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We study the Sudakov form factor for a spontaneously broken gauge theory using a (new) �-regulator.

To be well defined, the effective theory requires zero-bin subtractions for the collinear sectors. The zero-

bin subtractions depend on the gauge boson mass M and are not scaleless. They have both finite and 1=�

contributions and are needed to give the correct anomalous dimension and low-scale matching contri-

butions. We also demonstrate the necessity of zero-bin subtractions for soft-collinear factorization. We

find that after zero-bin subtractions the form factor is the sum of the collinear contributions minus a soft

mass-mode contribution, in agreement with a previous result of Idilbi and Mehen in QCD. This appears to

conflict with the method-of-regions approach, where one gets the sum of contributions from different

regions.
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I. INTRODUCTION

Soft-collinear effective theory (SCET) [1,2] is a field
theory which describes the interactions of energetic parti-
cles with small invariant mass. SCET was originally de-
veloped for QCD processes, but has recently [3] been
extended to broken gauge theories with massive gauge
bosons. This allows one to compute electroweak correc-
tions to standard model processes at high energies, and to
sum electroweak Sudakov logarithms [4,5].

Applications of SCET to electroweak processes require
evaluating collinear and soft Feynman graphs with massive
gauge bosons. These graphs are not well defined, even in
dimensional regularization with an off-shellness, and re-
quire additional regularization. In Refs. [3–5], the graphs
were evaluated with an analytic regulator [6,7]; the indi-
vidual diagrams depend on the analytic regulator parame-
ters, but the total amplitude is regulator independent. The
analytic regulator has some unpleasant properties with
regards to gauge invariance and factorization, two essential
ingredients of SCET. We propose a convenient new regu-
lator, called the �-regulator, which can be implemented
directly on the level of the SCET Lagrangian without the
need to define further prescriptions for computing dia-
grams. This regulator is similar to using a mass, and unlike
off-shellness, it regulates diagrams with massive gauge
bosons.

The �-regulator is used to compute the Sudakov form
factor using SCET for a spontaneously broken SUð2Þ
gauge theory with a common gauge boson mass M. This
form factor was computed previously in Ref. [3] using an
analytic regulator. We discuss the factorization structure of
the effective theory using the �-regulator. As noted pre-
viously [8,9] in the framework of QCD, the amplitudes
only factorize when the collinear sectors are defined in-
cluding zero-bin subtractions [10], to avoid double-
counting the soft momentum region. We show in the

broken SUð2Þ gauge theory that the usual construction of
collinear gauge interactions into collinear Wilson lines,
while true at tree-level, is valid at the loop-level only
when the collinear sector is defined with zero-bin
subtractions.
Recently Idilbi and Mehen [11,12] (see also Ref. [13])

reemphasized the necessity for zero-bin subtractions [10].
They studied deep inelastic scattering and showed that the
correct total amplitude has the form InþI �n�Is, the sum of
the n-collinear, �n-collinear, minus the soft contributions,
rather than the naive expectation InþI �nþIs. The sign
change of Is arises because the collinear contributions
have to be properly thought of as zero-bin subtracted,
In ! In � Is. This converts the second (incorrect) form
of the result into the first. In the case of deep inelastic
scattering the effective theory graphs are scaleless, and so
vanish in dimensional regularization. The net effect of the
zero-bin subtractions is therefore to simply convert 1=�
infrared divergent poles into 1=� ultraviolet divergent
poles. This might lead one to think of the zero-bin sub-
traction as an academic issue. However, the conversion is
necessary to obtain the correct form of the anomalous
dimensions. In the case of a broken SUð2Þ gauge theory
we also find that the zero-bin subtractions are mandatory.
In contrast to deep inelastic scattering, the effective theory
graphs depend on the gauge boson mass M, and are no
longer scaleless. As a result, the zero-bin subtractions are
necessary not just to convert infrared divergences into
ultraviolet ones, but also to correctly obtain the finite parts
of the diagram.
The article is organized as follows: We start out with a

discussion of the full theory and the SCET formalism in
Sec. II, and in Sec. III, we discuss how Wilson line regu-
larization breaks factorization. The �-regulator is intro-
duced in Sec. IV. The effective theory computation, zero-
bin subtractions, gauge dependence and momentum re-
gions are discussed in Sec. V. The conclusions are given
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in Sec. VI. Some technical details are relegated to the
Appendix.

II. FORMALISM

The theory we consider is a SUð2Þ spontaneously broken
gauge theory, with a Higgs in the fundamental representa-
tion, where all gauge bosons have a commonmass,M. This
is the theory used in many previous computations [14–18],
and allows us to compare with previous results. It is
convenient, as in Ref. [18], to write the group theory
factors using CF, CA, TF.

