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We consider the N ¼ 4 super Yang-Mills theory in flat 3þ 1-dimensional space-time with a time

dependent coupling constant which vanishes at t ¼ 0, like g2YM ¼ tp. In an analogous quantum mechanics

toy model we find that the response is singular. The energy diverges at t ¼ 0, for a generic state. In

addition, if p > 1 the phase of the wave function has a wildly oscillating behavior, which does not allow it

to be continued past t ¼ 0. A similar effect would make the gauge theory singular as well, though

nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyond

t ¼ 0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a

spacelike singularity at t ¼ 0. Our results, if applicable in the gauge theory for the case of the vanishing

coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation.

When the coupling remains nonzero and becomes small at t ¼ 0, the curvature in the bulk becomes of

order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite

amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.
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I. INTRODUCTION AND SUMMARY

The resolution of singularities is an outstanding problem
in the study of gravity. The gauge theory/gravity corre-
spondence [1] provides a nonperturbative framework for
the study of gravity, and one would hope that it can shed
some light on this question.

With this motivation some cosmological solutions which
admit natural gauge theory duals have been constructed
and studied recently [2–6]. These solutions can be thought
of as deformations of AdS5 � S5 (in Poincaré coordinates)
and are dual to strongly coupled N ¼ 4 Yang-Mills the-
ory in flat 3þ 1-dimensional space-time subjected to ex-
ternal time dependent or null sources. For other classes of
solutions of this type, see [7,8]. A related approach to
gauge theory duals of cosmological singularities has been
pursued in [9] and more recently in [10]. Ideas about
finding signatures of spacelike singularities inside black
holes in the dual gauge theory are described in [11].

In this paper our interest is in the time dependent cases.
These have been further studied in [4]. Here, the only
source is a time dependent coupling of the gauge theory.
At early times, the ’t Hooft coupling in the gauge theory is
large and varies slowly. The AdS/CFT correspondence tells
us that the gravity dual is a non-normalizable deformation

ofAdS5 � S5 sourced by the dilaton field. As time evolves,
the gauge theory state evolves in response to the time
dependent coupling. On the gravity side, the background
evolves according to the supergravity equation of motion,
subject to appropriate boundary conditions. In particular
the dilaton starts back reacting leading to a nontrivial
metric.
Our main interest will be in situations in which the

dilaton, e�, vanishes at time t ¼ 0. In the corresponding
gravity solution a spacelike singularity appears at t ¼ 0
which extends all the way to the boundary.1 One would like
to know if this singularity is a genuine sickness in the
theory or if it merely signals a breakdown of the super-
gravity approximation. Since the bulk theory has a bound-
ary dual which is formulated in a precise fashion, we can
ask this question in the dual theory. Onewould like to know
if the boundary theory is sick at the singularity or if it
allows for a continuation past the point where the dilaton
vanishes.2

In this paper we try to analyze this question in some
detail. Prompted by the cosmological solutions we ask the
following general question first: Consider the N ¼ 4
Yang-Mills theory subjected to an external time dependent
dilaton. We take the dilaton to be of the form,

e� ¼ ð�tÞp; t � 0; (1)
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1However, the 4D metric as seen in the gauge theory is flat,
after a conformal transformation, as discussed in Sec. V.

2More precisely, the supergravity approximation breaks down
before the singularity forms, once the curvature gets to be of
order string scale. Using the boundary theory we would like to
find out if there is a continuation past this region.
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so that it vanishes as t ! 0�. In Eq. (1), the index p can
take any positive real value. In such a situation the question
we ask is whether the response of the gauge theory to this
external source is singular or not, as t ! 0�.

It is useful to first consider a quantum mechanics model
which has an analogous coupling to the dilaton. We find
that the response in this quantum mechanical system is
singular, for all values of p > 0, in the following sense:
The time dependent dilaton pumps energy into the system,
and as t ! 0� we find that the energy diverges. The nature
of the singularity does depend on the index p. For p � 1,
when the variation of the dilaton is more rapid, the wave
function of the system acquires a time dependent phase
factor which becomes wildly oscillating and diverges as
t ! 0�. As a result the wave function of the system (in the
Schrodinger picture) does not have a well-defined limit as
t ! 0�. In contrast for p < 1 the phase factor does not
diverge and the wave function has a well-defined limit as
t ! 0�. Even so, the energy diverges as t ! 0� (this also
happens when p � 1).

The result that for p � 1 the wave function becomes
singular, without a well-defined limit, holds regardless of
the state of the system. On the other hand, the conclusion
that the energy diverges is true for a generic state. For
special states in which an appropriate matrix element van-
ishes, the energy can remain finite, as we discuss below.3

The analysis in the quantum mechanics model is most
conveniently carried out in the Schrodinger picture. The
conclusions stated above follow from the fact that near t ¼
0 the potential energy term in the Schrodinger equation
dominates the time evolution and the Kinetic energy term
is subdominant.

One can carry out a similar analysis in the gauge theory.
Once again if we assume that the potential energy domi-
nates near t ¼ 0 one finds that the behavior is completely
analogous to that in the quantum mechanics model dis-
cussed above. The energy diverges as t ! 0� and for p >
1 the wave function acquires a wildly oscillating time
dependent phase which does not have a well-defined limit
as t ! 0�.

However, in the field theory case, we have not been able
to establish that the approximation leading to the conclu-
sions above definitely holds. Differences with the quantum
mechanics model arise due to the infinite number of modes
in field theory. These have to be dealt with carefully by
regulating the theory after introducing a cutoff and incor-
porating the effects of renormalization in this cutoff theory.
We have not carried out this procedure adequately to
determine whether the approximation mentioned above
of the potential energy dominating holds, and our conclu-
sions about the gauge theory response being singular are
therefore tentative and not definite. As we discuss below,

higher loop effects could sum up to render the kinetic term
important and tame the singularity, resulting in finite en-
ergy production and a smooth continuation of the wave
functional beyond t ¼ 0. Studying this further will require
both a better understanding of the calculational aspects of
renormalization in the time dependent gauge theories at
hand, and a better understanding of the conceptual issues
involved in incorporating these effects of renormalization
in the Schrodinger picture which we use in this paper.4

The AdS cosmologies described in [2,4] correspond to

the value p ¼ ffiffiffi
3

p
in Eq. (1). From the discussion above it

follows that, if our approximation of a dominant potential
energy continues to hold in the gauge theory, the resulting
singularity is a genuine sickness which does not admit a
well-defined continuation. Since p > 1 in this case, the
wave function in the gauge theory description becomes
wildly oscillating without a well-defined limit as t ! 0�.
Also the energy should diverge as t ! 0�.
Our analysis shows that the singularity in the bulk arises

due to two related reasons. First, the dilaton vanishes,
resulting in the string frame curvature blowing up.
Second, an infinite amount of energy is dumped into the
system by the vanishing dilaton, resulting in a singular
back reaction.
We do not know the explicit form of the bulk solutions

whose boundaries are conformally flat for values of p,

other than
ffiffiffi
3

p
. However such solutions should exist since

we are specifying the dilaton field on the boundary for all
times. It is worth pointing out that the singular behavior we
find is not tied per se to the nonanalyticity of the dilaton as
t ! 0, and occurs for all values of p > 0, integer and
noninteger. Rather, the singular behavior is related to the
rate at which the dilaton vanishes. As was mentioned
above, with our approximations, the behavior is more
singular for p � 1, when the dilaton vanishes more rapidly,
than it is for p < 1.
A few more comments about the analysis in the gauge

theory are also worth making. At first sight one might think
that when the dilaton vanishes the gauge theory becomes
weakly coupled and can be analyzed in perturbation theory.
This turns out not to be true. Starting from a generic state,
one finds that the time dependent dilaton excites the fields
to large enough values so that the cubic and quartic inter-
action terms are non-negligible near the point where the
dilaton vanishes and perturbation theory is not valid. This
is the essential reason why the analysis gets complicated.
Based on the quantum mechanics model we find that the
Schrodinger picture is particularly useful in analyzing the
resulting behavior. A Wentzel-Kramers-Brillouin–like ap-
proximation can be formulated in this picture in the vicin-
ity of the vanishing dilaton. This allows the leading
behavior near the singularity to be analyzed without having

3Fluctuations in the energy will diverge in these special states,
even if the expectation value of the energy remains finite.
However such fluctuations are suppressed at leading order in N.

4We thank David Gross and the referee for emphasizing these
points to us.
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to resort to the perturbation theory. As was mentioned
above, in the gauge theory, we have not been able to
establish that this approximation is indeed correct and
thus our conclusions should be taken to be indicative rather
than definitive.

It is worth emphasizing that if the potential energy term
continues to dominate near the singularity, our conclusions
about the gauge theory in the presence of a coupling which
truly vanishes are valid at finite N and finite g2YMN and are

therefore a result about the dual closed string theory in the
presence of stringy and/or quantum corrections. As we will
see, the behavior of the wave functional near the time of
vanishing coupling is essentially determined by the cou-
pling constant and not the details of the Lagrangian.

It follows from our analysis that to find cosmological
solutions which are not sick the dilaton’s behavior at the
boundary has to be modified so that it does not vanish.
Once this is done, for a smoothly varying dilaton, one does
not expect the gauge theory to be singular.5 In a situation
where the dilaton profile is chosen to be constant in the far
future, reaching a value such that the ’t Hooft coupling in
the boundary theory is large, one expects that the super-
gravity solution becomes a black hole in the far future. This
is based on the expectation that the dual gauge theory will
generically have some nonvanishing energy density in the
far future and this energy will eventually thermalize. It is
worth noting that if this expectation is met, the space-time
which is highly curved when the dilaton is small, eventu-
ally evolves to a smoothly varying space-time outside the
black hole horizon. The fate of the theory will be similar if
renormalization effects tame the gauge theory even in the
case where the coupling truly vanishes.

An important question which we cannot address here is
how the thermalization process depends on the dilaton time
profile. To answer this question one needs a better under-
standing of the system when the ’t Hooft coupling is of
order one, for example.

One might wonder if the formation of the black hole can
be avoided in a situation where the dilaton profile is time
reversal invariant. In such a case states should exist which
evolve in a time reversal invariant manner. Classically, in
such a state all velocities have to vanish at t ¼ 0; quantum
mechanically, the wave function has to be real at t ¼ 0.
Starting from t ¼ 0 in such a state and evolving into the
future one expects that a black hole will typically form, if
some net energy is input into the system. Thus we do not
expect the absence of a black hole in such states, rather
these states will correspond to starting with a black hole in
the far past and ending with one in the far future. In some

situations, this conclusion might be avoided, but we do not
understand at the moment how to identify them.6

The breakdown of perturbation theory near t ¼ 0, in the
time dependent case, is quite different from what happens
in the null-dependent solutions which were studied in
[2,3,5]. In the null case, the effects we describe in this
paper are absent, there is no particle production and per-
turbation theory is possibly applicable for correlators of
fields at light front times when the coupling is small.

