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We calculate the magnetic dipole moment of the �ð1232Þ and �� baryons with 2þ 1 flavors of clover

fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation

of these magnetic moments using a background field technique. The calculation for �� is done at the

physical strange quark mass, with the result in units of the physical nuclear magneton ��� ¼ �1:93�
0:08� 0:12 (where the first error is statistical and the second is systematic) compared to the experimental

number: �2:02� 0:05. The � has been studied at three unphysical quark masses, corresponding to pion

mass m� ¼ 366, 438, and 548 MeV. The pion mass dependence is compared with the behavior obtained

from chiral effective field theory.
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Calculations of hadron properties from first principles
using lattice QCD have been rapidly advancing in recent
years. The newly available fully dynamical (unquenched)
lattice configurations have made it possible to significantly
reduce the systematic error of lattice calculations. Of the
properties that can now be reliably computed on the lattice
are the electromagnetic (EM) properties of baryons and, in
particular, their electromagnetic moments. Here we present
a first dynamical calculation of the magnetic dipole mo-
ment of the �ð1232Þ and ��ð1672Þ baryons using a back-
ground EM field.

These particular baryons are chosen for the following
reasons. They both are distinguished members of the
baryon decuplet and as such they have much in common.
On the other hand, while the magnetic moment of the� is
measured to a few-percent accuracy, the tiny lifetime of the
� resonance ( � 6� 10�24 sec) hinders the determination
of its magnetic moment and the experimental efforts are
still ongoing. This is why a simultaneous lattice calculation
for these two baryons can both be tested against experi-
ment in the � case and provide predictions in the case of
the �. In particular, since the� cannot decay by the strong
interaction, it provides an excellent testing ground for
QCD itself, even though it does not probe physics near
the chiral limit.

The background-field method adopted here is presently
the simplest and cleanest way to access the static EM
moments on the lattice, as it amounts simply to measuring
the shift in the mass spectrum upon applying a classical
background field [1] (for the most recent applications to
baryons in the quenched approximation see Refs. [2,3]).
The other possibility is the form factor calculation extrapo-
lated to the q2 ¼ 0 point (from the minimum momentum-
transfer on the lattice, which is 2�=aL, with L the number
of points in the spatial direction). However, in comparison
with the background-field method, this method is addition-
ally complicated by the noise of the three-point function

calculation as well as the uncertainties in the q2 extrapo-
lation; see Refs. [4,5] for recent calculations of the � EM
form factors (the first calculation is done in the quenched
case, and the latter in the dynamical case).
In order to calculate the magnetic dipole moment, we

implement the constant background magnetic field in the
following fashion. On a given configuration, we multiply
all of the SUð3Þ gauge fields by a Uð1Þ gauge field, and
invert the Dirac operator on that background to get the
quark propagator in a background field. The Uð1Þ links are
given by

U�ðxÞ ¼ exp½iqaA�ðxÞ�; (1)

where q is the charge of the quark whose propagator we are
calculating. For a constant magnetic field with a magnitude
of B pointing in the þz direction, the usual choice is
A�ðx; y; z; tÞ ¼ aBx��y. The problem with this choice is

that due to the condition that the gauge links U� must be

periodic, the field is continuous only if qa2B ¼ 2�n=L,
with integer n. Hence, the minimal value of B is severely
limited by the size of the lattice. This limitation is some-
what relaxed for the following choice of the field [6–8]:

A�ðx; y; z; tÞ ¼
�
aBx��y if x � L� 1
�aBLy��x if x ¼ L� 1:

(2)

Thus, all of the y-links are modified by exp½iqa2Bx�, all x
links on the x boundary are modified by exp½�iqa2BLy�,
and all other links are unchanged. The additional modifi-
cation of the links on the x boundary allows us to achieve
continuous constant field everywhere on the lattice with a
more relaxed constraint on the value of the field:

qa2B ¼ 2�n

L2
: (3)

The latter periodicity constraint corresponds with the more
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physical requirement that the magnetic flux (plaquette)
remains continuous through the boundary.