1

The physical quantity of interest is the Sudakov form
factor FðQ2Þ in the Euclidean region,

FðQ2Þ ¼ hp2j �c�c jp1i; (1)

where Q2 ¼ �ðp2 � p1Þ2 � M2 and � is a generic Dirac
structure. In SCET, FðQ2Þ is computed in three steps:
(i) matching from the full gauge theory to SCET at � ¼
Q (high-scale matching) (ii) running in SCET between Q
andM and (iii) integrating out the gauge bosons at � ¼ M
(low-scale matching). The high-scale matching computa-
tion is given in Ref. [3]. The SCET computation of the
running and low-scale matching is discussed in this article.
All computations are done to leading order in SCET power
counting, i.e. neglecting M2=Q2 power corrections.

The SCET fields and Lagrangian depend on two null
four-vectors, n and �n, with n ¼ ð1;nÞ and �n ¼ ð1;�nÞ,
where n is a unit vector, so that �n � n ¼ 2. In the Sudakov
problem, one works in the Breit frame, with n chosen to be
along the p2 direction, so that �n is along the p1 direction. In
the Breit frame, the momentum transfer q has no time
component, q0 ¼ 0, so that the particle is back-scattered
(see Fig. 1). The light-cone components of a four-vector p
are defined by pþ � n � p, p� � �n � p, and p?, which is
orthogonal to n and �n, so that

p� ¼ 1

2
n�ð �n � pÞ þ 1

2
�n�ðn � pÞ þ p�

?: (2)

In our problem, p�
1 ¼ p1? ¼ pþ

2 ¼ p2? ¼ 0, and Q2 ¼
pþ
1 p

�
2 . A fermion moving in a direction close to n is

described by the n-collinear SCET field �n;pðxÞ, where p

is a label momentum, and has components �n � p and p?
[1,2]. It describes particles (on- or off-shell) with energy
2E� �n � p, and p2 � Q2. The total momentum of the
field �n;pðxÞ is pþ k, where k is the residual momentum

of order Q�2 contained in the Fourier transform of x. Note
that the label momentum p only contributes to the minus
and ? components of the total momentum.

The massive gauge fields are represented by several
distinct fields in the effective theory: n-collinear fields
An;pðxÞ and �n-collinear fields A �n;pðxÞ with labels, and so-

called mass-mode fields AsðxÞ [19,20] to which we do not
give any label. This is analogous to the label conventions
for soft and ultrasoft fields introduced in NRQCD [21]. The
n-collinear field contains massive gauge bosons with mo-
mentum near the n-direction, and momentum scaling �n �
p�Q, n � p�Q�2, p? �Q�, and the �n-collinear field
contains massive gauge bosons moving near the
�n-direction, with momentum scaling n � p�Q, �n � p�
Q�2, p? �Q�. Here we have ��M=Q, where � � 1
is the power counting parameter used for the EFT expan-
sion. The mass-mode field contains massive gauge bosons
with all momentum components scaling as Q��M. The
effective theory discussed here is SCETEW studied in
Refs. [3–5], and is similar to SCETI, but with weak-scale
mass-modes instead of the ultrasoft modes familiar from
QCD. If wewould consider the broken SUð2Þ together with
QCD, the effective theory would have additional n- and
�n-collinear massless gluons and ultrasoft massless gluons,
as in SCETI. The n- and �n-collinear massless gluons fields
would have the momentum scaling of the n- and
�n-collinear massive gauge fields of the broken SUð2Þ.
The ultrasoft gluon fields would have the momentum scal-
ing p� �Q�2 with p2 �M4=Q2. At � ¼ M the n- and
�n-collinear massive gauge fields and the mass-modes can
be integrated out, leaving a common massless SCETI

theory for �<M. Such a situation is realized in the
SUð3Þ � SUð2Þ �Uð1Þ electroweak theory [3,4].
The interactions of the mass-mode fields with the col-

linear fields are described by mass-mode S Wilson lines,
whose definition is identical to the Y Wilson lines that arise
for massless ultrasoft modes in massless SCETI upon the
ultrasoft field redefinition. The difference is that the mass-
mode Wilson lines contain mass-mode gauge fields rather
than ultrasoft massless gauge fields. Thus the effective field
theory current for the broken SUð2Þ has the form2

Jð!; �!;�Þ ¼ ½ ��n;!WnS
y
n�S �nW

y
�n � �n; �!�ð0Þ; (3)

where

Syn ðxÞ ¼ P exp

�
ig

Z 1

0
ds n � Asðnsþ xÞ

�
;

S �nðxÞ ¼ �P exp

�
�ig

Z 1

0
ds �n � Asð �nsþ xÞ

�
:

(4)

More details can be found in Ref. [19].

2

1

FIG. 1. Breit frame kinematics.

1Note that the results only hold for CA ¼ 2, since for an
SUðNÞ group with N > 2, a fundamental Higgs does not break
the gauge symmetry completely.

