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We calculate the pretzelosity distribution (h?1T), which is one of the eight leading twist transverse

momentum dependent parton distributions (TMDs), in the light-cone formalism. We find that this quantity

has a simple relation with the quark orbital angular momentum distribution, thus it may provide a new

possibility to access the quark orbital angular momentum inside the nucleon. The pretzelosity distribution

can manifest itself through the sinð3�h ��SÞ asymmetry in semi-inclusive deep inelastic scattering

process. We calculate the sinð3�h ��SÞ asymmetry at HERMES, COMPASS, and JLab kinematics and

present our prediction on different targets including the proton, deuteron, and neutron targets. Inclusion of

transverse momentum cut in data analysis could significantly enhance the sinð3�h ��SÞ asymmetry for

future measurements.
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I. INTRODUCTION

The nucleon is a composite system, so its spin not only
comes from the intrinsic spins of the constituents, but also
from the orbital angular momenta due to the relative mo-
tion of quarks and gluons. One of the main tasks of hadron
physics is to quantitatively know the contribution from
each component of the above items. However, on the
theoretical side, there are disputes on how to define these
quantities, and decomposing the contribution from spin
and orbital angular momentum parts in experiments is
also not clear yet.

Conventionally, it seems easy to start from the QCD
Lagrangian and follow the Nöther’s theorem, and to write
the conserved angular momentum as

~J QCD ¼
Z

d3xc y
~�

2
c þ

Z
d3xc y ~x� ð�irÞc

þ
Z

d3x ~Ea � ~Aa þ
Z

d3xEai ~x�rAai

� ~Sq þ ~Lq þ ~Sg þ ~Lg; (1)

in which the four terms are identified as the quark spin,
quark orbital angular momentum, gluon spin, and gluon
orbital angular momentum, respectively. This definition
has been used in many references [1,2], and it is naturally
considered as the generator of the space rotation. In
Ref. [2], the matrix elements of this defined orbital angular
momentum operator in the light-cone representation were
calculated, and the results satisfy the conservation of the z
projection of angular momentum:

Jz ¼ Xn
i¼1

szi þ
Xn�1

j¼1

lzj: (2)

But a problem is that except for the quark spin term, the
other three terms are gauge dependent, thus they have
obscure physical meanings in common situations.
By considering this, Ji suggested a gauge-invariant ex-

pression [3]:

~J QCD ¼
Z

d3xc y
~�

2
c þ

Z
d3xc y ~x� ð�i ~DÞc

þ
Z

d3x ~x� ð ~E� ~BÞ

� ~Sq þ ~Lq þ ~Jg; (3)

where ~D ¼ r� ig ~A is the covariant derivative. As pointed
in Ref. [3], this can be experimentally accessed in the deep
virtual Compton scattering (DVCS) process, where the

total angular momentum ~Jq � ~Sq þ ~Lq can be measured,

and HERMES Collaboration has reported their experimen-
tal progresses in recent years [4]. But in this definition,
unlike the quark case, there exists no gauge-invariant
decomposition of spin and orbital contributions for the

gluon angular momentum ~Jg. However, de Téramond and

Brodsky showed recently [5] that under the framework of
light-front QCD, there is a separation of the dynamics of
quark and gluon binding from the kinematics of constituent
spin and internal orbital angular momentum. More seri-
ously, the assumed quark orbital angular momentum op-
erator does not obey the angular momentum algebra
~J � ~J ¼ i ~J, and there is an interaction term involving
also gluons. So it is a question whether such a defined
and measured quantity can be viewed as the quark orbital
angular momentum.
Trying to reconcile the gauge invariance and the angular

momentum algebra, Chen et al. proposed a new form of

spin sum [6] by adding a surface term
R
d3xr �

½ ~Eað ~Aa
pure � ~xÞ�, which vanishes after integration over the*mabq@phy.pku.edu.cn

PHYSICAL REVIEW D 79, 054008 (2009)

1550-7998=2009=79(5)=054008(10) 054008-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.054008


space,

~JQCD ¼
Z

d3xc y
~�

2
c þ

Z
d3xc y ~x� ð�i ~DpureÞc

þ
Z

d3x ~Ea � ~Aa
phys þ

Z
d3xEai ~x�rAai

phys

� ~Sq þ ~Lq þ ~Sg þ ~Lg; (4)

where ~Dpure ¼ r� ig ~Apure, and ~Apure is the pure gauge

component of ~A, satisfying ~Dpure � ~Apure ¼ 0. ~A can be

decomposed as ~A ¼ ~Apure þ ~Aphys. In this definition, all

terms are gauge invariant and obey the angular momentum
algebra. But there is a practical problem of lacking a clear
way to measure orbital angular momentum defined so far.