We discussed cosmological solutions above with p ¼ffiffiffi
3

p
, which were studied in [2,4]. These correspond to

symmetric Kasner-like solutions, where all spatial direc-
tions expand at the same rate, or to Friedmann-Robertson-
Walker (FRW) solutions. There are other asymmetric
Kasner solutions which were also constructed in [2,4].
The dual gauge theory in these cases does not live in flat
space but instead in a space-time with a curvature singu-
larity, which occurs at the time coincident with the bulk
singularity. Since the boundary metric is nondynamical, it
is difficult to see how time evolution on the boundary can
be continued past the singularity in such circumstances
leading to the conclusions that the boundary hologram is
sick in these cases as well.
The behavior of the cosmological solutions near the

singularity has some degree of universality. For example
in the symmetric Kasner and FRW solutions, mentioned
above, the spatial curvature is different but this feature is
irrelevant near the singularity where the evolution of the
space-time is determined by the diverging dilaton stress
tensor. One expects this to be a more general feature—
some differences among solutions should become irrele-
vant leading to the same behavior near the singularity. Our
conclusions obtained from studying the gauge theory dual
to the cosmological solutions, within our approximations,
do not require any particular state, and apply quite gener-
ally. One therefore expects these conclusions to hold for all
solutions with the same common behavior near the singu-
larity, e.g., for all conformally flat four-dimensional met-
rics as discussed in Sec. VI.
To explore this further we discuss Bianchi-IX-type cos-

mologies in the presence of the dilaton towards the end of
this paper. These solutions are constructed by taking solu-
tions of 4D gravity coupled to dilaton and embedding them
in 5D AdS space as discussed in [2,4]. Interestingly, once
the dilaton is excited only a finite number of Belinski,
Lifshitz, and Khlalatnikov (BKL) oscillations occur be-
tween Kasner regimes. With each oscillation the impor-
tance of the dilaton stress energy grows, at the expense of
the spatial curvature. Eventually all solutions enter a
Kasner regime, where all directions shrink, and the spatial

5We are assuming here that the gauge theory does not have any
phase transitions as the dilaton is varied. If this assumption is
wrong the response of the gauge theory to a smoothly varying
dilaton need not be nonsingular. Such a phase transition can be
avoided by working on S3, at finite N. We thank S. Wadia for
emphasizing this point to us.

6The case where the boundary theory is on S3 rather than R3 is
more promising in this respect, since the formation of a black
hole then requires the temperature to be bigger than that of the
Hawking-Page transition.
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curvature is relatively unimportant. In a whole family of
solutions this final Kasner regime corresponds to the sym-

metric Kasner solution with p ¼ ffiffiffi
3

p
, mentioned above.

For other solutions the final Kasner regime is one where
the three spatial directions shrink in an asymmetric man-
ner. The holographic dual for these cosmologies can be
constructed. Our analysis of the singularity in the symmet-
ric and asymmetric Kasner solutions then applies to all
these solutions. It will be interesting to explore these
solutions and their holographic duals further.

This paper is organized as follows. In Sec. II we discuss
the gauge theory and introduce a toy field theory which
captures the essential features of the gauge theory in the
dilaton background. We also introduce a quantum mechan-
ics model which has many features in common with these
field theories. The quantum mechanics model is then ana-
lyzed in considerable detail in Sec. III. The implications
for the toy field theory and the gauge theory are discussed
in Sec. IV. The connections to the cosmological solutions
are discussed in Sec. V. Other Kasner and BKL-like solu-
tions are discussed in Sec. VI.

Several important details are in the appendices.
Appendix A discusses the coupling of the dilaton to the
Yang-Mills theory. Appendix B discusses the time depen-
dent harmonic oscillator. Subleading corrections to the
energy, in the vicinity of the vanishing dilaton, are dis-
cussed in Appendix C. Particle production in the quadratic
approximation, for a modified nonvanishing dilaton pro-
file, is discussed in Appendix D. The behavior of the Yang-
Mills theory in the presence of a dilaton which varies with
Milne time is studied in Appendix E. Finally, some dis-
cussion about the universal behavior near singularities and
about BKL cosmologies in the presence of the dilaton, is
contained in Appendix F.

II. THE GAUGE THEORYAND ATOY MODEL

We will consider the N ¼ 4 gauge theory defined on a
flat 3þ 1-dimensional space-time, which is regarded as the
Poincaré patch boundary of an AdS cosmology—e.g., the
ones discussed in detail in [4]. The bulk dilaton is equal to
the coupling constant of the Yang-Mills theory,

e�ðtÞ ¼ g2YM: (2)

Thus the varying dilaton gives rise to a varying Yang-Mills
coupling.

After suitable field redefinitions the Lagrangian for the
N ¼ 4 theory takes the form

L ¼ Tr

�
� 1

4e�
F��F

�� þ 1

2
ðD�X

aÞ2 � 1

4
e�ð½Xa; Xb�Þ2

� i ����D��þ e�=2 ���a½Xa;��
�
: (3)

There are six scalars, Xa, a ¼ 1; � � � 6. And 4 two-
component Weyl fermions of SOð1; 3Þ, which have been
grouped together as one Majorana Weyl fermion of

SOð1; 9Þ. The gamma matrices ��, � ¼ 0; 1; � � � 3, and
�a, a ¼ 1; � � � 6, together form the 10 gamma matrices of
SOð1; 9Þ. The scalars and fermions transform as the adjoint
of SUðNÞ. The covariant derivative of the scalars is

D�X
a ¼ @� � i½A�; X

a�; (4)

and similarly for the fermionic fields. The field strength is

F�� ¼ @�A� � @�A� þ i½A�; A��: (5)

In Appendix A we discuss the Lagrangian above, espe-
cially the dilaton couplings, in more detail. Let us make
one comment here. It is sometimes stated that the dilaton
couples to the Lagrangian of the N ¼ 4 theory [12]. The
more correct statement is that the dilaton couples to the on
shell Lagrangian [13]. This differs from the operator ob-
tained from Eq. (3) but only by a total derivative term
involving the scalars.
At the singularity, e� goes to zero. As a result, the

prefactor in the gauge kinetic energy term in Eq. (3) blows
up. This is the essential complication which must be dealt
with in our analysis of the time dependent situation at hand.
To study it further it is useful to introduce a toy model
consisting of a single scalar field ~X with Lagrangian

L ¼ � 1

e�

�
1

2
ð@ ~XÞ2 þ ~X4

�
: (6)

Note that the quartic term is ‘‘right side up,’’ so that for a
constant dilaton this model would have a stable minimum.
We will see that this model captures all the essential
features of the real problem of interest.
In fact it is useful to simplify the model further and to

consider a quantum mechanics system, with action,

S ¼
Z

dt
1

e�

�
1

2
_~X
2 � 1

2
!2

0
~X2 � ~X4

�
: (7)

Starting from the field theory Eq. (6) such a system would

arise if we keep only one Fourier mode of momentum ~k
with !2

0 ¼ k2, and only the quartic self-interactions of this
mode.
It will be useful in the discussion below to first consider

the quantum mechanics system and then return to the field
theories Eqs. (6) and (3).

III. ANALYSIS OF QUANTUM MECHANICS
MODEL

We now turn to analyzing the quantummechanics model
Eq. (7) further.
It is useful to begin by carrying out a field redefinition

which gives rise to a variable with a canonical kinetic
energy term and analyzing the system in terms of this
new variable. We define the variable X to be

X ¼ e��=2 ~X: (8)

Up to a surface term the Lagrangian is
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L ¼ 1

2
_X2 � 1

2
!2ðtÞX2 � e�X4: (9)

Here !2ðtÞ is a time dependent angular frequency that
arises due to the time dependent dilaton and is given by

!2ðtÞ ¼ �
�
1

4
ð _�Þ2 � 1

2
€�

�
þ!2

0; (10)

where the dot superscript indicates a time derivative of the
dilaton. For a dilaton dependence

e� ¼ ð�tÞp; t < 0; (11)

we have

!2ðtÞ ¼ ��2

t2
þ!2

0 (12)

with,

�2 ¼ p

4
ðpþ 2Þ: (13)

Note that for sufficiently small time,!2 becomes negative,
and the variable X has a tachyonic mass term [negative
ðmassÞ2], which arises due to the time dependent dilaton. In
fact !2 diverges as t ! 0, this will be important in the
subsequent analysis.

Let us briefly outline the detailed analysis that follows.
Since the X4 term in Eq. (9) is multiplied by e�, one might
at first expect that this term is not important near t ¼ 0.
Accordingly, we first neglect it and analyze the resulting
quadratic theory. It turns out that due to the diverging
tachyonic mass the system quite generally gets driven to
jXj ! 1 as t ! 0. As a result, the quantum mechanical
description in terms of the X variable is not complete. If we
want to know what happens as t ! 0, and beyond, one
needs additional information about the behavior at X ! 1.
The diverging value of X also means that the quartic term
cannot be neglected.

At this stage it is worth remembering that the field
redefinition, Eq. (8), is singular at t ¼ 0. In fact, we find
that the rate at which X diverges is exactly balanced by the
rate at which the dilaton vanishes, leaving ~X to be finite, as
t ! 0. This motivates us to study the system in terms of the
~X variable. Although, as mentioned above, the analysis in
terms of the X variable has already revealed that the quartic
term cannot be neglected, we ignore it at first, to gain some
understanding of the system. Our analysis shows that the
system is singular in a manner we have described in Sec. I.
We then incorporate the quartic terms and find that all the
essential conclusions about the singular nature of the re-
sponse go through unchanged.

A. The X description

As was mentioned above, to begin we drop the quartic
term in Eq. (9). this gives rise to the quadratic action

S ¼
Z

dt
1

2
½ _X2 �!ðtÞ2X2�: (14)

The quadratic theory can then be analyzed in standard
fashion by expanding the field X in terms of normal modes.
From Eq. (14) it follows that the corresponding operator

X̂ in the Heisenberg picture, satisfies the equation

€̂X þ!2ðtÞX̂ ¼ 0: (15)

Let us define fðtÞ to be

fðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�!0

2

r ffiffiffiffiffiffi�t
p

H1
�ð�!0tÞ; (16)

where

� ¼ pþ 1

2
; (17)

andHð1Þ
� ðxÞ is the Hankel function which asymptotically, as

x ! 1, behaves like

Hð1Þ
� ðxÞ !

ffiffiffiffiffiffiffi
2

�x

s
e½iðx�ð�þð1=2ÞÞð�=2Þ�: (18)

Then it follows from the standard properties of Hankel
functions that fðtÞ satisfies the equation

€fðtÞ þ!2ðtÞfðtÞ ¼ 0; (19)

with boundary condition

fðtÞ ! e�i!0t; t ! �1: (20)

The solution to Eq. (15) now is

X̂ ¼ 1ffiffiffiffiffiffiffiffiffi
2!0

p ½âfðtÞ þ ðâÞyf�ðtÞ�: (21)

The momentum conjugate to X̂ is

P̂ ¼ _̂X ¼ 1ffiffiffiffiffiffiffiffiffi
2!0

p ½â _fðtÞ þ ðâÞy _f�ðtÞ�: (22)

The operators X̂ and P̂ satisfy the canonical commutation
relation iff, â, ây, satisfy the standard relation

½â; ây� ¼ 1: (23)

Classical solutions to Eq. (15) take the form

XðtÞ ¼ ffiffiffiffiffiffiffiffiffiffið�tÞp ½AJ�ð�tÞ þ BN�ð�tÞ�; (24)

where J�, N�, stand for the Bessel and Neumann functions.
The constants A, B are determined by the initial conditions,
at t ! �1. For generic initial conditions, B � 0, and as
t ! 0�,

XðtÞ � ð�tÞð1=2Þ�� ¼ ð�tÞ�ðp=2Þ ! 1: (25)

Here we have used Eq. (17), and the fact that p > 0. Thus
we see that due to the negative and diverging value of !2

near the singularity, a generic trajectory gets driven out to
infinite values of the position coordinate.
Classical states correspond to coherent states in the

quantum theory. We see that the center of the wave packet
for a generic coherent state runs away to infinity due to the
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tachyonic mass term. This shows that further data is needed
to make the quantum theory in terms of the variable X, and
Lagrangian, Eq. (14), well defined. This additional data
should specify what happens to the wave packet once it
gets to large values of the X coordinate.

It is also illuminating to calculate the wave function of
the ground state in terms of the X description. As t ! �1,
the system becomes a conventional harmonic oscillator
with constant angular frequency !0. Consider the state
specified by the condition,

âj0i ¼ 0; (26)

which wewill refer to as the ground state. We are interested
in asking how expectation values in this state evolve with
time. We have been working in the Heisenberg picture
above. It is useful to answer this question by constructing
the wave function in the Schrodinger picture. The resulting
time dependence of the wave function carries information
about the time dependent expectation values for all opera-
tors in this state.

