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The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta

decay (0���) are estimated within the quasiparticle random phase approximation. It is shown that

correlated nuclear matrix elements uncertainties play an important role in the comparison of 0��� decay

rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana

neutrino mass.

DOI: 10.1103/PhysRevD.79.053001 PACS numbers: 02.70.Rr, 21.60.Jz, 23.40.�s, 23.40.Hc

I. INTRODUCTION

The search for the neutrinoless mode of double beta
decay (0���),

ðZ; AÞ ! ðZþ 2; AÞ þ 2e�; (1)

is being vigorously pursued by several experiments using
different ðZ; AÞ nuclei, in order to unravel the Dirac or
Majorana nature of neutrinos and their absolute mass scale
[1]. In a given candidate nucleus i ¼ ðZ; AÞ, light Majorana
neutrinos can induce 0��� decay with half-life Ti given
by

T�1
i ¼ GijM0

ij2m2
�� (2)

where Gi is a calculable phase-space factor, M0
i is the

0��� nuclear matrix element (NME), and m�� is the

‘‘effective Majorana neutrino mass,’’

m�� ¼
��������
X3

k¼1

mkU
2
ek

��������; (3)

where mk and Uek are the neutrino masses and the �e

mixing matrix elements, respectively, in standard notation
[2]. The NME includes both Fermi (F) and Gamow-Teller
(GT) transitions, plus a small tensor (T) contribution [3],

M0
i ¼

�
gA
1:25

�
2
�
MGT

i þMT
i �MF

i

g2A

�
: (4)

In the above expression, gA is the effective axial coupling
in nuclear matter, not necessarily equal to its ‘‘bare’’ free-
nucleon value gA ’ 1:25. With the conventional prefactor
/ g2A in Eq. (4), the phase-space Gi becomes
gA-independent. In general, all parametric uncertainties
(which may be quite large) are embedded in jM0

ij [4].
It is widely recognized that a convincing case for 0���

decay must involve independent signals in three or more
nuclei [1,5]. For instance, if the theoretical NME uncer-

tainties could be roughly expressed in terms of a single
nuisance parameter p, then one would need two indepen-
dent half-life data T1 and T2, and two relations as Eq. (2), to
fix both p and m�� (up to degeneracies). A third datum T3

would overconstrain the system of equations, providing a
cross-check of the results [6–8]. A negative check might
signal possible new 0��� physics beyond light Majorana
neutrinos (barring experimental or theoretical mistakes).
Any new 0��� mechanism(s) would then involve at least
one more unknown, and thus it might require one or more
data ðT4; T5; . . .Þ for further cross-checks [9–11]. Statistical
assessments of the various options demand realistic esti-
mates of experimental and theoretical uncertainties, and
the analysis of possible degeneracies which, as we shall
see, may play a relevant role.
Recently, there has been significant progress towards the

reduction (and a better evaluation) of 0��� theoretical
errors. Within the quasiparticle random phase approxima-
tion (QRPA) [3], these uncertainties can be largely kept
under control by systematically fixing, in each nucleus, the
particle-particle strength parameter gpp via two-neutrino

double beta (2���) decay rates. In this way, the dispersion
of NME values obtained by varying several QRPA ingre-
dients has been significantly reduced (see [4] and referen-
ces therein).
However, the estimated NME variances do not exhaust

the information needed to compare 0��� limits (or sig-
nals) in different nuclei: the NME covariances are impor-
tant as well. Nonzero NME covariances have been
implicitly recognized in a few works, e.g., by studying
the dispersion of NME ratios [8], and by observing that
such a dispersion may be smaller than for individual NME
[10]. To our knowledge, these observations—implying
positive NME correlations—have not yet been sharpened
from a statistical viewpoint, despite their relevant conse-
quences for the comparison of 0��� signals. In a nutshell,
the main points can be illustrated as follows. If a finite half-
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life Ti is measured in a nucleus i, the half-life expected in
another nucleus j is

Tj ¼ Ti

Gi

Gj

jM0
ij2

jM0
jj2

; (5)

within (large) NME uncertainties. From the experimental
viewpoint, the ‘‘most favorable case’’ would entail the
shortest decay timescale Tj, namely, the smallest jM0

ij
and the largest jM0

jj. However, if the two NME uncertain-

ties were positively correlated (e.g., via a common nor-
malization factor), opposite changes of jM0

ij and jM0
jj

would be unlikely, thus preventing the occurrence of the
‘‘experimentally favorable’’ case. Moreover, a common
shift of the NME for all nuclei could always be compen-
sated by an inverse shift in m�� via Eq. (2), leading to a

degeneracy between (correlated) theoretical errors and the
Majorana neutrino mass.

The purpose of this paper is to explore and discuss these
issues in detail. In Sec II we set our notation and conven-
tions. In Sec. III we present our evaluation of the covari-
ance matrix for the NME in a set of nuclei. In Sec. IV we
apply our formalism to relevant cases in the 0��� phe-
nomenology. In Sec. V we summarize our work and dis-
cuss future perspectives. An Appendix collects additional
details about different theoretical evaluations of Gi and
jM0

ij.