2In the presence of additional ultrasoft massless gauge fields
the effective theory current would have the form Jð!; �!;�Þ ¼
½ ��n;!WnS

y
nY

y
n�Y �nS �nW

y
�n � �n; �!�ð0Þ, with ultrasoft Y Wilson lines.
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III. FACTORIZATION AND COLLINEAR WILSON
LINES

Consider a high-energy scattering process with two or
more particles, in the ni direction, i ¼ 1; . . . ; r (see Fig. 2).
ni-collinear gauge bosons, which have momentum parallel
to particle i, can interact with particle i, or with the other
particles j � i. The coupling of ni-collinear gauge bosons
to particle i is included explicitly in the SCET Lagrangian.
The particle-gauge interactions are identical to those in the
full theory, and there is no simplification on making the
transition to SCET. However, if an ni-collinear gauge
boson interacts with a particle j not in the ni-direction,
then particle j becomes off-shell by an amount of order Q,
and the intermediate particle j propagators can be inte-
grated out, giving a Wilson line interaction in SCET. The
form of these operators was derived in Refs. [2,22], and

gives the Wilson line interaction Wy
ni�ni , where Wni is a

Wilson line in the �ni direction in the same representation as
�ni . This is easy to see in processes with only two collinear

particles. But even in complicated scattering processes
with more than two collinear particles the Wilson line

interaction still has the form Wy
ni�ni . Gluon emission

from all particles other than the ni-collinear particle com-
bine (using the fact that the operator is a gauge singlet) to
give a Wilson line in the representation of the ni-collinear
particle.

The Feynman rules for multiple gauge emission of
ni-collinear gluons from particle j gives factors of the form

� � nj
k � nj : (5)

The ni-collinear gauge field has momentum k and polar-
ization � in the ni-direction at leading order in SCET
power counting, so the above expression can be replaced
by

� � nj
k � nj ! ni � nj

ni � nj
� � �ni
k � �ni ¼

� � �ni
k � �ni (6)

using the leading (first) term in Eq. (2) for the decompo-
sition of both k and �. This expression is independent of nj.

As a result, when one combines emission from all particles
which are not in the ni-direction, the term in Eq. (6) can be
factored out, and the color matrices combined to form a
single Wilson line in the �ni direction. This is the basis for

factorization in SCET, since ni-collinear interactions are
independent of the dynamics of all particles not in the
ni-direction.
Unfortunately, Eq. (6), while valid at tree-level, cannot

be used for loop diagrams. The reason is that loop diagrams
require a regulator for the Wilson lines. For example, with
analytic regularization, Eq. (6) becomes

� � nj
ðk � njÞ1þ� ! ni � nj

ðni � njÞ1þ�

� � �ni
ðk � �niÞ1þ�

¼ 1

ðni � njÞ�
� � �ni

ðk � �niÞ1þ�
(7)

and the j dependence no longer cancels. Thus the identities
which allowed one to combine all the ni-collinear emis-
sions into a single Wilson line in the �ni direction no longer
hold.
In this paper, we regulate the Wilson lines using the

�-regulator, which also introduces i-dependence into
Eq. (6), and naively breaks factorization. We will see that
after zero-bin subtraction, the j-dependence cancels, and
factorization is restored.

IV. � REGULATOR

The �-regulator for particle i is given by replacing the
propagator denominators by

1

ðpi þ kÞ2 �m2
i

! 1

ðpi þ kÞ2 �m2
i � �i

: (8)

This regulator can be implemented at the level of the
Lagrangian, since it corresponds to a shift in the particle
mass. The on-shell condition remains p2

i ¼ m2
i .

In SCET, the collinear propagator denominators have
the replacement of Eq. (8). If particle j interacts with an
ni-collinear gluon and becomes off-shell, then

1

ðpj þ kÞ2 �m2
j � �j

! 1
1
2 ð �ni � kÞð �nj � pjÞðni � njÞ ��j

;

(9)

where k is n-collinear, and Eq. (6) becomes

� � nj
k � nj ! � � �ni

k � �ni � �j;ni

; �j;ni �
2�j

ðni � njÞð �nj � pjÞ :
(10)

The denominator in Eq. (5) gets shifted by �j;ni , as can be

seen from the denominator of Eq. (9). The Wilson lines in
the �-regulator method will be regulated using Eq. (10).
As a result, in the multiparticle case, it is not possible to
combine ni-collinear gluon emission off the various parti-
cles into a single Wilson line in the �ni direction, since �j;ni

depends on the particle j. However, we will see that after
zero-bin subtraction, the j-dependence drops out, and
ni-collinear gluon emission can be combined into a single
Wilson line.

1

2

3

4

FIG. 2. A scattering amplitude with four external particles
defining four collinear directions n1, n2, n3, and n4.
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While �i;n and �i are related by Eq. (10), it is useful to

retain both variables during the computation.