As discussed in Appendix B, the Schrodinger picture
wave function for the ground state is given by

c ðx; tÞ ¼ Affiffiffiffiffiffiffiffiffiffi
f�ðtÞp ei½ð _f=fÞ�ðx2=2Þ�; (27)

where A is a time independent constant which is fixed by
requiring that the state has unit norm. Two features of the
resulting behavior of this wave function near t ¼ 0 are
worth commenting upon.

First, as discussed in Appendix B, it follows that the
probability density jc ðx; tÞj2 is given by

jc ðx; tÞj2 ¼ jAj2
jfj e

�½ð!0x
2Þ=jfj2�: (28)

It follows from Eqs. (16) and (17), and the properties of
Hankel functions that

jfj2 � ð�tÞ�p ! 1; t ! 0�: (29)

Thus the probability distribution in X become infinity
spread out, as t ! 0. We saw above that for generic coher-
ent states the center of the wave packet runs off to infinite
X. The vacuum is a nongeneric coherent state, for which

this does not happen. The expectation value of hX̂i vanishes
in this state, this corresponds to A, B in Eq. (24) both
vanishing. However we see now that even for this state
the spreading of the wave function, which is a quantum
effect, makes the wave function sensitive to large X.

Second, the exponential factor in Eq. (27) gives rise to a
phase factor,

ei½ð _f=fÞ�ðx2=2Þ� � e½iðpx2=4tÞ�: (30)

This phase factor oscillates ‘‘wildly’’ near t ¼ 0. As a
result c ðx; tÞ does not have a well-defined limit as t !

0�. This feature will be crucial in the subsequent analysis
that follows.
We have neglected the quartic interaction term of Eq. (9)

in the analysis above. We now see from Eq. (25) that X

diverges, as t�p=2, and thus e�X4 goes like, tpt�2p ! 1, as
t ! 0, and also diverges. This means that despite the
vanishing dilaton the quartic term cannot be regarded as
a small perturbation.
It is worth recalling now that the theory we started with

was formulated in terms of the ~X variable, Eq. (6). The
change of variables from X to ~X is in fact singular at t ¼ 0
where the dilaton vanishes. Moreover, as we will see
below, ~X is in fact finite, as t ! 0, since the rate at which

X diverges in Eq. (8) is exactly the rate at which e��=2 also
blows up. It is therefore worth constructing a description
directly in terms of the ~X variable. The resulting behavior
at finite ~X will also provide information about what hap-
pens at infinite X, which is the additional data we seek. We
turn to this next.

B. The ~X description

As was mentioned above, to gain some understanding in
the ~X variable we first begin by neglecting the quartic term.
The action in terms of this variable then takes the form

S ¼
Z

dte�� 1

2
½ _~X2 �!2

0
~X2�: (31)

Classical solutions take the form

~XðtÞ ¼ e�=2XðtÞ ¼ e�=2
ffiffiffiffiffiffiffiffiffiffi
ð�tÞ

p
½AJ�ð�tÞ þ BN�ð�tÞ�:

(32)

It is easy to check from Eqs. (17) and (11) that as t ! 0,

~XðtÞ � Be�=2N�ð�tÞ ! constant: (33)

Thus classical trajectories do not reach j ~Xj ! 1, but in-
stead are at finite values as t ! 0.
From the relation, Eqs. (8) and (21), it follows that the

operator ~̂X in the quantum theory is

~̂X ¼ e�=2ffiffiffiffiffiffiffiffiffi
2!0

p ½âfðtÞ þ âyf�ðtÞ�: (34)

The ground state satisfies the condition given in7 Eq. (27).
The resulting wave function in the Schrodinger picture (see
Appendix B) is

7Note that for the dilaton dependence given in Eq. (89), the
Lagrangian in terms of the ~̂X variable does not reduce to that of a
standard harmonic oscillator as t ! �1. This is in contrast to
the solution, Eq. (84), where we do get a standard harmonic
oscillator, as t ! �1, as discussed in Appendix E. It is this
latter case that is better defined in any case, as was discussed in
Sec. III. The ground state in this latter case, which becomes the
vacuum of the standard harmonic oscillator in the far past,
behaves similarly to the vacuum state consider here near the
singularity.
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c ð~x; tÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðtÞe�=2

q eif½ð _f=fÞ�þð _�=2Þ�ðe��~x2Þ=2g: (35)

The probability to find the system between ~x, ~xþ d~x is
jc ð~x; tÞj2, and is given by

jc ð~x; tÞj2 ¼ jAj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfj2e�

q e�½ð!0~x
2Þ=ðjfj2e�Þ�: (36)

From Eqs. (29) and (11), it follows that jfj2e� goes to a
constant as t ! 0. Thus jc ð~x; tÞj2 becomes a well-defined
smooth Gaussian function in the limit t ! 0. The absolute
value of thewave function, jc ð~x; tÞj thus has a smooth limit
as t ! 0�. Contrast this with the phase of the wave func-
tion. As discussed in Appendix B,

e��

�� _f

f

�� þ _�

2

�
! 1=ð�tÞp�1; (37)

as t ! 0�, and thus the phase of the wave function goes
like

ei½ð _f=fÞ�þð _�=2Þ�ðe��~x2Þ=2 ! ei½ðC~x2Þ=ð�tÞp�1�; (38)

where C is a constant. Note that for p � 1 the phase factor
diverges.8 The result is that the wave function, Eq. (35),
does not have a well-defined limit as t ! 0�. In terms of
expectation values, this divergence results in the expecta-

tion value for ~̂P
2
blowing up. One finds that

h ~̂P2i � ð�tÞ2ð1�pÞ ! 1: (39)

We have considered the ground state wave function
above. In the subsection that follows, wewill give a general
argument for why the same diverging phase factor arises
for the wave function of any state. This general argument
will also include quartic terms.

C. General analysis of wave function near t ¼ 0

The behavior of wave function can be analyzed quite
generally in the vicinity of t ¼ 0. It is easy enough to carry
out the analysis in the full quantum mechanics system,
Eq. (7), including the quartic interaction terms.

The Schrodinger equation takes the form

� e�

2
@2~xc þ e��Vð~xÞc ¼ i@tc ; (40)

where the potential Vð~xÞ is

Vð~xÞ ¼ 1

2
!2

0~x
2 þ ~x4: (41)

Since e� vanishes near the singularity let us begin by
assuming that the potential energy term on the left-hand

side of Eq. (40) dominates; we will verify below that this
assumption is self-consistently true. This gives

e��Vð~xÞc ’ i@tc ; (42)

which can be easily solved to give

c ðx; tÞ ¼ e�iGðtÞVð~xÞc 0ðxÞ; (43)

where

GðtÞ ¼
Z

dte�� ¼ �ð�tÞ1�p

ð1� pÞ ; (44)

and c 0ðxÞ is a time independent integration constant. Here
we have used Eq. (11) for the dilaton. For p > 1, we see
that GðtÞ diverges at the singularity, leading to a diverging
phase factor in the wave function. This divergence is a
general feature, independent of the initial state c 0ðxÞ. In
the quadratic case where

Vð~xÞ ¼ 1

2
!2

0~x
2; (45)

we see that this phase factor agrees with what was obtained
in the exact solution for the ground state, Eq. (38).
To check the self-consistency of our assumptions let us

evaluate the contribution due to the kinetic energy term in
Eq. (40) on the solution, Eq. (43). It is useful to analyze the
two cases p > 1 and p < 1 separately;9 in both cases, we
see below that the kinetic energy term is subdominant
compared to the potential energy term.
For p > 1 the leading contribution to the kinetic energy

comes when the spatial derivatives act on the phase factor,
and not on c 0ðxÞ. This gives

� e�

2
@2~xc ’ e�

2
½GðtÞ2V 0ð~xÞ2 þ iGðtÞV 00�c : (46)

Since GðtÞ diverges the dominant contribution comes from
the first term on the right-hand side leading to

� e�

2
@2~xc � e�

2
½GðtÞ2V0ð~xÞ2�c � t2e��V0ð~xÞ2c ; (47)

where we have used the behavior for GðtÞ in Eq. (44).
Comparison with the potential energy term in Eq. (40)
shows that this contribution is suppressed by an extra
power of t2.
For p < 1 the leading contribution comes when the

spatial derivatives act on c 0ðxÞ. This gives

� e�

2
@2~xc ’ � e�

2
e�iGðtÞVð~xÞc 0ðxÞ00: (48)

Comparing with the potential energy term in Eq. (40) we
see that this term is suppressed by an extra power of t2p.
From the point of view of the bulk dual cosmology, we

are especially interested in the question of whether the
8For p ¼ 1, the divergence goes like logð�tÞ. This follows

from standard properties of Bessel functions, and also from the
general discussion in the next subsection. 9A similar analysis can also be carried out when p ¼ 1.
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state can be continued past t ¼ 0, with the dilaton varying,
for example, like

e� ¼ jtjp: (49)

We have found above that the wave function for a general
state in the quantum mechanics model does not have a
well-defined limit as t ! 0�, when p > 1. This means it is
not meaningful to ask about its continuation for t > 0 in
this case. To obtain this continuation one would need to
impose that the wave function at t ¼ 0 is continuous, i.e.,
meets the condition

c ð~x; t ¼ 0�Þ ¼ c ð~x; t ¼ 0þÞ: (50)

This condition cannot be imposed if limt!0�c ð~x; tÞ does
not exist.

D. The energy blows up at t ! 0

We continue with our general analysis of the wave
function in the quantum mechanics system in this subsec-
tion and find that for a generic state, and all values of p >
0, the energy at t ! 0� diverges. We will work below with
a general potential VðxÞ.

The Hamiltonian operator H is given by the left-hand
side of the Schrodinger equation, Eqs. (40) and (59). We
have argued above that the kinetic energy contribution is
subdominant to the potential energy, near t ¼ 0, so that

hHi ’ e��hVi: (51)

The expectation value of the potential,

hVi ¼
Z

d~xVð~xÞc �ð~x; tÞc ð~x; tÞ: (52)

Substituting for the wave function from Eq. (43) we see
that the phase factor drops out so that hVi near t ¼ 0 is
given by

hVi ¼
Z

d~xVð~xÞjc 0ð~xÞj2; (53)

and is time independent. This means the leading time
dependence in hVi comes from the prefactor e�� in front
in Eq. (51), leading to the conclusion that the energy
diverges as

hHi ! ð�tÞ�p (54)

when t ! 0. Note that this conclusion holds for all p > 0.
This conclusion can be avoided if the state is such that

hVi vanishes. This issue is examined further in some detail
in Appendix C. The conclusion, after analyzing subleading
corrections which could also have been potentially diver-
gent contributions, is the following: Unless p > 2, in
which case a divergent contribution to the energy arises
from the kinetic energy term, the subdominant contribu-
tions to the energy do not diverge as t ! 0. Thus, requiring
that hVi vanishes is enough to ensure that the energy stays
finite.