II. NOTATION AND CONVENTIONS

In the spirit of Refs. [12–14], we shall use logarithms of
the main 0��� quantities in appropriate units, namely:

�i ¼ log10ðTi=yÞ; (6)

� �i ¼ log10½Gi=ðy�1 eV�2Þ�; (7)

�i ¼ log10jM0
ij; (8)

� ¼ log10ðm��=eVÞ; (9)

so that Eq. (2) is linearized as

�i ¼ �i � 2�i � 2�: (10)

Central values and errors will be denoted as

�i ¼ �0i � si; (11)

�i ¼ �0
i � �i; (12)

� ¼ �0 � �; (13)

the �i having virtually no uncertainties (see however the
Appendix for remarks). Experimental measurements of the
�i’s are thus translated into linear constraints on the un-
observable quantity�, once the nuclear matrix elements�i

and their covariances are given.

Linearization through logarithms is appropriate to deal
with relatively large NME errors. For instance, a typical
‘‘factor of two’’ uncertainty, jM0

ij ¼ jM00
i j � ð1þ1:0

�0:5Þ, en-
tails at least two drawbacks: (i) asymmetric errors are
difficult to manage with usual statistical tools (such as
least-squares methods); (ii) the unphysical region jM0

ij<
0 is hit at twice the lower error. Both drawbacks are
avoided by expressing the same ‘‘factor of two’’ uncer-
tainty as �i ¼ �0

i � 0:30.
Concerning the quantities �i ¼ log10ðTi=yÞ, at present

there is only one claim for a positive 0��� result by
Klapdor et al. [15,16] as part of the Heidelberg-Moscow
Collaboration: Ti=y ¼ 2:23þ0:44

�0:31 � 1025 at 1� [16]. We

translate this claimed range as

�i ¼ 25:355� 0:072 ð1�; i ¼ 76GeÞ; (14)

where we have slightly displaced the experimental central
value so as to reproduce the 1� extrema, by construction,
with symmetric errors [17]. For n > 1, the asymmetric n�
ranges Ti=y ¼ 2:23þn�0:44

�n�0:31 � 1025 correspond to the sym-

metric ranges �i ¼ 25:355� n � 0:072 within an accept-
able accuracy of 10%, i.e., within about 0:2� (0:3�) at the
level of 2� (3�) ranges.
The above arguments, as well as the advantages of using

linear relations [Eq. (10)] and the associated simple statis-
tics (linear propagation of errors, 	2 methods), lead us to
assume approximately gaussian errors on logzi, rather than
on zi (where zi ¼ Ti, jM0

ij), for the purposes of this work.
In the future, a better knowledge of the probability distri-
butions of the zi’s might warrant a different approach,
possibly based on more refined statistical tools applicable
to generic random variables (maximum likelihood meth-
ods, Monte Carlo simulations). However, our main results
do not crucially depend on these subtle aspects.

III. NME UNCERTAINTIES AND THEIR
CORRELATIONS

In this section we discuss estimates for the nuclear
matrix elements �i, in terms of central values �0

i , errors
�i and correlations 
ij, for a set of eight 0��� candidate

nuclei: i ¼ 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te,
and 136Xe. We remind that the associated covariance ma-
trix is covð�i; �jÞ ¼ 
ij�i�j, whose diagonal elements

coincide with the variances �2
i .

A. Numerical evaluation of QRPA uncertainties

Our estimates are based on a large set of QRPA calcu-
lations [4,18] which include 2� 2� 3� 2 ¼ 24 variants
in the input ingredients, namely: (i) two values for the axial
coupling: gA ¼ 1:25 (bare) and gA ¼ 1:00 (quenched);
(ii) two approaches to short-range correlations (s.r.c.): the
so-called Jastrow-type s.r.c., and the unitary correlation
operator method (UCOM); (iii) three sizes for the model
basis: small, intermediate and large; (iv) two many-body
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models: QRPA and its renormalized version (RQRPA). All
the 24 variants are supplemented by errors induced by gpp
uncertainties (within the experimental 2��� constraints).
Concerning NME error estimates, we adopt the same con-
servative approach as in [18], and define the 1� range�0

i �
�i as the one embracing the minimum and maximum
calculated value of�i for each nucleus i. These�1� errors
are more generous than their formal statistical definition
(which would embrace only �68% QRPA variants, i.e.,
�16 out of 24). Finally, we calculate the correlation index

ij between joint (�i; �j) values taken from the same

QRPA sample. In all cases, we also include gpp-induced

variations.
Our final results for �i, �i and 
ij are reported in Table I

(together with the values of the phase-space factors �i, for
completeness). Figure 1 shows the same results in graph-
ical form, for each couple of different nuclei, in the plane
charted by the coordinates ð�i; �jÞ. In each panel we show
the ‘‘1� error ellipse,’’ centered at ð�0; �0

j Þ and with cor-

relation 
ij; its projection onto a coordinate axis coincide

with the �1�i range defined previously. Also shown in
each panel is the set of QRPA calculations used, supple-
mented by the horizontal and vertical error bars induced by
gpp uncertainties (for a total of 24 ‘‘crosses’’ in each

