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We present a study of the charmless semileptonic B-meson decays BY — w{¢*v and B* — n€¢*v. The
analysis is based on 3.83 X 108 BB pairs recorded at the Y(4S) resonance with the BABAR detector. The w

mesons are reconstructed in the channel w — 7" 77~ 77° and the 1 mesons in the channels n — 77~ 7

0

and 7 — yy. We measure the branching fractions B(B* — w{*v) = (1.14 = 0.164, * 0.08.,) X 10~*
and B(B* — n€* ) = (0.31 = 0064 = 0.08,) X 1074,

DOI: 10.1103/PhysRevD.79.052011

Measurements of branching fractions of charmless semi-
leptonic B decays can be used to determine the magnitude
of the Cabibbo-Kobayashi-Maskawa matrix [1] element
Vu, and thus provide an important constraint on the uni-
tarity triangle. Studies of exclusive decays allow for more
stringent kinematic constraints and better background sup-
pression than inclusive measurements. However, the pre-
dictions for exclusive decay rates depend on calculations of
hadronic form factors and are thus affected by theoretical
uncertainties different from those involved in inclusive
decays. The description of semileptonic decays requires
one or three form factors for final states with a pseudosca-
lar or a vector meson, respectively, if lepton masses are
neglected. Currently, the most precise determination of
| V| with exclusive decays, both experimentally and theo-
retically, comes from a measurement of B — 7{v decays
[2]. It is important to study other semileptonic final states
with a pseudoscalar or a vector meson to perform further
tests of theoretical calculations and to improve the knowl-
edge of the composition of charmless semileptonic decays.

In this paper, we present measurements of the branching
fractions B(B* — wf¢*v) and B(BT — nf*v), where
€ = e, wu, and charge-conjugate modes are included im-
plicitly. These decays have previously been studied by the
CLEO [3] and BABAR [4,5] collaborations (Bt — n{¢*v)
and by the Belle [6] Collaboration (B* — w{" v). The w
meson is reconstructed in its decay to three pions (B(w —
at o~ %) = (89.2 + 0.7)% [7]), while for the 1 meson
the decays to three pions and to two photons (B(n —
ata 70 = (22.68 + 0.35)%, B(n— vyy) =
(39.39 + 0.24)% [7]) are used. In contrast to earlier Bt —
nt tv analyses from BABAR [4,5], the second B meson in
the event is not reconstructed; this yields a much larger
candidate sample.

The results presented here are based on a data sample of
3.83 X 10® BB pairs recorded with the BABAR detector [8]
at the PEP-II asymmetric-energy e' e~ storage rings at the
Stanford Linear Accelerator Center (SLAC). The data

PACS numbers: 13.20.He

correspond to an integrated luminosity of 347 fb~! col-
lected at the Y(4S) resonance. In addition, 35 fb~! of data
collected about 40 MeV below the resonance (off-
resonance) are used for background studies. Simulated
BB events are used to estimate signal efficiencies and
shapes of signal and background distributions. Charmless
semileptonic decays are simulated as a mixture of three-
body decays B — X, {v (X, = 7, 1, 7', p, @) and have
been reweighted according to the latest form-factor calcu-
lations from light-cone sum rules [9-11]. Decays to non-
resonant hadronic states X, with masses my > 2m, are
simulated using the differential decay rate given in
Ref. [12], which produces a smooth my spectrum. The
GEANT4 package [13] is used to model the BABAR detector
response.

The reconstruction of the signal decays BY — wl*v
and B* — n€" v requires the identification of a charged
lepton (e or w) and the reconstruction of an @ or 1 meson.
The two dominant sources of background are semileptonic
decays with a charm meson in the final state, B — X {v
(X, =D,D*,D**, D™ ), and e*e” — qg3 (g = u,d, s, c)
continuum events. Other backgrounds include charmless
semileptonic decays that are not analyzed as signal and BB
events with lepton candidates from secondary decays or
from misidentification of hadrons as leptons. The center-
of-mass momentum of the lepton is restricted to |py| >
1.6(1.0) GeV [14] for the w (7n) final state. This require-
ment significantly reduces those background events that
have hadrons misidentified as leptons and rejects a large
fraction of leptons from secondary decays or photon con-
versions. For the reconstruction of the w or 1 meson,
charged (neutral) pions are required to have a momentum
in the laboratory frame above 200 (400) MeV to reduce
combinatorial background. Neutral pion candidates are
formed from two photons with energies above 100 MeV
and an invariant mass m.,, in the range 100 <m,, <
160 MeV. A three-pion system is accepted as an @ (7))
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candidate if its invariant mass ms, is in the range 760 <
m3, <806 MeV for w candidates and 540 <m;, <
555 MeV for n candidates. The 1 meson is also recon-
structed via its decay into two photons, each with an energy
above 50 MeV, with a two-photon invariant mass in the
range 520 <m,, <570 MeV. To reduce the combinato-
rial background, two-photon combinations are rejected as
possible 7 candidates if either of the photons can be
combined with any other photon of the event to form a
system with an invariant mass close to the 70 mass, 110 <
m,, <160 MeV.

