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We reevaluate electron-positron pair production from electromagnetic interactions of muons in transit

through materials. Our approach, through the use of structure functions for inelastic and elastic scattering

and including hadronic recoil, make the formalism useful for tau pair production at high energies. Our

results for electron-positron pairs agree well with prior evaluations. Tau pair production, however, has

significant contributions from inelastic scattering in addition to the usual coherent scattering with the

nucleus and scattering with atomic electrons.
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I. INTRODUCTION

Atmospheric muons, the muons produced by cosmic ray
interactions in the Earth, are detected by many under-
ground detectors. Downward-going muons are a large
background to neutrino induced events [1–4]. For a range
of energies, measurements of muon fluxes test our under-
standing of the underlying interactions that produce the
muons and offer the opportunity to test models of the cross
section for cosmic ray interactions with air nuclei.

Measurements of the energy dependence of the atmos-
pheric lepton fluxes rely on knowledge of the muon energy
loss as a function of distance. Underground and underwater
detectors can effectively probe atmospheric muon energies
by looking at the muon flux as a function of zenith angle �.
Vertical muons travel a depth D, while muons incident at
angle � travel a distance �D= cos�. The electromagnetic
energy loss is essential to the unfolding process between
detected and surface muon fluxes [5,6].

In this paper, we reevaluate the cross section for muon-
atom scattering to produce lepton pairs, and the energy loss
of muons from the production of electron-positron pairs.
The largest contribution to the muon energy loss parameter
� in the energy loss formula�

dE

dX

�
¼ �ð�þ �EÞ (1)

comes from pair production [7–10]. The ‘‘pair-meter’’
method of muon energy determination also relies on the
eþe� pair production cross section [11–13].

Evaluations of muon cross sections and energy loss from
pair production in collisions of a muon and a static nucleus
have a long history [14–27]. In this paper, we present the
cross section in terms of form factors and structure func-
tions [19] that are not restricted to low lepton masses or low
momentum transfers to the target. We include target recoil
in the kinematics [20], and the inelastic contribution
[22,25] to the cross section and energy loss parameter
�pair using structure functions parametrized from HERA

data [28,29]. Our results are compared with the commonly
used parametrization of Kokoulin and Petrukhin [18]. We

do not address the production of muon pairs because of the
extra contributions from having identical particles in the
final state [23–27].
We begin by reviewing the calculation in a formalism

applicable to elastic and inelastic scattering including the
hadronic recoil. We show the standard generalization to
atoms. Our results for the cross section and energy loss
parameter � for protons, hydrogen, and higher Z atoms are
shown in Sec. III. In Sec. IV we show an application to
high energy eþe� and �þ�� pairs. Many of the calcula-
tional details are relegated to the appendix.

II. NOTATION AND FORMALISM

Our organization of the matrix element squared follows
the notation of Kel’ner in Ref. [16]; however, here we
include target recoil. Akhundov, Bardin, and Shumeiko
evaluated lepton pair production in �p scattering with
proton recoil in Ref. [20]. We follow their notation for
the kinematics.
For definiteness, we begin with eþe� pair production.

The incident muon with four-momentum k interacts with a
nucleus of four-momentum p. The outgoing muon (k1),
electron (k2), and positron (k3) are accompanied by a
hadronic final state with pH ¼ P

x¼hadronspx. The
Appendix includes the definition of relevant Lorentz sca-
lars. Note that p2 ¼ M2

t is the target mass squared, k2 ¼
k21 ¼ m2

� and k22 ¼ k23 ¼ m2
e. When the target is a proton or

a neutron, we set Mt ¼ M.
There are a number of diagrams that contribute to eþe�

pair production. For �p scattering, there are diagrams
where a virtual photon radiated from the muon or proton
splits directly into an eþe� pair. The dominant contribu-
tions to the pair production cross section come from the
two diagrams shown in Fig. 1 [17,25,26]. As a simplifica-
tion, we include only the diagrams in Fig. 1 in our
evaluation.
The strategy to evaluate the differential cross section is

outlined in Kel’ner [16], and extended here to include the
inelastic case including recoil of the final state hadrons.
The hadronic matrix element squared H�� is related to a
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decomposition into structure functions F1 and F2 which
depend on q2 ¼ ðp� pxÞ2 � �t and xBj ¼ q2=2p � q
[30]:

e2H�� ¼ 1

2

X
spins;X

hXjJ�jpihXjJ�jpi�

W�� � 1

4�

Z
H��ð2�Þ4�4

�
p� q�X

px

�

�Y
x

d3px

2Exð2�Þ3

¼ �g��W1 þ p�p� W2

M2
t

¼ �g��F1 þ p�p�

M2
t

2M2
t xBj
t

F2:

Our choice for the sign of the four-momentum q is opposite
that of the usual choice for inelastic scattering with
protons.

