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We have studied the leptonic decay Dþ
s ! �þ��, via the decay channel �þ ! eþ�e ���, using a sample

of tagged Dþ
s decays collected near the D��

s D�
s peak production energy in eþe� collisions with the

CLEO-c detector. We obtainBðDþ
s ! �þ��Þ ¼ ð5:30� 0:47� 0:22Þ% and determine the decay constant

fDs
¼ ð252:5� 11:1� 5:2Þ MeV, where the first uncertainties are statistical and the second are

systematic.

DOI: 10.1103/PhysRevD.79.052002 PACS numbers: 13.20.Fc

I. INTRODUCTION

The leptonic decays of a charged pseudoscalar meson
Pþ are processes of the type Pþ ! ‘þ�‘, where ‘ ¼ e, �,
or �. Because no strong interactions are present in the

leptonic final state ‘þ�‘, such decays provide a clean
way to probe the complex, strong interactions that bind
the quark and antiquark within the initial-state meson. In
these decays, strong interaction effects can be parame-
trized by a single quantity, fP, the pseudoscalar meson
decay constant. The leptonic decay rate can be measured
by experiment, and the decay constant can be determined*Deceased.
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by the equation (ignoring radiative corrections)

�ðPQ �q ! ‘þ�‘Þ ¼
G2

FjVQqj2f2P
8�

mPm
2
‘

�
1� m2

‘

m2
P

�
2
; (1)

where GF is the Fermi coupling constant, VQq is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] ele-
ment, mP is the mass of the meson, and m‘ is the mass
of the charged lepton. The quantity fP describes the am-
plitude for the Q and �q-quarks within the P to have zero
separation, a condition necessary for them to annihilate
into the virtual Wþ boson that produces the ‘þ�‘ pair.

The experimental determination of decay constants is
one of the most important tests of calculations involving
nonperturbative QCD. Such calculations have been per-
formed using various models [3] or using lattice QCD
(LQCD). The latter is now generally considered to be the
most reliable way to calculate the quantity.

Knowledge of decay constants is important for describ-
ing several key processes, such as B� �B mixing, which
depends on fB, a quantity that is also predicted by LQCD
calculations. Experimental determination [4,5] of fB with
the leptonic decay of a Bþ meson is, however, very limited
as the rate is highly suppressed due to the smallness of the
magnitude of the relevant CKM matrix element Vub. The
charm mesons,Dþ andDþ

s , are better instruments to study
the leptonic decays of heavy mesons since these decays are
either less CKM suppressed or favored, i.e., �ðDþ !
‘þ�‘Þ / jVcdj2 � ð0:23Þ2 and �ðDþ

s ! ‘þ�‘Þ / jVcsj2 �
ð0:97Þ2 are much larger than �ðBþ ! ‘þ�‘Þ / jVubj2 �
ð0:004Þ2. Thus, the decay constants fD and fDs

determined

from charm meson decays can be used to test and validate
the necessary LQCD calculations applicable to the
B-meson sector.

Among the leptonic decays in the charm-quark sector,
Dþ

s ! ‘þ�‘ decays are more accessible since they are
CKM favored. Furthermore, the large mass of the � lepton
removes the helicity suppression that is present in the
decays to lighter leptons. The existence of multiple neu-
trinos in the final state, however, makes measurement of
this decay challenging.

Physics beyond the standard model (SM) might also
affect leptonic decays of charmed mesons. Depending on
the non-SM features, the ratio of �ðDþ ! ‘þ�‘Þ=�ðDþ

s !
‘þ�‘Þ could be affected [6], as could the ratio [7,8]
�ðDþ

s ! �þ��Þ=�ðDþ
s ! �þ��Þ. Any of the individual

widths might be increased or decreased. There is an in-
dication of a discrepancy between the experimental deter-
minations [3] of fDs

and the most recent precision LQCD

calculation [9]. This disagreement is particularly puzzling
since the CLEO-c determination [10] of fD agrees well
with the LQCD calculation [9] of that quantity. Some [11]
conjecture that this discrepancy may be explained by a
charged Higgs boson or a leptoquark.

In this article, we report an improved measurement of
the absolute branching fraction of the leptonic decay

Dþ
s ! �þ�� (charge-conjugate modes are implied), with

�þ ! eþ�e ���, from which we determine the decay con-
stant fDs

.