With this [1], one can calculate a baryon two-point
function which behaves for large time in the usual manner

CðtÞ � Ae�mðBÞt þ � � � ; (4)

but with the exponential damping governed by a B-field
dependent mass

mðBÞ ¼ m0 ��zBþOðB2Þ: (5)

Here, m0 is the mass of the baryon in the absence of any
external field. The magnetic moment along the direction of
the field is given by

�z ¼ �Sz=S; (6)

where� is the value of the magnetic moment, Sz is the spin
projection, and S the total spin (in our case S ¼ 3=2 and so
Sz can take the values�3=2 and�1=2). It is useful to form
the quantity

�mSz ¼ mð�BÞ �mðBÞ ¼ 2�B
Sz
S
þOðB3Þ (7)

to cancel the effect of the next order in the B expansion.
This can be determined from the ratio of correlators

R Sz
B ðtÞ �

C
Sz
�BðtÞ

C
Sz
þBðtÞ

; (8)

where C
Sz
B ðtÞ is the two-point function of the Sz component

of the baryon in a magnetic field B. In the large-t limit, this
should behave as (neglecting excited states)

R Sz=S
B ðtÞ ! A

Sz=S
B e��mSz t þ � � � : (9)

We have computed this quantity for all the various spin-
projection values and extracted the magnetic moment by
forming the product of ratios

R BðtÞ ¼ R1
BðtÞ

R�1
B ðtÞ

�
R1=3

B ðtÞ
R�1=3

B ðtÞ
�
3
; (10)

where the exponential falloff is governed by 8�B, with

� ¼ 1

8B
½�m3=2 � �m�3=2 þ 3ð�m1=2 � �m�1=2Þ�:

(11)

Since the �mSz are highly correlated, the error on � is

determined using a jackknife, and this combination is
chosen to average the results from all spin components
under the jackknife procedure.

On a technical note, the number input into the simulation
is qa2B, and thus includes the product of the quark charge
and the magnetic field in lattice units. In order to account
for the quark charges of the up, down, and strange quarks,
for a single magnetic field B we must use two values of
qa2B, corresponding to the fact that qu ¼ �2qd;s. For

particles made up with only a single flavor of quark
(�þþ, ��), we need one input value, but for the �þ or
the nucleon, for example, we must use two inputs that
differ by a factor of �2 so that the quarks all experience
the same B field.
Notice that even with the modified periodicity constraint

in Eq. (3), the minimum value of the magnetic field may
still be large enough to distort the baryons, and thus
introduce errors into the extrapolation of the magnetic
moment. Ideally we would use volumes large enough
that this would not be true, however this can become rather
expensive. Earlier studies [1,3] ignore the periodicity con-
straint,1 using small fields that would not distort the parti-
cles and also ensure the linear relationship between the
extracted mass in Eq. (5) and the magnetic field. In addi-
tion, they imposed Dirichlet boundary conditions and
placed the source in the center of the lattice to perhaps
ensure the quarks will not feel the effects of the
discontinuity.
The difficulty with this approach, however, is that there

are significant finite volume effects in the results in the
magnetic moments, using their implementation. Speci-
fically, in the quenched calculation of Ref. [3], the authors
see effects that are as large as 35% for the lightest pion
mass when comparing the 163 volume to a 243 volume,
with a lattice cutoff of a�1 � 2 GeV, and a pion mass of
about 522 MeV. Since taking the pion mass closer to the
physical point, finite volume errors become more substan-
tial; we would like to reduce the finite volume effects
coming from the background field as much as possible.
Using the implementation of the magnetic field above,

we have shown that ignoring the periodicity constraint
somewhat will not introduce noticeable finite volume er-
rors coming from the background field, so long as one uses
the implementation of the background field shown in
Eq. (2) [8]. With this method, we are able to trust results
coming from simulations on smaller volumes (still keeping
m�L * 4 so we can minimize finite volume effects coming
from a small pion mass), which are less expensive. Using
the methods in Ref. [3], for example, one is restricted only
to larger volumes.
We now present our results, which are the first dynami-

cal calculations for magnetic moments using a background
field.
We use dynamical anisotropic lattices with 2þ 1 flavors

of Stout-smeared clover fermions [9,10], on two volumes
and a single lattice spacing. The use of anisotropic lattices
is helpful because the finer temporal lattice spacing allows
us to obtain better measurements of baryon masses. We
show the relevant parameters in Table I. Note that on these
lattices, a bare quark mass parameter of �0:0743 corre-

1These studies do not include the modification of the x links on
the boundary, and thus their periodicity constraint is given by
qa2B ¼ 2�n=L, an order of magnitude larger than ours.
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sponds to the physical strange quark mass. Both sets of
configurations have an inverse spatial lattice spacing of
1.61 GeV and an anisotropy of about 3.5 (so a�1

t �
5:61 GeV). More complete information on these configu-
rations, specifically the tuning of the lattice parameters,
can be found in [9,10].