The formalism in terms of W�� is relevant to both
inelastic and elastic scattering. For inelastic scattering,
F1 and F2 are dependent on xBj and t independently. For

elastic scattering, xBj ¼ 1 and F1 and F2 are proportional

to the delta function �ðtþ 2p � qÞ ¼ �ðM2
X �M2

t Þ, where
we have made the assignment ðP pxÞ2 ¼ M2

X.
The spin averaged matrix element squared for the muon

part of the diagram is

A�� ¼ 1
2 Trðk6 1 þm�Þ	�ðk6 þm�Þ	�: (2)

The change in muon momentum is defined to be Q � k�
k1 with Q2 ¼ �Y.

The 	�ðQÞ þ 	�ðqÞ ! eðk2Þ þ �eðk3Þ matrix element
comes from the two diagrams shown in Fig. 1. The result

is represented by e4B��
�� , so that the differential cross

section can be written as

d
 ¼ 1

2
ffiffiffiffiffi
�s

p A��B
��
��

e8

t2Y2
�4

�
kþ q�X3

i¼1

ki

�Y
i

d3ki
2Eið2�Þ3

� 4�W��d4q; (3)

where �s ¼ ð2p � kÞ2 � 4m2
�M

2
t .

The details of the phase space integrals are in the
Appendix; however, because of its length, we have not

included an explicit expression for B��
�� . We have evaluated

B��
�� using the symbolic manipulation program FORM [31].

We follow Kel’ner’s calculational simplifications [16] by
projecting out different terms in the matrix element
squared integrated over most of the phase space.
Ultimately, we evaluate numerically d
=dy, 
, and

�pair � NA

A

Z
y
d


dy
dy; (4)

where y � p �Q=p � k is the usual inelasticity parameter
and d
=dy is the differential cross section for eþe� pair
production. In the target rest frame, p ¼ ðMt; 0; 0; 0Þ, y ¼
ðE� E1Þ=E, the difference in incoming and outgoing
muon energies, normalized by the incoming muon energy.
In Eq. (4), NA is Avogadro’s number and A is the atomic
mass.
The structure functions F1 and F2 carry information

about the nucleus as well as about the electron cloud which
screens the nucleus. We discuss the elastic and inelastic
cases separately in the next sections. It is convenient to
further divide the contributions to the cross section accord-
ing to the dependence on the nuclear charge Z.

A. Coherent scattering with the screened nucleus

Coherent scattering with the nucleus amounts to elastic
scattering with the charge Z nucleus of mass Mt ¼ MA ¼
AM, leading to a factor of Z2. As we show below, for
elastic scattering, a delta function enforcing M2

X ¼ M2
A

(t ¼ �2p � q) appears in the structure functions.
For coherent scattering with an atom of massMA, atomic

mass A, and charge Z, the structure functions in the stan-
dard approach are written in terms of � � t=ð4M2

AÞ:

Fcoh
1 ¼ t

2
G2

M�ðM2
X �M2

AÞ; (5)

Fcoh
2 ¼ t

1þ �
ððGE � FeÞ2 þ �G2

MÞ�ðM2
X �M2

AÞ: (6)

The electric form factor GEðtÞ accounts for the electric
charge distribution in the nucleus, with GEð0Þ ¼ Z,
whereas FeðtÞ accounts for the Z electrons in the atom
which screen the nucleus at large distances.
We begin with the nucleon form factors, following with

nuclear form factors. A recent review of the elastic form
factors appears in Ref. [32]. Traditionally, the electric and
magnetic form factors (GE and GM) are written in dipole
form. For the proton

k2

k3

k3

k2

Q

q

Q

q

k
k1 k1

p p

k

FIG. 1. The dominant contribution in �p production of eþe�
pair production comes from virtual photon graphs shown here.
The figure was produced using JAXODRAW [42].
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GðtÞ ¼ 1

ð1þ t=0:71 GeV2Þ2 (7)

GEp ¼ GðtÞ (8)

GMp ¼ �PGðtÞ ¼ 2:79GðtÞ: (9)

The neutron form factors are

GEn ¼ � �N�

1þ 5:6�
GðtÞ ¼ 1:91�

1þ 5:6�
GðtÞ (10)

GMn ¼ �NGðtÞ ¼ �1:91GðtÞ: (11)

These results reproduce reasonably well the form factors
extracted by the Rosenbluth separation method. Data from
studying the polarization transfer of polarized electrons to
proton targets have yielded a different set of form factors
[32]. For the total cross section and energy loss parameters,
the new parametrizations yield essentially the same results
as Eqs. (6)–(10) above.

