite to one
another. A similar picture can be obtained in the Regge
model as dictated by duality. Therefore, �o and �, �0
electroproduction off a proton single out chiral-odd struc-
tures of the target. Another important consequence is that
the collinear, leading twist ���5 type contribution to the
�o wave function does not have the correct chirality for the
electroproduction process. Consideration of orbital angular

momentum (OAM) in the wave function allowed us how-
ever to overcome this problem, as we will explain below.
GPDs are ‘‘off-forward’’ contributions that allow access

to partonic configurations with a given longitudinal mo-
mentum fraction, similarly to deep inelastic scattering
processes, but also at a specific (transverse) location inside
the hadron [4]. They parameterize the nucleon vertex in the
process depicted in Fig. 1(a) in terms of three kinematical
invariants, besides the initial photon’s virtuality, Q2: the
longitudinal momentum transfer, � ¼ Q2=2ðPqÞ, the four-
momentum transfer squared, �2 ¼ �t, and the variable
X ¼ ðkqÞ=ðPqÞ, representing the light cone momentum
fraction carried by the struck parton with momentum k
(see [5–7] for reviews).1

As initially pointed out in Ref. [8] one can construct four
quark helicity flip distributions:Hq

T , E
q
T ,

~Hq
T ,

~Eq
T , represent-

ing a complete set.2 In particular Hq
T , which need not

vanish in the forward limit, is related to transversity
through the following properties:Z 1

��1
Hq

TðX; �; tÞdX ¼ Aq
T10ðtÞ; (1)

Hq
TðX; 0; 0Þ ¼ hq1ðXÞ: (2)

The form factor AT10ðtÞ gives the tensor charge for t ! 0,
AT10ð0Þ � �q. h1ðXÞ is the transversity structure function
[9]. Equations (1) and (2) are analogous relations to the
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1The relations between the variables used in this paper and the
analogous set of kinematical variables in the ‘‘symmetric’’
system, frequently used in the literature are given along with
the definitions of the hadronic tensors components in Refs. [5,6].

2A similar argument as in Ref. [8] can be extended to define a
corresponding number of gluon helicity flip distributions that,
however, will not enter our discussion of transversity.
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ones for the twist-two, chiral-even, unpolarized, and lon-
gitudinally polarized distributions cases.

A substantial amount of literature exists on the connec-
tion between transverse momentum distributions (TMDs)
and GPDs [4,10–13]. TMDs are the soft matrix elements in
deep inelastic semi-inclusive processes and therefore they
are by definition forward quantities. The nontrivial role
played by initial state interactions and final state interac-
tions (FSI) allows one however to access features of the
motion of partons in the transverse direction. In particular,
in Ref. [10] it was proposed that the transverse momentum
asymmetry of the final quarks–generating the Sivers func-
tion–can be related to the transverse spatial asymmetry,
through a chromodynamic lensing effect. Notwithstanding
the appeal of the physical ideas connecting transversity and
transverse spatial structure of hadrons, one should notice
that the transverse spatial dependence appearing in [10] is,
however, necessarily buried in the correlators expressions
defining TMDs, and it can only be probed explicitly
through exclusive measurements. The concrete possibility
of testing the ideas on the role of transversity other than in
semi-inclusive measurements that are not directly sensitive
to (transverse) spatial degrees of freedom has been so far
elusive. Suggestions were in fact made to obtain such
information mainly from lattice calculations [10,13] or
from exclusive double vector meson production [14].

The main thrust of this paper is on the contrary to
propose a new avenue to experimentally determine trans-
versity and its connection to spatial degrees of freedom,
using exclusive processes such as �o and � production off
nucleons and nuclei. In this context two other functions,
namely, the combination of GPDs 2 ~Hq

T þ ET � �ET , and
the GPD E defining the spin flip component in scattering
from an unpolarized nucleon, are essential. �ET is expected,
in a class of models ([13] and references therein), to be

related to the Boer-Mulders function, h?q
1 through

Z 1

��1
dX½2 ~Hq

TðX; �; tÞ þ Eq
TðX; �; tÞ��¼t¼0 ¼ �q

T; (3a)

Z
d2kTdXh

?q
1 ðX; kTÞ � ��q

T: (3b)

Similarly, E, can be related to the Sivers function, f?1T

Z 1

��1
dX½EðX; �; tÞ��¼t¼0 ¼ �q; (4a)

Z
d2kTdXf

?q
1T ðX; kTÞ � ��q: (4b)

Here, �q is the contribution to the proton anomalous mag-
netic moment of the quark q. In the transverse plane in
coordinate space, �q is a measure of an unpolarized quark’s
displacement along the y axis in a proton polarized along
the x axis [4]. �q

T , the transverse anomalous moment,
measures the y-transverse displacement for a transversely
polarized quark along the x axis in an unpolarized proton
[7,10].
The relationships above express at a deeper level the fact

that both pairs [ðk1 þ ik2Þf?1TðX; kTÞ, ð�1 þ
i�2ÞEðX; kT ; �;�Þ] and [ðk1 þ ik2Þh?1 ðX; kTÞ, ð�1 þ
i�2Þ �ETðX; kT ; �;�Þ] have the same helicity structure.3

They can therefore be obtained from the overlap of similar
wave functions at the handbag level. Nevertheless, upon
integration in kT , E does not necessarily vanish, while f?1T ,
because it is T odd, is nonzero only if FSI is taken into
account. This is the reason why in the literature [10,13] no
direct relationship was written explicitly.
In order to make a connection with observables for given

processes one needs to transform the Dirac matrix elements
in terms of which the defining quark correlation functions
are written, to the quark chirality basis [9,15]. One can see
that HTðX; �; tÞ appears in the off-forward helicity ampli-
tude Aþþ;�� [8], while �ETðX; �; tÞ is defined in

Aþþ;þ�; A�þ;�� (more details are given below).4

As known from the helicity amplitude decomposition of
observables in �0 photoproduction [16], measurements of
either the polarized target asymmetry, A, or the recoil
nucleon polarization, T, or polarized photon asymmetries,
P on nucleons can be used to determine the desired helicity
structure, which wewill see is connected to the off-forward
quark helicity amplitudes (and related GPDs). A particular
model was developed in Ref. [16] that, by accounting for
the Regge cut corrections to the pole dominated amplitude,
predicted non-negligible values of A, T, and P in the range
0 & �t & 1 GeV2. The model contains the nucleons’ ten-
sor charges as parameters or a combination of parameters.
By extending this model to the case of virtual photon
scattering (Fig. 1(b)), one can, therefore, extract the value
of the tensor charge directly from the data using both the
ideal intermediate energy kinematical range accessible at
Compass, Hermes, and Jefferson Lab, and the high preci-
sion provided by the latter. From the parton perspective,
recent developments [17,18] enable us to propose a de-

(a)

q q′=q+∆

k+=X P+, kT k′ +=(X-ζ) P+, kT + ∆T

P P′ = P+∆

(b)

V, A

γ* π0

P P′

FIG. 1. �o electroproduction. Left: partonic degrees of free-
dom interpretation; Right: t-channel exchange diagram.

3EðX; kT ; �;�Þ and �ETðX; kT ; �;�Þ are unintegrated over kT
GPDs.

4We use the notation: A�0�0;��, where �ð�0Þ are the initial
(final) proton helicities, and �ð�0Þ are the initial (final) quark
helicities
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tailed model where the quark degrees of freedom are
described in terms of chiral-odd GPDs.

The connections being explored here, among transver-
sity distributions, Regge exchange models, and GPDs had
some early hints from an exchange model that was devel-
oped for the tensor charge [19]. There the isovector and
isoscalar components of the tensor charge were shown to
be proportional to the product of the matrix elements for
the decay of the lightest axial-vector mesons (JPC ¼ 1þ�),
b1 and h1, respectively, and for the coupling of these
mesons to the nucleon (Fig. 1(b)). Both of them are needed
in order to determine the isovector and isoscalar compo-
nents of the tensor charge. Their coupling constants, which
entered the calculation were determined through the better
known decay constant of the a1 (JPC ¼ 1þþ) meson, by
exploiting the fact that a1 belongs to the same SUð6Þ �
Oð3Þ multiplet as b1, h1 [19].

It is important to note that the a1 (JPC ¼ 1þþ) type
exchanges do not enter directly the ��p ! �op scattering
amplitude. This will bear important consequences also in
the description in terms of GPDs, namely, in the identifi-
cation of the correct structures entering the different helic-
ity amplitudes.

In the single meson or axial-vector dominance approxi-
mation of Ref. [19], angular momentum conservation at
pointlike interaction vertices required that the coupling
vanish in the forward limit. In order for the tensor charge
not to vanish, a duality picture was envisaged where the
struck quark undergoes FSI whose effect is parametrized in
[19] in terms of the meson’s constituent quarks’ hk2Ti. This
interesting point of departure from other treatments is the
appearance of the factor hk2Ti in the expression for the

tensor charge �q. This arises because of the kinematic
structure of the exchange picture that was adopted.