plane).
In Fig. 1, the strong, positive correlation among theo-

retical estimates emerges at a glance. The QRPA calcula-
tions are mostly scattered along a primary direction (the
ellipse major axis) with positive slope, essentially as a
result of variations in the s.r.c. model (either Jastrow,
blue, or UCOM, red) and, secondarily, to variations in
gA. There is also some dispersion in the orthogonal direc-
tion (ellipse minor axis), which is mainly due to gpp
variations. In general, the overall scatter of QRPA is very
well captured by the ellipses, with the possible exception
of those involving j ¼ 96Zr, which are somewhat under-
sampled at low �j. For this nucleus, the gpp parameter

turns out to be extremely close to the so-called QRPA
collapse point, the �j estimates becoming less reliable

and more erratic as collapse is approached—leading to
large and asymmetric error bars. For other nuclei, gpp is

far from the collapse point and the results are more stable
(with smaller and more symmetric gpp errors), as com-

pared to 96Zr. In conclusion, the correlations 
ij reported in

Table I appear adequate to characterize the scatter of
QRPA variants, with the only possible exception of 96Zr,
whose estimates must be taken with a grain of salt.
We remark that the above estimates, performed within

the QRPA, include only known and controllable sources of
uncertainties. Some of them are peculiar of QRPA (e.g.,
gpp), while others are common to any nuclear model (e.g.,

gA and the s.r.c.). It is not excluded that future develop-
ments in nuclear theory and data may suggest the inclusion
of further parametric uncertainties, most notably those
related to deformation and to low-lying �þ strengths.
Indeed, a reliable description of the low-lying �þ

strengths is a challenging task, which calls for some im-
provement of the QRPA calculations. In fact, the
2���-decay matrix element used to fix the value of gpp
is dominated by contributions of low-lying states of the
intermediate nucleus. A recent study [19] has shown that a
better agreement for contributions of low-lying states to the
2���-decay matrix element can be achieved by adjusting
the single-particle energies so as to reproduce experimental
occupation numbers of neutron and proton valence orbits
in 76Ge and 76Se. For a systematic analysis of this kind of
effects one needs more experimental data (measuring the
neutron and proton occupancies in particle adding and
removing transfer reactions [20], measuring the beta
strength distributions in charge-exchange reactions [21],
etc.) and further theoretical studies, which go beyond the
scope of this paper.
Our results must thus be interpreted as an attempt to

quantify conservatively the role of known QRPA uncer-
tainties, which does not exclude that further corrections
may be required by future developments in this evolving
field of research.

B. Comparison with other estimates and discussion

In Fig. 2 (in the same coordinate planes of Fig. 1) we
show our error ellipses at 1, 2 and 3 standard deviations
(�	2 ¼ 1, 4, and 9, respectively), and superpose the latest

TABLE I. For each nucleus i, we report the phase-space factor �i, the central value of the nuclear matrix error �i, and the error �i,
together with the (symmetric) error correlation matrix 
ij, according to the QRPA estimates in this work. See the text for definitions.

correlation matrix 
ij

i �i �0
i �i

76Ge 82Se 96Zr 100Mo 116Cd 128Te 130Te 136Xe

76Ge 25.517 0.635 0.122 1
82Se 24.870 0.571 0.135 0.978 1
96Zr 24.550 0.038 0.247 0.518 0.506 1
100Mo 24.660 0.503 0.162 0.973 0.957 0.491 1
116Cd 24.622 0.404 0.150 0.961 0.961 0.474 0.965 1
128Te 26.073 0.534 0.154 0.947 0.968 0.515 0.916 0.930 1
130Te 24.674 0.498 0.158 0.899 0.927 0.575 0.862 0.870 0.964 1
136Xe 24.644 0.254 0.187 0.805 0.846 0.663 0.747 0.773 0.898 0.916 1
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QRPA results from Ref. [22] (dots) and the latest shell-
model results from Ref. [23,24] (stars, for the available
nuclei). For each nucleus, these independent�i evaluations
fall within our estimated 3� range, �0

i � 3�i. Joint esti-
mates of ð�i; �jÞ for couples of nuclei appear to be roughly
aligned along (or parallel to) the major axis of each ellipse,
providing an independent confirmation of positive correla-
tions between the NME. The joint estimates also fall within
our 3� ellipses in most cases, with a few moderate ex-
ceptions in some panels of Fig. 2. We refrain, however,
from enlarging our errors (or decreasing their correlations),
in order to accommodate these few outliers within each 3�
error ellipse. A motivated revision of our estimates should
be based on a detailed comparison of our probability dis-
tributions with analogous ones from independent calcula-
tions—rather than with a few sparse points from the
published literature.

Therefore, it would be useful if other theoretical groups
in the 0��� field could also present ‘‘statistical samples’’
of NME calculations, as suggested in this work, so as to
provide independent estimates of (co)variances for their
NME estimates. In fact, our (co)variances cannot be di-
rectly applied to other NME evaluations which, in general,

do not share the same set of error sources. In any case, we
stress that our evaluation of QRPA uncertainties is con-
servative enough to cover the most updated, independent
NME calculations within �3� for each individual nu-
cleus—see Table VI in the Appendix. Further work is
clearly needed to achieve a better convergence among the
central values estimated in different models and, possibly,
to reduce their associated errors.
Some final remarks are in order. As already mentioned,

the high correlation in each panel of Fig. 1 is mainly due to
the fact that, if the s.r.c. model or the gA parameter are
varied, all NME tend to either increase or decrease jointly.
However, the assumption that gA is the same in all nuclei
may be too strong, as the amount of quenching might
change in different nuclei. In particular, we have shown
in [25] that, by using more data besides 2��� as additional
constraints, the fitted values of gA is not necessarily con-
stant. Independent variations of gA in different nuclei
would generally weaken the correlations in Fig. 1.
Similarly, nucleus-dependent deformations (ignored in
this work) might lead to a further spread of errors and to
weaker correlations. In general, for any two given nuclei,
the more different their physics (in terms of gpp, gA,