Now even if hVi vanishes we should note that the
expectation value of hH2iwill diverge. From the discussion
above it follows that

hH2i ’ e�2�hV2i: (55)

In general in a state where hVi vanishes, hV2i will not
vanish. This means that even in those special states where
the expectation value of the energy stays finite as t ! 0, the
fluctuations about this finite mean value will diverge10

IV. ANALYSIS IN FIELD THEORY

In the previous section we have analyzed the quantum
mechanical model, Eq. (7), extensively. Here we return to
field theory, first discussing the toy model field theory, Eq.
(6), and then turning to the deformed N ¼ 4 field theory,
Eq. (3).
The lessons from the study of the quantum mechanics

model can be directly applied to the field theory, Eq. (6).
Carrying out the field redefinition in the full field theory
gives rise to a Lagrangian, up to a surface term

L ¼ � 1

2
ð@XÞ2 �m2ðtÞX2 � e�X4 (56)

with m2 being a tachyonic time dependent mass

m2 ¼ ��2

t2
(57)

with

�2 ¼ p

4
ðpþ 2Þ; (58)

which diverges as t ! 0.
The first lesson which carries over from quantum me-

chanics to field theory is that contrary to what one might
have guessed at first, the quartic term cannot be neglected
near t ¼ 0. The second lesson is that the variable X is not
so convenient to work with and the analysis is more con-
veniently carried out in terms of the original variables ~X.
The third lesson is that the analysis is conveniently carried
out in terms of the Schrodinger picture. This last lesson is
not easy to apply in field theory, since typically the
Schrodinger picture has not been used in this context.
Nevertheless with the experience of the quantum mechan-
ics model in mind we will in this subsection analyze the
field theory in the Schrodinger picture; various caveats will
be discussed in the next subsection.
In the Schrodinger picture in field theory the state of the

system is described by a time dependent wave functional,

10In the next section we will apply the discussion of this and the
previous subsection to the N ¼ 4 gauge theory. In that case,
both hHi, hH2i should scale like N2—the number of colors. This
means that the fluctuations in energy will be suppressed in the
large N limit. This suggests that to leading order in 1=N, and for
p < 2, the vanishing of hVi is sufficient to ensure that the
expectation value of energy stays finite when t ! 0.
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c ½ ~XðxÞ; t�, which satisfies the Schrodinger equation

� 1

2

Z
d3xe�

�2c

� ~X2
þ e��V½ ~X�c ¼ i@tc : (59)

Here the potential energy, V½ ~X�, is a functional given by

V½ ~X� ¼
Z

d3x

�
1

2
ð@i ~XÞ2 þ ~X4

�
: (60)

The first term on the left-hand side in Eq. (59) is the
kinetic energy, and the second term is the potential energy.
We see that, like in quantum mechanics, the kinetic energy
term has a prefactor e�, while the potential energy has the
prefactor e��. This suggests that the kinetic energy term is
once again subdominant close to the singularity, leading to
the solution

c ½ ~XðxiÞ; t� ¼ e�ifGðtÞV½ ~X�gc 0½ ~XðxiÞ�: (61)

We see that the wave functional has a phase factor which
diverges, as in the quantum mechanics case, resulting in a
singular limit for the wave function if p � 1. Moreover
with the kinetic energy being subdominant, near t ¼ 0, the
Hamiltonian is well approximated by

hHi ’ e��hVi: (62)

As in the quantum mechanics model, the phase factor
drops out in the expectation value of hVi near t ¼ 0 leading
to the conclusion that, in field theory as well, hHi goes like
Eq. (54), and therefore blows up for all p > 0.

The central assumption here is that the kinetic energy is
subdominant compared to the potential energy near t ¼ 0.
This was shown to be self-consistently true in the case of
quantum mechanics. Wewill analyze this issue for the field
theory in the next subsection.

Before proceeding let us also mention that we analyze
the quadratic theory in further detail in Appendix D. We
consider a dilaton profile of the form e� ¼ jtjp, and evolve
the field theory in this background, starting from the vac-
uum into the far future. It is useful for this purpose to
regulate the dilaton profile near t ¼ 0 in a manner we make
more precise in the appendix. Our conclusion is that par-
ticle production always occurs. For p < 1 the particle
production is finite, while for p > 1 it becomes infinite
as the regulator is taken to zero.

Turning now to the gauge theory, Eq. (3), we see that the
coupling of the dilaton to the quartic scalar potential and
the fermionic Yukawa terms are proportional to positive
powers of e� and can be neglected when the dilaton is very
small. The fermions and scalars have canonical kinetic
terms. The gauge field in contrast has a noncanonical
kinetic energy term, it is the analogue of the ~X field in
the toy model, Eq. (6). As t ! 0, and the dilaton vanishes,
it is this gauge kinetic energy term which will determine
the behavior of the system. Accordingly, in the analysis
below we focus on the pure gauge theory, without fermions
and scalars, and with action

S ¼
Z

d4x

�
� 1

4e�

�
TrF��F

��: (63)

The equation of motion is

D�ðe��F��Þ ¼ 0: (64)

We work in Coulomb gauge, where

A0 ¼ 0: (65)

Consider now the noninteracting theory. The equation of
motion, Eq. (64), for � ¼ 0, becomes (this is the Gauss
Law constraint)

@0ð@jAjÞ ¼ 0: (66)

Thus the longitudinal part of the gauge field is time inde-
pendent. We can now do an additional time independent
gauge transformation to set

@jA
j ¼ 0: (67)

The equation of motion, Eq. (64), with � ¼ i, then become

@0ðe��@0AiÞ þ e��@j@
jAi ¼ 0; (68)

for the two transverse components satisfying Eq. (67).
Equation (68) is exactly the equation we have for a scalar
field with Lagrangian

L ¼ e��ð@ ~XÞ2: (69)

Thus at the quadratic level, the analysis for the gauge field
reduces to that of the scalar field considered above. There
are two transverse components coming from each gauge
field. We have neglected the color degrees of freedom
above. They are easily incorporated and give (N2 � 1)
degrees of freedom for each of the two transverse
components.
Interactions give rise to cubic and quartic terms. In

Coulomb gauge, these terms do not depend on any time
derivatives. Thus, in the Hamiltonian they only contribute
to the potential energy and not to the kinetic energy. The
interactions can therefore be included in a way very similar
to the quartic terms in the toy model for ~X.
In particular, we are interested in the wave function in

the Schrodinger picture. In this picture the operators are
time independent. The total potential energy is given by
energy due to the magnetic field

V½AiðxÞ� ¼
Z

d3x
1

4
TrðFijF

ijÞ: (70)

Motivated by the quantum mechanics model on the
previous section, and as in the scalar field theory above,
we now take the potential energy to dominate in the
Schrodinger equation near the singularity. As a result the
wave function has a phase given by

c ½AiðxÞ; t� ¼ e�ifGðtÞV½Ai�gc 0½AiðxÞ�: (71)

The phase factor is identical to that found in Eq. (43) and
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diverges, as t ! 0, if p > 1, resulting in the wave function
being singular at t ! 0. The wave function above can be
regarded as being dependent on only the transverse com-
ponents of the vector potential. Alternatively, we can take
the wave function to be dependent on a general gauge
potential (with A0 ¼ 0), and then impose Gauss’s law,

@i
�c

�Ai

¼ 0; (72)

on it.
Similarly one can calculate the expectation value of the

energy near t ¼ 0. It has the same form as in Eq. (54), with
the expectation value of the potential energy now being
given by

hVi ¼
Z

DAijc 0½AiðxÞ�j2V½AiðxÞ�; (73)

where V½AiðxÞ� is given in Eq. (70). We see that the energy

diverges in the gauge theory as well, as ð�tÞð�pÞ, for all p,
unless the state is such that hVi vanishes.

We conclude this section with two important comments.
First, naively one would have thought that as the dilaton
becomes small perturbation theory should become a good
approximation. However we have seen in our analysis of
the toy model in the last section that this is in fact not true.
In the X description for the toy model, the time dependent
dilaton drives the system to large values of X resulting in
the quartic term being non-negligible. A similar argument
also holds in the gauge theory. The cubic and quartic
interactions terms are not small near t ¼ 0, and as a result
perturbation theory is not a good approximation. Second, it
should be emphasized that our analysis is valid for finite N
and finite g2YMN. In fact from Eq. (71) we see that the
behavior of the wave functional near t ¼ 0 is essentially
determined by GðtÞ and is independent of the details of the
potential V½AiðxÞ�. In the dual closed string theory, this
means that this conclusion is valid in the presence of string
and quantum corrections.

A more critical look at the field theory analysis

The central assumption in the field theory discussion
above was that in the Schrodinger equation the potential
energy which scales like e�� dominates over the kinetic
energy, which has a prefactor e� in front of it. This
assumption was motivated by our earlier analysis in quan-
tum mechanics. However, field theory differs from quan-
tum mechanics in having an infinite number of degrees of
freedom, and one might worry that this introduces addi-
tional subtleties and complications.11 We turn to an exami-
nation of these issues below.

The wave function for the ground state of the harmonic
oscillator with action Eq. (14) in the ~x description is given

by Eq. (35). This is an exact result. If the potential energy is
dominant the wave function has the form Eq. (43). From
the exact result we can ask how close to t ¼ 0 must one
come for this approximation to become a good one. The
phase factor in the wave function Eq. (35) contains the

factor ð _ffÞ� þ
_�
2 . As discussed in Eq. (B23) of Appendix B,

this phase factor has a power series expansion in t!0, near
t ¼ 0, of form� _f

f

�� þ _�

2
¼ 1

t

�
1� 2�þ p

2

�
þ 2c2!

2
0tþ � � � : (74)

The ellipses stand for terms which are suppressed when

t!0 	 1: (75)

Now the first term in Eq. (74) vanishes due to Eq. (17). The
second term is therefore the leading one and it is easy to see
that this gives agreement with Eq. (43).
The conclusion is that the potential energy dominates

over the kinetic energy term when t is small enough and
satisfies the condition in Eq. (75). We can also understand
this on the basis of the general arguments given in Sec. III
for the self-consistency of this approximation. From Eq.
(47) we see that the kinetic energy term goes like

� e�

2
@2~xc � t2e��V 0ð~xÞ2c � t2e��ð!2

0~xÞ2c ; (76)

while the potential energy term is

e��Vð~xÞc � e��ð!0~xÞ2c : (77)

Thus for the latter to dominate, Eq. (75) must be true.
Consider now a field theory in the quadratic approxima-

tion. Since there are an infinite number of modes, for any
nonzero and arbitrarily small time t, there will always be
some modes with high enough frequency for which the
condition Eq. (75) is not met and thus for which the wave
functional will not be well approximated by Eq. (61) or
Eq. (71). Including interactions will couple these modes to
low-momentum frequency potentially making the wave
functional for all modes to be different from Eqs. (62) and
(71).
It is of course well known that in dealing with the infinite

numbers of degrees of freedom in a field theory it is first
useful to introduce a cutoff or regulator, which makes the
number of degrees of freedom finite, and then ask what
happens as the cutoff is removed. For ease of discussion
consider a momentum space cutoff � (in the gauge theory
one needs a more sophisticated regulator to preserve gauge
invariance, but this will not change the essential points in
our discussion). The above analysis suggests that if we take
the time t to vanish while keeping � fixed and finite, then
the potential energy should dominate for times t meeting
the condition

t� 	 1 (78)
11We are grateful to David Gross, in particular, for emphasizing
this point to us.
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and our conclusions in the previous section will be correct
near t ¼ 0. More generally one might expect that these
conclusions are valid as long as we take t ! 0, before we
take � ! 1.

Unfortunately, it is not easy to make this argument
precise. Additional complications can arise in field theory
due to the effects of renormalization.12 Usually renormal-
ization in field theory is discussed in terms of an effective
Lagrangian which changes under renormalization group
flow. For our purposes in the discussion above the
Schrodinger picture has been more useful. Including the
effects of renormalization in the Schrodinger picture
though is a complicated issue that we have not fully sorted
out. Presumably the Hamiltonian which governs the time
evolution of the wave functional needs to be well defined
by appropriate operator ordering and this introduces the
effects of renormalization.

One would expect that at least some of the consequences
of renormalization can be incorporated by first construct-
ing an effective Lagrangian by integrating out high-
frequency modes and then using this effective
Lagrangian to construct a Hamiltonian that governs the
time evolution of the surviving low-frequency modes.
Since the N ¼ 4 theory is conformally invariant any
renormalization of the effective Lagrangian must be due
to the time dependence of the dilaton and thus operators
which are induced by this renormalization must have co-
efficients proportional to derivatives of the dilaton. In turn
such operators could then also change the Hamiltonian
resulting in extra operators in it with coefficients propor-
tional to time derivatives of the dilaton.