V. CALCULATION IN THE EFFECTIVE THEORY

The one-loop effective theory vertex graphs are the
n-collinear, �n-collinear and mass-mode graphs, shown in
Fig. 3. The n-collinear diagram reads

In ¼ �2ig2CFf�
Z ddk

ð2�Þd
1

½� �n � k�
�n � ðp2 � kÞ
½ðp2 � kÞ2�

1

k2 �M2
;

(11)

with f� ¼ ð4�Þ���2�e��E . Since the gauge boson is mas-
sive, this integral is divergent even if p2 is off-shell in d ¼
4� 2� dimensions. This can be seen as follows: Integrate
over kþ by contours and perform the substitution k� ¼
zp�

2 . Because the poles of k
þ lie in the same half-plane for

k� > p�
2 and k� < 0, one obtains (keeping pþ

2 � 0 to
regulate the integral)

In ¼ �2a�2�e��E�ð�Þ
Z 1

0
dz

1� z

z

� ½M2ð1� zÞ � p2
2zð1� zÞ��� (12)

where a ¼ CF�=ð4�Þ. For z ! 0 this integral diverges as
long as the gauge boson is massiveM � 0, even if p2

2 � 0.
For massless gauge bosons, M ¼ 0, and the factor z��

from the p2
2 � 0 term regulates the integral when the

fermion is off-shell.
Introducing the �-regulator, the n-collinear diagram

becomes

In ¼ �2ig2CFf�
Z ddk

ð2�Þd
1

½� �n � k� �1�
� �n � ðp2 � kÞ

½ðp2 � kÞ2 � �2�
1

k2 �M2
: (13)

Doing the integrations in exactly the same way as de-
scribed above, one obtains for the n-collinear integral
with an on-shell external fermion p2

2 ¼ 0

In ¼ �2a�ð�ÞðM2Þ���2�e��E

Z 1

0
dz

ð1� zÞ1��

zþ �1=p
�
2

¼ a

��
2

�
� 2LM

�
ð1þ logð�1=p

�
2 ÞÞ �

�2

3
þ 2

�
: (14)

Note that �1;2 and �1 � �1;n, �2 � �2; �n are regulator

parameters, and are set to zero unless they are needed to
regulate any divergence. The regulator parameters are
defined using Eq. (10),

�1 � �1;n ¼ 2
�1

ðn � �nÞðn � p1Þ ¼
�1

pþ
1

;

�2 � �2; �n ¼ 2
�2

ðn � �nÞð �n � p2Þ ¼
�2

p�
2

:

(15)

We recall that n1 ¼ �n because p1 is in the �n direction, and
similarly for �2. The terms �1 and �2 transform under
boosts as the � and þ component of a vector, and LM,
LQ are defined as

LM ¼ log
M2

�2
; LQ ¼ log

Q2

�2
: (16)

Equation (13) depends on �2 and �1, which regulate the
collinear and Wilson line propagators, respectively. �2 is
not needed to regulate a divergence in the integral, so the
result in Eq. (14) only depends on theWilson line regulator
�1. The n-collinear graph depends on the scale Q via the
regulator dependence,

log
�1

p�
2

¼ log
�1

pþ
1 p

�
2

¼ log
�1

Q2
: (17)

The n-collinear particle momentum is p2, but the
n-collinear graph Eq. (14) depends on particle 1 via its
dependence on the regulator�1 for particle 1. This leads to
a violation of factorization in the collinear sector, since the
n-collinear graph depends on the properties of the other
particles. In the multiparticle case, this means that the
Wilson lines for all the other particles cannot be combined
into a single Wilson line in the �n direction—the loop
contributions from the other particles each depend on their
own regulator �i, and the different contributions cannot be
combined into a single amplitude.
The n-collinear wave function renormalization graph is

identical to that in the full theory. It does not need any
�-regularization, and reads

Wn ¼ a

�
1

�
� 1

2
� LM

�
: (18)

The normalization convention is such that one gets a con-
tribution of �Wn=2 for each external n-collinear fermion.
The �n-collinear integral I �n can be obtained from In by

replacing p�
2 by pþ

1 and �1 by �2,

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)

FIG. 3. Diagrams of order Oð�Þ in the effective theory. Wave function diagrams are not shown. The dashed line denotes a fermion,
the spring denotes a mass-mode gauge boson and the spring with a line denotes a collinear gauge boson.
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I �n ¼ a

��
2

�
� 2LM

�
ð1þ logð�2=p

þ
1 ÞÞ �

�2

3
þ 2

�
; (19)

and the �n-collinear wave function renormalization isW �n ¼
Wn.