If we disregard the disputes on the definition, we can
define various quantities under each frame of definition and
investigate their properties. In Ref. [7], the first definition
mentioned above was used and a quantity that represents
the quark orbital angular momentum in the light-cone
formalism was obtained. It was shown that the quark
orbital angular momentum equals the difference between
the helicity and transversity, but it was not clear how to
measure this quantity directly at that time. In Ref. [8],
Avakian et al. used the bag model and the spectator model
to deduce the result that the difference of helicity and
transversity is (a transverse moment of) the so-called
pretzelosity, a new quantity which is one of the leading
twist parton distributions. Later in Ref. [9], Pasquini et al.
confirmed this statement but using the light-cone constitu-
ent quark model. Conventionally, the difference of helicity
and transversity is viewed as the relativistic effects in the
nucleon, so in Refs. [8,9], pretzelosity is considered as the
measurement of the relativistic effects in the nucleon. In
this paper, we calculate the pretzelosity distribution in the
light-cone SU(6) quark-diquark model and reconfirm the
conclusion as that in Refs. [8,9]. So combining with the
result already obtained in Ref. [7], we suggest that pretze-
losity might open a new way to access the quark orbital
angular momentum. Of course we should remember that
our definition and conclusion are based on the light-cone
gauge in the infinite momentum frame (IMF), or equiva-
lently, Aþ ¼ 0 gauge in the light-cone formalism [10,11],
which is the conventional language for describing parton
distributions inside the nucleon. The advantages of using
light-cone formalism to describe the quark orbital angular
moment have been also stressed in Refs. [2,5].

II. TMDS AND PRETZELOSITY

Pretzelosity, usually denoted as h?1T , is one of the eight
leading twist transverse dependent parton distributions
(TMDs). Up to the leading twist, the decomposition of
the quark-quark correlator reads [12,13]

�ðx;p?Þ ¼ 1

2

�
f1 6nþ � f?1T

�ij?p
i
?S

j
?

MN

6nþ

þ
�
Skg1L þ p? � S?

MN

g1T

�
�5 6nþ

þ h1T
½S6 ?; 6nþ��5

2
þ
�
Skh?1L þ p? � S?

MN

h?1T
�

� ½6p?; 6nþ��5

2MN

þ ih?1
½6p?; 6nþ�
2MN

�
: (5)

Using the abbreviation �½�� ¼ Trð��Þ=2, we can get the
traces of the correlator [12,13]

�½�þ� ¼ f1 � Sj?
�ij?p

i
?

MN

f?1T; (6)

�½�þ�5� ¼ Skg1L þ p? � S?
MN

g1T; (7)

�½i�iþ�5� ¼ Si?h1 þ Sk
pi
?

MN

h?1L þ Sj?
2pi

?p
j
? � p2

?�
ij
?

2M2
N

h?1T

� �ij?p
j
?

MN

h?1 : (8)

Working in the light-cone gauge, we have [12,14]

�½�� ¼
Z d��d2�?

16�3
eiðxPþ���p?��?Þ

� hPSj �c ð0Þ�c ð0; ��; �?ÞjPSi: (9)

The pretzelosity distribution can be worked out by

px
?p

y
?

M2
N

h?1Tðx;p2
?Þ¼

Z d��d2�?
16�3

eiðxPþ���p?��?Þ

�hPSyj �c ð0Þi�1þ�5c ð0;��;�?ÞjPSyi;
(10)

where jPSyi denotes the hadronic state with a polarization
in y direction.
Pretzelosity is chirally odd, so it must couple with a

chirally odd partner in the semi-inclusive deep inelastic
scattering (SIDIS) process (see Sec. V). It is usually con-
sidered as a measure of the relativistic effects in the nu-
cleon, and a detailed discussion on its property can be
found in Ref. [8].