The electric nuclear form factor [33], for large A, can be
represented by [19,34]

GEðtÞ ¼ Z

ð1þ a2t=12Þ2 (12)

a ¼ ð0:58þ 0:82A1=3Þ5:07 GeV�1: (13)

For large A, we set GM ’ 0. This is a reasonable approxi-
mation because, roughly, the net magnetic moment of a
multinucleon atom is small, and the prefactor of GM in the
cross section is also small.

The electric form factor associated with electron screen-
ing for hydrogen is obtained by using the electronic wave
function to determine the charge density [33]. This leads to
[19]

FeðtÞ ¼ 1

ð1þ a20t=4Þ2
ðZ ¼ 1Þ: (14)

Here, a0 is the Bohr radius, a0 ¼ 137=me. For higher
charge and atomic numbers (beyond helium), an approxi-
mate parametrization of the electronic electric form factor
is [19,35]

FeðtÞ ¼ Z

1þ a2et
ðZ > 2Þ (15)

ae ¼ 111:7Z�1=3=me: (16)

For large Z, the dominant contribution to the elastic cross
section is proportional to ðGE � FeÞ2 � Z2 at short dis-
tances and large t; however, at large distances, ðGE �
FeÞ2 � 0, where the nucleus is completely screened.

B. Incoherent scattering with nucleons and electrons

One component of the cross section for incoherent scat-
tering to produce charged lepton pairs comes from elastic
scattering with the individual protons and neutrons in the

nucleus. Here, the target mass isMt ¼ M, and one parame-
trization of the structure functions gives

Fincoh;N
1 ¼ CðtÞ t

2
ðZG2

Mp þ ðA� ZÞG2
MnÞ � �ðM2

X �M2Þ
(17)

Fincoh;N
2 ¼ CðtÞ t

1þ t=4M2

�
ZG2

Ep þ ðA� ZÞG2
En

þ t

4M2
ðZG2

Mp þ ðA� ZÞG2
MnÞ

�
�ðM2

X �M2Þ:
(18)

The prefactor CðtÞ is the Pauli suppression factor.
Following Tsai [19]

CðtÞ ¼
� 3QP

4PF
ð1� Q2

P

12P2
F

Þ QP < 2PF

1 otherwise;
(19)

where Q2
P ¼ t2=ð4M2Þ þ t and PF ¼ 0:25 GeV.

There is scattering with the atomic electrons themselves
[34]. For scattering with electrons, the target mass goes
from MA or M to me, and

Fincoh;e
1 ¼ t

2
Z�ðM2

X �m2
eÞ (20)

Fincoh;e
2 ¼ t

1þ t=4m2
e

Z

�
Fincoh
e ðtÞ þ t

4m2
e

�
�ðM2

X �m2
eÞ:
(21)

For the hydrogen atom, Fincoh
e ¼ 1� FeðtÞ2 with FeðtÞ

given by Eq. (14). We use the parametrization of
Ref. [34] for higher Z atoms, where

Fincoh
e ¼ c4t2

ð1þ c2tÞ2 (22)

c ¼ 724Z�2=3=me: (23)

For the high energies of interest here, neglecting addition
diagrams coming from identical particle exchange in
�e� ! �e� eþe� is an acceptable approximation [21].