For the mass-mode diagram, one finds

Is ¼ �2ig2CFf�
Z ddk

ð2�Þd
1

k2 �M2

1

�n � k� �2

� 1

� �n � k� �1

¼ a

�
� 2

�2
þ 2

�
log

�1�2

�2
þ LM

2 � 2LM log
�1�2

�2
þ �2

6

�
:

(20)

Again, we only keep the leading terms in �i, and the
integral depends on both �1 and �2. The mass-mode
wave function contribution vanishes, Ws ¼ 0, since n2 ¼
�n2 ¼ 0.

A. Zero-bin subtractions

In the effective theory, the gauge boson fields of the full
theory are split up into several different fields which fluc-
tuate over different scales. In order to avoid double-
counting of the mass-modes, one has to subtract the con-
tribution from the collinear fields with vanishing label
momenta [10]. The zero-bin subtraction for Eq. (11),
which amounts to taking the soft limit in the integrand of
the collinear integral, is

In� ¼ �2ig2CFf�
Z ddk

ð2�Þd
1

½� �n � k� �1�
� 1

½�n � k� �2=p
�
2 �

1

k2 �M2
; (21)

which is the same as the integral Eq. (20), with �2 !
�2=p

�
2 . One needs to retain �2 to regulate the singularity,

since the k2 term in the collinear propagator has been
expanded out. Subtracting this from the collinear integral
yields

In � In� ¼ a

�
2

�2
� 2

�
log

�2

�2
þ 2

�
� 2

�
1� log

�2

�2

�
LM

� LM
2 � �2

2
þ 2

�
: (22)

This combination only depends on the gauge boson mass
and the regulator of the collinear fermion,�2. The zero-bin
subtraction Wn� for the wave function renormalization Wn

vanishes.
There are two very important differences between the

zero-bin subtracted result In � In� and the unsubtracted
result In: The zero-bin subtracted integral no longer de-
pends on the hard scale Q, and it depends only on the
regulator �2 for the n-collinear particle, rather than on the

regulator �1 for the other particle. This means it depends
on the regulator of the collinear particle rather than the
regulator of the Wilson line, and it implies that zero-bin
subtraction restores factorization in the effective theory.
The hard scale has been factored out of the collinear
contribution. In addition, in the multiparticle case, since
the collinear graphs only depend on the n-collinear particle
regulator (�2 in our problem), the Wilson line contribu-
tions from all the other particles can be combined into a
single Wilson line in the �n direction, as was naively true at
tree-level. This is because the zero-bin subtracted collinear
graph does not need a regulator for the Wilson line.
The final result of the effective theory vertex computa-

tion is

ðIn � In�Þ þ ðI �n � I �n�Þ þ Is � 1

2
ðWn �Wn�Þ

� 1

2
ðW �n �W �n�Þ �Ws

¼ a

�
2

�2
þ 2

�
log

�1�2�
2

�1�2

þ 3

�
� LM

2

� 2LM log
�1�2�

2

�1�2

� 3LM � 5�2

6
þ 9

2

�
; (23)

where we have added the zero-bin subtracted collinear
graphs and the mass-mode graph. This result has to be
independent of the regulators. Indeed, using Eq. (15) and
(23), can be simplified to

a

�
2

�2
� 2

�
LQ þ 3

�
� LM

2 þ 2LQLM � 3LM � 5�2

6
þ 9

2

�
:

(24)

This is the correct effective theory result, and when com-
bined with the matching computation at Q [23] correctly
reproduces the known full-theory computation of the form-
factor.
Note that without zero-bin subtractions, the effective

theory result would be

In þ I �n þ Is � 1

2
Wn � 1

2
W �n �Ws

¼ a

�
� 2

�2
þ 2

�
log

�2
1�

2
2

Q6�2
þ 3

�
þ LM

2

� 2LM log
�2

1�
2
2

Q6�2
� 3LM � �2

2
þ 9

2

�
: (25)

This is incorrect, and does not reproduce the full-theory
result when the matching condition at Q is included. The
1=� singularities, which are ultraviolet, do not give the
correct anomalous dimension � ¼ að4LQ � 6Þ for the cur-
rent in SCET. The result is also not independent of the
regulator. Idilbi andMehen [11,12] have previously arrived
at the same conclusions for QCD, where the gauge boson is
massless. However, the necessity of zero-bin subtractions
becomes more obvious with a massive gauge boson, since
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the effective theory graphs are no longer scaleless due to
the gauge boson mass. One can see that Eq. (25) also does
not give the correct finite parts of the diagram.