The essential reason why in our discussion the potential
energy dominates is that it scales like

V � e��;

whereas the kinetic energy term has a prefactor e� in front
of it that suppresses it. However suppose as an example of
the consequences of renormalization the potential energy
acquires an extra term which arises at one loop so that it
now has the form

V ¼ e��

�
O1 þ e�

_�2

�2
O2

�
:

HereO1 is the operator corresponding to the magnetic field
energy, � is the cutoff scale, and O2 is the additional
operator which arises at one loop. If the condition

p� 2< 0 (79)

is met, this second term could get important close to t ¼ 0.
This will mean that one has to include additional loop
effects that arise beyond one loop as well. Resumming
these effects could well lead to a much smaller potential
energy. For example, if these corrections take the form of a

geometric series, we would get schematically

V � e��

�
1þ e�

ð _�Þ2
�2

þ ðe
�ð _�Þ2
�2

Þ2Þ þ � � �
�
;

we would get after resumming

V � e��

�
�2

�2 � e�ð _�Þ2
�
��2e�2�

ð _�Þ2 ; (80)

sufficiently close to t ¼ 0, if the condition Eq. (79) is met.
We see that the effects of renormalization can therefore
suppress the potential energy term. In particular, if

e�2� �2

_�2
� e� (81)

this suppression would make the kinetic energy term com-
parable. It is easy to see that Eq. (81) will be met for small
enough time,t, if

p < 2=3: (82)

The summary is that our analysis in the field theory is
not complete and our conclusions about the gauge theory
being singular should be taken as being suggestive but not
conclusive. To analyze the gauge theory in a well-defined
manner one must introduce a regulator. Once this is done a
very rich set of counterterms are allowed in the process of
renormalization, and such counterterms can potentially
invalidate our conclusions. This would happen if they
make the potential energy comparable to the kinetic energy
or even smaller than it near t ¼ 0 thereby significantly
changing the form of the wave function and potentially
making the gauge theory nonsingular. Whether this hap-
pens or not requires a detailed understanding of renormal-
ization in the gauge theory in these time dependent
backgrounds. This is a fairly complicated subject and we
leave it for the future.
We end with some comments. Introducing a UV regu-

lator in the gauge theory is dual to introducing a boundary
in the bulk that regulates the IR behavior. Some conse-
quences of renormalization, in the null-dependent case,
have been worked out in [5], where indeed terms in the

Wilsonian action with coefficients proportional to ð�0Þ2
�2

were found.

V. COSMOLOGICAL SOLUTIONS

The motivation for this investigation came from trying to
understand some cosmological solutions [2–4]. These so-
lutions can be thought of as deformations of AdS5 � S5

and have a dual description in terms of the N ¼ 4 theory
with a time dependent dilaton. As the dilaton becomes
small on the boundary the bulk curvature becomes larger
and larger, eventually becoming singular at t ¼ 0. In this
section we ask what the above analysis in the gauge theory
teaches us about these cosmological solutions.12We thank the referee for emphasizing this point to us.
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We begin with a brief review of these solutions and then
return to the gauge theory later.

A. The gravity solutions

The solutions arise in IIB theory and are deformations of
AdS5 � S5. The S5 factor is unchanged in the deforma-
tions, and accordingly we will omit it below and only
discuss the solution in the remaining five dimensions.

The first solution we consider has the five-dimensional
metric

ds2 ¼ 1

z2
½dz2 þ j sinhð2tÞj

�
�dt2 þ dr2

1þ r2

þ r2ðd�2 þ sin2�d�2Þ�
�
; (83)

and dilaton

e�ðtÞ ¼ gsj tanhtj
ffiffi
3

p
: (84)

This solution was discussed in [4].
In the far past, as t ! �1, the dilaton goes to a con-

stant, and the metric becomes AdS5. One can see this by
going to coordinates

r ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � r2

p ; e�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � R2

q
; (85)

in which the metric, Eq. (83), and dilaton, Eq. (84), take the
form

ds2 ¼ 1

z2

�
dz2 þ

��������1� 1

ð�2 � R2Þ2
��������½�d�2 þ dR2

þ R2d�2
2�
�
: (86)

The far past, t ! �1, corresponds to ð�2 � R2Þ ! 1; it is
clear from Eq. (86) that the metric asymptotes to AdS5 in
this limit. The dilaton in these coordinates is

e� ¼
���������

2 � R2 � 1

�2 � R2 þ 1

��������
ffiffi
3

p
: (87)

At t ¼ 0 the solution Eq. (83) has a singularity. The
curvature scalar diverges like R� 1

t3
as t ! 0.

The dilaton vanishes as t ! 0, Eq. (84). Thus the singu-
larity occurs at weak string coupling. This singularity is the
main focus of our analysis.

The region t < 0, which is the region of space-time
before the singularity, maps to �2 � R2 > 1, in the ð�;RÞ
coordinates, while the singularity, which is at t ¼ 0, maps
to the locus �2 � R2 ¼ 1.

Another 5D solution is given by

ds2 ¼ 1

z2
½dz2 þ j2tj½�dt2 þ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2�;

(88)

with dilaton

e�ðtÞ ¼ gsjtj
ffiffi
3

p
: (89)

This solution does not asymptote to AdS5 in the far past, as
t ! �1. However its behavior at the singularity, as t ! 0,
is very similar to the solution discussed above, Eqs. (83)
and (84). The z ¼ const hypersurfaces in both metrics are
of the FRW form. The difference between the two metrics
is that this 4D FRW cosmology has constant negative
curvature in the first case, Eq. (83) while it is flat in the
second case, Eq. (88). This difference is increasingly un-
important near the singularity, where the dominant source
of stress energy is provided by the diverging time deriva-
tive of the dilaton, rather than the spatial curvature. Since
the dilaton is essentially identical near the singularity, at
t ! 0, in both cases, the resulting space-times also are
essentially the same.
In Sec. VI we will explore some additional cosmological

solutions and comment on their gauge theory duals. Some
of these solutions differ from the two solutions discussed
above at early times but their behavior near t ¼ 0 becomes
the same as in the solutions above.

B. The gauge theory duals

For purposes of studying the field theory dual, we start
with the first bulk solution considered above, Eqs. (83) and
(84), or equivalently Eqs. (86) and (87). This solution
asymptotes in the far past to AdS5 with a constant dilaton.
As discussed in [2,3], this corresponds to starting in the far
past with theN ¼ 4 super Yang-Mills theory in the vacuum
state. The space-time, Eq. (83), has a boundary at z ! 0.
We see that the metric on the boundary is conformal to flat
space. As was discussed in [4], we can then take the metric
of the space-time in which the dual gauge theory lives to be
the 4D Minkowski-space metric.
Since this is an important point let us pause to briefly

comment on it further. In general a Weyl transformation in
the boundary theory corresponds to a Penrose-Brown-
Henneaux (PBH) transformation in the bulk. The explicit
PBH transformation which gives rise to a flat boundary
metric for Eq. (83) was found in [4]. The metric in Eq. (83)
has a second order pole as z ! 0. The metric on the
boundary defined by

ds24 
 lim
z!0

z2g��dx
�dx�; (90)

where x� denotes coordinates on the boundary, is

ds24 ¼ j sinhðtÞj
�
�dt2 þ dr2

1þ r2
þ r2ðd�2 þ sin2�d�2Þ

�
:

(91)

After the PBH transformation the resulting four-
dimensional metric is given by
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ds24 ¼ e�2t

�
�dt2 þ dr2

1þ r2
þ r2ðd�2 þ sin2�d�2Þ

�
:

(92)

This is in fact flat space in Milne coordinates. It is easy to
see this. The coordinate transformation, Eq. (85), turns this
metric into the familiar Minkowski metric

ds24 ¼ �d�2 þ dR2 þ R2d�2: (93)

The region to the past of the singularity is given by �1<
t < 0, in Eq. (92), and maps to the region �2 � R2 > 1,
which is part of one of the Milne wedges. The rest of this
Milne wedge is given by 0< t <1, to which the metric
Eq. (92) automatically extends. The boundary of the Milne
wedge lies at t ! 1. Starting from t ! �1 one arrives at
the singularity, at t ¼ 0, before reaching the boundary of
the Milne wedge.

The dual gauge theory knows about the time dependence
of the bulk through the varying dilaton. The exponential of
the dilaton is equal to the coupling constant of the Yang-
Mills theory, Eq. (2). Thus the varying dilaton gives rise to
a varying Yang-Mills coupling. The dilaton depends on the
Milne time coordinate t, Eq. (92), and takes the form Eq.
(84).

In summary we see that the dual gauge theory to this
cosmological solution lives in flat space with a varying
dilaton which vanishes at the singularity. The analysis in
the preceding sections can now be used to determine the
nature of this singularity. We turn to this in the next
subsection.

Before that, it is also useful to discuss the dual to the
second cosmological solution introduced in the previous
subsection, with metric and dilaton given by Eqs. (88) and
(89). In this case the dual gauge theory also lives in flat
space, but the dilaton depends on Minkowski time instead
of Milne time. To see this note that from Eq. (88) it follows
that the boundary metric as defined by Eq. (90) is con-
formally flat. After a suitable PBH transformation the
boundary metric becomes that of flat Minkowski space,

ds2 ¼ �dt2 þ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2: (94)

The dilaton dependence is given in Eq. (89); we see that it
is only a function of Minkowski time.

The first solution, Eq. (84), has a dilaton which goes to a
constant in the far past, and the dual gauge theory starts in
the vacuum state of the N ¼ 4 theory as t ! �1. In
contrast in the second solution, Eq. (89), the dilaton blows
up in the far past, this makes the dual map to the boundary
theory less clear. It will turn out that the behavior at the
singularity of the two theories is similar13 near the singu-
larity, and a little easier to analyze in the second case,

where the variation is with respect to Minkowski time. For
this reason, and for the limited purpose of asking questions
near the singularity, we will focus some of the following
discussion on the second hologram.

C. Gauge theory and gravity

In this section we relate what was learned in the analysis
of the gauge theory above to the specific cosmological
solutions of interest.
We see from Eqs. (84) and (89) that the solutions cor-

respond to

p ¼ ffiffiffi
3

p
: (95)

In particular this means that for these solutions p > 1. We
now see that, with the provisos discussed above, the analy-
sis in the gauge theory suggests that the system becomes
genuinely sick as t ! 0�. In particular the wave function
in the Schrodinger picture acquires a wildly oscillating
phase, Eq. (43), and thus does not have a good limit, as t !
0. This also means the state cannot be sensibly continued
past t ¼ 0. We remind the reader that these conclusions are
not definitive, in particular, various caveats discussed in
Sec. apply here, and there are additional issues having to
do with renormalization that we have not adequately dis-
cussed in this work.
If true, the conclusions should hold regardless of the

state of the system. In the far past, for the solution, Eqs.
(83) and (84), the state is known to be the vacuum of the
N ¼4 theory. However, as time progresses and the dilaton
becomes smaller the state evolves. The analysis in the
gauge theory leading to the wave function of form, Eq.
(71), is only valid very close to t ¼ 0, where the state
would be different in general from the vacuum.
It also follows from the gauge theory, Eq. (54), that the

energy diverges like ð�tÞ�
ffiffi
3

p
, as t ! 0. If our approxima-

tions hold, the only way to avoid this conclusion would be
if the system, which starts in the vacuum state in the far
past, evolves to a nongeneric state near t ¼ 0 for which
hVi, Eq. (52), vanishes. While this seems unlikely, since
such states are nongeneric, one cannot rule out this possi-
bility. Note however that even in this case the discussion of
the previous two paragraphs would continue to hold and
the system would become sick as t ! 0�. Also, as was
mentioned in Sec. III, even in such a nongeneric state the
fluctuations in the energy, which are suppressed at large N
would still diverge and the gauge theory at finite N would
still be singular.
The cosmological solution in Eqs. (83) and (84) maps to

a boundary theory where the dilaton depends on Milne
time, rather than Minkowski time. This does not make an
essential difference to the analysis in the gauge theory
which in the above sections was carried out for the dilaton
being a function of Minkowski time. This issue is analyzed
further in Appendix E. The Milne case corresponds to
having a nontrivial metric in the boundary theory. The

13This similarity is parallel with the fact, mentioned in the
previous section, that the two corresponding bulk solutions also
behave similarly near the singularity.
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dilaton vanishes at the point t ¼ 0 which is perfectly
smooth in Milne coordinates, thus the nontrivial metric
does not make an essential difference to the discussion of
the singularity.