C. Inelastic scattering with nucleons

For�A scattering where the momentum transfer is large
enough that we are above threshold for pion production,
inelastic scattering accounting for the substructure of the
nucleons is required. For the proton structure function
Fp
2 ðxBj; tÞ, we use the Abramowicz, Levin, Levy, and

Maor [28] parametrization, updated in Ref. [29]. We do
not include the parametrization here, but refer the reader to
Ref. [29]. The parametrization also appears in an Appendix
of Ref. [36]. This parametrization of the structure function
is valid over the important range of small t, the dominant
contribution to the inelastic cross section. It agrees well
with data over a wide range of xBj and t including the

perturbative regime.
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For inelastic scattering with a nuclear target rather than a
proton target, the process is still probing the structure of
individual nucleons, so Mt ¼ M. There is a nuclear effect
that modifies the proton structure functions, called nuclear
shadowing, which we incorporate with [37] aðA; xBj; tÞ ’
aðA; xBjÞ and

aðA; xÞ ¼
8><
>:
A�0:1 xBj < 0:0014
A0:069log10xBjþ0:097 0:0014< xBj < 0:04
1 0:04< xBj:

(24)

The nuclear structure functions are taken to be

FA
2 ¼ aðA; xBjÞðZþ ðA� ZÞPðxBjÞÞFp

2 (25)

FA
1 ¼ FA

2 =ð2xBjÞ; (26)

where PðxBjÞ ¼ 1� 1:85xBj þ 2:45x2Bj � 2:35x3Bj þ x4Bj
accounts for the difference between proton and neutron
structure functions [38].

III. RESULTS

A. Cross sections

We begin with muon scattering from protons to produce
a pair of charged leptons. The cross section is the sum of
the cross section for �p elastic scattering using the proton
form factors in Eqs. (7)–(11) and the inelastic scattering
term:


�p ¼ 
coh
p þ 
inel

p : (27)

For eþe� pair production shown in Fig. 2(a), the elastic
scattering is �5–6 orders of magnitude larger than the
inelastic contribution. This can be understood by noting
that the phase space integral with the photon propagator
involves dt=t2, making t near the minimum t the dominant
part of the integral. The minimum t for elastic scattering is

tmin ’
4m2

em
2
�

E2
;

as discussed in detail in, for example, Appendix A of
Ref. [19]. The structure function Finel

2;p is small for t � M.

The relevant scale for t is much larger for me ! m� in
�þ�� pair production. Figure 2(b) shows that the inelastic
contribution is comparable to the elastic cross section for a
range of energies. The inelastic cross section contributes
between 30% and 60% of the total cross section for muon
energies between 102–109 GeV. Overall, however, the tau
pair cross section is significantly smaller than the electron-
positron pair production cross section. Tau pair production
is not an important component of muon energy loss. Muon
pair production is intermediate between the two sets of
cross sections in Fig. 2 [25]. As noted above, we do not
include muon pair production here due to the additional
exchange diagram required by Fermi statistics for the
identical fermions.
The targets of interest for atmospheric muons or muons

produced by neutrinos are atoms. Figure 3(a) shows the
contributions to the cross section from coherent scattering,
incoherent scattering with electrons and nucleons, and
inelastic scattering, for eþe� pair production by muons
on a rock target, using the standard rock values of A ¼ 22
and Z ¼ 11. Figure 3(b) shows the same quantities for tau
pair production.
For eþe� production, the coherent contribution domi-

nates, followed by incoherent scattering on protons and
electrons. Incoherent scattering with neutrons is at the level
of 
� 10�32–10�30 over the range of incident muon en-
ergies from 10–109 GeV. We note that our result for the
incoherent scattering with atomic electrons agrees with the
approximate analytic formula of Kel’ner in Eq. (46) of
Ref. [21] to within 2% at E� ¼ 100 GeV, and is about

18% larger at E� ¼ 109 GeV for Z ¼ 11. Our result for

incoherent scattering with nucleons is a factor of �10

FIG. 2. Cross section for �p ! �eþe�X (a) and �p ! ��þ��X (b), showing the elastic and inelastic contributions separately.
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larger than in Ref. [34], in which the form factor is differ-
ent. However, the consequences for eþe� pair production
does not depend significantly on the incoherent nucleon
contribution.

As in the case with proton targets, the inelastic contri-
bution to eþe� pair production is orders of magnitude
smaller than the elastic contribution. Tau pair production
has a different balance of contributions. The coherent cross
section dominates the total cross section to a lesser degree.
As the muon energy increases well beyond the threshold
for production of tau pairs in scattering with electrons,
incoherent scattering with electrons becomes increasingly
important. Inelastic scattering contributions are important,
especially at the lower energies. Figure 3(b) shows the
threshold energy dependence of the cross section for inco-
herent scattering with electrons. The Pauli suppression
factor is particularly relevant in the evaluation of incoher-
ent scattering with nucleons at high energies. Our result for
incoherent scattering with nucleons is a factor of �2–4
lower for tau pair production than the cross section coming
from using the form factor in Ref. [34].