Using the �-regulator, we have seen that the vertex
corrections are ðIn � In�Þ þ ðI �n � I �n�Þ þ Is after including
zero-bin subtractions. Also, In� ¼ I �n� ¼ Is, so the vertex
correction can be written as In þ I �n � Is. Recently, Idilbi
and Mehen [11,12] showed in their study of deep inelastic
scattering in QCD, that the combination In þ I �n � Is does
not need any additional regulator beyond dimensional
regularization. The same result continues to hold for bro-
ken SUð2Þ with massive gauge bosons, where the role of
the ultrasoft contribution is adopted by the mass-mode
contribution Is. Thus the integrand obtained by combining
In þ I �n � Is does not need any �-regulator either, and can
be evaluated explicitly to give

In þ I �n � Is ¼ a

�
2

�2
� 2

�
LQ þ 4

�
� LM

2

þ 2LQLM � 4LM � 5�2

6
þ 4

�
: (26)

When combined with the wave function graphs this gives
the correct amplitude Eq. (24). The details of the compu-
tation are given in the Appendix. The form of the expres-
sion, In þ I �n � Is in broken SUð2Þ—and similarly in
QCD—is counter-intuitive if one is used to thinking about
effective field theories using the method of regions. This is
because one has to subtract the mass-mode/ultrasoft region
from the sum of the collinear regions to get the correct
amplitude.

The above discussion shows that in practice one can
identify the respective zero-bin contribution of the col-
linear integrals In� and I �n� with the mass-mode integral
Is. Doing this identification also in the case where the
integrals are done separately with the regulator, one does
not need any relations between �i and �i. Instead one
regulates the collinear Wilson lines and propagators in
the soft graphs with �i, and Eq. (22) is instead given by
the same expression with �2p

�
2 in place of �2.

B. Momentum regions

In this section we discuss the various momentum regions
that contribute to the computation of the Sudakov form
factor paying particular attention to the role of the zero-bin
subtractions to the contributions from the n- and
�n-collinear regions. The momentum regions which con-
tribute to the Sudakov form factor are illustrated in Fig. 4.
The hard contribution is the high-scale matching at Q, and
the remaining contributions are given by the effective
theory. The effective theory contributions are located along
the curve k2 ¼ M2. The n-collinear contribution arises
from k� � p�

2 �Q, so that kþ �M2=Q and the
�n-collinear contribution arises from kþ � pþ

1 �Q, k� �
M2=Q. The ultrasoft region with kþ �M2=p�

2 �M2=Q

and k� �M2=pþ
1 �M2=Q is not on the k2 ¼ M2 hyper-

bola, and does not contribute to the amplitude.
Interestingly, it now turns out that the mass-mode region,
with all components of k of orderM, does not contribute to
the amplitude either.3 As shown in Ref. [3], the contribu-
tions to the amplitude from the mass-mode region vanish if
the analytic regulator of Eq. (7) is employed, and only the
n- and �n-collinear regions give nonzero results. As we
show below, the same is true also when the �-regulator
is used. However, in this case, the argument is more subtle
and requires that zero-bin contributions to the n- and
�n-collinear pieces are properly accounted for.
While the analytic regulator does not introduce any new

dimensionful parameters, the �-regulator introduces the
new dimensionful scales �1;2, and the picture changes

because of contributions from unphysical regulator-
dependent regions, which are absent in the total amplitude.
This has been noted previously [24,25]. The n-collinear
graph In, Eq. (14), gets contributions from k� � p�

2 �Q,

kþk� �M2 and k� � �1, k
þk� �M2. This is shown as

regions A and C in Fig. 5. The �n-collinear graph gets
contributions from regions D and B.
The zero-bin integral In� gets contributions from the

region with kþ ��2=p
�
2 and from k� � �1, i.e. from

regions B andC. Thus, for the zero-bin subtracted collinear
integral In � In�, region C cancels, and the resulting con-

FIG. 4. Modes which contribute to the effective theory. Mass-
modes are shown as I. Additional massless gluons contribute
modes shown as II.

3It is important to include the mass-mode contribution. The
mass-mode region does not contribute, because of a cancellation
between the collinear modes and mass-modes in the mass-mode
region. See below.
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tributions are from regions A and B. Similarly, I �n � I �n�
gets contributions from D and C. On the other hand, the
mass-mode graphs get a contribution from the region k� �
�1, k

þk� �M2 and from kþ � �2, k
þk� �M2, i.e. re-

gions B and C. We now see that the total amplitude only
gets contributions from A and D. The additional regions B
and C introduced by the regulator drop out, as they should.
To achieve the cancellation of the unphysical regions B and
C it is essential to account for the zero-bin subtractions for
the collinear regions.