III. PRETZELOSITY IN THE LIGHT-CONE SU(6)
QUARK-DIQUARK MODEL

The matrix element shown in Eq. (10) cannot be solved
strictly since a proton state contains the nonperturbative
information. Conventionally, this state can be expanded in
a series of light-cone Fock states with coefficients, i.e., the
light-cone wave functions, and all the wave functions con-
tain the full information of the nucleon. In principle, there
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is an infinite number of wave functions and the wave
functions cannot be calculated perturbatively. However,
this expansion can be truncated so that only the Fock states
with a few partons necessary for calculation are left, and
the finite number of wave functions can be parametrized by
experiments or certain models. In this paper, we use the
light-cone SU(6) quark-diquark model [15], in which the
proton state is constructed by a valence quark and a spec-
tator diquark. The advantage of this model is that some of

the gluon and quark effects in the spectator can be effec-
tively described by the diquark with a few parameters.
However, as only valence quark distributions can be di-
rectly calculated in this model, one must use other infor-
mation to take into account contributions from sea and
gluon distributions.
Any hadron state can be expanded in terms of a complete

set of Fock states at equal ‘‘light-cone time’’ [10,11]

jHi ¼ X
n;�i

Z
½dx�½d2k?�c nðxi;k?i; �iÞ

Y
q

uðxiPþ; xiP? þ k?i; �iÞffiffiffiffi
xi

p
Y
g

�ðxiPþ; xiP? þ k?i; �iÞffiffiffiffi
xi

p jni; (11)

with the normalization conditionX
n;�i

Z
½dx�½d2k?�jc nðxi; k?i; �iÞj2 ¼ 1; (12)

and the integral over the phase space is

½dx� ¼ �

�
1�Xn

i¼1

xi

�Yn
i¼1

dxi;

½d2k?� ¼ 16�3�2

�Xn
i¼1

k?i

�Yn
i¼1

ðd2k?i=16�
3Þ:

(13)

In the SU(6) quark-diquark model, the proton state with
a spin component Sz ¼ � 1

2 in the instant form can be

written as

jp"i ¼ 1
3 sin	’V½ðudÞ0u" �

ffiffiffi
2

p ðudÞ1u# � ffiffiffi
2

p ðuuÞ0d"
þ 2ðuuÞ1d#�Þ þ cos	’SðudÞSu"; (14)

jp#i ¼ �1
3 sin	’V½ðudÞ0u# �

ffiffiffi
2

p ðudÞ�1u" � ffiffiffi
2

p ðuuÞ0d#
þ 2ðuuÞ�1d"� þ cos	’SðudÞSu#; (15)

where 	 is the mixing angle that breaks the SU(6) symme-
try when 	 � �=4. More explicitly, we write the Fock
expansion in a diquark model as

jPS"i ¼ X
j

1

16�3

Z dxqdxDffiffiffiffiffiffiffiffiffiffiffi
xqxD

p
Z

d2kq?d2kD?;

�ð1� xq � xDÞ�2ðkq? þ kD?Þc ðxj; kj?; �iÞayj byj j0i;
(16)

where the wave functions can be extracted from Eq. (14).
The negative helicity state can be written in the same way.
Notice that now we are working in the instant frame, and

we need to transform to the light-cone frame. The connec-
tion between the two frames is through a Melosh-Wigner
rotation [16,17]. For a spin- 12 particle, we use qT and qF to

denote the instant and light-cone spinors, respectively, and
the Melosh-Wigner rotation is known to be [17]

q"F
q#F

 !
¼ !

kþ þm �kR

kL kþ þm

� �
q"T
q#T

 !
� M1=2 q"T

q#T

 !
;

(17)

where kR;L ¼ k1 � ik2, ! ¼ ½ðxMD þmqÞ2 þ p2
?��1=2

withM2
D ¼ m2

qþp2
?

x þ m2
Dþp2

?
1�x ,mq andmD are mass parame-

ters for the quark and diquark, and M1=2 denotes the
Melosh-Wigner rotation matrix with the superscript refer-
ring to the spin of the particle. For the spin-0 scalar
diquark, there is no such transformation. For the spin-1
vector diquark, the transformation is represented by a 3�
3 matrix M1, whose explicit expression can also be found
in Ref. [18]. In practice, we will not use the explicit form,
for it does not appear in the final expression for the
spectator debris due to the unitary property M1yM1 ¼ 1.
Using Eqs. (9), (11), (16), and (17), we deduce the

formula for calculating the trace of the correlator:

�½�� ¼ X
j;�;�0;�D

1

32�3

1

xPþ c �
j ðx;p?; �; 1� x;�p?; �DÞc jðx;p?; �0; 1� x;�p?; �DÞ �uðxPþ;p?; �Þ�uðxPþ;p?; �0Þ:

(18)

We substitute i�1þ�5 for � and notice that jPyi ¼ 1ffiffi
2

p ðjP"i þ ijP#iÞ, after a careful calculation, we get the result for
pretzelosity (the superscript v denotes that it is valid only for valence quarks):
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h?ðuvÞ
1T ðx;p?Þ ¼ � 1