More generally one can consider other cosmological
solutions, which are different in the far past, but which
also behave like the two examples discussed above, near
t ¼ 0 where the dilaton vanishes. In all these cases, as long
as the metric on the boundary is well behaved at t ¼ 0 the
above discussion should apply. In Sec. VI, we give ex-
amples of BKL cosmologies, with the dilaton, which at late
times asymptote to the example, Eqs. (88) and (89). It
follows from the discussion above that, subject to the
caveats mentioned above, the singularity in all these solu-
tions then is a genuine sickness of the theory.

D. Concluding comments

We conclude this section with some more comments on
the relation between the gravity solutions and their gauge
theory description.

For the supergravity solutions, Eqs. (83), (84), (88), and
(89), the stress energy tensor was calculated in Sec. 5 of
[4]. For small t the stress tensor diverges like

T�� � N2

t4
: (96)

This calculation was made in the supergravity approxima-
tion which breaks down when the dilaton becomes small
enough. At very small values of the dilaton the gauge
theory analysis carried out in Sec. IV becomes valid,
subject to the various caveats discussed in Sec. . We have
seen in Sec. IV that the energy density according to this
analysis goes like14

h	i � N2=jtjp: (97)

(The factor of N2 was not explicitly displayed in the
discussion in Sec. IV. It is easy to see that in the quadratic
approximation, where the gauge theory is free, the N2

independent color degrees of freedom, in the presence of
the time dependent dilaton, give rise to an energy density
that scales in this way with N. In the presence of inter-
actions, the energy density should continue to scale like

N2, to leading order in N.) Since p ¼ ffiffiffi
3

p
< 4, we see that

the growth of energy in the regimewhere the dilaton is very
small is much slower than that in supergravity.

In the cosmological solutions we are studying here, the
energy being pumped in by the dilaton does not lead to the
formation of a black hole in the regime where supergravity

is valid, for t < 0. This means that in the dual gauge theory
the energy being pumped in is not thermalizing. To under-
stand this we note that in the strongly coupled gauge
theory, which is dual to supergravity, the thermalization
time scale 
, is expected to be of order


� 1

T
�

�
N2

	

�
1=4

; (98)

where 	 is the energy density, and T is the temperature.
From stress energy tensor, Eq. (96), we see that15


� t: (99)

Thermalization would occur if the external source is pump-
ing in energy on a time scale much slower than 
. In the
situation at hand, this time scale is of order

tpump � 	

_	
: (100)

Using Eq. (96) we see that tpump is also of order t. Thus the

rate at which the dilaton is pumping in energy equals the
thermalization or relaxation rate of the system. This ex-
plains why thermalization does not happen and in the dual
a black hole does not form. Another way to see this is that
from Eqs. (98) and (99) it follows that

_T

T2
�Oð1Þ; (101)

so that the temperature changes too rapidly for
thermalization.
We have seen that within our approximations, a dilaton

which decreases all the way to zero results in a singular
gauge theory. Effects of renormalization could, in princi-
ple, tame the singularity. In any case, if the dilaton profile
is modified such that e� never vanishes, but can become
small at t ¼ 0, a smooth time evolution beyond this time is
possible. Let us consider a situation where the dilaton
varies in a smooth fashion reaching a minimum value
and then increasing again, approaching a constant in the
far future which corresponds to a large value for the
’t Hooft coupling. The time dependent dilaton will typi-
cally lead to the system having some nonzero energy
density in the far future, and one would expect that given
enough time this energy would thermalize. This suggests
that in the dual closed string description supergravity will
eventually become a good approximation in the far future,
and the dual geometry in the far future will be that of a
black hole in AdS5.
An interesting question to ask is how the formation of

the black hole depends on the dilaton time variation. In
particular whether the black hole is always a good descrip-
tion of the geometry by the time the supergravity approxi-

14The initial state in the far past is the vacuum which is
translationally invariant. Also, the dilaton only depends on
time and does not break this translational symmetry. Thus the
potential energy in Eq. (70) scales like the volume, leading in
turn from Eq. (51) to an energy density which is finite and given
by Eq. (97).

15Note that Eq. (96) is valid when jtj 	 1 for the solution Eq.
(83). This is consistent with the supergravity approximation
being valid, as follows from Eq. (104).
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mation becomes good in the future, or whether for a
suitable dilaton time profile the formation of the black
hole can be delayed, until much after the supergravity
description becomes valid. This question is difficult to
answer with our current level of understanding. In particu-
lar, in the course of the time evolution of the dilaton it goes
through a region where the ’t Hooft coupling is of order
unity. This region is very difficult to analyze, since neither
the gravity nor the gauge theory descriptions are tractable
then.

Finally, we have not been very precise in the discussion
above about exactly when the supergravity approximation
breaks down. The metric for the solutions we are consid-
ering is in Eqs. (83) and (88). For small t the curvature goes
like

Rcurv ¼ z2

ð�tÞ3 : (102)

In this expression we have set

RAdS ¼ ð4�gsNÞ1=4 (103)

to unity, and we are also working in a 5D Einstein frame.
After taking this into account one finds that the string
frame curvature is given by

Rstring
curv � 1

ð�tÞð3�ð ffiffi
3

p
=2ÞÞ

z2

R2
AdS

: (104)

As t ! 0� we see that the curvature blows up, resulting in
a singularity as we have discussed above. The supergravity
approximation breaks down when the curvature gets to be
of order string scale. We see that when this condition
becomes valid depends on the radial coordinate z. In
particular, for all finite t, z ! 1 has diverging curvature.
This point corresponds to the locus where the past and
future horizons of AdS5 (in the Poincaré coordinates we
are using) intersect. The significance of this curvature
singularity is unclear to us.16 As time increases, the region
with high curvature (of order string scale or more) grows,
moving to smaller z, eventually leading to a singularity for
all z as t ! 0.

The calculation of curvature, Eq. (104), makes it clear
that the singularity (in string frame) is due to two effects
which are tied together in these cosmological solutions.
First, the dilaton vanishes causing the string frame curva-
ture to blow up. Second, an infinite amount of energy is
dumped into the system due to the vanishing dilaton
source. If the dilaton profile is altered so that it attains a
nonvanishing minimum value at t ¼ 0, the total energy put
into the system would be finite. If the minimum value of
the dilaton is small enough one expects that the curvature
in string units at t ¼ 0 still becomes much bigger than
unity, resulting in the breakdown of supergravity.

VI. BEHAVIOR NEAR SINGULARITIES AND BKL
COSMOLOGIES

We saw in Sec. V that the two solutions which were
considered had very similar behavior near the t ¼ 0 singu-
larity. This was because the stress energy near the singu-
larity was dominated by the dilaton which had essentially
the same behavior near t ¼ 0 in these two cases.
The behavior of the dilaton near the singularity is in fact

shared by a much larger class of cosmological solutions.
The key point is that the Einstein frame metric for the class
of solutions we have considered may be written in suitable
coordinates as [2]

ds2 ¼ 1

z2
½dz2 þ ~g��ðxÞdx�dx�� þ d�2

5: (105)

This solves the ten-dimensional supergravity equations
provided

~R�� � 1

2
r��r�� ¼ 0;

1ffiffiffiffiffiffiffi�~g
p @�ð

ffiffiffiffiffiffiffi�~g
p

~g��@��Þ ¼ 0;

(106)

and the 5-form field strength is standard

F ¼ !5 þ ?!5: (107)

In other words, any solution of 3þ 1-dimensional dilaton
gravity may be lifted to a solution of ten-dimensional
supergravity. This means that we can use the well-known
analysis of Belinski, Lifshitz, and Khlalatnikov and sub-
sequent work [14–19] to make useful statements about
AdS cosmologies.
For instance, we can consider a cosmological solution

where the spatial 3-metric is one of the general homoge-
nous spaces in the Bianchi classification (see, e.g., [14] for
a lucid treatment in the 4D context), with vanishing g0;�
components:

ds24 ¼ �dt2 þ �abðtÞðea�dx�Þðeb�dx�Þ; (108)

where ðea�dx�Þ are a triad of 1-forms defining symmetry
directions.17 �abðtÞ are general time dependent coefficients
which can be solved for from the Einstein equations, with
components decomposed along the frame. Assuming a
spatially homogenous dilaton gives @a� ¼ e�a@�� ¼ 0,
with @0� nonvanishing, so that Ra

ðaÞ vanish, with R
0
0 ¼ 1

2 �
ð@0�Þ2. More details on the Bianchi-IX solution can be
found in Appendix F.
The main point of BKL is that close to a spacelike

singularity, physics becomes ultralocal. For dilaton-driven

16Note that the past Poincaré horizon at z ! 1, t ! �1, with
jz=tj held fixed is nonsingular, as was discussed in [4].

17Starting with the 1-form triad ðea�dx�Þ, a labeling the vectors
in the triad, we can obtain the dual vectors e�a , satisfying e

a:eb ¼
�a
b. Then the symmetry algebra acting on the homogenous space

(i.e., the spatial metric) in question is obtained as the algebra of
the differential operators Xa ¼ e�a@�.
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cosmologies, this results in a Kasner-like solution in which
the time dependent part of the dilaton is precisely of the
form we have been analyzing.

A simple illustration is provided by a general confor-
mally flat boundary metric and dilaton

ds2 ¼ Fð �x; tÞð�dt2 þ d �x2Þ� ¼ �ð �x; tÞ: (109)

Near a singularity (which may be chosen to be at t ¼ 0
without loss of generality) we will assume that space
derivatives may be ignored compared to time derivatives
(which would typically blow up). However terms which
contain mixed derivatives need to be retained [14]. This
results in the following system of equations for� and f 

logF:

@2t fð �x; tÞ þ ½@tfð �x; tÞ�2 ¼ 0;

@tfð �x; tÞ@t�ð �x; tÞ þ @2t�ð �x; tÞ ¼ 0;

3@2t fð �x; tÞ þ ½@t�ð �x; tÞ�2 ¼ 0;

@tfð �x; tÞ@ifð �x; tÞ � 2@t@ifð �x; tÞ � @t�ð �x; tÞ@i�ð �x; tÞ ¼ 0:

(110)

The general solution of (110) is given by

�ð �x; tÞ ¼ ffiffiffi
3

p
lnðtþDð �xÞÞ þ C1ð �xÞ;

fð �x; tÞ ¼ lnðtþDð �xÞÞ þ C2ð �xÞ:
(111)

The last equation in (110) imposes the following relation
on C2 and C1:

C2ð �xÞ ¼
ffiffiffi
3

p
C1ð �xÞ: (112)

By choosing D ¼ 0, one can see that the behavior of the
fields is the same as in Eqs. (88) and (89) for the symmetric
Kasner case.

A similar result holds for a general class of diagonal
metrics with nonvanishing Weyl tensor [16].