FIG. 1 (color online). Scatter plot of estimated QRPAvalues for the (logarithms of) nuclear matrix elements ð�i; �jÞ for each couple
of nuclei ði; jÞ, together with the error bars induced by gpp uncertainties. In each panel, also shown is the 1� error ellipse,

conservatively estimated on the basis of the scatter plots. See the text for details. Color code for s.r.c: blue (Jastrow), red (UCOM).
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deformation, etc.), the weaker their correlation (in terms of
nuclear matrix elements). Our estimated correlations might
thus be lowered in the future, should the standard assump-
tions in QRPA modeling be relaxed in different ways for
different nuclei. Despite all these caveats, our 
ij matrix

represents at least a first, approximate attempt to quantify
existing correlations of theoretical uncertainties.
Neglecting 
ij altogether would definitely lead to worse

approximations.

IV. APPLICATIONS

In this section we apply the previous results to cases of
practical interest, in order of increasing complexity.

A. An application not involving correlations

As a first application (not involving correlations), we
translate 90% C.L. limits on half-lives into 90% limits on
the Majorana neutrino mass. We remind that a two-sided
90% C.L. range corresponds to �1:64� (�	2 ¼ 2:7);
therefore, the claim in Eq. (14) corresponds to

�i ¼ �0i � 1:64si ¼ 25:355� 0:118 ð90%C:L:; i¼ 76GeÞ:
(15)

and thus to the following 90% C.L. range for � [as given
by Eq. (10)]:

�� 1:64� ¼ 1

2
ð�i � �0i � 1:64siÞ � ð�0

i � 1:64�iÞ
¼ �0:554� 0:208 ð90%C:L:; i ¼ 76GeÞ;

(16)

where the two errors (si=2 and �i) have been added in
quadrature, being uncorrelated. The corresponding pre-
ferred range for the Majorana neutrino mass is:

m��=eV ¼ ½0:17; 0:45� ð90%C:L:; i ¼ 76GeÞ: (17)

The best one-sided 90% C.L. limits for various nuclei
have been recently reviewed in [26], in terms of half-lives
at 90% C.L. (�i > �90i ), as reported in Table II. It is worth
noticing that, if former data from the Heidelberg-Moscow
experiment were interpreted as a limit on (rather than a
signal of) 0�2� decay, the 90% C.L. bound on the 76Ge
half-life would be 1:9� 1025 y [33], slightly stronger than
the one placed by IGEX [27] in Table II.
The information in Table II can be transformed into 90%

C.L. limits of the form �<�90 via the relation

FIG. 2 (color online). Error ellipses at 1�, 2� and 3�, as derived from Fig. 1 and compared with independent nuclear matrix element
calculations from [22] (QRPA, dots) and [23] (shell model, stars). Color code for s.r.c: blue (Jastrow), red (UCOM).
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�<
1

2
ð�i��90i Þ��i<

1

2
ð�i��90i Þ��0

i þ1:64�i ¼�90;

(18)

where we have linearly added two one-sided limits at 90%:
an experimental one (� �90i =2) and a theoretical one (�
�90
i þ 1:64�i). In the absence of more detailed informa-

tion about the (unpublished) probability distribution of
experimental �i’s, this is the most conservative choice.

Figure 3 shows the results of this exercise, in terms of
m��=eV ¼ 10�. The shaded band on the left corresponds

to the 90% C.L. range in Eq. (15), while the bands on the
right are obtained by inserting the �90i limits of Table II into
Eq. (18), except for the very weak limit from 96Zr which is
out of scale. No experiment appears to have probed the
90% C.L. range preferred by the Klapdor et al. claim,
although IGEX and CUORICINO have almost reached
its lower end.

It is affirmed in [31] that the CUORICINO limit probes
part of the Klapdor et al. range in m��, seemingly in

contrast with our results. However, the arguments in [31]
involve a comparison of two different confidence levels,
namely, the 90% C.L. limit from 130Te versus the 99.73%
C.L. range (� 3�) from 76Ge. The latter range is a factor

of 3�=1:64� ¼ 1:83 wider than the appropriate 90% C.L.
range used in Fig. 3 (left side), and thus leads to more
optimistic conclusions. In Ref. [14] the comparison was
consistently made at the same C.L. for both nuclei, but it
involved an intermediate step where correlations were not
taken into account (see next subsection), leading again to
an optimistic impact for the CUORICINO limit. The analy-
sis proposed in this work shows that, actually, neither
IGEX nor CUORICINO exclude fractions of the range
claimed in [16] at comparable confidence levels, as far as
our estimates for �i ¼ �0

i � �i (and 
ij) hold.