The approach to the tensor charge just summarized
leaves several questions—two, in particular. Is the extrapo-
lation from the b1 mass (t ¼ m2

b1
) to t ¼ 0 a reasonable

one? Can FSI’s enter the picture in a natural way to parallel
the hk2Ti dependence that was needed? Both of these ques-
tions are answered affirmatively in a Regge exchange
model for �0 electroproduction. The b1 Regge trajectory
enables the extrapolation to the t � 0 region. Regge cuts
restore the exchange amplitude in the forward limit, as
shown in photoproduction analyses in the past [16]. The
GPD, or off-forward amplitude approach also provides
answers to these questions. GPDs are functions of off-
forward two-body kinematic invariants, including t, and
allow for smooth extrapolation to t ¼ 0. Furthermore, the
relevant off-forward helicity amplitude need not vanish in
the forward limit, as will be seen later.

A central question of factorization arises in relating the
�0 electroproduction single spin asymmetries to the rele-
vant GPDs, because the important helicity amplitudes in-
volve transverse virtual photons. Factorization in meson
production was explained in Ref. [20] for longitudinally

polarized photons only, based on the fact that in this case
the endpoint effects from the wave function of the pro-
duced meson are suppressed with respect to the transverse
case [21]. This point of view was reiterated in several
papers [22–27]. On the other hand, GPD factorization
was criticized recently by the authors of Ref. [28] where
it was claimed that the dominance of Regge type ex-
changes produces nonanalytic terms that destroy factoriza-
tion. This is an ongoing and important debate now
underway. Since our starting point is a ‘‘duality’’ type of
picture, we think that there is theoretical merit in both
perspectives.
On the experimental front, however, there seems to be

little evidence in the data that one can rule out transverse vs
longitudinal factorization hypothesis. This appears in the
Q2 dependence of the recent HERMES 	 production data
showing a plateau in R ¼ 
L=
T for vector meson pro-
duction [29] (intermediate energy), [30] (high energy). We
propose a new mechanism to describe the Q2 dependence
at the meson vertex that distinguishes the longitudinal and
transverse photon polarization contributions. This mecha-
nism describes both the vector (natural parity) and axial-
vector (unnatural parity) channels taking into account the
orbital angular momentum in the evaluation of the different
quark helicity contributions to the pion wave function. In
particular, the axial-vector and vector channel differ by one
unit of orbital angular momentum. Hence, as explained in
detail later on, the longitudinal photon amplitude is domi-
nated by the axial-vector contributions. For the transverse
photon both vector and axial-vector channels will
contribute.
Our results, differing from perturbative QCD (PQCD)

type behavior, provide a less steep dependence onQ2 of the
longitudinal to transverse ratios. We would like to remark
that independent of the way corrections to the standard
PQCD approach are carried out, and of the interest in the
process per se as a probe of transversity, the issue of
carefully monitoring �0 electroproduction at intermediate
energies will be a prominent one in the analysis of many
planned experiments at both Compass and Jlab. �0’s con-
stitute, in fact, a large background in � production from
both protons and nuclei.
Finally, we suggest a practical method to extract both the

tensor charge �q and the transverse anomalous moment �q
T

from experiment that makes use of the fact that such
quantities enter as free parameters in both our Regge and
partonic descriptions. We suggest a number of observables,
e.g. the longitudinal/transverse interference term 
LT, the
transverse spin asymmetry AUT, the beam spin polariza-
tion, which are sensitive to the values of �q and �q

T , q ¼ u,
d.
The paper is organized as follows: in Sec. II, we present

definitions and kinematics; in Sec. III, we present our
Regge approach; in Sec. IV, we introduce the connection
to GPDs, and we develop a parametrization of the chiral-
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odd ones, based on available experimental and phenome-
nological information; in Sec. V, we propose a model of the
Q2 dependence of the various helicity amplitudes; in
Sec. VI, we discuss results and propose an extraction
method for the tensor charge; finally in Sec. VII, we
draw our conclusions and present an outlook. The spirit
of the paper is to suggest a method to obtain �q and �q

T

from experiment, while exploring a number of questions:
from the dominance of chiral-odd contributions in �o

electroproduction, to the duality picture, and the transition
from Regge to partonic contributions.

II. t-CHANNEL DOMINANCE PICTURE

In the following discussion of exclusive �0 electropro-
duction, the crucial nexus connecting observable quanti-
ties, transversity GPDs, and the Regge description is
provided by helicity amplitudes. The relation between
the electroproduction, virtual photon helicity amplitudes,
f��;�N ;0;�N 0 and the relevant GPDs is expressed in the

‘‘handbag’’ picture, with the assumption that the ‘‘hard
part factorizes from the ‘‘soft part,’’ as shown in Fig. 1(a)
. While this has been shown for the case of a high Q2

longitudinal photon in exclusive vector meson electropro-
duction, it has not been demonstrated for transverse pho-
tons in �0 production. The transverse photon contribution
is kinematically suppressed by 1=Q relative to the longi-
tudinal photon from the lepton tensor and the Hand con-
vention for the virtual longitudinal photon flux. It has been
presumed by many authors, without proof, that the trans-
verse case does not factorize. Several papers have been
written to carry the longitudinal case to higher twist, spec-
ulating that factorization still holds, while ignoring the
transverse case, which should enter at the same order of
1=Q as twist 3 for longitudinal photons. Furthermore, the
transverse virtual photon cross section does not show
evidence of a decreasing ratio of transverse to longitudinal,
as seen at HERMES [29] and in preliminary data from
JLab [31], which leads us to reconsider the transverse case
and to assume that factorization does hold.

We therefore start out by defining the helicity ampli-
tudes and the main observables related to transversity
within the assumption of factorization for the partonic
description. It is important to recall that in the Regge
pole or single particle exchange picture there is factoriza-
tion of the upper vertex (�� ! �0) from the lower vertex
(p ! p0). This factorization would correspond to the
t-channel picture (as in Fig. 1) in which the quark and
antiquark exchanges are accompanied by ladderlike gluon
links. The Regge pole coupling at the vertex is independent
of the other vertex and satisfies parity conservation.

A. Kinematics and definitions

Exclusive �0 electroproduction is shown in Fig. 1. The
relevant four-momenta written in the laboratory frame are

the initial (final) electrons: k1ð2Þ � ð�1;k1ð2ÞÞ, the ex-

changed photon’s: q � ð�;qÞ, with � ¼ �1 � �2, and q ¼
k1 � k2Þ; the initial proton, P � ðM; 0ÞÞ. In addition, one

has the final proton P0, and the final pion p�. We define the
usual invariants for a deeply inelastic scattering process:
the virtual photon’s four-momentum squared, Q2 ¼
�q2 ¼ 4�1�2sin

2=2, ðPqÞ=M ¼ �, xBj ¼ Q2=2M�, y ¼
ðPqÞ=ðPk1Þ. The Mandelstam invariants are defined with
respect to the ��N ! �0N0 process, namely, s ¼ W2 ¼
ðPþ qÞ2, t ¼ ðP� P0Þ2, and u ¼ ðP� p�Þ2.
The amplitudes are decomposed into a purely leptonic

part and the �� þ N ! �0 þ N0 process for which there
are six independent helicity amplitudes chosen as

f1 ¼ f1þ;0þ / �1; f2 ¼ f1þ;0� / �0;

f3 ¼ f1�;0þ / �2; f4 ¼ f1�;0� / �1;
(5)

for transverse photons and

f5 ¼ f0þ;0� / �1; f6 ¼ f0þ;0þ / �0 (6)

for longitudinal photons. We use the notation f��;�N ;0;�N0 ,

�� ¼ �1, 0 being the virtual photon spin, and�Nð�N0Þ ¼
þ, � � þ1=2, �1=2 being the initial (final) nucleon
spins; here, � � j� ¼ P� P0j is the magnitude of the
three-momentum transfer, and the minimum kinematically
allowed power is indicated for each helicity amplitude. In a
single hadron exchange (or Regge pole exchange) factori-
zation and parity conservation require

f1 ¼ �f4 and f2 ¼ 	f3 (7)

for even or odd parity exchanges, to leading order in s.
These pair relations, along with a single hadron exchange
model, force f2 to behave like f3 for small � or small
transverse momentum for the outgoing particles. This in-
troduces the k2T factor into the f2 amplitude, which is
related to the transversity transfer, as we will see below
from its connection with the GPD HT . Observable quanti-
ties are bilinear combinations of these helicity amplitudes.
The differential cross section for pion electroproduction

off an unpolarized target is [32]

d4


d�d�2d�dt
¼ �

�
d
T

dt
þ �L

d
L

dt
þ � cos2�

d
TT

dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Lð�þ 1Þ

q
cos�

d
LT

dt

�
: (8)

If the initial electron is polarized, with h ¼ �1, one has the
additional contribution

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Lð�� 1Þ

q d
L0T

dt
sin�: (9)

The photon polarization parameter � can be written in
terms of invariants as
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��1 ¼ 1þ 2

�
1þ �2

Q2

��
4
�2

Q2

1� y

y2
� 1

��1
;

and for longitudinal polarization alone,

�L ¼ Q2

�2
�:

The factor � is given by

� ¼ 
Mottfrecm�jp�jJðQ2; �; sÞ; (10)

where the Mott cross section is


Mott ¼ 4�2�22cos
2=2

Q4
;

and the hadronic recoil factor, frec,

frec ¼
��������1þ �� jqj cosLAB�

M

���������1

:

In Eq. (10), JðQ2; �; sÞ is the Jacobian for the trans-
formation from cosLAB� to t, whose expression is given
in the appendix.