Event-shape variables that are sensitive to the topologi-
cal differences between jetlike continuum events and more
spherical BB events are used to suppress backgrounds from
ete” — gg and other QED processes. The normalized
second Fox-Wolfram moment R, [15] is required to be
less than 0.5 and a loose requirement on the second
Legendre moment L, [16] of L, <3.0 GeV is imposed.
In addition, the event must contain at least four charged
tracks.

The charged lepton is combined with an w (1) candidate
to form a so-called Y pseudoparticle candidate, whose
four-momentum is defined as the sum of the corresponding
lepton and hadron four-momenta. All charged tracks be-
longing to the Y are fit to a common vertex. This vertex fit
must yield a y? probability of at least 0.1%. Multiple Y
candidates per event are possible and all candidates are
retained. The Y multiplicity is well described by the
Monte-Carlo simulation. About 96% (98%) of simulated
BT — wl"v (B — n{*v) signal events and more than
90% of all selected data events, which include both signal
and background, contain only one Y candidate.

The momentum of the candidate neutrino is calculated
from the difference between the momenta of the colliding-
beam particles and the vector sum of the momenta of all
detected particles in the event. The energy of the candidate
neutrino is obtained as the magnitude of its momentum,
since this is less susceptible to bias from lost particles or
additional tracks than the missing energy E ;. of the event.
The magnitude of the missing-momentum vector must be
at least 500 MeV. The effect of losses due to detector
acceptance on the reconstruction of the neutrino candidate
is reduced by requiring the missing-momentum vector in
the laboratory frame to point into the polar-angle range
0.3 < O iss < 2.2 rad. If the missing energy and momen-
tum in the event come from a single undetected neutrino
and the rest of the event is correctly reconstructed, the
missing mass m;,, measured from the whole event should
be compatible with zero. Because the missing-mass reso-
lution varies linearly with the missing energy, only events
with [m2.  /(2E )| < 2.5 GeV are selected.

If the Y candidate originates from a signal decay that has
been correctly reconstructed, the cosine of the angle be-
tween the B meson and the Y candidate can be calculated
as coslgy = QEREy —m% — m3)/(21p3l1p31). Here myg,

PHYSICAL REVIEW D 79, 052011 (2009)

>

Ey, Dy, my, Ey, py refer to the masses, energies, and
momenta of the B meson and the Y candidate, respectively.
In the calculation of cos6py, the B-meson energy Ej and
momentum pj are not measured event by event. Instead,
Ej = \/s/2 is given by the center-of-mass energy of the
colliding-beam particles /s and the magnitude of the B

momentum is calculated as |py| = 4/Ej? — m}. Signal
candidates are required to satisfy —1.2 <cosfgy < 1.1.

This requirement was kept loose to account for the limited
detector resolution and photon energy losses.

To reduce backgrounds without significant loss of sig-
nal, the momenta of the lepton pj and of the hadron pj, ,,
that make up a Y candidate are restricted. For B* —
wftv, the momenta are required to satisfy |p|>
1.3 GeV or |p;l > 2.0 GeV or |p;| + [p;] > 2.65 GeV.
In the case of B — n€*v, the conditions |pj|>
1.3 GeV or |pj|>2.1GeV or Iﬁ’;l +|p;l > 2.8 GeV
have to be fulfilled.