In all � cases we used three magnetic fields for the
simulations, corresponding to n ¼ �1=2, �1, and �2 in
Eq. (3). For the �, we only used n ¼ �1=2 and n ¼ �1.
The n ¼ �1=2 field does not satisfy the periodicity con-
straint. We expect the errors entering here due to this to be
negligible as was shown in Ref. [8]. Even with these fields,
we already see higher-order terms appearing in the expres-
sion for the masses extracted from two-point functions, so
larger magnetic fields will begin to introduce effects com-
ing from even higher-order terms in Eq. (11). We calculate
all four spin projections for the baryons, as well as using
both positive and negative magnetic fields, and we average
over all of these to reduce the errors. Additionally, on each
configuration, we calculated the quark propagators starting
from four time sources t ¼ 0, 32, 64, and 96, using the
EigCG algorithm developed in Ref. [11] to decrease sig-
nificantly the time it takes to invert the Dirac operator.

In Fig. 1 we show the�þþ magnetic moments in units of
the physical nuclear magneton �N , for the three pion
masses simulated. One can see noticeable effects coming
in at OðB2Þ, and we have fit each data set to a quadratic
form

� ¼ �0 þ bðea2BÞ2: (12)

With each set, since we only have two parameters and three
data points, a correlated fit is not possible, and we do not
take the fitted value of �0 (in principle this would be the
most appropriate value, as it subtracts out the B2 depen-
dence) and its error as our final result. Instead, we see that
for the smallest of the B fields simulated, the OðB2Þ effects
are small, and so we take that data point as our determi-
nation of the magnetic moment (in fact, the data point at
the smallest value of B is consistent, as one can see from

the figure, with the value of �0). The fits performed give
drastically smaller errors than the data, and so we choose to
use the error from the data, to account for possible uncer-
tainties in this method. There is a slight shift (within errors)
in the extracted�0 compared with the smallest B-field data
point, and for the heavier mass this is its largest at 5%.
Similar results can be seen for the �þ and ��, and we
show all of our results in Table. II. Note that our results for
the �� are not included, because with this method of
calculation, we have the exact equality ��þþ ¼ �2��� .
Also in the table, we show the experimental numbers for

these quantities. We can see that for the �þþ, we cannot
make any definitive claims as to the behavior of the data as
a function of the pion mass. We show the data in Fig. 2,
where we show the present results together with the chiral
effective field theory calculations of Ref. [13] for the m�

dependence of ��þ . These calculations have one free

FIG. 1 (color online). In this figure we show the magnetic
moment in units of the physical nuclear magneton for the three
input magnetic fields used, as well as quadratic fits to each data
set, to remove residual B2 dependence in the magnetic moments.

TABLE I. Lattice parameters used for the current work. On
these lattices, the anisotropy is at=as � 3:5, and we show the
pion masses on the lattices in physical units. The bare strange
quark mass is atms ¼ �0:0743 on all lattices, and we show the
light quark mass for each ensemble. The atmval ¼ �0:0743 data
set was used to calculate the �� magnetic moment, so the m�;�

listed in that row is the �� mass, while the other baryon masses
are those of the �.

Volume atm‘ atmval

m�

(MeV)

m�;�

(GeV)

#

configs

163 � 128 �0:0808 �0:0808 548 1.562 110

163 � 128 �0:0830 �0:0830 438 1.485 91

243 � 128 �0:0840 �0:0840 366 1.408 202

243 � 128 �0:0840 �0:0743 366 1.65 213

TABLE II. Calculated magnetic moments in units of �N , the
physical nuclear magneton (taken as the value for the data for the
smallest B field, as discussed in the text). For comparison, we
have combined all experimental errors in quadrature.

m� ��þþ ��þ ��0 ���

548 3.65(13) 2.60(8) �0:07ð2Þ
438 3.55(14) 2.40(5) 0.02(3)