The different contributions in Eq. (8) are written in terms
of helicity amplitudes as

d
T

dt
¼ N ðjf1;þ;0;þj2 þ jf1;þ;0;�j2 þ jf1;�;0;þj2

þ jf1;�;0;�j2Þ
¼ N ðjf1j2 þ jf2j2 þ jf3j2 þ jf4j2Þ; (11)

d
L

dt
¼ N ðjf0;þ;0;þj2 þ jf0;þ;0;�j2Þ ¼ N ðjf5j2 þ jf6j2Þ

(12)

for transverse and longitudinal virtual photon polariza-
tions, respectively, and

N ¼ ½Mðs�M2Þ2��1G; (13)

where we used the Hand convention, multiplied by a
geometrical factor G that is given by G ¼ �=2, and G ¼
1=8�, in the Regge and GPD approaches considered later
on.

The cross section for the virtual photon linearly polar-
ized out of the scattering plane minus that for the scattering
plane is

d
TT

dt
¼ 2N<eðf�1;þ;0;þf1;�;0;� � f�1;þ;0;�f1;�;0;þÞ
¼ 2N<eðf�1f4 � f�2f3Þ: (14)

The interference term for the transversely and longitudi-
nally polarized virtual photons is

d
LT

dt
¼ 2N<e½f�0;þ;0;þðf1;þ;0;� þ f1;�;0;þÞ

þ f�0;þ;0;�ðf1;þ;0;þ � f1;�;0;�Þ�
¼ 2N<e½f�5ðf2 þ f3Þ þ f�6ðf1 � f4Þ�: (15)

Finally, the beam polarization term is given by

d
LT0

dt
¼ 2N =m½f�0;þ;0;þðf1;þ;0;� þ f1;�;0;þÞ

þ f�0;þ;0;�ðf1;þ;0;þ � f1;�;0;�Þ�
¼ 2N =m½f�5ðf2 þ f3Þ þ f�6ðf1 � f4Þ�: (16)

In addition to the unpolarized observables listed above, a
number of observables directly connected to transversity
can be written (see e.g. [33]). Here, we give the trans-
versely polarized target asymmetry

AUT ¼ 2=mðf�1f3 � f�4f2Þ
d
T

dt

(17)

and the beam spin asymmetry

A � � sin�; (18)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Lð1� �Þp d
LT0

dt
d
T

dt þ �L
d
L

dt

(19)

(note that the recoil nucleon polarization asymmetry, T ,
defined analogously to AUT simply involves the switching
of f1 and f4).
It is important to realize that the relations between

observables and helicity amplitudes are general, indepen-
dent of any particular model. We will see that the Regge
model, as well as the parameterization through GPDs,
populate those helicity amplitudes related to transversity
and thereby effect observables in important ways.

B. Connection to generalized parton distributions

The connection with the parton model and the trans-
versity distribution is uncovered through the GPD decom-
position of the helicity amplitudes. In the factorization
scenario the amplitudes for exclusive �0 electroproduction
f��;�N ;0;�N0 can be decomposed into a ‘‘hard part,’’

g��;�;0;�
0 describing the partonic subprocess �� þ q !

�0 þ q (top part of diagram in Fig. 1(a)), and a ‘‘soft
part,’’ A�0;�0;�;� that, in turn, contains the GPDs

f��;�;0;�0 ¼ X
�;�0

g��;�;0;�
0 ðX; �; t; Q2Þ � A�0;�0;�;�ðX; �; tÞ;

(20)

where a sum over the different quark components is omit-
ted for simplicity. The amplitudes in Eq. (20) implicitly
contain an integration over the unobserved quark momenta
and are functions of xBj � � , t, andQ2; they are analogous
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to the Compton form factors in deeply virtual Compton
scattering (DVCS). In fact, in the more familiar case of
DVCS, the upper part involves the matrix elements of
jEM� ðxÞjEM� ð0Þ, the tree level diagram for �� þ q ! �þ q

with the high momentum struck quark intermediate state.
In the Bjorken limit, in terms of light cone variables, this
diagram has a simple Dirac structure of �þ with a denomi-
nator that becomes 1=ðX � � þ i�Þ [the corresponding
crossed diagram, required for gauge invariance, yields
1=ðX � i�Þ]. The same structure would obtain for the
production of vector mesons-matrix elements of
jEM� ðxÞjV� ð0Þ), along with a hadronic wave function. One

model for this that is often used has the hadronic wave
function nicely factored from the partonic components of
the PQCD diagrams. With this latter approach there is a
depression of longitudinal to/from transverse transitions
[20,25]. For pion production the upper, hard part of the
diagram involves the matrix element between quark states
of jEM� ðxÞjPð0Þ, the latter being the pseudoscalar hadronic

current operator. As we have emphasized, for �0 the
diagram is C-parity odd and chiral odd in the t-channel.
Because only one of these transverse photon functions
survives the limits, the relation to the tensor charge is quite
simple. Note that because of the pion chirality (0�), the
quark must flip helicity at the pion vertex where we take the
coupling to be �5. Therefore, the corresponding Dirac
structure for the hard subprocess diagram involves

þT�5, at variance with Refs. [23,34] where the C-parity
even axial-vector structure ���5 was considered. This is
very significant for our reaction. Our observation also
implies important changes in the Q2 dependence of the
process that will be discussed within a specific model in
Sec. V.

As we displayed for the t-channel picture of electro-
production, there are six independent helicity amplitudes
for �� þ N ! �0 þ N0, given parity conservation, four
with �� ¼ 1, Eq. (5) and two with �� ¼ 0, Eq. (6). It

will be important in the following to observe that each
helicity amplitude f��;�;0;�0 will have an angular momen-

tum conserving factor of sinnðCM=2Þ, where the minimum
value of n ¼ �� ��þ�0. This was written in terms of

powers of j�j / sinðCM=2Þ in Eqs. (5) and (6). In terms of
the invariant variables used here for the GPDs,

sin 2ðCM=2Þ ¼ � �

Q2
ðt� tminÞ; (21)

where the limit of Q2 
 M2 is taken. Corresponding

factors of sinn
0 ðCM=2Þ will occur in the g and A

amplitudes.
The helicity structure of the g amplitudes is straightfor-

ward. It is the same as the f amplitudes, so we can take the
same labeling for g1; . . . ; g6 as in Eqs. (5) and (6). Using
parity conservation, g1 ¼ g1þ;0þ, g2 ¼ g1þ;0�, g3 ¼
g�1þ;0� ¼ g1�;0þ, g4 ¼ g1�;0�, g5 ¼ g0þ;0�, and g6 ¼
g0þ;0þ. If we have

��ðqÞ þ qðkÞ ! �0ðp�Þ þ qðk0Þ;

then ŝ ¼ ðqþ kÞ2, t ¼ ðk0 � kÞ2 ¼ ðq� p�Þ2, j�j2 ¼
tmin � t, with tmin fixed in the center of mass (CM) of
this reaction, and û ¼ ðq� k0Þ2. With these variables,
and taking the quarks and pion masses to zero, the g
amplitudes are quite simple. Only g2 and g5 survive in
the ŝ 
 jtj limit. One has

g1 ¼ g4 ¼ g�
Cq
ŝ

1

4
NN0 Trf���oð1þ �3�5Þ���þ��gk�k0��T�

¼ g�
Cq
ŝ
NN0½��3�� þ ��o�� þ ðg�o � g�3Þ��o3��k�k0��T� ¼ 0; (22a)

g2 ¼ g�
Cq
ŝ

1

4
NN0 Trf���oð��1 þ i�2Þ���þ��gk�k0��ð�¼þ1Þ

� ¼ g�Cq cos=2 ’ g�Cq

ffiffiffiffiffiffiffi
�û

ŝ

s
; (22b)

g3 ¼ g�
Cq
ŝ

1

4
NN0 Trf���oð��1 þ i�2Þ���þ��gk�k0��ð�¼�1Þ

� ¼ 0; (22c)

g5 ¼ g�
Cq
ŝ

1

4
NN0 Trf���oð��1 þ i�2Þ���þ��gk�k0��L� ¼ g�Cq

ffiffiffiffiffi
2ŝ

p
Q

sin=2 ’ g�Cq

ffiffiffiffiffiffiffiffiffi
�2t

Q2

s
; (22d)