The kinematic consistency of the reconstructed Yv
system with a signal B decay is verified using the two
variables AE = (Pg * Ppeam — 5/2)/+/s and  mpg =

J(S/Z + ﬁB ’ ﬁbeam)z/Egeam - ﬁ%}’ Pyeam =
(Epeam» Peam) 18 the four-momentum of the colliding-
beam particles and Py = (Ep, pg) is the B-meson four-
momentum computed as the sum of the four-momenta of
the Y and the v candidates. These variables are later used to
extract the signal yields in a fit to the two-dimensional AE
vs mgg distribution. Only candidates that fulfill the loose
requirement |AE| < 0.95 GeV and mgg > 5.095 GeV (fit
region) are retained.

At this stage of the selection, the signal-to-background
ratio S/B, where S and B denote the expected signal and
background yields, respectively, is small. It amounts to
1.5% for B* — w€*v and 1.8% (1.0%) for BT — n{*v
with y — 77~ 7%(yy). The signal efficiencies for the
sum of decays with electrons and muons, estimated from
simulation, are 2.8% for BT — w{* v and 4.0% (9.4%) for
Bt — nltv with n — 777~ 7%(yy).

For further discrimination between the signal and the
background, a multivariate selection based on neural net-
works [17] is used. For each of the three signal channels
under study, neural networks with two hidden layers (four
and two neurons, respectively) are applied consecutively to
separate the signal from the two main backgrounds. A first
neural network discriminates the signal against gg contin-
uum events; a second network is used to further distinguish
the signal from the B — X .€v background. The neural-
network decision is based on the following input variables:
mrznjgg/(ZEmiss)’ emiss’ COSQBY’ RZ’ L2’ COSAGthrust» the co-
sine of the polar-angle difference between the thrust axes
of the Y candidate and of the rest of the event, and cosfy,,
the cosine of the lepton ‘“‘helicity angle” measured in the
rest frame of the virtual W (calculated using the lepton and
neutrino candidates) relative to the W direction in the B

where
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TABLE 1. Signal efficiencies, €ggna, and signal-to-background
ratios, S/B, after the neural-network selection.

Fit region Signal region
€gignat(%) /B S/B
B* — wl"v 1.00 0.15 0.46
Bt > nltv, > ata o’ 1.62 0.10 0.35
BY = nttv, n— yy 4.90 0.04 0.15

rest frame. For the three-pion final states, the Dalitz am-
plitude, the magnitude of the vector product of the 7™
momentum and the 7~ momentum in the @/ rest frame,
normalized to its maximum value, serves as an additional
input variable to separatt w — 7w 7 7 and n—
77~ 70 decays from combinatorial background.

The training of the neural networks is done using the
corresponding simulated signal and background samples
for each of the three signal channels separately.
Independent simulated event samples are used to validate
the training. Based on Monte-Carlo simulation, the selec-
tion criterion for each of the output discriminants is chosen
to maximize the quantity S/+/S + B. The signal efficien-
cies and the S/B ratios after the neural-network selection
are given in Table I for the fit region and for the signal
region delimited by —0.2 < AE < 0.4 GeV and mgg >
5.255 GeV.

For the determination of the signal branching fractions,
the AE vs mgg distributions of the simulated signal and
backgrounds are fit to the data distribution for the three
signal channels independently. The fits are based on an
extended binned maximum-likelihood method [18] and
take statistical fluctuations of both the data and the
Monte-Carlo samples into account. The binning of the
AFE vs mgg distributions used in the fits contains a total
of 50 bins with smaller sizes in the signal region to resolve
the signal shape and larger sizes in the part of the fit region
outside of the signal region to determine the background
normalizations from data. The shapes of the signal and
background distributions are taken from simulation. The
fits determine the relative fractions of the signal and some
of the background samples in the data.

The free parameters of the fits are the normalizations of
the signal and the B — X_.€v background, and for the
B* — w{" v channel also the overall normalization of

TABLE II.
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the continuum background. The B — X _.£v normalization
is left free to account for a slight discrepancy between the
B — X {v yields in data and Monte-Carlo simulation. The
relative contributions of events with electrons or muons to
the continuum background have been determined using
off-resonance data. Compared to the B* — w€* v channel,
the B — n€™* v channels suffer from a larger continuum
background and the fit shows larger correlations between
signal and this background component. The normalization
of the continuum background in the B* — 7€ v channel
is therefore taken from off-resonance data and is not varied
in the fit. All other background distributions, mainly other
B — X,{v decays and B decays with secondary or mis-
identified leptons, are fixed to their Monte-Carlo predic-
tions. The fit procedure has been validated with simulated
signal and background samples.