II. DATA AND THE CLEO-C DETECTOR

We use a data sample of eþe� ! D��
s D�

s events pro-
vided by the Cornell Electron Storage Ring (CESR) and
collected by the CLEO-c detector at the center-of-mass
(CM) energy 4170 MeV, near D��

s D�
s peak production

[12]. The data sample consists of an integrated luminosity
of 602 pb�1 containing 5:5� 105 D��

s D�
s pairs. We have

previously reported [13,14] measurements of Dþ
s !

�þ�� and Dþ
s ! �þ�� with a subsample of these data.

A companion article [15] reports measurements of fDs

from Dþ
s ! �þ�� and Dþ

s ! �þ��, with �þ ! �þ ���,

using essentially the same data sample as the one used in
this measurement.
The CLEO-c detector [16–19] is a general-purpose so-

lenoidal detector with four concentric components utilized
in this measurement: a small-radius six-layer stereo wire
drift chamber, a 47-layer main drift chamber, a Ring-
Imaging Cherenkov (RICH) detector, and an electromag-
netic calorimeter consisting of 7800 CsI(Tl) crystals. The
two drift chambers operate in a 1.0 T magnetic field and
provide charged particle tracking in a solid angle of 93% of
4�. The chambers achieve a momentum resolution of
�0:6% at p ¼ 1 GeV=c. The main drift chamber also
provides specific-ionization (dE=dx) measurements that
discriminate between charged pions and kaons. The
RICH detector covers approximately 80% of 4� and pro-
vides additional separation of pions and kaons at high
momentum. The photon energy resolution of the calorime-
ter is 2.2% at E� ¼ 1 GeV and 5% at 100 MeV. Electron

identification is based on a likelihood variable that com-
bines the information from the RICH detector, dE=dx, and
the ratio of electromagnetic shower energy to track mo-
mentum (E=p).
We use a GEANT-based [20] Monte Carlo (MC) simu-

lation program to study efficiency of signal-event selection
and background processes. Physics events are generated by
EVTGEN [21], tuned with much improved knowledge of

charm decays [22,23], and final-state radiation (FSR) is
modeled by the PHOTOS [24] program. The modeling of
initial-state radiation (ISR) is based on cross sections for
D��

s D�
s production at lower energies obtained from the

CLEO-c energy scan [12] near the CM energy where we
collect the sample.

III. ANALYSIS METHOD

The presence of two D�
s mesons in a D��

s D�
s event

allows us to define a single-tag (ST) sample in which a
D�

s is reconstructed in a hadronic decay mode and a further
double-tagged (DT) subsample in which an additional e�
is required as a signature of �� decay, the e� being the
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daughter of the ��. TheD�
s reconstructed in the ST sample

can be either primary or secondary from D��
s ! D�

s � (or
D��

s ! �0D�
s ). The ST yield can be expressed as

nST ¼ 2NBST�ST; (2)

where N is the produced number of D��
s D�

s pairs, BST is
the branching fraction of hadronic modes used in the ST
sample, and �ST is the ST efficiency. The nST counts the
candidates, not events, and the factor of 2 comes from the
sum of Dþ

s and D�
s tags.

Our double-tag (DT) sample is formed from events with
only a single charged track, identified as an eþ, in addition
to a ST. The yield can be expressed as

nDT ¼ 2NBSTBL�DT; (3)

where BL is the leptonic decay branching fraction, includ-
ing the subbranching fraction of �þ ! eþ�e ��� decay, �DT
is the efficiency of finding the ST and the leptonic decay in
the same event. From the ST and DT yields we can obtain
an absolute branching fraction of the leptonic decay BL,
without needing to know the integrated luminosity or the
produced number of D��

s D�
s pairs,

B L ¼ nDT
nST

�ST
�DT

¼ nDT=�

nST
; (4)

where �ð� �DT=�STÞ is the effective signal efficiency.
Because of the large solid angle acceptance with high
segmentation of the CLEO-c detector and the low multi-
plicity of the events with which we are concerned, �DT �
�ST�L, where �L is the leptonic decay efficiency. Hence,
the ratio �DT=�ST is insensitive to most systematic effects
associated with the ST, and the signal branching fraction
BL obtained using this procedure is nearly independent of
the efficiency of the tagging mode.