The results for other targets are shown in Fig. 4, where
the total eþe� pair production cross section is divided
by A.

B. Energy loss parameter �pair

The energy loss parameter �pair is defined in Eq. (4).

This parameter is shown in Fig. 5 for a variety of materials.
For protons, �pair rises with energy; however, for atomic

targets with high energy muons, the atomic screening of
the nucleus at large distances cuts off the growth of the
parameter at high energies. The contribution to �pair from

tau pair production is suppressed by at least 4 orders of
magnitude, depending on the muon energy.
Our evaluation of�pair compares well with the analytical

form of Kokoulin and Petrukhin (KP) [7,18]. At E� ¼
10 GeV for rock, our result is 2.5% lower for �pair than

FIG. 3. Cross section for (a) �A ! �eþe�X and
(b) �A ! ��þ��X for standard rock (Z ¼ 11 and A ¼ 22),
for coherent, incoherent and inelastic contributions.

FIG. 4. Cross section divided by atomic number A for �A !
�eþe�X, for A ¼ 1 (proton and hydrogen), A ¼ 14:3 (ice), A ¼
22 (standard rock), and A ¼ 55:9 (iron).

FIG. 5. Energy loss parameter �pair via eþe� pair production
for proton, hydrogen, ice, rock, and iron.
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the KP evaluation. At 100 GeV, the two results agree to
within<1%. At E� ¼ 108 GeV, our evaluation gives �pair

lower by �4%. In the energy range of 10–100 GeV, our
energy loss parameter is 2%–3% larger than that of Groom,
Mokhov. and Striganov [9]. At E ¼ 105 GeV, our results
agree to within the numerical accuracy of our evaluation
(< 0:1%).

IV. DISCUSSION

One advantage of our approach is that we are not con-
fined to the low t or small lepton mass limits. Although this
is the dominant limit for the total cross section and the
energy loss parameter for eþe� pair production, one can
make interesting use of the formalism to consider high
energy charged lepton pairs. The lepton pair energy (in
the target rest frame) is

Epair ¼ T þ Sx
2Mt

(28)

in terms of invariants defined in the Appendix. Figures 6(a)
and 6(b) show the total cross sections for lepton pair
production by muons in ice, when the total pair energy is
larger than 50 GeV.

As in the case of the total cross section, for eþe� pair
production, the dominant contribution to the high energy
pair cross section is coherent scattering with the nucleus,
with a �10% correction from incoherent scattering with
the atomic electrons. The cross section for producing eþe�
with Epair ¼ 50 GeV for E� � 103 GeV is 
�
10�27 cm2, equivalent to an interaction length of �20 m.
With the potential to measure electrons at this energy in
IceCube, this may be an interesting reducible background
to �e ! e conversions to electrons.

Tau pair production by 100 GeV muons has nearly equal
contributions from coherent scattering, inelastic scattering,
and incoherent scattering with nucleons. At high energies
E� 109 GeV, the inelastic cross section is approximately
half of the coherent cross section for 50 GeV tau pair
production. Again, incoherent scattering with atomic elec-
trons is about 10% of the cross section for coherent scat-
tering when the muon energy is well above the threshold
for tau pair production.

Tau neutrinos will come from the decays of tau pairs
produced by muon transit through rock or ice. Tau neutrino
production in the atmosphere is quite low, especially at low
energies, because it requires heavy quark (charm or b
quark) production [39,40]. Neutrino oscillations over the
diameter of the Earth convert muon neutrinos to tau neu-
trinos. Tau decays from �A ! ��þ��X will contribute to
the overall downward flux of tau neutrinos. Quantitative
evaluations of this source of downward-going tau neutrinos
is under investigation.