16�3
�
�
1

9
sin2	’2

VWV � cos2	’2
SWS

�
;

h?ðdvÞ
1T ðx;p?Þ ¼ � 1

8�3
� 1

9
sin2	’2

VWV; (19)

with the Melosh-Wigner rotation factor WDðD ¼ V; SÞ
given by

WDðx;p?Þ ¼ � 2M2
N

ðxMD þmqÞ2 þ p2
?
; (20)

which agrees with the result in Ref. [9], in which a three
quark model was used. ’Vð’SÞ are the wave functions in
the momentum space for the vector (scalar) diquark, which
can be parametrized by the Brodsky-Huang-Lepage (BHL)
prescription [10,19]:

’Dðx;p?Þ ¼ AD exp

�
� 1

8
2
D

�
m2

q þ p2
?

x
þm2

D þ p2
?

1� x

��
;

(21)

whose normalization should be consistent with Eq. (12).
The parameters such as 
D, the quark mass mq, and the
diquark mass mD can be found in Ref. [15], and we list
them in Table I. In the same way, the unpolarized distribu-
tions can be derived [15]

fðuvÞ1 ðx;p?Þ ¼ 1

16�3
�
�
1

3
sin2	’2

V þ cos2	’2
S

�
;

fðdvÞ1 ðx;p?Þ ¼ 1

8�3
� 1

3
sin2	’2

V:

(22)

Using above formulas, we can calculate pretzelosity and
the unpolarized distribution function independently, but
this model calculation strongly depends on the choice of
the wave function. The BHL form we use exhibits the sharp
falloff at both the large and small x region, but the con-
sequent result for the distribution functions might be in-
consistent with the realistic situation. For example, the
CTEQ6 extraction shows a divergence tendency at x !
0, rather than 0 as Eq. (22) indicates.

In order to make our result more close to the realistic
situation, we could adopt another prescription based on the
results of our model. This can be done by combining
Eqs. (19) and (22), then we get the relation between the
unpolarized and pretzelosity distributions:

h?ðuvÞ
1T ðx;p?Þ ¼ ½fðuvÞ1 ðx;p?Þ � 1

2f
ðdvÞ
1 ðx; Þp?�WSðx;p?Þ

� 1
6f

ðdvÞ
1 ðx;p?ÞWVðx;p?Þ;

h?ðdvÞ
1T ðx;p?Þ ¼ �1

3f
ðdvÞ
1 ðx;p?ÞWVðx;p?Þ:

(23)

Now, we will use the phenomenological extraction of the
unpolarized distribution functions as an input to calculate
the pretzelosity distribution. For example, we will use the
CTEQ6L [20] parametrization to get f1ðxÞ, which have
been well tested and constrained by many experiments.
And then by combining with some assumed transverse
momentum p? factor one can get phenomenological
f1ðx;p?Þ as input to calculate the pretzelosity distribution
h?1Tðx;p?Þ.
Here we need to make some comments on Eq. (23). The

left-hand side of the equation is a chiral-odd function,
which does not have gluon counterparts. But the right-
hand side is a linear combination of two chiral-even func-
tions, which have gluon counterparts. So the two sides have
different evolutions, which means that the relation cannot
be held exactly at any scale. This paradox originates from
the fact that the model we use is a no-gluon model, which
was pointed out in Ref. [8]. Nevertheless, we can compre-
hend this relation from two aspects. First, we assume that
Eq. (23) is valid at an initial scale. Second, the evolution
effect for pretzelosity appearing on the left is partially (not
all) contained in the unpolarized distribution. So we con-
clude that Eq. (23) could be approximately satisfied and
useful for estimating pretzelosity, but we must be careful
that the valid scale should not be too large.
The two approaches to calculate the pretzelosity distri-

bution may lead to different results. We denote the former
approach, i.e., the model calculation with wave function as
input, as approach 1, and the latter one, i.e., with phenome-
nological parametrization of f1ðx;p?Þ as input, as ap-
proach 2. Here we should emphasize again that we have
used a ‘‘valence model,’’ and we can only directly calculate
valence quark distributions in principle. In approach 1, for
both pretzelosity and unpolarized distribution, only the
contribution from valence quarks can be considered due
to a model calculation. In approach 2, the prescription for
pretzelosity is the same as that in approach 1, but for
unpolarized distribution, the phenomenological parametri-
zation can provide us with the information on sea quarks so
that we can take into account the sea contributions for the
unpolarized processes. In this paper, we will use both
approaches to obtain distribution functions and give pre-
dictions separately. Numerical results will be presented in
Sec. V.