In fact, in dilaton-driven cosmology for any space-time
dimension greater than 3, the approach to a singularity is
characterized by a finite number of oscillations between
Kasner-like solutions. Consider, for example, homogene-
ous cosmologies of type Bianchi-IX

ds2 ¼ �dt2 þ ða21ðtÞl�l� þ a22ðtÞm�m�

þ a23ðtÞn�n�Þdx�dx�; (113)

where l, m, n are the three frame vectors e1, e2, e3. The
Kasner-like solutions are obtained when the spatial curva-
tures can be ignored,

aiðtÞ � tpi ; �� � logðtÞ; (114)

where the Kasner exponents satisfy

X
i

pi ¼ 1;
X
i

p2
i ¼ 1� �2

2
: (115)

The effects of the spatial curvature results in oscillations
between different sets of pi’s until all the pi’s are positive.
The transition between different Kasner regimes lead to

an interesting attractor behavior. Consider the case of 3þ
1 dimensions. Let p� denote a negative Kasner exponent
and pþ > 0 being either of the other two positive expo-
nents. These transitions can be expressed as the iterative
map

pðnþ1Þ
i ¼ �pðnÞ�

1þ 2pðnÞ�
; pðnþ1Þ

j ¼ pðnÞ
þ þ 2pðnÞ�
1þ 2pðnÞ�

;

�ðnþ1Þ ¼ �n

1þ 2pðnÞ�
;

(116)

for the bounce from the (n)-th to the (nþ 1)-th Kasner
regime with exponents pi, pj. With each bounce, we see

that � increases, shrinking the allowed space of fpig, as
detailed in Appendix F. For � � 1, the allowed window of
fpig pinches sufficiently forcing all pi > 0, at which point
oscillations cease and the system settles in the pi > 0
attractor region. The rate of increase of � is small for small

�, since �nþ1 � �n ¼ �nð �2p�
1þ2p�

Þ, so that a system with

near constant dilaton (�� 0) takes a long iteration time to
‘‘flow’’ towards the pi > 0 attractor region.
Furthermore many distinct initial Kasner regimes can

flow to the same attractor point characterized by a set of
positive pi’s. The details of the derivation are given in
Appendix F. Note that in the absence of a dilaton the
number of such oscillations is infinite even though the
proper time to the singularity is finite [14,16,17], simply
because in this case all the pi’s cannot be positive.
Finally, these attractor flows exhibit some degree of

chaotic behavior, in the sense that small changes to the
initial conditions give rise to drastic changes in the final
endpoints, as elaborated in Appendix F. A quick glimpse at
this is obtained by considering exponents fp1; p2; p3; � ¼
0g corresponding to a nondilatonic asymmetric Kasner
cosmology which oscillates indefinitely, and perturbing
infinitesimally. Now �2 ¼ 2ð1�P

p02
i Þ is generically

nonzero (although small). This latter set fp0
i; � � 0g thus

flows to the attractor region, while the former oscillates
indefinitely, showing that a small change in the former
gives a drastically different endpoint.
Note that in our setting we have frozen the 5-form field

strength and all the other supergravity fields. This is be-
cause wewant to embed BKL-type cosmologies in the AdS
setup used in this paper. In general supergravity theories, a
BKL-type analysis shows that a general solution (which
excites all fields) in the supergravities which follow from
string theories and 11D supergravity exhibit an infinite
number of oscillations between different Kasner regimes
[15,18], similar to pure gravity [14,16,17].
The fact that the general BKL analysis for gravity-

dilaton system can be carried over to a discussion of a
class of AdS cosmologies is interesting. However, the
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symmetric Kasner is the only solution whose Weyl curva-
ture vanishes.18 In the AdS context this means that it is only
for this case that we can have PBH transformations to
choose a flat boundary. In other cases, the metric on which
the dual conformal field theories live is generically singular
and one would expect that the gauge theory would be
singular as well.
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APPENDIX A: DILATON COUPLINGS IN THE
YANG-MILLS THEORY

In this appendix we discuss the Lagrangian which ap-
pears in Eq. (3), especially the dependence of the dilaton in
it.

In the standard AdS/CFT dictionary the operator dual to
the dilaton is determined by the superconformal symmetry
to be an appropriate descendant of the chiral primary
obtained by symmetrizing two scalars. Of particular im-
portance to this paper is the fact that in Eq. (3) the dilaton
only couples to the kinetic energy term for the gauge fields
and does not couple to the kinetic energy terms of the
scalars and the fermions. To see this it is enough to con-
sider the Uð1Þ theory. We follow the notation in [13]. The
supercharges are QI

�, �QI _�. Here, the index I upstairs
(downstairs) denotes a 4ð�4Þ of SUð4Þ, and �, _� are indices
for the two different spinor representations of SOð3; 1Þ.

The scalars transform like a real six-dimensional repre-
sentation of SUð4Þ. For the limited purpose of carrying out
the supersymmetry analysis it is useful to denote the scalar
fields by �½IJ�, where the square brackets indicated anti-

symmetrization. The scalars satisfy the condition

ð�½IJ�Þ� ¼ 1

2
�IJKL�KL: (A1)

The traceless symmetric product of two scalars gives rise

to a field which transforms in the 20-dimensional repre-
sentation of SUð4Þ. This is a chiral primary of the full
superconformal algebra. We denote it by

TIJKL ¼ �½IJ��½KL� � 1

4!
�IJKL�½PQ��½RS��PQRS: (A2)

Note this field satisfies the tracelessness condition,
�IJKLTIJKL ¼ 0.
The operator which the complexified dilaton-axion cou-

ples to is [13]

Ô ¼ ����
�QI
�Q

J
�Q

K

Q

L
�TIJKL: (A3)

The supersymmetry transformations in the Uð1Þ theory
are (up to possible numerical factors)

½QI
�;�JK� ¼ �I

J�k� � �I
K�J�; (A4)

fQI
�;�I�g ¼ �I

JF��; (A5)

and,

½QI
�; F�
� ¼ 0: (A6)

Here �I�, F�;� denote the fermionic partners and the

gauge fields. It is then easy to see that this gives

Ô� F2: (A7)

In particular, Ô does not contain any coupling to the scalar
or fermion kinetic terms.
This result is consistent with Eq. (3). It is also consistent

with the statement that the dilaton couples to the on shell
Lagrangian once we allow for a total derivative term
involving the scalars.
A further check on Eq. (3) may be obtained as follows.

Consider deformed AdS5 � S5 with a ten-dimensional
string frame metric g��ðxÞ and a dilaton�ðxÞ. The indices
ð�;�Þ are ten-dimensional indices, e.g., � ¼ ð�; aÞ where
� ¼ 0; � � � 3 and a ¼ 1 � � � 6. We will only consider back-
grounds such that ga� ¼ 0. Then the Lagrangian for the

dual theory for small deformations is

L ¼ ffiffiffiffiffiffiffiffiffiffi�g4
p

e�� Tr

�
� 1

4
g��0

g��
0
F��F�0�0

� 1

2
g��D�X

aD�X
bgab þ 1

4
½Xa; Xb�½Xc; Xd�gacgbd

þ 1

2
���Ae

�
A ½�iD�;�� þ 1

2
���AeaA½Xb;��gab

�
:

(A8)

Here g4 denotes the determinant detðg��Þ and A denotes a

frame index and eaA is the string frame vierbein. One way to
see this is to consider the Yang-Mills theory in the
Coulomb branch with SUðNÞ ! SUðN � 1Þ �Uð1Þ.
Then the effective action for the Uð1Þ part should be given
by the Dirac-Born-Infeld (DBI) action for a 3-brane in this
geometry. In this action, the dilaton factor e� appears as an

18Analyzing the Weyl tensor components shows that the Weyl
tensor vanishes identically only for flat space and the symmetric
Kasner space-time. For a generic asymmetric Kasner space-time
with exponents ðp1; p2; p3Þ, some of the nonvanishing Weyl
tensor components diverge as t2pm�2, where pm is one of the
exponents pi.
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overall factor, provided everything is written in terms of
the string frame metric. The leading order (two derivative)
terms of this action can be obtained by simply replacing the
SUðNÞ fields in the original Yang-Mills action by the Uð1Þ
part. It is then easy to see that if we make this replacement
in (A8), we get the correct leading terms of the DBI action.

We now need to express the Lagrangian (A8) in terms of
the ten-dimensional Einstein frame metric G��,

G�� ¼ e��=2g��: (A9)

This leads to the Lagrangian

L ¼ ffiffiffiffiffiffiffiffi�G
p

Tr

�
� 1

4
e��G��0

G��0
F��F�0�0

� 1

2
G��D�X

aD�X
bGab þ 1

4
e�½Xa; Xb�

� ½Xc; Xd�GacGbd þ 1

2
e�=4 ���AðeEÞ�A ½�iD�;��

þ 1

2
e3�=4 ���AðeEÞaA½Xb;��Gab

�
; (A10)

where ðeEÞaA denotes the Einstein frame vierbein. Now
consider the field redefinition for the fermion fields

� ! e��=8�: (A11)

This will absorb the dilaton factor in front of the quadratic
term, but will give rise to an additional term of the form,19

���A�ð@��ÞðeEÞ�A . However, ���A� ¼ 0 by virtue of the

Majorana condition.
In our setup, it is the Einstein metric which is flat. This

gives rise to Eq. (3).
Finally, let us mention that Eq. (3) is invariant under the

conformal transformation, g�� ! �2g��, with the scalars

and fermions transforming in the standard manner, once
the 1

6RX
2 term is also included.

APPENDIX B: REDUCTION TO SINGLE
HARMONIC OSCILLATOR AND THE

SCHRODINGER PICTURE WAVE FUNCTION

Consider the 3þ 1-dimensional quadratic theory

S ¼
Z

dtd3x
1

2
½ _X2 � ð@iXÞ2 �m2ðtÞX2�: (B1)

We work in a box of volume V 
 L3, with periodic bound-
ary conditions. Define the modes Xn to satisfy the equation

X ¼ X
n

Xne
i½2�ðn�x=LÞ�: (B2)

The action, Eq. (B1), becomes

S ¼
Z

dt
V

2

�
_Xn

_X�n þ
�
2�

n

L

�
2 þm2ðtÞjXnj2

�
: (B3)

Taking ffiffiffiffi
V

p
Xn ! Xn (B4)

gives the action for a single mode

S ¼
Z

dt½j _Xnj2 �!2ðtÞjXnj2�; (B5)

with a time dependent frequency

!2ðtÞ ¼ w2ðtÞ ¼
�
2�

n

L

�
2 þm2ðtÞ: (B6)

Next, we calculate the wave function for the ground
state, Eq. (26), in the X and ~X descriptions.
In the position space representation the ground state

wave function is given by

c ðx; tÞ ¼ hx; tj0i; (B7)

where jx; ti is an eigenstate of the operator X̂ðtÞ, Eq. (21).
By definition, jx; ti satisfies the condition

X̂jx; ti ¼ xjx; ti: (B8)

In this representation, P̂, the canonically conjugate vari-

able to X̂, is the operator

P̂ ¼ �i@x: (B9)

Now from the definition of the ground state, Eq. (26),

and the expression for X̂, P̂, in terms of the creation and
annihilation operators, Eqs. (21) and (22), it follows that
the ground state satisfies the condition

P̂j0i ¼
� _f

f

��
X̂j0i: (B10)

From the properties discussed above it then follows that the
wave function c ðx; tÞ, Eq. (B7), satisfies the equation

� i@xc ðx; tÞ ¼
� _f

f

��
xc ðx; tÞ: (B11)

This can be easily integrated to give

c ðx; tÞ ¼ CðtÞei½ð _f=fÞ�ðx2=2Þ�: (B12)

The time dependent function CðtÞ is determined by requir-
ing that Schrodinger’s equation,

� 1

2
@2xc ðx; tÞ þ 1

2
!2ðtÞc ðx; tÞ ¼ i@tc ðx; tÞ; (B13)

is met. It is straightforward to see that this gives Eq. (27).
The function fðtÞ is defined in Eq. (16). At small t,

Hð1Þ
� ð�!0tÞ ’ iN�ð�!0tÞ � c1ð!0tÞ��; (B14)

where c1 is a constant. This leads to Eq. (29).
The probability density to find the system between x and

xþ dx is given by jc ðx; tÞj2. From Eq. (27) this takes the
form19This includes the transformation of the spin connection.
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jc ðx; tÞj2 ¼ jAj2
jfj e

�½ð!0x
2Þ=jfj2�: (B15)

We have used the fact that fðtÞ solves Eq. (19), and has the
asymptotic value, Eq. (20). This means that theWronskian,
which is time independent, is given by

fðtÞ _f�ðtÞ � f�ðtÞ _fðtÞ ¼ 2i!0: (B16)

We see from Eq. (B15) that the probability density is a

Gaussian with a width
ffiffiffiffiffiffiffiffiffiffiffiffið�xÞ2p � jfj. This diverges as t !