The resulting signal yields and branching fractions for
the three signal channels are presented in Table II. The
scale factors between the B — X {v background yields
predicted by the simulation and the values determined by
the fits are 1.06 + 0.07 for B* — w€*v and 0.96 = 0.07
(1.12 = 0.03) for Bt — p¢tv with n > 777 7° (n —
vvy). The correlations between the signal and the B —
X {v parameters determined by the fits are 0.08 for B* —
wf*v and —0.60 ( — 0.46) for B* — n¢*v with n —
at @~ 7° (y — yvy). The correlation between the signal
and the continuum parameters for the BY — w{* v chan-
nel is —0.55 and the continuum background normalization
is adjusted by a factor of 0.89 = 0.12 with respect to the
normalization obtained from the off-resonance data sam-
ple. The goodness of fit is evaluated using a y>-based
comparison of the fitted AE vs mgg distributions of the
simulated and data samples and is shown in Table II. In
addition, the combined branching fraction for the two
B* — n{" v channels has been obtained from a fit to the
sum of the AE vs mgg distributions for n — 77t 7~ 7% and
n—vy.

Figure 1 shows the projections of the fitted distributions
on AE and mgg for the three signal channels and the
combined B* — m€* v channel. For a better visibility of
the signal, the AFE projections are shown for mpg >
5.255 GeV and the mgg projections are shown for —0.2 <
AE < 0.4 GeV.

The systematic errors on the measured branching frac-
tions are listed in Table III. They are estimated by varying

Signal yields and corresponding branching fractions as determined by the fits for

the three signal channels and the combined B — %€¢* v channel. The last row shows the x> per

degree of freedom.

Bt — wl"v BT — ntty
n—ata 70 n—yy Combined
Nogna 802 + 113 127 + 42 459 + 98 554 = 105
B(1079) 11.4 = 1.6 4.36 £ 1.43 3.01 = 0.64 3.11 = 0.59
x?/d.o.f. 36.0/47 59.9/48 43.2/48 49.7/48
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FIG. 1 (color online).

mgg (GeV)

Projected AE distributions for mgg > 5.255 GeV (top), and mgg distributions for —0.2 < AE < 0.4 GeV

(bottom). From left to right: B™ — w{" v channel, B" — n{" v channel with n — 7" 7~ 7%, B* — n{" v channel with  — yv,
and combined B* — " v channel. The error bars represent the statistical uncertainties on the data. The histograms show simulated
distributions for signal (white), B — X.€v decays (light shaded/yellow), gg-continuum (dark shaded/blue), and all other backgrounds
(hatched) and have been summed up. The distributions of the simulated signal and B — X _.{v background (and the ¢g background for

BT — w{" v) have been scaled to the results of the fits.

the detection efficiencies or the parameters that impact the
modeling of the signal and the background processes
within their uncertainties. The complete analysis is then
repeated and the differences in the resulting branching
fractions are taken as the systematic errors. The total
systematic error is obtained by adding in quadrature all
listed contributions.

TABLE III.

Uncertainties due to the reconstruction of charged par-
ticles and photons are evaluated by varying their recon-
struction efficiencies and the energy depositions of photons
in the simulation. The neutrino reconstruction is affected
by background with long-lived K?, which often escape
detection and contribute to the measured missing momen-
tum of the event. The uncertainty arising from K produc-

Relative systematic errors of the branching fractions B(B™ — w{*v) and B(B™ — n{*v). For the B* — nf*v

channel, the systematic errors for the three-pion and the two-photon final states as well as for the combined result are shown. The total
error in each column is the sum in quadrature of all listed contributions.