IV. PRETZELOSITYAND ORBITAL ANGULAR
MOMENTUM

The effect of Melosh-Wigner rotation is also important
in other leading twist distribution functions such as the
helicity and transversity distributions, which have been
extensively discussed in light-cone formalism in
Refs. [15,21]. We find that all the distributions have similar
form as Eq. (23) shows, but with different Melosh-Wigner
rotation factors. The rotation factors for the helicity and

transversity distributions are
ðxMDþmqÞ2�p2

?
ðxMDþmqÞ2þp2

?
[15,17] and

TABLE I. Parameters.


D (MeV) mq (MeV) mS (MeV) mV (MeV)

330 330 600 800
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ðxMDþmqÞ2
ðxMDþmqÞ2þp2

?
[21], respectively. Note the simple relation

ðxMD þmqÞ2 � p2
?

ðxMD þmqÞ2 þ p2
?

� ðxMD þmqÞ2
ðxMD þmqÞ2 þ p2

?

¼ p2
?

2M2
N

WDðx;p?Þ; (24)

so we can immediately yield the equation

hð1Þqv1T ðx;p?Þ �
p2
?

2M2
N

h?qv
1T ðx;p?Þ

¼ gqv1 ðx;p?Þ � hqv1 ðx;p?Þ; (25)

where g1 and h1 denote the helicity and transversity dis-
tributions, respectively. This relation has already been
obtained in Ref. [8] with a bag model and a spectator
model, and also in Ref. [9] with a three-quark model. But
in Ref. [22], this relation is not fully satisfied in a spectator
model where the axial-vector coupling will spoil the rela-
tion. We think that this issue needs further discussing.

Now, we should point out that the Melosh-Wigner rota-

tion factor for h?ð1Þqv
1T ðx;p2

?Þ is �p2

ðxMDþmqÞ2þp2
?
, which is

nothing else but the rotation factorMLðx;p?Þ with a minus
sign introduced in Ref. [7]. More importantly, it is the
rotation factor for the quark orbital angular momentum
indicated in Ref. [7], so we see that there is a simple

relation between the pretzelosity and the quark orbital
angular momentum

Lqvðx;p?Þ ¼ �h?ð1Þqv
1T ðx;p?Þ

¼ hqv1 ðx;p?Þ � gqv1 ðx;p?Þ; (26)

or at the integration level

LqvðxÞ ¼
Z

d2p?Lqvðx;p?Þ ¼ �h?ð1Þqv
1T ðxÞ

¼ hqv1 ðxÞ � gqv1 ðxÞ: (27)

We should mention that the orbital angular momentum we
denote here is under the definition that the quark orbital
angular momentum operator is ~x� ð�irÞ, and the gauge
we choose is Aþ ¼ 0.

V. PREDICTIONS ON THE sinð3�h ��SÞ
ASYMMETRYAT HERMES, COMPASS, AND JLAB

KINEMATICS

As we pointed out before the pretzelosity has a simple
relation with the quark orbital angular momentum, thus a
measurement of pretzelosity may reveal the information on
the quark orbital angular momentum. Fortunately, the pret-
zelosity distribution can be measured through sinð3�h �
�SÞ asymmetry in the SIDIS process [23,24], where the
cross section can be written as

d6�UT

dxdyd�Sdzd
2Ph?

¼ 2
2

sxy2

��
1� yþ 1

2
y2
�
FUU þ S? sinð3�h ��SÞð1� yÞFsinð3�h��SÞ

UT þ other structure functions

�
;

(28)

with

FUU ¼ F ½f1D1�; (29)

F
sinð3�h��SÞ
UT ¼ F

�
2ðĥ � p?Þðp? � k?Þ þ p2

?ðĥ � k?Þ � 4ðĥ � p?Þ2ðĥ � k?Þ
2M2

NMh

h?1TH
?
1

�
; (30)

where a compact notation

F ½!fD� ¼X
q

e2q
Z

d2p?d2k?�2ðp? � k? � Ph?=zÞ!ðp?; k?Þfqðx;p2
?ÞDqðz; z2k2?Þ (31)

is used. Then we obtain the sinð3�h ��SÞ asymmetry

Asinð3�h��SÞ
UT ¼

2
2

sxy2
ð1� yÞFsinð3�h��SÞ

UT

2
2

sxy2
ð1� yþ 1

2 y
2ÞFUU

: (32)

First, we will present the results for the ratio of (the first
moment of) pretzelosity (i.e. LqðxÞ equivalently) and un-
polarized distributions, in both approaches. As we men-
tioned above, we can only calculate valence quarks
distributions in approach 1, whereas in approach 2 we
can take into account the sea quark contribution in f1ðxÞ.