C. Gauge dependence

So far, we have been working in Feynman gauge, � ¼ 1.
Let us now analyze the gauge dependence of the different
parts of the effective theory calculation by using a general
R� gauge with the gauge boson propagator

i��	ðkÞ ¼ 1

k2 �M2

�
g�	 þ ð�� 1Þ k�k	

k2 � �M2

�
: (27)

In the full theory, the new � dependent contribution to the

vertex graph, Ið�Þ, stemming from the second part of the
gauge boson propagator is

Ið�Þ ¼ �s

4�
CF�J

J ¼ �16�2ið�� 1Þf�
Z ddk

ð2�Þd
1

k2 �M2

1

k2 � �M2

¼ �� 1

�UV
� ð�� 1Þ logM

2

�2
þ ð�� 1Þ � � log�: (28)

The full-theory vertex graph gets shifted, IV ! IV þ aJ.
There is a similar shift in the full-theory wave function
contribution, W ! W þ aJ so that the on-shell S-matrix
element IV �W is �-independent. The high-scale match-
ing coefficient is the full-theory result with all infrared
scales set to zero, and so is gauge invariant.
In terms of the method of regions, J only has contribu-

tions from the mass-mode region where kþ � k� � k? �
M, given � is counted as order Oð1Þ. Therefore, one might
not expect this additional piece to show up in the collinear
vertex diagrams in the effective theory. However, doing the

calculation of the additional parts Ið�Þn and Ið�Þ�n of the col-
linear integrals yields (see Ref. [2] for the Feynman rules)

Ið�Þn ¼ �ig2CFf�
Z ddk

ð2�Þd
�
n� � ��

?k6 ?
�n � ðp2 � kÞ

�

� �n � ðp2 � kÞ
ðp2 � kÞ2 ��2

�
1

� �n � k� �1

�n	
1

k2 �M2

�
�
ð�� 1Þ k�k	

k2 � �M2

�

¼ �

4�
CF�J; (29)

and similarly for Ið�Þ�n . Note that for Eq. (29) we have
adopted pþ

2 ¼ p?
2 ¼ 0.

For the mass-mode diagram, the additional piece reads

Ið�Þs ¼ �ig2CFf�
Z ddk

ð2�Þd
1

�n � k� �2

�
1

� �n � k� �1

� 1

k2 �M2

�
ð�� 1Þ ðn � kÞð �n � kÞ

k2 � �M2

�

¼ �

4�
CF�J: (30)

The collinear and soft wave function renormalization
graphs also get shifted by J,Wn ! Wn þ aJ,W �n ! W �n þ
aJ, Ws ! Ws þ aJ.
Without accounting for zero-bin subtractions, the effec-

tive theory result In þ I �n þ Is � ðWn=2þW �n=2þWsÞ
would get shifted by aJþ aJ þ aJ � ðaJ=2þ aJ=2þ
aJÞ ¼ aJ, and is not gauge invariant. With zero-bin sub-
tractions, however, the effective theory collinear vertex
graph is In � In�, which is gauge invariant, since both
terms shift by aJ. Similarly, the collinear wave function
graph is Wn �Wn� ¼ Wn �Ws, which is also gauge in-
variant, since again both terms are shifted by aJ. Thus, the
collinear vertex and wave function contributions are each
separately gauge invariant. The mass-mode contributions
Is and Ws are each shifted by aJ, so the net soft contribu-
tion Is �Ws is gauge invariant as well.
Thus zero-bin subtractions are also necessary to main-

tain gauge invariance of the two collinear and the mass-
mode sectors of the effective theory, as required by
factorization.

FIG. 5. Momentum regions which contribute to the effective
theory integrals. A and D are collinear, and B and C are
regulator-dependent mass-mode regions.
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VI. CONCLUSIONS

SCETwith massive gauge bosons requires an additional
regulator on top of the common dimensional regularization
to obtain well-defined expressions for individual Feynman
diagrams. In this work we have proposed the�-regulator to
regularize the singularity from theWilson line propagators.
Using the �-regulator, the effective theory only gives the
correct result for the scattering amplitude if zero-bin sub-
tractions for the n- and �n-collinear contributions are in-
cluded. For the Sudakov form factor in a broken SUð2Þ
gauge theory with a common gauge boson mass M, the
total amplitude then is In þ I �n � Is as a result of the
subtractions. Here In and I �n refer to the n- and
�n-collinear diagrams, and Is refers to the contributions of
the mass-mode graphs related to gluons with momenta
kþ � k� � k? �M. This result is in analogy to previous
results obtained for unbroken gauge theories with massless
gauge bosons [11,12]. The result appears to contradict the
method-of-regions approach, where one has to add up the
contributions from all different regions.

We have demonstrated that one needs to subtract the
mass-mode region from the sum of the collinear regions to
avoid double-counting, and that gauge invariance of the
effective theory is only maintained if the zero-bin subtrac-
tions are accounted for.