A. Event and tag selection

Tominimize systematic uncertainties, we tag using three
two-body hadronic decay modes with only charged parti-
cles in the final state. The three ST modes1 are D�

s !
���, D�

s ! K�K�0, and D�
s ! K0

SK
�. Using these tag

modes also helps to reduce the tag bias which would be
caused by the correlation between the tag side and the
signal side reconstruction if tag modes with high multi-
plicity and large background were used. The effect of the
tag bias btag can be expressed in terms of the signal

efficiency � defined by

� ¼ �DT
�ST

¼ �DT
�0ST

�0ST
�ST

¼ �L�
0
ST

�0ST

�0ST
�ST

¼ �Lbtag; (5)

where �0ST is the ST efficiency when the recoiling system is

the signal leptonic decay with single e� in the other side of
the tag. As the general ST efficiency �ST, when the recoil-
ing system is any possibleDs decays, will be lower than the
�0ST, sizable tag bias could be introduced if the multiplicity

of the tag mode were high, or the tag mode were to include
neutral particles in the final state. As shown in Sec. IV, this
effect is negligible in our chosen clean tag modes.
The K0

S ! �þ�� decay is reconstructed by combining

oppositely charged tracks that originate from a common
vertex and that have an invariant mass within�12 MeV of
the nominal mass [3]. We require the resonance decay to
satisfy the following mass windows around the nominal
masses [3]: � ! KþK� (� 10 MeV) and K�0 ! Kþ��
(� 75 MeV). We require the momenta of charged parti-
cles to be 100 MeV or greater to suppress the slow pion
background from D� �D� decays (through D� ! �D). We
identify an ST by using the invariant mass of the tagMðDsÞ
and recoil mass against the tagMrecoilðDsÞ. The recoil mass
is defined as

MrecoilðDsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEee � EDs

Þ2 � jpee � pDs
j2

q
; (6)

where ðEee;peeÞ is the net four-momentum of the eþe�
beam, taking the finite beam crossing angle into account;
ðEDs

;pDs
Þ is the four-momentum of the tag, with EDs

computed from pDs
and the nominal mass [3] of the Ds

meson. We require the recoil mass to be within 55 MeVof
the D�

s mass [3]. This loose window allows both primary
and secondary Ds tags to be selected.
To estimate the backgrounds in our ST and DT yields

from the wrong tag combinations (incorrect combinations
that, by chance, lie within the �MðDsÞ signal region), we
use the tag invariant mass sidebands. We define the signal
region as �20 MeV 	 �MðDsÞ<þ20 MeV, and the
sideband regions as �55 MeV 	 �MðDsÞ<�35 MeV
or þ35 MeV 	 �MðDsÞ<þ55 MeV, where �MðDsÞ �
MðDsÞ �mDs

is the difference between the tag mass and

the nominal mass. We fit the ST �MðDsÞ distributions to
the sum of double-Gaussian signal function plus second-
degree Chebyshev polynomial background function to get
the tag mass sideband scaling factor. The invariant mass
distributions of tag candidates for each tag mode are shown
in Fig. 1 and the ST yield and �MðDsÞ sideband scaling
factor are summarized in Table I. We find nST ¼ 26 334�
213 summed over the three tag modes.

B. Signal-event selection

A DT event is required to have a ST, a single eþ, no
additional charged particles, and the net charge of the event
Qnet ¼ 0. We require the momentum of the eþ candidate
be at least 200 MeV.

1The notations D�
s ! ��� and D�

s ! K�K�0 are shorthand
labels for D�

s ! K�Kþ�� events within mass windows (de-
scribed below) of the � peak in MðKþK�Þ and the K�0 peak in
MðKþ��Þ, respectively. No attempt is made to separate these
resonance components in the KþK��þ Dalitz plot.
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The DTevents will contain the sought-afterDþ
s ! �þ��

(�þ ! eþ�e ���) events, but also some backgrounds. The
most effective variable for separating signal from back-
ground events is the extra energy (Eextra) in the event, i.e.,
the total energy of the rest of the event measured in the
electromagnetic calorimeter. This quantity is computed
using the neutral shower energy in the calorimeter, count-
ing all neutral clusters consistent with being photons above
30 MeV; these showers must not be associated with any of
the ST decay tracks or the signal eþ. We obtain Eextra in the
signal and sideband regions of �MðDsÞ. The sideband-
subtracted Eextra distribution is used to obtain the DTyield.