For approach 1, we can use Eqs. (19)–(21) directly to
calculate. For approach 2, we adopt the CTEQ6L parame-
trization [20] for the unpolarized distribution in this paper
and assume a Gaussian form factor of transverse momen-
tum as suggested in Ref. [25]:

f1ðx;p?Þ ¼ f1ðxÞ
expð�p2

?=p
2
avÞ

�p2
av

; (33)

with p2
av ¼ 0:25 GeV2.

h?1T AND QUARK ORBITAL ANGULAR MOMENTUM PHYSICAL REVIEW D 79, 054008 (2009)

054008-5



Results are shown in Fig. 1, with a fixed angle 	 ¼ �=4 and an input scale at Q2 ¼ 4 GeV2. At first sight it seems strange
that the ratio of pretzelosity versus unpolarized distribution is small in approach 1 compared to that in approach 2, as there
is no sea contribution in the denominator of approach 1. We can make a brief analysis by taking d quark as an example
and we could ignore sea quarks for simplicity first. In approach 1, we have

I ¼ h?ðdvÞ
1T ðxÞ
fdv1 ðxÞ ¼ 1

3

R
d2p?’2

Vðx; p2
?ÞWVðx; p2

?ÞR
d2p?’2

Vðx; p2
?Þ

¼ 1

3

R
d2p? expf� 1

4
2
D

½m2
qþp2

?
x þ m2

Dþp2
?

1�x �gWVðx; p2
?ÞR

d2p? expf� 1
4
2

D

½m2
qþp2

?
x þ m2

Dþp2
?

1�x �g

¼ 1

3

Z
dte�tWVðx; 4
2

Dxð1� xÞtÞ;
�
t ¼ p2

?
4
2

Dxð1� xÞ
�
: (34)

In approach 2, we have

II ¼ h?ðdvÞ
1T ðxÞ
fdv1 ðxÞ ¼ 1

3

R
d2p?d

cteq
v ðx; p2

?ÞWVðx; p2
?ÞR

d2p?d
cteq
v ðx; p2

?Þ

¼ 1

3

Z
d2p?

expð�p2
?=p

2
avÞ

�p2
av

WVðx; p2
?Þ

¼ 1

3

Z
dte�tWVðx; p2

avtÞ;
�
t ¼ p2

?
p2
av

�
:

(35)

We can easily prove that WDðx; p2
?Þ is an increasing func-

tion of p2
? and usng the inequality

4
2
Dxð1� xÞ � 
2

D < p2
av;

ð
D ¼ 330 MeV; pav ¼ 500 MeVÞ (36)

we get that I< II, which means that two ratios can be quite
different due to different parametrizations. Even if we
consider the sea quarks in the denominator, II will be
suppressed, but still can be larger than I. A similar analysis

can be applied to the u quark though it is a little more
complicated, and we can argue that it is possible that II is
larger than I. From the above analysis we find the different
transverse momentum dependence of quark distribution
functions may cause a big difference in model predictions.
This suggests the necessity to include transverse momen-
tum dependence in data analysis. Despite the differences,
both approaches give the prediction that the ratio
h?ð1Þqv
1T ðxÞ=fq1ðxÞ is small, which indicates that the relativ-

istic effect, or the quark orbital angular momentum as we
suggested in our paper, is not significant, if we will inte-
grate the transverse momentum in data analysis.
Before calculating the asymmetry, we still have to know

the form for fragmentation functions. For the ordinary
fragmentation function, we also adopt the Gaussian ansatz
suggested in Ref. [25]

D1ðz; z2k2?Þ ¼ D1ðzÞ
expð�z2k2?=R

2Þ
�R2

; (37)

with R2 ¼ 0:2 GeV2, and the parametrization for D1ðzÞ
can be found in Ref. [26]. The Collins function we use in
this paper was also given by Anselmino et al. [27], which is
also a Gaussian function in fact.
Next, we will present the numerical results of sinð3�h �

�SÞ asymmetry in the SIDIS at different kinematics. For
HERMES experiments, only the result on the proton target
is calculated, while for COMPASS experiments, the pro-
ton, deuteron, and neutron targets are all assumed. As to
Jefferson Lab (JLab) experiments, the result on the proton
and neutron1 targets are presented. The kinematics are
shown in Table II.
The results are shown in Figs. 2–4. Obviously, different

approaches to distribution functions give quite different
predictions, and this can be understood from Fig. 1.
Similarly, when we calculate the asymmetry, only valence
quarks are summed over in approach 1, whereas in ap-
proach 2, all the flavors are summed over including the sea
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FIG. 1. The ratio h?ð1Þqv
1T ðxÞ=fq1 ðxÞ. Solid curves for the u quark

and dashed curves for the d quark. Thin curves correspond to
approach 1, while thick curves correspond to approach 2.