366 3.70(12) 2.40(6) 0.001(16) �1:93ð8Þ
Particle Data

Group [12]:

5.6(1.9) 2.7(3.5) - �2:02ð5Þ
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parameter for ��þ , corresponding with its value in the
chiral limit. We also indicate a theoretical error band,

corresponding with an error of ðm� þmphys
� Þ=mphys

� esti-

mating the corrections of next chiral order, with mphys
� the

physical pion mass, and mphys
� the physical � mass. One

notices a strong cusp behavior for the real part of ��,
which is due to the opening of the� ! �N decay channel.
Therefore, no strong conclusions on the value of �� at the
physical point can be made until this extrapolation has
been done. We leave such a systematic study for a future
work. On the experimental side, there are new experiments
from the Mainz Microtron accelerator (MAMI) for the
magnetic moment of the �þ with much reduced errors,
yet these have not yet been fully analyzed.

Since the sea quarks do not carry electric charge (which
is the case for all current lattice simulations), there is a
relationship that holds within the quark model in the iso-
spin limit, where ��þþ ¼ 2��þ . Clearly this relationship
does not hold with our results above, but we could use this
relationship to reduce the systematic uncertainties in our
determination. This would clearly increase the values ob-
tained for the �þþ and reduce it for the �þ.

As for the ��, the strange quark mass is close to its
physical value (as we can see by the fact that the�� mass
is close to the observed value), so we expect the result to
match more closely to the experimental value. As we can
see, it agrees tremendously well. This agreement is ex-
pected, as quantities involving the �� should have little

dependence on the light sea quark mass. On the two B
fields we simulated for the ��, we see a slight B2 depen-
dence in the magnetic moment, roughly of the same size as
for the �. Additionally, we see that the errors associated
with the experimental value are comparable to the statisti-
cal lattice errors here.
In order to improve on the quoted results, we must

account for the systematic errors that arise from a variety
of sources in the calculation. First there is the finite lattice
spacing, which is difficult to estimate given the lack of any
calculations of the magnetic moments (quenched or dy-
namical) at multiple lattice spacings. Given that we are
using clover fermions, errors of OðaÞ disappear, so one
would expect errors to be roughly Oða2�2

QCDÞ & 0:03. As

it will be some time before a second lattice spacing is
available on these configurations, we will assume there is
a 3% systematic error that arises from the finite spatial
lattice spacing.
Additionally there are errors arising from remnant finite

volume effects, coming not from the background field, but
from the pion mass. These are most likely negligible since
in all cases m�L * 4 and thus the errors from these effects
are less than e�m�L � 2%.
Finally, there are uncertainties that plague any current

calculation of the magnetic moments on the lattice, being
that the sea quark charges are set to zero. We expect these
to not be very large, coming from the discarded diagrams
in which the external photons couple to the sea quarks.
These at most are of order �2

S relative to the terms that are

included (because one must have at least two gluons cou-
pling the sea and valence quarks). Related errors are those
coming from the B2 extrapolation, and this is going to be at
most 5%, as mentioned below Eq. (12).
We have presented here the first (using a background-

field method) dynamical results for the� and�� magnetic
moments on dynamical 2þ 1-flavor lattices, which are
consistent (given the pion mass used) with experimental
values that have been measured. Presently, the accuracy
obtained in the lattice result for the �� magnetic dipole
moment is comparable with the experimental accuracy. We
can use the above discussion to estimate the systematic
error on our result for the�� magnetic moment. We make
a conservative estimate, and use the maximum values for
each source of systematic error, and add those in quad-
rature, giving an error of 6%. Thus we quote ��� ¼
�1:93ð8Þð12Þ�N for our final result.
To make significant progress on these results, simula-

tions going to lighter pion masses, especially below the
� ! �N threshold, are essential in precisely determining
the magnetic moments. Nevertheless, it is rather encourag-
ing that one can obtain already such precise results with the
resources currently available.
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computing resources used to carry out this study, as well as
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FIG. 2 (color online). Chiral effective field theory calculations
of Ref. [13] for the m� dependence of ��þ , in units of the
physical nuclear magneton. Both real and imaginary parts of ��

are displayed. For the former, the bands show a theoretical error
estimate, as described in the text. The value at the physical pion
mass corresponds with the experiment of Ref. [14], where both
statistical and systematic errors are displayed.
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