g6 ¼ g�
Cq
ŝ

1

4
NN0 Trf���oð1þ �3�5Þ���þ��gk�k0��L� ¼ 0; (22e)

where the photon polarization vectors are �T� ¼ �ð�¼�1Þ
� �

1=
ffiffiffi
2

p ð0;	1;�i; 0Þ, �L� ¼ �ð�¼0Þ
� � 1=

ffiffiffiffiffiffi
Q2

p ðjqj; 0?; �Þ, and

C q ¼ 1

X � i�
þ 1

X � � þ i�

g� ’ ffiffiffi
1

p
5ð2=3Þ is the quark-pion coupling obtained from

the nucleon-pion coupling in the additive quark model: we
take this limiting value to show the structure of the upper
part of the handbag. The composite structure of the pion
production vertex generates an additional Q2 dependence
that will be described in detail in Sec. V. Our goal is to
provide an alternative to the standard PQCD based meson
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production models that are well known to largely miss the behavior of current experiments in the multi-GeV kinematical
region (see however the discussion in [35]). We obtain differentQ2 behaviors for the subprocess amplitudes, corresponding
to either axial vector (A), or vector (V) t-channel exchanges, or depending, in other words, on the C and P quantum
numbers. In our model this translates into a different dependence for each one of the helicity amplitudes entering Eq. (20),

f1 ¼ f4 ¼
Z 1

�1þ�
dXg2ðX; �; t; Q2ÞFVðQ2ÞAþþ;þ�ðX; �; tÞ; (23a)

f2 ¼
Z 1

�1þ�
dXg2ðX; �; t; Q2Þ½FVðQ2Þ þ FAðQ2Þ�A��;þþðX; �; tÞ; (23b)

f3 ¼
Z 1

�1þ�
dXg2ðX; �; t; Q2Þ½FAðQ2Þ � FVðQ2Þ�Aþ�;�þðX; �; tÞ; (23c)

f5 ¼
Z 1

�1þ�
dXg5ðX; �; t; Q2ÞFAðQ2ÞA��;þþðX; �; tÞ: (23d)

Note that A��;þþ involves no overall helicity change, and
hence no required factor of a nonzero power of t� t0.
Nevertheless, many models will lead to nonzero powers
that kill the forward limit, and hence, do not contribute to
the tensor charge. This point is explained in detail below
for the Regge model adopted in this paper.

III. WEAK-CUT REGGE MODEL

To have a nonzero single spin asymmetry requires in-
terference between single helicity flip and nonflip and/or
double flip amplitudes. Asymmetry arises from rescatter-
ing corrections (or Regge cuts or eikonalization or loop
corrections) to single hadron exchanges. That is, one of the
amplitudes in the product must acquire a different phase, a
relative imaginary part. We will construct a Regge pole
model with cuts to account for measured photoproduction
observables at moderate s and small t, and extend the
model into electroproduction for moderate Q2.

We now employ a Regge pole description of the �0

electroproduction, following the ‘‘weak cut’’ approach
used by Goldstein and Owens [16] where all the observable
quantities are defined in terms of the f amplitudes, as
related above. From [16] one can immediately see that
the specific combination that contains HT is the one given
above because this implies axial-vector t-channel
exchanges.

The leading Regge trajectories that are exchanged in this
or any two-body diffractive process can be categorized by
the signature and parity. The signature determines whether
the poles in the exchange amplitudes will occur for even or
odd positive integer values of the spin trajectory �ðtÞ ¼ J.
The leading axial vectors are b1 and h1. These are crucial
for determining the tensor charge and the transversity
distribution. The parameterization of these trajectories
for each helicity amplitude takes the form of product of
(1) a t-dependent coupling for both vertices, or the residue
function, (2) a signature factor, dependent on the Regge
trajectory, which determines the positions of the poles in
the t-channel, and (3) the energy dependence, a power fixed
by the trajectory. For the even signature exchanges, the

natural parity 	 and !, the amplitudes are

f1 ¼ f4 ¼ �V
1

�ð�VðtÞÞ�
1� e�i��V ðtÞ

sinð��VðtÞÞ �
�V ðtÞe��2cV=2; (24)

f2 ¼ �f3 ¼ ��V
2 �

2

2M�ð�VðtÞÞ
1� e�i��V ðtÞ

sinð��VðtÞÞ �
�V ðtÞe��2cV=2:

(25)

For the odd signature, unnatural parity b1 and h1, f1 ¼
f4 ¼ 0,

f2 ¼ þf3

¼ �A
1�

2

2M�ð�AðtÞ þ 1Þ
1� e�i��AðtÞ

sinð��AðtÞÞ �
�AðtÞe��2cA=2: (26)

The additional contributions to the longitudinal photon
amplitudes are limited by parity, charge conjugation in-
variance, and helicity conservation to the b1 and h1 only.
To leading order in s they contribute only to f5, which has
the minimal�1 dependence and is proportional to the same
trajectories’ contributions to f2. The precise relation be-
tween these two amplitude contributions depends on Q2

and can be related to the decay widths for the axial vectors
using vector dominance of the photon. The vector meson
trajectories do not couple to the helicity zero photon and
pion vertex. Clearly all of these amplitudes vanish in the
forward direction, as a result of the factorization of the
Regge pole exchanges into two vertices and the fact that
parity conservation holds separately for both vertices. This
implies that f2, which, in general has the minimal angular
dependence of �0, for the Regge pole contributions alone,
acquires the same angular dependence as f3. Since the
� ! 0 limit is quite important for the identification with
transversity through A�;�;�0;�0 and thus through the GPD

HT , it behooves us to consider the rescattering or FSI in
this picture. This leads to the Regge cut scheme for re-
scattering corrections, which was quite important for mak-
ing contact with spin dependent data.
The Regge cut scheme is implemented by first taking the

impact parameter representation of the pole terms as an
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eikonal,

�Reggeðs; bÞ ¼ 1

k
ffiffiffi
s

p
Z

�d�Jnðb;�Þfðs;�2Þ; (27)

with n being the helicity change. Next, convoluting with
the eikonal obtained from helicity conserving Pomeron
exchange �Pðs; bÞ and then transforming back to the mo-
mentum space representation

fðs;�2Þ ¼ ik
ffiffiffi
s

p Z
bdbJnðb;�Þ�Reggeðs; bÞ�Pðs; bÞ:

(28)

This restores the �0 behavior of f2, thereby providing a
nonzero tensor charge through the Regge couplings.

The tensor charge is embedded in the residues of these
1þ� axial-vector Regge trajectories, A generically. The
residue for b1 or h1 is expressed in terms of coupling
constants and other dynamical factors that arise from eval-
uating the residue at the pole position, t ¼ m2

A. There

�A
1 ¼ g�A�gAN �N

4�mA

��0
A

4
ffiffiffi
2

p e�m2
A
cA=2; (29)

and the critical coupling is the gAN �N with factors from the
Regge parameterization.

IV. GENERALIZED PARTON DISTRIBUTIONS

In order to explore the connection between the previous
formalism with a partonic picture one needs to rewrite the
various observables listed in Eqs. (11), (12), (14), (15), and
(17) in terms of the correlation functions for the handbag
diagram in Fig. 1(a).

The electroproduction amplitude for hard exclusive
pseudoscalar meson production can be written in a factor-
ized form where the soft, process independent, part in-
volves both the description of the meson vertex and
linear combinations of GPDs at the nucleon vertex, as in
the expression presented in Eq. (20). A formal proof of
factorization was given in the case of longitudinally polar-
ized virtual photons producing longitudinally polarized
vector mesons [20]. The proof hinges on the hypothesis
that the initial quark-antiquark pair produced in the hard
interaction is in a pointlike configuration, thus granting the
cancellation of soft gluons contributions, and only subse-
quently evolving into the observed meson. Endpoint con-
tributions are surmised to be larger in electroproduction of
transversely polarized vector mesons, and to therefore
prevent factorization. Standard pQCD calculations [21]
predict a ratio of 
L=
T / Q2. In [36] it was observed
that when this ratio is calculated in nonperturbative mod-
els, an even larger relative suppression of 
T might arise.
Notwithstanding current theoretical approaches, many
measurements conducted through the years, display larger
transverse contributions than expected [29,30]. In order to
explain the Q2 dependence of the largeW2 data in [36] the

hypothesis of duality was used, whereby factorization was
assumed, but the meson distribution amplitude was omit-
ted. On the other side, with analogous arguments as for
other reactions measured in the multi-GeV region, limita-
tions to the factorization scenario challenging the ‘‘point-
like nature’’ of the produced q �q pair even in longitudinal
polarization scattering, were suggested in [37].
In the case of pseudoscalar (� and �) production, pre-

liminary data seem also to indicate transverse contributions
larger than predicted within pQCD [31]. Lacking a com-
plete formal proof of factorization (see however [38]), it is
therefore important to explore alternative avenues for the
meson production mechanism. In this paper we suggest a
QCD based model, described in more detail in Sec. V,
which predicts different Q2 behaviors for meson produc-
tion via natural and unnatural parity channels. These are
defined in the upper part of the diagram in Fig. 2 as FVðQ2Þ
and FAðQ2Þ for the natural and unnatural parity exchanges,
respectively. In what follows we give the expressions for
the various terms in the �0 electroproduction cross section
in terms of GPDs and of the Q2-dependent factors. The
explicit form of the factors is explained in Sec. V.