1In fact, a 3He target is used to extract neutron data in JLab
experiments.
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quarks in the denominator. Perhaps approach 2 might be
closer to the realistic situation, because the parametrization
has been well constrained by many experiments and can fit
the current data much better than a simple model
calculation.

Besides the difference, the two approaches also have
something in common. First, we find that both approaches
predict that the asymmetries are of different sign for �þ
and�� productions. Second, we notice that the asymmetry
decreases as x increases in the valence region, which is
quite different from some other known effects, e.g., the
sinð�h þ�SÞ and sinð�h ��SÞ asymmetries. This can be
explained by the ratio of the pretzelosity and unpolarized
distribution shown in Fig. 1. Another important feature that
might be concerned by experiments is that the asymmetry
is small, up to a maximum less than 1%. Here taking
approach 2 as an example, we could make a comparison
of our result with transversity and corresponding sinð�h þ
�SÞ asymmetry, which have been intensively studied in
recent years. These two asymmetries can be simply written
as

A
sinð3�h��SÞ
UT 	!1h

?ð1Þ
1T H?ð1=2Þ

1

f1D1

;

A
sinð�hþ�SÞ
UT 	!2h1H

?ð1=2Þ
1

f1D1

:

(38)

The ratio for h?ð1Þ
1T =f1 has been shown in Fig. 1, and that for

h1=f1 can be found in Ref. [28]. We can clearly find that
compared with transversity, (the first moment of) pretze-
losity is suppressed by 1=2–1=10. As to the oscillation
function !ðp?; k?Þ, we could also make an estimation
on its effect by integrating the angle dependence of the
two vectors p? and k? first,

~!1

~!2
	
R
d�pd�kjPh?j3!1ðp?; k?ÞR
d�pd�kjPh?j3!2ðp?; k?Þ

¼ 3p2
?

2p2
? þ k2?

; (39)

where we multiply ! by a weight jPh?j3 just for simplify-
ing the estimation. For a rough estimation, we
assume hp2

?i 
 p2
av ¼ 0:25 GeV2, hk2?i 
 R2=hzi2 ¼

0:25=hzi2 GeV2, where hzi ¼ 0:36 in HERMES. We find
that the ratio is about 0:3	 0:4. So from the above analy-
sis, the sinð3�h ��SÞ asymmetry is suppressed by an
order or more compared with the sinð�h þ�SÞ asymme-
try. According to the HERMES data [29], the size of
sinð�h þ�SÞ asymmetry is about a few percent, so our
result for a small sinð3�h ��SÞ asymmetry is reasonable
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FIG. 3. Same as Fig. 2, but at COMPASS kinematics. A for
proton target, B for neutron target, and C for deuteron target.

TABLE II. Kinematics at HERMES, COMPASS, and JLab.

HERMES COMPASS JLab

plab ¼ 27:6 GeV plab ¼ 160 GeV plab ¼ 12 GeV
Q2 > 1 GeV2 Q2 > 1 GeV2 Q2 > 1 GeV2

W2 > 10 GeV2 W2 > 25 GeV2 W2 > 4 GeV2

0:023< x< 0:4 0:1< x< 0:6
0:1< y< 0:85 0:1< y< 0:9 0:4< y< 0:85
0:2< z < 0:7 0:2< z < 1 0:4< z < 0:7
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FIG. 2. sinð3�h ��SÞ asymmetry as a function of x at
HERMES kinematics. Solid curves for the �þ production and
dashed curves for the �� production. Thin curves correspond to
approach 1, while thick curves correspond to approach 2. Only
the proton target is assumed here.

-0.010

-0.005

 0.000

 0.005

 0.010

 0.1  0.3  0.5  0.7

A
U

T
si

n(
3φ

h-
φ S

)

x

a

 0.1  0.3  0.5  0.7

x

b

FIG. 4. Same as Fig. 2, but at JLab kinematics. A for proton
target and B for neutron target.

h?1T AND QUARK ORBITAL ANGULAR MOMENTUM PHYSICAL REVIEW D 79, 054008 (2009)

054008-7



from the above expectation. Such small asymmetry seems
to be consistent with the preliminary COMPASS data [30],
thus it would be a challenge for further experiments to
measure pretzelosity without transverse momentum
information.