B. Comparison of half-lives in a couple of nuclei

Here we consider a more direct comparison via observ-
able half-lives in two nuclei, bypassing the unobservable
Majorana mass m��. We take two different nuclei i and j,

characterized by nuclear matrix elements �i ¼ �0
i � �i

and �j ¼ �0
j � �j with correlation 
ij. A positive 0���

signal in the first nucleus (�i ¼ �0i � si) translates into a
favored range for the second nucleus (�j ¼ �0j � sj) as

follows.
From Eq. (10) one obtains, by difference,

�j � �i ¼ �ij � �ij; (19)

where

�ij � �0j � �0i ¼ ð�j � �iÞ þ 2ð�0
i � �0

j Þ; (20)

the error �ij being obtained by summing in quadrature the

correlated uncertainties associated to the difference
2ð�0

i � �0
j Þ,

�2ij ¼ 4ð�2
i þ �2

j � 2
ij�i�jÞ: (21)

Note that, if the correlation term �2
ij�i�j were ne-

glected, �ij would be overestimated. The error sj associ-

ated to �0j ¼ �0i þ�ij is obtained by summing in

quadrature the uncorrelated errors si and �ij,

s2i ¼ s2j þ �2ij: (22)

As a result, the error sj has a nonzero correlation rij with

the error sj, as given by rijsisj ¼ s2i , namely,

rij ¼ si
sj
: (23)

If we apply the above results to i ¼ 76Ge and j ¼ 130Te,
then the claim by Klapdor et al. in Eq. (14), �i ¼ 25:355�
0:072, implies that �j ¼ 24:786� 0:161, with error corre-

lation rij ¼ 0:447. Figure 4 shows the corresponding error

ellipse at 1:64� (90% C.L.), in the plane charted by the
0��� half-lives of the nuclei i ¼ 76Ge and j ¼ 130Te. The
ellipse can be thought as the combined result of two
independent constraints, shown as 90% C.L. bands. The
horizontal band corresponds to the experimental claim
�i ¼ 25:355� ð1:64� 0:072Þ. The slanted band corre-

TABLE II. Best current limits on half-lives at 90% C.L. (Ti >
T90
i and �i > �90i ) for different nuclei i, from [26].

i T90
i =y �90i Experiment Ref.

76Ge 1:6� 1025 25.204 IGEX [27]
82Se 2:1� 1023 23.322 NEMO-3 [28]
96Zr 8:6� 1021 21.934 NEMO-3 [28]
100Mo 5:8� 1023 23.763 NEMO-3 [28]
116Cd 1:7� 1023 23.230 Solotvina [29]
128Te 7:7� 1024 24.886 Geochem. [30]
130Te 3:0� 1024 24.477 CUORICINO [31]
136Xe 4:5� 1023 23.653 DAMA [32]

FIG. 3 (color online). Range of m�� allowed at 90% C.L. by
the 0��� claim of [16], compared with the 90% limits placed by
other experiments. The comparison involves the NME and their
errors, as estimated in this work.
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sponds to the theoretical limits placed by our QRPA esti-
mates on the ratio Tj=Ti, namely, �j � �i ¼ �� ð1:64�
�ijÞ. Note that the projection of the ellipse on the x-axis

provides the range preferred at 90% C.L. for the 130Te half-
life: Tj=y ¼ ½0:33; 1:12� � 1025. Projections for other nu-

clei can be similarly derived, as reported in Fig. 5.
Figure 5 shows the two-sided ranges preferred by the

Klapdor et al. claim at 90% C.L. (shaded rectangles on the

right), as well as the one-sided 90% C.L. limits from
Table II (bands on the left), for the same nuclei as in
Fig. 3. The two-sided limits involve the use of NME errors
and correlations, except for 76Ge, which is a purely experi-
mental input. Once more, we see that none of the existing
limits can exclude a fraction of the range favored by
Klapdor et al. [16] at a comparable confidence level,
although IGEX and CUORICINO have almost reached it.
The more optimistic claim about the CUORICINO impact
in [31] was based on a larger favored range for the 130Te
half-life, as obtained by ignoring correlations in the �ij
estimate of Eq. (21).
We emphasize that the contents of Figs. 3 and 5,

although similar, are not equivalent. The comparison of
experimental sensitivities in Fig. 3 is made in terms of a
derived quantity ðm��Þ, while in Fig. 5 it is directly made

in terms of observables (Ti). One-sided bounds in Fig. 3 are
obtained by linearly adding 90% C.L. theoretical and
experimental limits [Eq. (18)], while in Fig. 5 only the
latter limits are used; conversely, theoretical errors are used
with full correlation information in the allowed (two-sided)
bars of Fig. 5. We think that a comparison in terms of
observables, as in Fig. 5, provides a more faithful repre-
sentation of the current 0��� decay sensitivities.
We conclude this subsection by discussing the 90% C.L.

prospective sensitivities (in terms of Ti) of the most prom-
ising future 0��� projects. Table III reports such limits,
according to the recent review in Ref. [26]. The values in
Table III are largely beyond the two-sided favored ranges
in Fig. 5, except perhaps for 136Xe, where the expected
sensitivity is only a factor <2 beyond the Klapdor et al.
favored range. This gain may be insufficient if one requires
a more demanding check of the claim, at a confidence level
significantly higher than 90%. It should be added, however,
that all the projects in Table III expect to proceed in a
second phase of operation with larger exposures and lower
backgrounds, improving the quoted sensitivities by, possi-
bly, another order of magnitude [26].