The Eextra distribution obtained from data is compared to
the MC expectation in Fig. 2. We have used the invariant
mass sidebands, defined in Sec. III A, to subtract the com-
binatorial background. We expect that there will be a large
peak between 100 MeV and 200 MeV from D�

s ! �Ds

decays (and from D�
s ! �0Ds, with a 5.8% branching

fraction [3]). Also, there will be some events at lower
energy when the photon from D�

s decay escapes detection.
Based on considerations described in the next paragraph,
we define our signal region to be Eextra < 400 MeV.

C. Background estimation

After the �MðDsÞ sideband subtraction, two significant
components of background remain. One is from Dþ

s !
K0

Le
þ�e decay. If the K

0
L deposits little or no energy in the

calorimeter, this decay mode has an Eextra distribution very
similar to the signal, peaking well below 400 MeV. The
second source, other Ds semielectronic decays, rises

TABLE I. Summary of single-tag (ST) yields, where nSST is the
yield in the ST mass signal region, nBST is the yield in the

sideband region, s is the sideband scaling factor, and nST is
the scaled sideband-subtracted yield.

Tag mode nSST nBST s nST

D�
s ! ��� 10 459 807 0.980 9668:1� 106:1

D�
s ! K�K�0 18 319 7381 1.000 10 938:0� 160:3

D�
s ! K�K0

S 7135 1409 0.999 5727:8� 92:4

Total 26 333:9� 213:3

FIG. 1. The mass difference �MðDsÞ � MðDsÞ �mDs
distributions in each tag mode. We fit the �MðDsÞ distribution (open circle)

to the sum (solid curve) of signal function (double Gaussian) plus background function (second-degree Chebyshev polynomial, dashed
curve).

FIG. 2 (color online). Distribution of Eextra after �MðDsÞ
sideband subtraction. Filled circles are from data and histograms
are obtained from MC simulation. The MC signal and peaking
background (Dþ

s ! K0
Le

þ�e) components are normalized to our

measured branching fractions. The errors shown are statistical
only.
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smoothly with increasing Eextra, up to 1 GeV. Estimates of
these backgrounds are also shown in Fig. 2. The optimal
signal region in Eextra for DT yield extraction is predicted
from a MC simulation study. Choosing Eextra less than
400 MeV maximizes the signal significance. Note that
with our chosen requirement of Eextra < 400 MeV, we
are including Dþ

s ! �þ��� as signal. However, this is
expected to be very small, as the kinetic energy of the �þ
in the Dþ

s rest frame is only 9.3 MeV and it cannot radiate
much.

The number of nonpeaking background events bnp in the

Eextra signal region is estimated from the number of events
in the Eextra sideband region between 0.6 GeV and 2 GeV,

scaled by the MC-determined ratio cb ( � bðlÞ=bðhÞ) of the
number of background events in the Eextra signal region,

bðlÞ, to the number of events in the Eextra sideband region,

bðhÞ. The number of peaking background events bp due to

the Dþ
s ! K0

Le
þ�e decay is determined by using the ex-

pected number from MC simulation. The overall expected
number of background events in the Eextra signal region, b,
is computed as follows:

b ¼ bnp þ bp ¼ cbb
ðhÞðdataÞ þ bðK0

Le
þ�eÞMC; (7)

where bðhÞðdataÞ is the number of data events in the Eextra

sideband region and bðK0
Le

þ�eÞMC is the number of back-
ground events due to Dþ

s ! K0
Le

þ�e as estimated from
our MC simulation. We normalize this quantity using
our measured [25] BðDþ

s ! K0
Se

þ�eÞ ¼ ð0:19� 0:05�
0:01Þ%. We simulate calorimeter response to K0

L using a
momentum dependent K0

L interaction probability density
function obtained from studying c ð3770Þ ! D0 �D0 events
in which the �D0 has been reconstructed in hadronic tag
modes and the D0 decays to the K0

L�
þ�� final state.