A. Kinematics and definitions

The off-forward correlation matrix is defined in the
collinear approximation as5

�ab ¼
Z dy�

2�
eiy

�XhP0S0j �c bð0Þc aðy�ÞjPSi; (30)

where P, S ðP0; S0Þ are the initial (final) nucleon momen-
tum and spin, and we wrote explicitly the Dirac indices a,
b. The C-parity odd and chiral-odd quark density matrix
we are interested in [9,39] involves the struck quark helic-
ity flip via the contraction of �ab with the Dirac matrix
ði
þiÞba.
This contraction, as shown in Ref. [8], gives rise to four

chiral-odd GPDs,

V (L=0)
A (L=1)

∆

πo (L=0)

q′=q+∆

x1∆ + kT
(1)

x2∆ + kT
(2)

y1q′ + kT′ (1)

y2q′+ kT′ (2)

FIG. 2. Perturbative QCD contribution to the ��V�o and
��A�o form factors.

5Notice that we adopt the axial gauge, although results can be
cast in a form highlighting gauge invariance [2].
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Z
dk�d2kTr½i
þi��XPþ¼kþ

¼ 1

2Pþ �UðP0; S0Þ
�
Hq

Ti

þi þ ~Hq

T

Pþ�i � �þPi

M2

þ Eq
T

�þ�i � �þ�i

2M
þ ~Eq

T

�þPi � Pþ�i

M

�
UðP; SÞ;

(31)

where q ¼ u, d, s. The nucleon spinors can be explicitly
chosen in various ways. Diehl in Ref. [8] chooses light-
front helicity spinors to obtain four independent chiral-odd
amplitudes, the A�0;�0;�;�’s in Eqs. (20) and (23). These are

linear combinations of the same four GPDs that appear in
Eq. (31), namely,

Aþ�;þþ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
2M

�
~HT þ 1þ �

2
ET � 1þ �

2
~ET

�
; (32a)

Aþþ;�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q �
HT þ t0 � t

4M2
~HT � �2

1� �2
ET

þ �

1� �2
~ET

�
; (32b)

Aþ�;�þ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q t0 � t

4M2
~HT; (32c)

Aþþ;þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
2M

�
~HT þ 1� �

2
ET þ 1� �

2
~ET

�
; (32d)

where for consistency with previous literature we have
used � ¼ �=ð2� �Þ; t0 ¼ �M2�2=ð1� �Þ, M being the
proton mass.

The exclusive process observables are defined in terms
of the helicity amplitudes of Eq. (20), which involves the
integration over X of the A’s with the g’s. In the Bjorken
limit g2 and g5 are independent of X, except for the
propagator denominators contained in the Cq. Hence, the
overall helicity amplitudes f1 to f6 involve the analog of
the Compton form factors, the meson production form

factors (MPFFs), which can be written generically as [5,6]

F qð�; tÞ ¼ i�½Fqð�; �; tÞ � F �qð�; �; tÞ�

þ P
Z 1

�1þ�
dX

�
1

X � �
þ 1

X

�
FqðX; �; tÞ;

(33)

where P indicates a principal value integration and F q ¼
H q

T , E
q
T ,

~H q
T , ~E

q
T . Notice that the �T � ffiffiffiffiffiffiffiffiffiffiffiffi

t0 � t
p

depen-
dence in Eqs. (32) is the same as the minimal �T depen-
dence predicted within the Regge model (see [16] and
Sec. II). The MPFFs appearing in Eq. (32) are

F � F p!�o ¼ 1ffiffiffi
2

p
�
2

3
F u þ 1

3
F d

�
: (34)

To form the complete helicity amplitudes the A’s of Eq.
(31) are inserted into integrals over X with the same form
as Eq. (32),

A qð�; tÞ ¼ i�½Aqð�; �; tÞ � A �qð�; �; tÞ�

þ P
Z 1

�1þ�
dX

�
1

X � �
þ 1

X

�
AqðX; �; tÞ:

(35)

Being linear in the GPDs, the relations in Eq. (31) are
preserved for the integrated A’s and F ’s. This is due to the
fact that the hard process factors, the g2 and g5 have only
the X dependence of their propagators Cq, which provide

the denominators in the above integration over X. The
complete helicity amplitudes f1 to f6 are then given by
the A multiplied by the g2=Cq or g5=Cq and the corre-

sponding Q2 dependent factors that are shown in Eq. (23).
TheQ2 dependent factors depend on the quantum numbers
in the t-channel, and will be discussed in Sec. V.
The observables defined in Sec. II can be written in

terms of the p ! �0 MPFFs through the helicity ampli-
tudes f1 to f6.

f1 ¼ f4 ¼ g2
Cq

FVðQ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
2M

�
~H T þ 1� �

2
ET þ 1� �

2
~ET

�
; (36a)

f2 ¼ g2
Cq

½FVðQ2Þ þ FAðQ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q �
H T þ t0 � t

4M2
~H T � �2

1� �2
ET þ �

1� �2
~ET

�
; (36b)

f3 ¼ g2
Cq

½FVðQ2Þ � FAðQ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q t0 � t

4M2
~H T; (36c)

f5 ¼ g5
Cq

FAðQ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q �
H T þ t0 � t

4M2
~H T � �2

1� �2
ET þ �

1� �2
~ET

�
: (36d)

The f6 amplitude is 0 in this model, since the correspond-
ing g6 is zero, as seen in Eq. (22). With these amplitudes,
all of the observables of Sec. II A will contain bilinears in
the MPFFs. The asymmetries will involve the interference
between real and imaginary parts of the bilinear products.

B. Model for transverse GPDs

We performed calculations using a model for the chiral-
odd GPDs derived from the parametrization of
Refs. [17,18] (AHLT). The parameterization’s form for
the unpolarized GPD H is
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HðX; �; tÞ ¼ GðX; �; tÞRðX; �; tÞ;
where RðX; �; tÞ is a Regge motivated term that describes
the low X and t behaviors, while the contribution of
GðX; �; tÞ, obtained using a spectator model, is centered
at intermediate/large values of X

GðX; �; tÞ ¼ N
X

1� X

Z
d2k?

�ðk2; �Þ
DðX; �;k?Þ

�ðk02; �Þ
DðX; �;k0

?Þ
:

(37)

Here, k and k0 are the initial and final quark momenta,
respectively, (Fig. 1), DðX;k?Þ � k2 �m2, DðX �
�=ð1� �Þ;k0

?Þ � k02 �m2, k0
? ¼ k? � ð1� XÞ=ð1�

�Þ�?, m being the struck quark mass, � ¼ P� P0 being
the four-momentum transfer, and

k2 ¼ XM2 � X

1� X
M2

X � k2
?

1� X
; (38)

k02 ¼ X� �

1� �
M2 � X� �

1� X
M2

X

�
�
k? � 1� X

1� �
�?

�
2 1� �

1� X
; (39)

with M the proton mass, and MX the (flavor-dependent)
diquark mass (we suppress the flavor indices for simplic-
ity),�ðk2; �Þ defines the vertex functions in both the scalar
and axial-vector cases [17]. The normalization factor in-
cludes the nucleon-quark-diquark coupling, and it is set to
N ¼ 1 GeV6. GðX; �; tÞ and reduces to the form given in
Ref. [17] in the � ! 0 case. Similar equations were ob-
tained for the spin flip GPD E.

Similarly to [40,41] the � ¼ 0 behavior is constrained
by enforcing both the forward limit:

HqðX; 0; 0Þ ¼ qvalðXÞ; (40)

where qðXÞ is the valence quarks distribution, and the
following relations:Z 1

0
dXHqðX; �; tÞ ¼ Fq

1 ðtÞ; (41a)

Z 1

0
dXEqðX; �; tÞ ¼ Fq

2 ðtÞ; (41b)

which defines the connection with the quark’s contribution
to the Dirac and Pauli form factors. The proton and neutron
form factors are obtained as

Fp
1ð2ÞðtÞ ¼ 2

3F
u
1ð2ÞðtÞ � 1

3F
d
1ð2ÞðtÞ þ 1

3F
s
1ð2ÞðtÞ; (42a)

Fn
1ð2ÞðtÞ ¼ �1

3F
u
1ð2ÞðtÞ þ 2

3F
d
1ð2ÞðtÞ þ 1

3F
s
1ð2ÞðtÞ: (42b)

Notice that differently from [40,41] the AHLT parametri-
zation does not make use of a ‘‘profile function’’ for the
parton distributions, defined as

HðX; 0; tÞ ¼ qðXÞ exp�½tfðXÞ�;
whereas in our case the forward limit HðX; 0; 0Þ � qðXÞ is

enforced nontrivially. In other words, with the effort of
simultaneously having to provide a new parametrization of
the PDFs at low initial scale, we gain both the flexibility
and insight that are necessary to model the behavior at � ,
t � 0.
The �-dependent constraints are given by the higher

moments of GPDs. The n ¼ 1, 2, 3 moments of the non-
singlet combinations: Hu�d ¼ Hu �Hd, and Eu�d ¼
Eu � Ed are available from lattice QCD [42,43], n ¼ 1
corresponding to the nucleon form factors. In a recent
analysis a parametrization was devised that takes into
account all of the above constraints. The parametrization
gives an excellent description of recent Jefferson Lab data
in the valence region, namely, at � ¼ 0:36.
The connection to the chiral-odd GPDs is carried out by

considering the following ansatz, similarly to what was
adopted in Ref. [44] for the transversity distribution,
h1ðXÞ � HTðX; 0; 0Þ

Hq
TðX; �; tÞ ¼ �qHq;valðX; �; tÞ; (43)

�E q
T � 2 ~HT þ ET ¼ �q

THTðX; �; tÞ; (44)

where �q is the tensor charge, and �q
T is the transverse

anomalous moment introduced, and connected to the trans-
verse component of the total angular momentum in
[10,11].