C. Combination of half-life data from several nuclei,
and degeneracy effects

Let us consider a future, optimistic situation where
0��� decay is established in N different nuclei, with
measured half-lives

FIG. 4 (color online). Example of theoretical and experimental
constraints at 90% C.L., in the plane charted by the 0��� half-
lives of 76Ge and 130Te. Horizontal band: range preferred by the
0��� claim of [16]. Slanted band: constraint placed by our
QRPA estimates. The combination of the two constraints pro-
vides the shaded ellipse, whose projection on the abscissa gives
the range preferred at 90% C.L. for the 130Te half-life.

FIG. 5 (color online). Range of half-lives Ti preferred at 90%
C.L. by the 0��� claim of [16], compared with the 90% limits
placed by other experiments. The comparison involves the NME
and their errors, as well as their correlations, estimated in this
work.

TABLE III. Prospective half-life sensitivities at 90% C.L.
(T90

i ) for different nuclei i in promising future projects, as

reported in [26].

i T90
i =y Project

76Ge 2:0� 1026 GERDA, MAJORANA
82Se 2:0� 1026 SuperNEMO
130Te 2:1� 1026 CUORE
136Xe 6:4� 1025 EXO
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�i ¼ �0i � si ði ¼ 1; . . . ; NÞ: (24)

Assuming that 0��� decays proceed only through light
Majorana neutrino exchange, these measurements will fix
one unknown parameter (�) via a set of N linear equations
analogous to Eq. (10),

�0i � si ¼ �i � 2ð�0
i � �iÞ � 2� ði ¼ 1; . . . ; NÞ;

(25)

where the experimental errors si are, in general, uncorre-
lated (being obtained in independent experiments), while
the theoretical errors �i have nontrivial correlations 
ij

(being obtained within the same QRPA model).
This overconstrained system can be solved by the least-

squares method, i.e., by minimizing the 	2 function

	2ð�Þ ¼ X
ij

ð�0i � �i þ 2�0
i þ 2�Þ

�Wijð�0j � �j þ 2�0
j þ 2�Þ; (26)

where the weight matrix Wij is the inverse of the total

covariance matrix (including experimental and theoretical
errors),

½W��1
ij ¼ �ijsisj þ 4
ij�i�j: (27)

The 	2 function is quadratic in �,

	2ð�Þ ¼ a�2 þ b�þ c; (28)

where

a ¼ 4
X
ij

Wij; (29)

b ¼ 4
X
ij

Wijð�0i � �i þ 2�0
i Þ; (30)

c ¼ X
ij

ð�0i � �i þ 2�0
i ÞWijð�0j � �j þ 2�0

j Þ: (31)

The minimum value 	2
min and the one-sigma shift 	2

min þ 1
are reached for � ¼ �0 and � ¼ �0 � �, respectively,
where

�0 ¼ � b

2a
; (32)

� ¼ 1ffiffiffi
a

p ; (33)

	2
min ¼ c� b2

4a
: (34)

The fit is acceptable if 	2
min=ðN � 1Þ ’ 1. Much higher

value of 	2
min might signal, e.g., new physics beyond the

standard mechanism of 0��� decay via light Majorana
neutrinos (barring experimental and theoretical mistakes).
However, the analysis of nonstandard mechanisms is be-
yond the scope of this work.

As a practical example for the standard 0��� case, we
consider decay searches in each of the four nuclei reported
in Table III, in the hypothesis that the true value of m�� is

0.2 eV (i.e., � ¼ �0:70), close to the lower end of the
range in Eq. (17). We assume that the experiments will
measure the expected values for the half-lives Ti,

m��=eV ¼ 0:2 ) Ti=y ¼

8>>><
>>>:

4:43� 1025 ð76GeÞ;
1:34� 1025 ð82SeÞ;
1:20� 1025 ð130TeÞ;
3:43� 1025 ð136XeÞ;

(35)

with a fractional uncertainty �Ti=Ti ¼ 20% (correspond-
ing to si ¼ 0:08). By construction, the best fit to any
combination of these mock data gives back �0 ¼ �0:7
and 	2

min ¼ 0. The relevant output parameter is then the

reconstructed � uncertainty, �, from Eq. (33).
Table IV shows the � values, for all possible combina-

tions of mock data from the four nuclei (ranging from a
single nucleus to all of them). We comment first the results
in the 6th column, which are obtained by (incorrectly)
switching off correlations, i.e., by setting 
ij ¼ �ij, as it

is often done in the literature.
Without correlations, the error � is given by the familiar

combination of total errors from independent data,

1

�2
¼ X

i

1

�2
i þ ðsi=2Þ2

’ X
i

1

�2
i

; (36)

where we have used the fact that any of the �i is a factor of
3–4 greater than si=2 ¼ 0:04. Although the error � is
dominated by theoretical uncertainties, it decreases by

TABLE IV. Combination of any among the four hypothetical
half-life data Ti in Eq. (35) with experimental uncertainty
�Ti=Ti ¼ 20%. Results are given in terms of the total 1� error
� on the parameter � ¼ log10ðm��=eVÞ, including theoretical

uncertainties without and with correlations. Bullets indicate the
data included in the evaluation (from 1 to 4 data).