Error source 8B(BT — wlv)(%) 8B(BT — nlv)(%)
n—ata 70 n—yy Combined

Tracking efficiency 1.9 49 42 4.6
Photon reconstruction 2.1 1.8 9.1 8.6
K9 production and interactions 2.6 4.8 3.1 1.9
Lepton identification 1.9 33 6.9 6.3
7° /7 identification 3.8 6.9 133 12.2
Neural-net input variables 0.6 0.8 5.9 6.1
D* form factors 0.4 1.0 0.9 1.0
B(B— X Av) 2.1 5.5 7.6 8.0
BB — X, Lv) 2.8 44 9.8 8.6
Secondary leptons 0.3 03 0.6 0.5
Continuum scaling 0.7 15.8 10.4 12.7
Signal form-factor(s) 1.8 5.9 0.3 1.3
B(w/n— a7~ 7%, B(n— vyy) 0.8 1.5 0.6 1.2
Ngi 1.1 1.1 1.1 1.1
fi-/foo 1.2 1.4 0.9 1.0
Total systematic error 7.2 21.1 25.2 25.1
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tion and interactions is estimated by varying their produc-
tion rate as well as their detection efficiency and energy
deposition in the simulation. For lepton identification,
relative uncertainties of 1.4% and 3% are used for electrons
and muons, respectively. A 3% uncertainty is assigned to
the 7/ — vy reconstruction efficiency.

The uncertainty due to the B — X_.€v background is
evaluated by varying the B — D/D*/D**{v branching
fractions [7] and the B — D* form factors [19]. Prior to
the neural-network selection, the background level is high
and discrepancies between data and Monte-Carlo distribu-
tions are observed at roughly the 10% level for some of the
neural-network input variables. To estimate the effect of
these discrepancies on the measured branching fractions,
the dominant background component (B — X {v) is re-
weighted to match the data. The weights are determined
from a B — X €v-enhanced sample which is obtained by
selecting only events that are otherwise rejected by the
B — X, €v neural-network selection and keeping all other
selection criteria unchanged.

For the B — X, £v background, the branching fractions
of the exclusive decays that are not analyzed as signal
are varied within their uncertainties [20]. The nonresonant
part is varied within the range allowed by the uncertainty of
the total B — X, €v branching fraction [20]. The uncer-
tainty due to the normalization of the continuum back-
ground has been determined with off-resonance data for
events with electrons or muons separately. Since the over-
all normalization of the continuum background is adjusted
for Bt — w{* v in the fit, the resulting error in this chan-
nel is smaller than for the B — n{" v channels. For the
normalization of secondary-lepton background, an uncer-
tainty of 6-8%, depending on the signal channel, has been
estimated from a detailed study of the composition of this
background.

Uncertainties in the modeling of signal decays due to the
imperfect knowledge of the form factors affect the shapes
of kinematic spectra and thus the acceptances of signal
decays. The errors on the measured branching fractions are
estimated by varying the parameters of the form-factor
calculations within their uncertainties [10,11].

The branching fractions of the decays w/n — 7" 7~
and n — vy are also varied within their uncertainties
[7]. The uncertainty on the number of produced B mesons
is 1.1% [21]. The uncertainty on the ratio of the Y(4S) —
B*B~ and Y(4S)— B°B° branching fractions,
f+—/foo = 1.065 = 0.026 [20], is taken into account.

0
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The total systematic errors on the measured branching
fractions are 7.2% and 25.1% for the BY — w€* v and the
combined B* — n¢* v channels, respectively.

In summary, we have measured the branching fractions
of B¥ = wf" v and B* — n€* v decays to be

BBT — wltv) = (1.14 + 0.16 = 0.08) X 1074,

(D
B(B* — nttv) = (0.31 = 0.06 + 0.08) X 1074,

where the errors are statistical (data and simulation) and
systematic, respectively.

The B* — n€*v and B" — w{"' v measurements pre-
sented here significantly improve the current knowledge of
these decays. The B* — n€™ v result is compatible with an
earlier measurement by BABAR [5] based on events tagged
by a semileptonic decay of the second B meson, B(Bt —
€t v) = (0.64 = 0.204, * 0.03,) X 107*. The two
analyses are statistically independent and complement
each other. The analysis presented here is statistically
more precise but has larger systematic uncertainties, as
expected for an untagged measurement. We combine the
two BABAR results and obtain B(B* — n€*v) = (0.37 =
0.064 = 0.074y) X 1074 The B* — w{* v branching-
fraction measurement is the first with a significance of
more than 5 standard deviations. It represents an improve-
ment by a factor of 3 over the only earlier measurement by
Belle [6]. The improved measurements of B — wl™ v
and B* — n{" v decays are important ingredients to the
determination of the composition of the inclusive charm-
less semileptonic decay rate. The size of the data samples
is not yet sufficient to perform a measurement in intervals
of the momentum transfer g> of the decay, which would be
necessary to determine |V,,| with an adequate precision.
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