V. Q2 DEPENDENCE

The Q2 dependence for �o electroproduction off a pro-
ton target, according to the factorization hypothesis, re-
sides in the hard subprocess ��q ! �oq0, both in
kinematical factors [see Eqs. (22)], and in the description
of the pion vertex. In determining the latter, particular care
needs to be taken of the chiral-odd nature of the reaction
outlined in Sec. II B. This requires the pion wave function
to be proportional to �5. In this way one obtains a chiral-
odd structure for the hard scattering amplitude as follows:

�5ðk6 þ q6 Þ�� ¼ ðk� þ q�Þ�5

2
ð½��; ��� þ f��; ��gÞ

¼ ðk� þ q�Þ�5ði
�� þ g��Þ / i�5

��:

(45)

�o production therefore singles out the proton’s chiral-odd
structure.
An important point made here is that the Lorentz struc-

ture of the process has to be taken into account in addition
to the structure of the pion vertex. By considering both
parity and C-parity conservation, and by making use of
duality one can view the ��q ! �oq0 reaction as a tran-
sition between a vector particle (��), and either a vector or
an axial-vector particle (the two quark legs in Fig. 1(a)),
with the emission of a �o.
Notice that had one used a ���5 term at the pion vertex,

based on the observation that this is the only collinear,
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leading twist contribution dictated by the operator product
expansion (OPE), one would have obtained JPC ¼ 1þþ, t-
channel quantum numbers, and a clear violation of
C-parity in the ��q ! �oq0 reaction would ensue. Our
procedure is to model the pion wave function in this
process after imposing C-parity conservation. This poses
the problem of going beyond the collinear OPE-motivated
description, an issue discussed also in [45].

Here, we propose a new model, using crossing symme-
try and duality, in which we replace the calculation of the
hard subprocess amplitudes [given in Eqs. (22)], which
exhibit the structure in Eq. (45), with the ��-axial/vector
meson-�0 � ��ðq �qÞ ! �0 vertex. This allows us to intro-
duce OAM in our model. A similar structure can be con-
sidered both for the GPD and Regge based descriptions.
For the latter, at nonzero Q2 the kinematics shifts, so that s
depends on Q2 and xBj, the preferred variables for the

exclusive process. This kinematic generalization alters
the Regge behavior vs Q2 and t from the real photon limit.
But furthermore there is a very strong suppression of the
amplitudes and cross sections for increasing photon vir-
tuality. This is indicated by data fromDESY [29,30] and by
theoretical expectations [46] that for large Q2 the ampli-
tudes approach dimensional counting requirements from
QCD, which predict 1=Q4. However, the transition from
low to highQ2 is subject to interpretation (e.g. Ref. [47]). .
Furthermore, the data of interest for �0 production at Jlab
and Compass kinematics are at relatively low values ofQ2.

Details of our model will be given in a forthcoming
paper [48]. Here, we notice that the quantum numbers of
the desired transition form factors can be identified with
the ones for the following J ¼ 1 mesons (Fig. 2),

��	ð!Þ�o ��b1ðh1Þ�o;

or with isovector (isoscalar) vector and axial-vector ex-
changes, respectively.

The quark contents of both vertices are6

	ðb1Þ ! u �u� d �d !ðh1Þ ! u �uþ d �d:

In the transition between the vector mesons JPC ¼ 1��,
and the�o, JPC ¼ 0�þ, the quark-antiquark pair carries an
OAM of L ¼ 0, both in the initial and final state. The
transition between the axial-vector mesons JPC ¼ 1þ�
and the �o, is instead characterized by a change of OAM
(L ¼ 1 ! L ¼ 0).

Both the vector (V) and axial-vector (A) vertices have
the following Lorentz structure [49]:

�� ¼ �ie2F��ðQ2ÞK�; (46)

where the covariant kinematic factor for the vector case is

K� ¼ ���	
p
�q	�
ðq0Þ; (47)

and the index � refers to the virtual photon (q2 ¼ �Q2),
while the �
 refers to the real photon (q02 ¼ 0) or the
vector meson. For an axial vector the general form has
two form factors,

��ðqÞK� ¼ �ie2½Fð1Þ
�AðQ2Þ�ðqÞ � �0ðq0Þ

þ Fð2Þ
�AðQ2Þð�0�ðq0Þ��ðqÞ þ �0�ðq0Þ��ðqÞ

þ ð�0ðq0Þ � �ðqÞÞg��Þq�q0��: (48)

So, with no assumptions about the form factors, the longi-
tudinal photon going to a transverse axial-vector meson
dominates the first, S-wave part (with a factor of q0?� in
the Lab frame). For the second part the transverse to
transverse transition carries a similar factor. Other transi-
tions are suppressed. For the vector exchange we can see
that the transverse to transverse dominates (with a factor of
�plong). The inclusion of the form factors into this mix

leads to more complicated conclusions.
The structures given above are equivalent to the ones

obtained in Eqs. (22), where the coupling g� is now
replaced by combinations of vector and axial-vector form
factors. While this will be explicitly shown in [48], here we
state the essential result for the parameterization of the Q2

dependence that axial-vector exchange dominates the lon-
gitudinal photon amplitude. For the transverse photon both
vector and axial vector will contribute. This is valid in a
partonic picture as well as in the Regge approach since it is
based only on the JPC quantum numbers for the different
processes. We summarize our formulation of the Q2 de-
pendence in Table I.
From the Table I it is clear that the following contribu-

tions from the t-channel spin/parity components will go
into the helicity amplitudes fi (i ¼ 1, 6) of interest,

f1 ¼ f4 / V; f2 / AþV; f3 / A�V; f5 / A:

The transition form factors can be expressed in a PQCD
model with transverse configuration space variables as
[50,51]

F��V�o ¼
Z

dx1dy1
Z

d2bc Vðy1; bÞCK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð1� x1ÞQ2

q
bÞ

� c �oðx1; bÞ expð�SÞ; (49)

TABLE I. Dominating transitions for the different t-channel
exchanges in the reaction ��p ! �op.

Photon

polarization

t-channel

parity

t-channel

C-parity

t-channel

polarization

L A �1 L
L V �1 Not allowed

T A �1 L, T
T V �1 T

6In principle a strange quark component appears in h1. This
can be, however, disregarded due to the small contribution to the
nucleon strange structure function.
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where x1ðy1Þ is the longitudinal momentum fraction car-
ried by the quark, b is the Fourier transform of the trans-
verse intrinsic momentum, kT, c Vðy1; bÞ and c �oðx1; bÞ
are the vector meson and pion wave functions in configu-
ration space, respectively, CK0 is the Fourier transform of
the hard scattering amplitude, where K0 is the modified
Bessel function of order zero, C ¼ 8�Sðx1y1Q2ÞCF, and
expð�SÞ is the Sudakov exponential. It is important to
observe that it is sufficient for our purpose to use the
leading twist pion wave function since the power suppres-
sion due to the �5 coupling is already accounted for in g2
and g5 [Eqs. (22)]. Furthermore, in the vector case the
OAM is the same in the initial and final states (L ¼ 0),
whereas for an axial-vector meson in the initial state, the
OAM changes from L ¼ 1 to L ¼ 0, leading to

F��A�o ¼
Z

dx1dy1
Z

d2bc ð1Þ
A ðy1; bÞCKoð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð1� x1ÞQ2

q
bÞ

� c �oðx1; bÞ expð�SÞ; (50)

where now

c ð1Þ
A ðy1; bÞ ¼

Z
d2kTJ1ðy1bÞc ðy1; kTÞ; (51)

a higher order Bessel function appears as a consequence of
having L ¼ 1 in the initial state [52].

In impact parameter space this yields configurations of
larger radius. In terms of meson distribution amplitudes
this is described by functions of higher twist originating
from the ‘‘bad’’ components of the quark spinors [53]. We
evaluated the form factors by using the asymptotic twist-
two, �LðTÞ ¼ 6xð1� xÞ, and twist-three, gT ¼ ð3=4Þ½1þ
ð2x� 1Þ�2, amplitudes, defined in Ref. [54], corresponding
to the same isospin but different spin configurations for the
two mesons.

We conclude by noting that while our approach might
shed some light on the presence of large transverse polar-
ization components in a number of recent exclusive mea-
surements, we cannot straightforwardly apply it to vector
meson production, since this is dominated by t-channel
exchanges other than the axial and vector types governing
�o production. In summary, we introduced a model for the
Q2 dependence for vector and axial-vector exchanges.
They differ because in the axial-vector cases there is a
change of one unit of OAM producing a suppression with
respect to the vector. More details and more comparisons
with �o electroproduction data will be given in a forth-
coming manuscript [48].