# of data 76Ge 82Se 130Te 136Xe � (w/o corr.) � (with corr.)

1 � 0.128 0.128

1 � 0.141 0.141

1 � 0.163 0.163

1 � 0.191 0.191

2 � � 0.095 0.128

2 � � 0.100 0.128

2 � � 0.106 0.127

2 � � 0.107 0.141

2 � � 0.114 0.141

2 � � 0.124 0.163

3 � � � 0.082 0.127

3 � � � 0.085 0.127

3 � � � 0.089 0.127

3 � � � 0.093 0.140

4 � � � � 0.075 0.127
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increasing the data sample (see 6th column of Table IV), as
a consequence of (incorrectly) assuming no correlations.
Formally, the combination of all the four data would then
provide the estimate � ¼ �0:7� 0:075, corresponding to
m�� ’ 0:2� 0:035.

Unfortunately, including correlations spoils this nice
result. Table IV (last column) shows that, with good ap-
proximation, the uncertainty � cannot be much better than
the smallest theoretical uncertainty �i among the set of
nuclei included in the fit. Indeed, even with all four nuclei
one obtains � ¼ 0:127, nearly the same as � ¼ 0:128 from
the single nucleus 76Ge (characterized by the smallest
theoretical error, �i ¼ 0:122). Therefore, regardless of
how many accurate experiments are combined, the final
accuracy for our test-case Majorana mass will not be better
than � ’ �0:7� 0:13, namely, m�� ’ 0:2� 0:06.

The degeneracy effect induced by correlations can be
easily understood in the limiting case of equal and com-
pletely correlated theoretical errors (�i � � and 
ij �
�ij). In this case, the QRPA uncertainties would reduce

to a common shift �i ! �i þ � for all nuclei, where � 2
½��;þ�� within one standard deviation. [In Fig. 1, the
ellipses would collapse to ‘‘segments’’ with 45	 slope in all
panels.] A common shift of all �i is degenerate with a shift
� ! �� � via Eq. (10),

�i ¼ �i � 2ð�i þ �Þ � 2ð�� �Þ; (37)

and, thus, the parameter � is affected by an irreducible
uncertainty � ¼ �. For unequal NME errors �i, the most
accurate one dominates in equations like Eq. (37) and thus

� ’ minf�ig; (38)

as anticipated.
The difference between � estimates without or with

correlations, in the combination of data from N different
nuclei, is striking. Without correlations, and for compa-
rable theoretical uncertainties, the error � would scale asffiffiffiffi
N

p
[Eq. (36)]. Including correlations, the error � becomes

dominated by the single, most accurate NME, irrespective
of N [Eq. (38)]. One should thus reduce not only the size,
but also the correlations of theoretical errors, in order to
fully exploit them�� sensitivity of future, multiple-isotope

0��� searches.

D. Prospective constraints on the absolute neutrino
mass and Majorana phase

The Majorana mass in 0��� decay (m��) is one of the

most sensitive probes of the absolute neutrino mass scale
m�, together with the effective neutrino mass in beta decay
(m��) and the sum of the three neutrino masses in cosmol-

ogy (�); see [14] for updated bounds. It is tempting to
combine prospective data on ðm��;m�;�Þ in the optimis-

tic case of a possible signal ‘‘waiting around the corner’’,
i.e., for masses close to the current conservative cosmo-

logical bound � & 0:6 eV [14,34,35]:

m1 ’ m2 ’ m3 � m� ’ 0:2 eV: (39)

For the sake of simplicity, within current neutrino oscil-
lation phenomenology [14], we approximate the mixing
matrix values U2

ei as:

U2
e1 ’ 0:69; (40)

U2
e2 ’ 0:31ei�; (41)

U2
e3 ’ 0; (42)

where� is an unknownMajorana phase. For nearly degen-
erate masses it is thus [12]

m� ’ m�; (43)

� ’ 3m�; (44)

m�� ’ m�f; (45)

with

f ’ jU2
e1 þU2

e2j 2 ½0:38; 1�; (46)

where the upper (lower) end of the range is obtained for the
CP-conserving case ei� ¼ þ1 (ei� ¼ �1).
Let us test the above scenario with mock data, having the

following central values and fractional 1� errors:

m� ’ 0:2ð1� 0:5Þ eV; (47)

� ’ 0:6ð1� 0:3Þ eV; (48)

m�� ’ 0:2ð1� 0:3Þ eV: (49)

In the above equations, the 50% uncertainty on m� corre-

sponds to the smallest 1� error estimated for the upcoming
�-decay experiment KATRIN (�m� ’ 0:1 eV) [36]. A

30% uncertainty on � seems appropriate (and even con-
servative) for a signal in next-generation cosmological data
[37,38]. The putative 30% uncertainty on m�� reflects the

discussion in the previous subsection.
Combining the ‘‘data’’ in Eqs. (47) and (48), one obtains

m� ’ 0:2ð1� 0:25Þ; (50)

which, together with Eq. (45) and the ‘‘datum’’ in Eq. (49),
imply

f ’ 1� 0:4: (51)

This result, compared with the range in Eq. (46), would
slightly prefer one CP-conserving case (ei� ¼ þ1) over
the other (ei� ¼ �1), at the level of �1:5�. Therefore, in
an optimistic—but not completely unrealistic—scenario
with degenerate neutrino masses, such as the one consid-
ered above, a possible determination of m� � 0:2 eV with
�25% accuracy (viam� plus �) might be accompanied by
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some indications about theMajorana phase� (viam��). In

this sense, we feel sympathetic towards more encouraging
viewpoints [39,40] than those expressed by a ‘‘no-go de-
tection’’ for � [41], although a real ‘‘measurement’’ of �
remains undoubtedly very challenging, even in the most
favorable scenarios.