The numbers of estimated background events from
peaking and nonpeaking sources in each tag mode are
summarized in Table II.

IV. RESULTS

The signal efficiency determined by MC simulation has
been weighted by the ST yields in each mode as shown in

Table III. We determine the weighted average signal effi-
ciency � ¼ ð72:4� 0:3Þ% for the decay chain Dþ

s !
�þ�� ! eþ�e �����.
The DT yields with the 400 MeV extra energy require-

ment are summarized in Table IV. We find nDT ¼ 180:6�
15:9 summed over all tag modes. Using Bð�þ !
eþ�e ���Þ ¼ ð17:85� 0:05Þ% [3], we obtain the leptonic
decay branching fraction BðDþ

s ! �þ��Þ ¼ ð5:30�
0:47Þ%, where the uncertainty is statistical.

V. SYSTEMATIC UNCERTAINTY

Sources of systematic uncertainties and their effects on
theDþ

s ! �þ�� branching fraction determination are sum-
marized in Table V.
We considered six semileptonic decays, Dþ

s ! �eþ�e,
�eþ�e, �

0eþ�e, K
0eþ�e, K

�0eþ�e, and f0e
þ�e, as the

major sources of background in the Eextra signal region.
The second dominates the nonpeaking background, and the
fourth (with K0

L) dominates the peaking background.
Uncertainty in the signal yield due to nonpeaking back-
ground (0.7%) is assessed by varying the semileptonic
decay branching fractions by the precision with which
they are known [25]. Imperfect knowledge of BðDþ

s !
K0eþ�eÞ gives rise to a systematic uncertainty in our
estimate of the amount of peaking background in the signal
region, which has an effect on our branching fraction
measurement of 3.2%.

TABLE II. Estimated backgrounds in the extra energy signal
region below 400 MeV in each tag mode. Here bp is the peaking

background from Dþ
s ! K0

Le
þ�e decay, bnp is the nonpeaking

background from otherDs semileptonic decays, and b is the total
number of background events. The errors shown are statistical
only.

Tag mode bnp bp b

D�
s ! ��� 11:8� 1:0 7:7� 0:5 19:4� 1:1

D�
s ! K�K�0 12:2� 1:1 8:7� 0:5 20:9� 1:3

D�
s ! K�K0

S 4:6� 0:7 4:5� 0:3 9:1� 0:7

Total 28:5� 1:7 20:9� 0:8 49:4� 1:8

TABLE III. Summary of the signal efficiency determined by
MC simulation. Average efficiency � and the tag bias btag are

obtained by using the weighting factor w determined from
single-tag yields in data.

Tag mode w � � �DT=�ST btag ¼ �0ST=�ST
D�

s ! ��� 0.3671 0:6964� 0:0046 1:0089� 0:0058
D�

s ! K�K�0 0.4154 0:7337� 0:0049 1:0061� 0:0060
D�

s ! K�K0
S 0.2175 0:7536� 0:0054 1:0032� 0:0065

Average 0:7244� 0:0029 1:0065� 0:0036

TABLE IV. Summary of double-tag (DT) yields in each tag
mode, where nSDT is the DT yield in the tag mass signal region,

nBDT is the yield in the tag mass sideband region, s is the tag mass

sideband scaling factor, b is the number of estimated background
in the extra energy signal region after tag mass sideband scaled
background subtraction, and nDT is the background subtracted
DT yield. The errors shown are statistical only.

Tag mode nSDT nBDT s b nDT

D�
s ! ��� 79 1 0.980 19:4� 1:1 58:6� 9:0

D�
s ! K�K�0 110 6 1.000 20:9� 1:3 83:1� 10:8

D�
s ! K�K0

S 50 2 0.999 9:1� 0:7 38:9� 7:2

Total 49:4� 1:8 180:6� 15:9
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We study differences in efficiency, data vs MC events,
due to the extra energy requirement, extra track veto, and
Qnet ¼ 0 requirement, by using samples from data and MC
events, in which both the D�

s and Dþ
s satisfy our tag

requirements, i.e., ‘‘double-tag’’ events. We then apply
each of the above-mentioned requirements and compare
loss in efficiency of data vs MC events. In this way we
obtain a correction of 1.6% for the extra energy require-
ment and systematic uncertainties on each of the three
requirements of 1.1% (all equal, by chance).