VI. RESULTS

We now present our quantitative results for �o electro-
production cross sections and asymmetries both in the
kinematical regime of currently analyzed experimental

data obtained at ��p CM energy, 4 GeV2 & W &
9 GeV2, and Q2 in the multi-GeV region, and in a larger
energy and momentum transfer regime. Approximate scal-
ing was found to hold in the case of DVCS [55,56]. We
therefore expect our picture based on chiral-odd GPDs to
be valid in this regime. A Regge type description can also
be reliably applied in this region for�t  s. The interplay
between the Regge and partonic descriptions is key to the
physical interpretation of GPDs and TMDs, and it consti-
tutes the main motivation of our study. Measurements from
Jefferson Lab on �0 production [57] show non-negligible,
larger than theoretically surmised, contributions from
transversely polarized photons. Important aspects of our
approach that guided us toward an interpretation of �o

electroproduction data are that i) a multivariable analysis
needs to be performed that is sensitive to the values of the
tensor charges, �u and �d, and of the transverse moments,
�u
T and �d

T ; ii) we consider a different Q2 dependence of
natural and unnatural t-channel exchanges governing both
the Regge and GPD approaches. In what follows we pro-
vide a survey of the effects of the variations of the trans-
versity parameters on different observables.

A. Cross sections

In Figs. 3–5, we show our predictions for the different
contributions to the ��p ! �op cross section, obtained
both in the Regge model, and in the GPD-based calcula-
tions. Both models predict similar trends in the measured
experimental regime despite their seemingly different
physical nature. The different contributions to the cross
section are in fact sensitive to the values of the tensor
charge residing in the helicity amplitudes f2 and f5, as
explained in the previous sections, and defining their nor-
malization as t ! tmin. As for the helicity amplitudes f1
and f4, a connection can be established between GPDs and
the (normalization of the) Boer-Mulders function through
the concept of ‘‘transverse spin anomalous magnetic mo-
ment,’’ �T . We expect a similar connection to be estab-
lished for the Regge amplitudes as well. In the GPD model
we used �u ¼ 0:48, �d ¼ �0:62, namely, the values of the
tensor charges extracted from the global analysis of semi-
inclusive data in Ref. [44], and the values �u

T ¼ 0:6, �d
T ¼

0:3. The latter are smaller than currently available lattice
Ref. [43], and model Ref. [7] calculations. It should be
remarked that the t-dependence in the GPD model follows
closely what was found for the unpolarized case, i.e.H , in
DVCS data in a similar kinematical regime. The somewhat
flatter t-dependence at large xBj (lower panels in Fig. 3) is

due to the interplay of the imaginary and real parts of the
helicity amplitudes. In our approach, in fact, H T has a
similar trend to H in the unpolarized case. This is in turn
determined by a parametrization constrained by the DVCS
data. Both its real and imaginary parts are therefore de-
creasing with�t, but the real part being negative produces
a less steep dependence of the cross sections with �t.
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FIG. 5 (color online). (color online) Different helicity ampli-
tudes contributions to the cross section, 
 ¼ 
T þ �L
L, plot-
ted vs �t, at Q2 ¼ 1:7 GeV2, xBj ¼ 0:18. Short dashes:

jf1j2 � jf1þ;0þj2; dotted-dashed line: jf2j2 � jf1þ;0�j2; dotted
line: jf3j2 � jf1�;0þj2 (see Eq. (5) and following text). The full

lines represent the total contributions. In the upper panel we
show the GPD model, in the lower panel the Regge model.
Notice that the contribution of f3 is very small in the GPD model
at this kinematics. The parameters defining the tensor charges
and the transverse anomalous magnetic moments in the GPD
model are, respectively, �u ¼ 0:48, �d ¼ �0:62, and �u

T ¼ 0:6,
�d
T ¼ 0:3. An increase in �u;d

T would produce larger contribu-

tions of both f1 and f3 thus modifying the t dependence of the
cross sections.
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FIG. 4 (color online). (color online) Longitudinal, 
L �
d
L=dt, Eq. (12), and transverse 
T � d
T=dt, Eq. (11) con-
tributions presented along with their linear combination 
T þ
�L
L, in the electroproduction cross section, Eq. (8), plotted as a
function of �t. Both the Regge model (short dashes), and the
GPD model (full lines) are shown. Upper panel,Q2 ¼ 1:7 GeV2,
xBj ¼ 0:17; lower panel, Q2 ¼ 2:3 GeV2, xBj ¼ 0:36. The pa-

rameters defining the tensor charges and the transverse anoma-
lous magnetic moments in the GPD model are, respectively,
�u ¼ 0:48, �d ¼ �0:62, and �u

T ¼ 0:6, �d
T ¼ 0:3.
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FIG. 3 (color online). (color on-
line) Different contributions to the
electroproduction cross section,
Eq. (8), plotted as a function of
�t, in the Regge model (short
dashes), and in the GPD model
(full lines) described in the text.
Four different kinematical bins in
Q2 and xBj, in a range correspond-

ing to recent Jefferson Lab mea-
surements are displayed. The
parameters defining the tensor
charges and the transverse anoma-
lous magnetic moments in the
GPD model are, respectively,
�u ¼ 0:48, �d ¼ �0:62, i.e. con-
sistent with the analysis of
Ref. [44], and �u

T ¼ 0:6, �d
T ¼

0:3.
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B. Asymmetries

More marked differences between the two approaches
appear both in the transverse target spin asymmetry, AUT

and in the beam spin asymmetry, proportional to d
LT0=dt.
In the GPD model used in this paper the size of AUT in fact
depends almost solely on the value of the tensor charge,
due to the almost exact cancellation of the =mðf�1f3Þ term
in Eq. (17). AUT is therefore approximately proportional to
H T . Such a cancellation does not occur in the Regge
model, as it can be clearly seen at larger values of �t.
This is a manifestation of the natural parity exchanges
which become dominant at larger �t. However, because,
of the proportionality of the helicity amplitudes of f1 and
f3 to

ffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
and t0 � t, respectively, as t approaches tmin,

the amplitude f2, measuring the tensor charge is the main
contribution at low t. This is consistent with the approx-
imations used in our GPD model, and our proposed ex-
tractions are indeed valid at t < Q2, where the GPD-based
description of the electroproduction cross sections applies.

On the other hand, in d
LT0=dt, a cancellation occurs of
the =mðf�5f2Þ term, Eq. (16). Therefore, d
LT0=dt is only
the dependent on the GPD, �E2, allowing one in principle to
measure the sensitivity to �T . Again, in the Regge model
the above cancellation is only partial because of a more
complicated interplay between the natural and unnatural
parity exchanges. However, we observe a similar trend
showing the suppression of the tensor charge dependent
term. We are therefore able to single out the observables
AUT and d
LT0=dt as probes of the tensor charge and of �T .

Results for the asymmetries are shown in Figs. 6–9. AUT,
Eq. (17), and �, Eq. (19), are given as a function of t in
Figs. 6 and 7, respectively. In Fig. 6, we compare the Regge
and GPD models. For the Regge we show separately the
contributions of the combination of helicity amplitudes
including the tensor charge, and the ones sensitive to �T ,
together with the total contribution. More specifically we
separate out the terms proportional to =mðf�1f3Þ and

=mðf�1f2Þ, respectively. The latter, given by the dotted-

dashed curve, clearly dominates the asymmetry at low t.
The GPD model is instead governed entirely by the tensor
charge term. A similar picture is obtained for �, shown in

Fig. 7, by inverting the role of the tensor charge and �u;d
T

terms. However, here the only surviving term in our GPD
model is =mðf�5f3Þ, which is very small due to the small-

ness of the helicity amplitude f3. The Regge model gives
larger contributions for f3. These are shown at different
recently measured kinematics.

The sensitivity of AUT in the GPD model to the values of
the u-quark and d-quark tensor charges, is shown in Fig. 8.
The values in the figure were taken by varying up to 20%
the values of the tensor charge extracted from the global
analysis of Ref. [44], i.e. �u ¼ 0:48 and �d ¼ �0:62,
keeping the transverse anomalous magnetic moment val-
ues, �u

T ¼ 0:6 and �d
T ¼ 0:3. Figure 8 is one of the main

results of this paper: it summarizes our proposed method

for extracting the tensor charge from �o electroproduction
experiments. A practical extraction of the tensor charge
can be obtained by noticing that for the asymmetry, as well
as for other quantities evaluated in this paper such as
d
TT=dt, and d
LT=dt the tensor charges for the different
isospin components might be treated as parameters related
to the normalization of HT (d
LT=dt is plotted in Fig. 9).
Therefore, our model can be used to constrain the range of
values allowed by the data.
In Fig. 10 we show the sensitivity of AUT to the tensor

charge values at fixed t ¼ �0:3 GeV2, and as a function of
xBj. As in the previous figures we took �

u
T ¼ 0:6 and �d

T ¼
0:3. We performed calculations for a range of values ofQ2.
We find that the Q2 dependence of AUT is rather small due
to the cancellations of the form factors in the ratio
[Eq. (17)]. On the contrary, as can be seen from Fig. 11,
for e.g. d
LT=dt, the single contributions to the cross
section expectably display a steep Q2 dependence.
Notice that the electroproduction data are essential in

determining the tensor charge and other transversity re-
lated quantities. This is illustrated in Fig. 12 where we
show the photoproduction cross section calculated follow-
ing the model in [16]. The value of the tensor charge is
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q term
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FIG. 6 (color online). (color online) The transverse spin asym-
metry, AUT, Eq. (17) plotted vs �t in the Regge model (short
dashes) and in the GPD model (full lines) Q2 ¼ 2:3 GeV2,
xBj ¼ 0:36. The GPD model is sensitive to the value of the u-

quark and d-quark tensor charges taken here as �u ¼ 0:48, and
�d ¼ �0:62, respectively. The rather small sensitivity to �u;d

T is

shown in the figure by plotting two different curves correspond-
ing to �u

T ¼ 0:6, �2
T ¼ 0:3 and �u

T ¼ 3, �2
T ¼ 2. For the Regge

model we show separately the contributions of the combination
of helicities amplitudes including the tensor charge, namely
ðf�4f2Þ=
T (dotted dashes), and the ones sensitive to �u;d

T only,

ðf�1f3Þ=
T (short dashes). The full line is the total contribution.