V. SUMMARYAND PROSPECTS

Nuclear matrix elements for 0��� decay are affected by
relatively large theoretical uncertainties. Within the QRPA
approach, we have shown that, within a given set of nuclei,
the correlations among NME errors are as important as
their size. We have made a first attempt to quantify the
covariance matrix of the NME, and to understand its
effects in the comparison of current and prospective
0��� results for two or more nuclei. The effects have
been clarified through a series of examples, involving an
increasing number of observables. It turns out that corre-
lations may severely limit the accuracy in the reconstruc-
tion of m�� from any number of 0��� observations in

different nuclei, due to a degeneracy between NME and
m�� uncertainties. In particular, the fractional error on

m�� is ultimately dominated by a single fractional NME

uncertainty (the smallest one, among the set of nuclei
considered). Breaking correlations between different nu-
clei is thus an important goal, which requires constraining
(and improving) the theoretical model of each nucleus by
means of many independent data (not only 2��� data as
currently used). In this way, systematic effects common to
all nuclei may be reduced. Another relevant goal is to
compare correlation estimates in future independent cal-
culations (e.g., QRPA versus shell-model). While pursuing
such a long-term theoretical and experimental program, a
covariance analysis like the one proposed in this work may
represent a useful tool, in order to correctly estimate cur-
rent or prospective sensitivities to 0��� decay and to
Majorana neutrino parameters.
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APPENDIX

This Appendix clarifies the role of different conventions
about the 0��� phase-space factor Gi, the axial vector
coupling gA, the nuclear matrix elements M0

i, and the
nuclear radius Rnucl, in comparison with other authors.

An agreement on common conventions would be desirable
in the future, to avoid possible confusion or ambiguity (see
also [42]).
According to usual definitions, the phase-space Gi con-

tains a factor ðg2A=RnuclÞ2, where Rnucl ¼ r0A
1=3. In this

work, the adopted values of Gi refer to r0 ¼ 1:1 fm and
gA ¼ 1:25 [43], while changes of gA are conventionally
embedded in M0

i (rather than in Gi) via the prefactor
ðgA=1:25Þ2 in Eq. (4) [4,18]. In order to match such con-
vention, alternative calculations of Gi using r0 ¼ 1:2 fm
[44–46] must be rescaled by a factor f20 ’ 1:2 (where f0 ’
1:1 ’ 1:2=1:1) [42].
Table V compares three different phase-space calcula-

tions (in terms of Gim
2
e), all normalized to the same

reference values gA ¼ 1:25 and r0 ¼ 1:1 fm. One can
notice residual differences of �5% between the results of
[43–45], and of �10% between those of [43,46], presum-
ably due to different approximations used to evaluate the
electron wave function and the screening corrections. In
our opinion, a typical uncertainty for the computed Gi

values may be estimated as �5%, corresponding to a
variation ��i ’ �0:02 for the �i values in Table I. Such
minor error, being much smaller than the theoretical and
experimental uncertainties considered in this work (��i 

�i, si), has been ignored—but it might become more
important in the future.
Concerning the nuclear matrix elements jM0

ij, the values
calculated in [22] (QRPA) and [23,24] (shell model) refer
to r0 ¼ 1:2 fm, and must be rescaled by a factor 1=f0 for
comparison with the NME used in this work. Furthermore,
since the values in [22] do not embed the prefactor
ðgA=1:25Þ2, they must be rescaled by another factor
1:25�2 in the subcase gA ¼ 1; this further rescaling is not
necessary for the NME values in [24]. Table VI reports the
rescaled values of jM0

ij from [22,24] (in terms of loga-
rithms �i), as also used in Fig. 2. These �i values are all
contained within our estimated three-standard-deviation
ranges �0

i � 3�i, which are reported in the last two rows
of Table VI.

TABLE V. Comparison of Gim
2
e estimates (in units of

1015 y�1) for gA ¼ 1:25. The second column refers to the
calculations reported in [43] for r0 ¼ 1:1 fm, as used in this
work. The third and fourth columns refer to independent esti-
mates [44–46] for r0 ¼ 1:2 fm, rescaled by a compensating
factor f20 ¼ 1:2.

Nucleus Ref. [43] Refs. [44,45] Ref. [46]

76Ge 7.93 7.67 7.57
82Se 35.2 33.8 32.8
96Zr 73.6 70.2 68.4
100Mo 57.3 54.8 52.8
116Cd 62.3 59.3 56.2
128Te 2.21 2.20 1.99
130Te 55.4 53.2 49.7
136Xe 59.1 56.8 52.4
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