However, the inclusion of transverse momentum depen-
dence in data analysis may provide a viable way to extract
pretzelosity from sinð3�h ��SÞ asymmetry measure-
ments. We observe that both the Melosh-Wigner rotation

factor for h?ð1Þ
1T and the ratio as Eq. (39) shows are increas-

ing functions of p2
?, which enlightens us that selecting

large p? events in data analysis might enhance the asym-
metry. Unfortunately, the intrinsic parton momentum p?
cannot be directly manipulated during the measurements.
A compromise method is to select large Ph? events in-
stead, for Ph? can be directly measured. In this prescrip-
tion, we can exclude most small p? events and ensure that
most large p? events will come into data analysis. Next we
will recalculate our results with a cutoff Ph? > 1:0 GeV,
meanwhile, we will investigate the Ph? dependence of the
asymmetry. The results are shown in Figs. 5–7. As we
expect, the x dependence of the asymmetry is indeed
enhanced by a few times, thus it might be measurable for
the experiments, though high statistics would be required
due to the cutoff. The Ph? dependence of the asymmetry is
also presented, and it can reach as large as several percent,
so it provides an auxiliary measurable quantity to extract
pretzelosity. Although our proposal to consider to cut off
the small Ph? events will enhance the asymmetry, we
should be aware about this disposal. Our calculation is a
leading order approximation and based on the factorization
for the SIDIS, but the factorization was proved to be valid
only in the region �QCD � Ph? � Q [31]. The ideal

kinematic regime to study transverse momentum depen-
dent parton distributions is Ph? 	�QCD and not too large

Q2. Otherwise, the gluon radiation will be important, and a
higher order pQCD correction will contribute. As pointed
out in Ref. [32], this transition point is around Ph? 
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1 GeV, and the parameters such as the Gaussian widths we
used are suitable at Ph? � 1 GeV. So we must be careful
about our extension analysis to a larger Ph?, and here we
assume that our results at a little larger Ph? but not too
larger than 1 GeV, are still acceptable. For the experiments,
they can choose an appropriate cutoff for convenience, and
meanwhile we suggest an upper limit smaller than 2 GeV
for Ph?. Another problem is that the events will be strongly
suppressed at Ph? � �QCD, so it is a challenge for the

experiments to collect more data. Anyway, we expect
further experiments will bring us more information about
it.

VI. SUMMARY

How to separate the nucleon spin into the intrinsic spin
and orbital angular momentum parts of the constituents is a
fundamental but difficult task. We have shown some de-
bates on defining the quark orbital angular momentum in
the beginning of our paper and pointed out that each
definition has its advantage and disadvantage. However,
disregarding the rationality of the theoretical definition, we
can obtain the quark orbital angular momentum under each
definition, although they might not be the real desired
quantity. In Ref. [7], where the expression c y ~x�
ð�irÞc was used as the definition, a quantity LðxÞ repre-
senting the quark orbital angular momentum in the light-
cone gauge was obtained. In this paper, also working in the
light-cone representation, we found that LðxÞ has a simple
relation with the so-called pretzelosity distribution.

Pretzelosity is one of the eight leading twist TMD
functions, whose feature has been discussed in Ref. [8].

It is known that pretzelosity is considered as the difference
between the helicity and transversity distributions, reflect-
ing the relativistic effect of the spin structure. But accord-
ing to Ref. [7], the moment of pretzelosity is nothing but
the quark orbital angular momentum. So it provides a new
possibility to access the quark orbital angular momentum
through pretzelosity, and fortunately, pretzelosity can be
measured in the SIDIS through sinð3�h ��SÞ asymmetry.
In our paper, under the framework of the SU(6) quark-
diquark model, we use two approaches to calculate pret-
zelosity, and we present our numerical prediction on the
sinð3�h ��SÞ asymmetry under three kinematics for
HERMES, COMPASS, and JLab experiments. If we do
not apply any extra constrained condition, our prediction
shows a small asymmetry that might bring a great chal-
lenge for experiments. However, after applying a cutoff on
Ph?, we get an enhanced asymmetry which is measurable
for experiments, though we should still be careful that Ph?
must not be too large. We expect that future measurements
can bring us exciting new insights on the spin of the
nucleon by including information of transverse momentum
dependence in data analysis.
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