Zero-bin subtractions also restore factorization between
the different collinear sectors. Naively, one implements
factorization by redefining the collinear fields as [2,22]

Wy
n �n ! SnW

ð0Þy
n �ð0Þ

n (31)

where the mass-mode fields are in the Wilson line Sn, and

no longer couple to the collinear fields in Wð0Þ
n and �ð0Þ

n .
This redefinition is not valid at the loop-level, because the
regulator dependence of the collinear graphs breaks facto-
rization. Factorization is restored after zero-bin subtrac-
tion, and thus the proper replacement is

Wy
n �n ! Sn½Wð0Þy

n �ð0Þ
n �� (32)

where the subscript � is a reminder that the collinear sector
requires zero-bin subtraction.4
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APPENDIX: CALCULATION WITHOUTA
REGULATOR

In this Appendix, we calculate the effective field ampli-
tude including zero-bin subtractions by first adding and
then performing the integration. No regulators are needed
in this case, as in the massless case [11,12].

R¼ InþI �n�Is

¼�2ig2CFf�
Z ddk

ð2�Þd
�

pþ
1 �kþ

ð�pþ
1 k

�þk2Þð�kþÞðk2�M2Þþ
p�
2 �k�

ð�p�
2 k

þþk2Þð�k�Þðk2�M2Þ�
1

ð�kþÞð�k�Þðk2�M2Þ
�

¼�2ig2CFf�
Z ddk

ð2�Þd
�

2k2þpþ
1 p

�
2 �pþ

1 k
��p�

2 k
þ

ð�pþ
1 k

�þk2Þð�p�
2 k

þþk2Þðk2�M2Þ�
k4

ð�pþ
1 k

�þk2Þð�p�
2 k

þþk2Þð�kþÞð�k�Þðk2�M2Þ
�
:

(A1)

The total integral is IR finite. It can be decomposed as

R ¼ �2ig2CF½Q2I0 � 2ðp1 þ p2Þ�I�1 þ 2I2 � I3� (A2)

with

I0 ¼ f�
Z ddk

ð2�Þd
1

ðk� p1Þ2ðk� p2Þ2ðk2 �M2Þ
I
�
1 ¼ f�

Z ddk

ð2�Þd
k�

ðk� p1Þ2ðk� p2Þ2ðk2 �M2Þ
I2 ¼ f�

Z ddk

ð2�Þd
k2

ðk� p1Þ2ðk� p2Þ2ðk2 �M2Þ
I3 ¼ f�

Z ddk

ð2�Þd
k2

ð�pþ
1 k

� þ k2Þð�p�
2 k

þ þ k2Þð�kþÞð�k�Þ : (A3)

Since we are not interested in subleading terms inM2=Q2 for all these integrals, we simplify the last part of the integrand in
Eq. (A1) and set M ¼ 0 to obtain I3. One finds

4We note that in the presence of massless ultrasoft gauge fields the right-hand side of Eq. (32) reads YnSn½Wð0Þy
n �ð0Þ

n ��, with an
ultrasoft Y Wilson line.
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I0 ¼ � i

16�2

Z 1

0
dz

Z 1

0
dx

z

Q2xð1� xÞz2 þM2ð1� zÞ ¼ � i

16�2Q2
J1;

I
�
1 ¼ � i

16�2

1

2

Z 1

0
dz

Z 1

0
dx

z2ðp1 þ p2Þ�
Q2xð1� xÞz2 þM2ð1� zÞ ¼ � i

16�2Q2
J2

1

2
ðp1 þ p2Þ�;

I2 ¼ M2I0 þ f�
Z ddk

ð2�Þd
1

ðk� p1Þ2ðk� p2Þ2
¼ M2I0 þ i

16�2

�
1

�
þ log

�2

Q2
þ 2

�
;

I3 ¼ � i

2

Z p�
2

0

dk�

2�

dd�2k?
ð2�Þd�2

pþ
1 k

�

½k2
? þ pþ

1 k
��½ðk�Þ2pþ

1 � p�
2 k

2
? � pþ

1 p
�
2 k

��

þ i

2
f�

Z 1

p�
2

dk�

2�

dd�2k?
ð2�Þd�2

1

ð�pþ
1 k

� � k2
?Þðk�Þ

¼ � i

16�2

�
1

�2
� 1

�
log

Q2

�2
þ 1

2
log2

Q2

�2
� �2

12

�
; (A4)

with

Jn ¼
Z 1

0
dz

Z 1

0
dy

4zn

z2ð1� y2Þ þ �2ð1� zÞ (A5)

and �2 ¼ 4M2=Q2. To calculate the integral J1, integrate

first over y and substitute w ¼ zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ �2ð1� zÞp

, lead-
ing to

J1 ¼ �2

3
þ 1

2
log2

Q2

M2
: (A6)

For J2, one can simply expand in � after the integration

over y to obtain

J2 ¼ 2 log
Q2

M2
� 2: (A7)

Adding everything up, one finally finds

R ¼ a

�
2

�2
� 2

�
LQ þ 4

�
� LM

2 þ 2LQLM � 4LM

� 5�2

6
þ 4

�
: (A8)
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