In summary, we have provided a review of the contri-
butions to eþe� and �þ�� production by muons as they
interact electromagnetically as they pass through materi-

als. Our approach is flexible, in that it can be applied to
high momentum transfers, and to high mass leptons.
Measurements of high energy eþe� pair production and
tau pair (and associated tau neutrino pair) production will
test the theoretical underpinnings of this evaluation.
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APPENDIX A: KINEMATICS AND CROSS
SECTION

We present here a compilation of useful kinematic rela-
tions and phase space limits for eþe� pair production on a
proton target of mass M.
Figure 1 shows the dominant diagrams for �ðkÞ þ

PðpÞ ! �ðk1Þ þ eðk2Þ þ �eðk3Þ þ X, where

kþ p ¼ k1 þ k2 þ k3 þ
X
x

px:

FIG. 6. Cross section for �þ�� pair production and for eþe�
pair production for Epair > 50 GeV by muon interactions in ice.
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Equation (3) shows the differential cross section in terms of
phase space integrals and the quantities

Y ¼ �Q2 ¼ �ðk� k1Þ2 t ¼ �q2 ¼ �ðp� pxÞ2
�s ¼ S2 � 4m2

�M
2:

For the evaluation of the phase space, it is useful nota-
tionally to make the further definitions of invariants fol-
lowing Ref. [20]:

V2 ¼ �2 ¼ ðk2 þ k3Þ2 ¼ ðqþQÞ2 S ¼ 2p � k
X ¼ 2p � k1 Sx ¼ 2p �Q ¼ S� X M2

x ¼ p2
x

W2 ¼ ðpþQÞ2 ¼ M2 þ S� X � Y

T ¼ 2p � q ¼ M2 � t�M2
x �t ¼ T2 þ 4M2t

�Y ¼ S2x þ 4M2Y �M2 ¼ ðMmin
x þ 2meÞ2 �M2:

Rewriting the differential cross section [Eq. (3)]

d
 ¼ 1

2
ffiffiffiffiffi
�s

p A��B
��
��

�4W��

2�4t2Y2
dðPSÞ; (A1)

the phase space integrals reduce to

dðPSÞ ¼ d1dSxdYdM
2
xdtdV

2dq

16
ffiffiffiffiffiffiffiffiffiffiffi
�Y�s

p d�pair

d�pair ¼ �4ð�� k2 � k3Þ d
3k2
2E2

d3k3
2E3

¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

e=V
2

q
d cos�ede:

The limits of integration for these integrals are [20]

ðMþm�Þ2 �M2
x � ð

ffiffiffiffiffiffiffi
W2

p
� 2meÞ2 4m2

e � V2 � 1

2M2
ðSxTþ ffiffiffiffiffiffi

�Y

p ffiffiffiffiffi
�t

p Þ� t�Y tmin � t� tmax

tmin ¼ ðSxðW2 �M2
xÞþ 2YM2

x � 4m2
eðSxþ 2M2Þ� ffiffiffiffi

U
p Þ=ð2W2Þ

tmax ¼ ðSxðW2 �M2
xÞþ 2YM2

x � 4m2
eðSx þ 2M2Þþ ffiffiffiffi

U
p Þ=ð2W2Þ

U¼ �YðW4 þM4
x þ 16m4

e � 2ðW2ðM2
x þ 4m2

eÞþ 4m2
eM

2
xÞÞ Ymin � Y � Ymax

Ymin ¼ �s �SSx
2M2

� 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�s �SSxÞ2 � 4m2

�M
2S2x

q
¼ �s � SSx

2M2
� 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sð�s � 2SSx þS2xÞ

q
Ymax ¼ Sx ��M2

Smin
x ¼ ½�s þ�M2ðSþ 2M2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sð�s � 2S�M2 þð�M2Þ2 � 4m2

��M
2Þ

q
	ð2ðSþm2

� þM2ÞÞ�1 Smax
x ¼ S� 2Mm�:

Our numerical evaluation of these integrals was performed
using the Fortran program VEGAS [41].

The integrals above are for inelastic scattering with a

proton, hence the minimum M2;min
x ¼ ðMþm�Þ2.

Elastic scattering is enforced by a delta function of the
form �ðM2

x �M2
t Þ, where Mt is the target mass. In this

case, it is useful to rewrite the phase space integral involv-
ing q ¼ p� p0 (for outgoing target momentum p0) and
� ¼ k2 þ k3 as

d4��4ðQþ q� �Þd4q ¼ 1

4�1=2
Y

dV2dtdð2p � qÞd:

In the remaining integrals, for elastic scattering of a target
of mass Mt, one makes the replacement M ! Mt. The
target mass also appears in �s in Eq. (3).
We note that q ¼ p� px is the opposite sign to the

usual convention. The Bjorken x value, xBj ¼
q2=ð2p � qÞ, in these variables is

xBj ¼ t

tþM2
x �M2

¼ � t

T
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