The non-eþ background in the signal eþ candidate
sample is negligible (0.4%) due to the low probability
(� 0:1% per track) that hadrons (�þ or Kþ) are misiden-
tified as eþ [26]. Uncertainty in these backgrounds pro-
duces a 0.1% uncertainty in the measurement of
BðDþ

s ! �þ��Þ. The secondary eþ backgrounds from
charge symmetric processes, such as �0 Dalitz decay
(�0 ! eþe��) and � conversion (� ! eþe�), are as-
sessed by measuring the wrong-sign signal electron in
events with Qnet ¼ �2. The uncertainty in the measure-
ment from this source is estimated to be 0.3%.

Other possible sources of systematic uncertainty include
nST (0.4%), tag bias (0.2%), tracking efficiency (0.3%), e�
identification efficiency (1%), and FSR (1%). Combining
all contributions in quadrature, the total systematic uncer-
tainty in the branching fraction measurement is estimated
to be 4.1%.

VI. SUMMARY

In summary, using the sample of 26 334 tagged Dþ
s

decays with the CLEO-c detector we obtain the absolute
branching fraction of the leptonic decay Dþ

s ! �þ��

through �þ ! eþ�e ���,

B ðDþ
s ! �þ��Þ ¼ ð5:30� 0:47� 0:22Þ%; (8)

where the first uncertainty is statistical and the second is
systematic. This result supersedes our previous measure-
ment [14] of the same branching fraction, which used a
subsample of data used in this work.
The decay constant fDs

can be computed using Eq. (1)

with known values [3] GF ¼ 1:166 37ð1Þ � 10�5 GeV�2,
mDs

¼ 1968:49ð34Þ MeV, m� ¼ 1776:84ð17Þ MeV, and

�Ds
¼ 500ð7Þ � 10�15 s. We assume jVcsj ¼ jVudj and

use the value 0.974 18(26) given in Ref. [27]. We obtain

fDs
¼ ð252:5� 11:1� 5:2Þ MeV: (9)

Combining with our other determination [15] of fDs
¼

ð263:3� 8:2� 3:9Þ MeV with Dþ
s ! �þ�� and Dþ

s !
�þ�� (�

þ ! �þ ���) decays, we obtain

fDs
¼ ð259:5� 6:6� 3:1Þ MeV: (10)

This result is derived from absolute branching fractions
only and is the most precise determination of the Ds

leptonic decay constant to date.
Our combined result is larger than the recent LQCD

calculation fDs
¼ ð241� 3Þ MeV [9] by 2.3 standard de-

viations. The difference between data and LQCD for fDs

could be due to physics beyond the SM [11], unlikely
statistical fluctuations in the experimental measurements
or the LQCD calculation, or systematic uncertainties that
are not understood in the LQCD calculation or the experi-
mental measurements.
Combining with our other determination [15] of

BðDþ
s ! �þ��Þ ¼ ð6:42� 0:81� 0:18Þ%, via �þ !

�þ ���, we obtain

B ðDþ
s ! �þ��Þ ¼ ð5:62� 0:41� 0:16Þ%: (11)

Using this with our measurement [15] of BðDþ
s !

�þ��Þ ¼ ð0:565� 0:045� 0:017Þ%, we obtain the

branching fraction ratio

R ¼ BðDþ
s ! �þ��Þ

BðDþ
s ! �þ��Þ ¼ 10:1� 0:9� 0:3: (12)

This is consistent with 9.76, the value predicted by the SM
with lepton universality, as given in Eq. (1) with known
masses [3].
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TABLE V. Summary of sources of systematic uncertainty and
their effects on the branching fraction measurement.

Source Effect on B (%)

Background (nonpeaking) 0.7

Dþ
s ! K0

Le
þ�e (peaking) 3.2

Extra shower 1.1

Extra track 1.1

Qnet ¼ 0 1.1

Non electron 0.1

Secondary electron 0.3

Number of tag 0.4

Tag bias 0.2

Tracking 0.3

Electron identification 1.0

FSR 1.0

Total 4.1
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