One can see that the Regge model is dominated by the tensor
charge contribution at low �t. In the GPD model the term
ðf�1f3Þ=
T in Eq. (17) cancels out exactly.
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FIG. 7 (color online). (color online) Beam spin asymmetry parameter �, Eq. (19), plotted vs �t in the Regge model at Q2 ¼
1:7 GeV2, xBj ¼ 0:18,Q2 ¼ 2:3 GeV2, xBj ¼ 0:36,Q2 ¼ 1:3 GeV2, xBj ¼ 0:13, andQ2 ¼ 3:3 GeV2, xBj ¼ 0:47. Experimental data

from Ref. [59].
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FIG. 8 (color online). (color online) Transverse spin asymme-
try, AUT, Eq. (17), plotted vs �t, at Q2 ¼ 2:3 GeV2, xBj ¼ 0:36

for different values of the u quarks tensor charge, �u, used as a
freely varying parameter in the GPD approach. The d quark
component, �d was taken as �d ¼ �0:62, i.e. equal to the
central value extracted in the global fit of Ref. [44].
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FIG. 9 (color online). (color online) Longitudinal/transverse
interference term, d
LT=dt, Eq. (15), plotted vs �t at Q2 ¼
2:3 GeV2, xBj ¼ 0:36, for different values of the u quarks tensor

charge, �u, used as a freely varying parameter in the GPD
approach. The d quark component, �d was taken as �d ¼
�0:62, i.e. equal to the central value extracted in the global fit
of Ref. [44].
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extracted in this case from the Regge residue of the axial-
vector contribution to the helicity amplitude f2 (see
Sec. III) at t ! 0. This is plotted in the lower panel of
Fig. 12 where the central value extracted by fitting the
model parameters to the photoproduction data is shown
along with curves corresponding to a �30% variation of
the tensor charge (labeled correspondingly in the figure).
From the figure it is clear that the photoproduction cross
section is very little affected by variations in the values of
the tensor charge, except very near forward.

C. Q2 dependence

The Q2 dependence of our model is illustrated in
Figs. 13 and 14. Figure 13 shows the different form factors
describing the upper vertex in Fig. 1(b), for the different
helicity amplitudes, namely F1ðQ2Þ ¼ FVðQ2Þ=2,
F2ðQ2Þ ¼ ðFVðQ2Þ þ FAðQ2ÞÞ=2, F3ðQ2Þ ¼ �ðFVðQ2Þ �
FAðQ2ÞÞ=2, and F5ðQ2Þ ¼ FAðQ2Þ=2, where FV and FA are
a short notation for the vector and axial transition form
factors,F��V�, and F��A� introduced in Sec. V. All form

factors were calculated using the approach described in
Sec. V. The axial form factor displays a steeper Q2 depen-
dence at large Q2, due to the difference in orbital angular
momentum between the initial and final hadronic states. In
Fig. 14 we show the impact of multiplying the different
helicity amplitudes by different form factors on some of
the observables, which are governed by either longitudinal
or transverse photon polarization. Results are shown at
xBj ¼ 0:36 for two different values of t, t ¼ �0:3 GeV2

and t ¼ �0:7 GeV2, in the GPD model. Despite the fact
that the t dependence plays an important role, as can be
seen from Figs. 3–5, we expect the longitudinal to trans-
verse ratios, 
L=
T / ðFA=ðFA þ FVÞÞ2, and 
LT=
TT, to
have a less steep Q2 dependence than the one based on
simple PQCD predictions. The shape of the curves is a
consequence of the difference in the Q2 behavior for the
axial and vector form factors, whose ratio displays a
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FIG. 11 (color online). (color online) d
LT=dt, plotted vs xBj
at t ¼ 0:3 GeV2 for two different values of Q2: Q2 ¼ 2:3 GeV2

(full line) and Q2 ¼ 10 GeV2 (short-dashed line).
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FIG. 12 (color online). (color online) Photoproduction cross
section at s ¼ 9 GeV2, calculated following Ref. [16] (upper
panel). The value of the tensor charge was extracted from the
Regge residue as described in the text (curve labeled as ‘‘cen-
tral’’). Curves corresponding to a �30% variation of the tensor
charge are labeled correspondingly. In the lower panel we show
the axial-vector contribution to the residue of the amplitude f2.
The tensor charge is extracted from the value of the residue in
t ! 0.
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FIG. 10 (color online). color online) Transverse spin asymme-
try, AUT, Eq. (17), plotted vs xBj at fixed t ¼ �0:3 GeV2, for

different values of the u quarks tensor charge, �u (notations as in
Figs. 8 and 9). Q2 ¼ 2:3 GeV2 (full lines). Results at Q2 ¼
10 GeV2, for �u ¼ 0:48, �d ¼ �0:62 are also shown (short-
dashed line).
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1=QlogaðQ2=�Þ dependence. These however enter the
cross section in different linear combinations, and with
different weights depending on the values of t, giving
rise to the curves shown in the figure. It should be noticed
that this is qualitatively different from taking different
monopole masses for axial vector and vector meson form
factors, and assuming the same Q2 behavior [58].

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we presented a framework for analyzing
�o exclusive electroproduction where, by observing that

this reaction proceeds through C-parity odd and chiral-odd
combinations of t-channel exchange quantum numbers, it
can be selected to obtain direct measurements of the meson
production form factors for the chiral-odd generalized
parton distributions. This is at variance with deeply virtual
Compton scattering, and with both vector meson and
charged � electroproduction, where the axial charge cor-
responding to C-parity even exchanges can enter the am-
plitudes. We then studied the different terms appearing in
the cross section for scattering from an unpolarized proton,
including the beam polarization asymmetry using the he-
licity amplitudes formalism.
A Regge based description based on the ‘‘weak cut’’

approach was adopted where the leading axial vectors
exchanges, b1 and h1, determine the tensor charge and
the transversity distribution, while the leading vector ex-
changes, 	 and ! can be related to the transverse anoma-
lous moment.
The partonic description, singling out the chiral-odd

GPDs, was implemented to show the sensitivity of some
of the observables, in particular, the interference terms in
the unpolarized cross section to the values of the u and d
quark tensor charges, as well as to the values of the u and d
quark transverse anomalous moments. Predictions were
also given for the transverse target spin asymmetry, AUT.
The various correspondences between the Regge ap-

proach and the GPD models were highlighted. This aspect
of the of analysis represents an avenue that we will con-
tinue to pursue in the near future.
Finally, we expect a variety of new flavor sensitive

observables to be extracted from the data in the near future
using both unpolarized data and asymmetries from trans-
versely polarized proton and deuteron data on �o and �
production at the higher s values attainable at Jefferson
Lab at 12 GeV. The extension of our analysis to these types
of reactions promises to be a rich area for both theoretical
and experimental exploration in the near future.
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APPENDIX: KINEMATICAL TRANSFORMATIONS

We present the transformation from the pion’s scattering
angle in the laboratory frame to the CM frame

dðcosLAB� Þ ¼ �ð1þ � cosCM� Þ
ðsin2CM� þ �2ðcosCM� þ �Þ2Þ3=2 dðcos

CMÞ;
(A1)

with

t=-0.3 GeV2

t=-0.8 GeV2
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FIG. 14 (color online). Ratios R ¼ 
LT=
TT plotted vs Q2, at
x� 0:36, for two different values of t, t ¼ 0:3 GeV2, and t ¼
0:8 GeV2.
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FIG. 13 (color online). (color online) Form factors describing
the upper vertex in Fig. 1(b), plotted vs Q2 for the different
helicity amplitudes, namely, F1ðQ2Þ ¼ FVðQ2Þ=2, F2ðQ2Þ ¼
ðFVðQ2Þ þ FAðQ2ÞÞ=2, F3ðQ2Þ ¼ �ðFV ðQ2Þ � FAðQ2ÞÞ=2, and
F5ðQ2Þ ¼ FAðQ2ÞÞ=2, described in Sec. V. All form factors were
calculated using the approach described in Sec. V.
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� ¼ �þMffiffiffi
s

p ; (A2a)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þQ2

p
�þM

: (A2b)

The expression in the kinematical invariant, t is given by

dðcosCM� Þ ¼ ½ðsþQ2 �M2Þðs�M2Þ��1=2dt: (A3)
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