0, since jfj blows up, Eq. (29). Thus the probability density
gets more and more uniformly spread out as one ap-
proaches the singularity.

The phase factor, Eq. (30), arises from the limiting form
of fðtÞ given in Eq. (29).

Next we turn to the wave function for the ground state in
the ~X variable. The steps are analogous to those above. The
~X and X variables are related by Eq. (8). From the
Lagrangian, Eq. (14), it follows that the conjugate momen-

tum, ~̂P, is given by

~̂P ¼ e�� _~X ¼ e��=2

�
P̂þ

_�

2
X̂

�
; (B17)

where we have used the relation _̂X ¼ P̂.
The relation, Eq. (B10), then leads to

~̂Pj0i ¼ e��

�� _f

f

�� þ _�

2

�
~̂Xj0i: (B18)

Let j~x; ti be eigenstates of ~X, satisfying the condition20

~̂Xj~x; ti ¼ ~xj~x; ti: (B19)

The wave function in the j~xi representation, ~c ð~x; tÞ, then
satisfies the condition

� i@~x
~c ¼ e��

�� _f

f

�� þ _�

2

�
~x ~c : (B20)

In addition the Schrodinger equation which takes the form

� e�

2

@2 ~c

@~x2
þ e��

2
!2

0
~c ¼ i@t ~c (B21)

must be satisfied. This leads to the solution, Eq. (35). The

probability density j ~c j2, Eq. (36), is then obtained as in the
discussion above leading up to Eq. (B15). To understand
the behavior of the phase factor discussed in Eq. (37), we

note that fðtÞ is defined in Eq. (16). At small t it then
follows from the behavior of the Neumann functionN� that

fðtÞ ’ c1ð�!0tÞð1=2Þ��ð1þ c2ð�!0tÞ2Þ: (B22)

Thus,

� _f

f

�� þ _�

2
¼ 1

t

�
1� 2�þ p

2

�
þ 2c2!

2
0t: (B23)

Here we have used Eq. (11). This leads to Eq. (37), after
noting Eq. (17).

The expectation value for ~̂P
2
can be calculated from

the wave function Eq. (35). Alternatively, for this purpose,
we can directly work in the Heisenberg picture. From

Eq. (B17) and the expression for X̂, P̂, in terms of the
creation and annihilation operators, Eqs. (21) and (22), we
get that in the vacuum state

h ~̂P2i ¼ e��

2!0

�������� _fþ
_�

2
f

��������2

: (B24)

Using Eq. (B23) and related discussion above, this leads to
Eq. (39).
A similar analysis can be carried out for a coherent state,

defined by

ajsi ¼ �jsi: (B25)

This leads to a wave function

~c ð~x; tÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�e�=2

q e½ie��ð~x2=2Þ½ð _f=fÞ�þð _�=2Þ�

� e½ð�
ffiffiffiffiffiffi
2!0

p
~xÞ=ðf�e�=2Þ�e½i!0�

2
R
ðdt=ðf�Þ2Þ�: (B26)

The extra terms, compared to the ground state wave func-
tion, which are dependent on�, are both well defined in the
limit t ! 0. Thus this wave function has the same type of
singularity as the ground state wave function.

APPENDIX C: SUBLEADING CONTRIBUTIONS
TO ENERGY

In this appendix we calculate the subleading contribu-
tions to the energy. These contributions would be the
dominant ones if hVi vanishes, as discussed in Sec. III D,
and need to be calculated to understand when the energy
remains finite, as t ! 0.
A subleading contribution arises from the kinetic energy

term. From the wave function, Eq. (43), we find that for
p > 1 this is given by

hKEi ’ e�

2
G2hðV0Þ2i � ð�tÞð2�pÞ; (C1)

and diverges if p > 2. For p < 1, since GðtÞ is small near
t ¼ 0,

20We also require that the completeness relation,Z
d~xj~x; tih~x; tj ¼ I;

is satisfied. A similar relation, with ~x replaced by x, is also
satisfied by the states jx; ti. This tells us that the states j~x; ti are
related to the states jx; ti introduced above, by the relation

j~x; ti ¼ e��=4jxi ¼ e��=2j~x; ti:
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hKEi ’ e�

2

Z
dxjc 0

0j2 � ð�tÞp: (C2)

This does not diverge as t ! 0.
Another subleading correction arises due to a correction

in the absolute magnitude of c which in turn leads to a
correction in hVi. We write

c ðx; tÞ ¼ e�iGðtÞVð~xÞc 0ð~xÞ½1þ S1ð~x; tÞ�: (C3)

Since we are interested in the corrections to the absolute
value of c we take S1 to be real. From the Schrodinger
equation we get

e�

2

�
�Im

�
c 00

0

c 0

�
þ 2GðtÞV 0 Re

�
c 0

0

c 0

�
þGðtÞV 00

�
¼ @S1

@t
:

(C4)

For p > 1 the second and third terms within the square
brackets on the left hand side dominate, leading to

S1 ¼
�Z

dte�GðtÞ
��

V 0 Re
�
c 0

0

c 0

�
þ V00

2

�
; (C5)

¼ 1

2ð1� pÞ t
2

�
V 0 Re

�
c 0

0

c 0

�
þ V00

2

�
: (C6)

We see that this goes like t2, as t ! 0, and does not diverge.
For p < 1 the first term on the left-hand side of Eq. (C4)

dominates, giving

S1 ¼ 1

2
Im

�
c 00

0

c 0

��Z
dte�

�
; (C7)

¼ � 1

2ð1þ pÞ Im
�
c 00

0

c 0

�
ð�tÞð1þpÞ: (C8)

This term goes like ð�tÞð1þpÞ and also does not diverge.
Since S1 vanishes as t ! 0, the resulting correction to hVi
and therefore to the energy also vanishes.

Thus the conclusion is that except for the case where
p > 2, in which case the kinetic energy itself gives a
divergent contribution, it is enough to have hVi as defined
in Eq. (52) to vanish, to ensure that the expectation value of
the energy stays finite.

APPENDIX D: PARTICLE PRODUCTION

In this appendix we detail the calculation of particle
production at the quadratic level in the case where e�

does not become zero at any point, but can become small.
For this purpose we choose a dilaton profile of the follow-
ing form:

e�ðtÞ ¼ gsjtjp; jtj>�; e�ðtÞ ¼ gsj�jp; jtj<�:

(D1)

We will first perform the analysis for each individual
momentum mode, ~Xk.

As explained above, one should work in the variables ~X
since these are the variables which have a finite limit as t !
0. The equation of motion for ~Xk is�

d

dt

�
e��ðtÞ d

dt

�
þ!2

0e
��ðtÞ

�
~Xk ¼ 0: (D2)

Clearly, it is convenient to work with a time variable 

defined by

e��ðtÞ d
dt

¼ d

d

: (D3)

As is standard, we will solve (D2) separately in the regions
t <��, �� < t < �, and t > � and then match ~Xk and
@
 ~Xk across t ¼ ��. With the profile given in (D1), a
solution which is purely positive frequency at t ! �1 is
given by

~XkðtÞ ¼ ð�!0tÞ�Hð1Þ
� ð�!0tÞ; t � ��

~XkðtÞ ¼ A exp

�
i

!0t
pþ1

�pðpþ 1Þ
�
þ B exp

�
�i

!0t
pþ1

�pðpþ 1Þ
�
;

� � � t � �;

~XkðtÞ ¼ ð!0tÞ�½CHð1Þ
� ð!0tÞ þDHð2Þ

� ð!0tÞ�; t � �;

(D4)

where � has been defined in (17). The Bogoliubov coef-
ficients C and D will be determined by the matching
conditions. After a standard calculation we get the follow-
ing expressions for C and D:

C ¼ i�

4
ð!0�Þ

�
cos

�
2!0�

pþ 1

�
½Hð1Þ

� ð!0�ÞHð2Þ
��1ð!0�Þ

þHð2Þ
� ð!0�ÞHð1Þ

��1ð!0�Þ� � sin

�
2!0�

pþ 1

�

�½Hð1Þ
��1ð!0�ÞHð2Þ

��1ð!0�Þ �Hð2Þ
� ð!0�ÞHð1Þ

� ð!0�Þ�
�
;

D ¼ � i�

4
ð!0�Þ

�
2 cos

�
2!0�

pþ 1

�
Hð1Þ

� ð!0�ÞHð1Þ
��1ð!0�Þ

� sin

�
2!0�

pþ 1

�
½ðHð1Þ

��1ð!0�ÞÞ2 � ðHð1Þ
� ð!0�ÞÞ2�

�
:

(D5)

In deriving these we have used the following property for
any Bessel function Z�ðxÞ:

d

dx
½x�Z�ðxÞ� ¼ x�Z��1ðxÞ: (D6)

A straightforward calculation verifies the unitarity relation

jCj2 � jDj2 ¼ �1: (D7)

Let us first consider the limit !0� 	 1. Using the stan-
dard expansions for the Hankel functions,
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Hð1Þ
� ðxÞ ¼ ix�

2� sinð��Þ�ð1þ �Þ
�
e�i��

�
1� x2

4ð�þ 1Þ
þOðx4Þ

�
�

�
x

2

�
2� �ð1þ �Þ
�ð1� �Þ

�
�
1� x2

4ð1� �Þ þOðx4Þ
��
; (D8)

we find

C ¼ i�

4

1

sin2ð��Þ22�½�ð1� �Þ�2
�
�22pþ2 ð!0�Þ1�p

1� �

� 2pþ2� cosð��Þ�ð1� �Þ
�ð1þ �Þ þ

2ð!0�Þ1�p

pþ 1
22pþ2

�
:

(D9)

Thus there is a qualitatively different behavior of the
Bogoliubov coefficient for p > 1 and for p < 1 as
ð!0�Þ ! 0. When p > 1 the coefficients C and D both
diverge in this limit (of course maintaining the unitarity
relation). When p < 1 they both tend to finite limits

lim
!0�!0

C ¼ �i cotð��Þ;

lim
!0�!0

D ¼ �ie�i��cosecð��Þ: (D10)

This difference between the cases p < 1 and p > 1 is the
Heisenberg picture manifestation of the behavior of the
Schrodinger picture wave functional.

The analysis performed above was with an abrupt modi-
fication of the dilaton profile. However we expect that the
!0� 	 1 behavior would continue to be similar for a
smooth modification.

In the above analysis there is a finite amount of particle
production for every momentum mode for p < 1, indepen-
dent of the value of !0, in the limit !0� ! 0. It is interest-
ing to estimate the total amount of energy produced.
However, for this estimate we need to perform the calcu-
lation for a dilaton profile which tends to a constant at early
and late times, in keeping with our overall scenario. For a
smooth dilaton profile, the ultraviolet behavior (!0� � 1)
is then expected to be exponentially damped, jCj2 �
e�!0�, so that the total energy produced is finite.

It should be emphasized again that all the considerations
of this appendix relate to the quadratic approximation. As
we have seen this is not a good approximation in our
problem. An estimate of the total amount of energy pro-
duced in the real problem has to take into account the
effects of interactions which become stronger at later
times. This requires a lot more detailed knowledge of
strong coupling physics.

APPENDIX E: THE MILNE BACKGROUND

In this appendix we analyze the behavior when the
boundary theory lives in Milne space with the metric Eq.
(92), with a dilaton

e� ¼ gsj tanhðtÞj
ffiffi
3

p
: (E1)

The metric Eq. (92), up to the overall conformal factor,
e�2t, is

ds2 ¼ �dt2 þ dr2

1þ r2
þ r2ðd�2 þ sin2�d�2Þ: (E2)

This is a space of constant negative curvature. Since the
gauge theory is conformally invariant it is equivalent to
consider it in the background metric, Eq. (E2), and with
dilaton, Eq. (E1).
Below, we first analyze a scalar field with Lagrangian21

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
e��

�
1

2
ð@ ~XÞ2 þ 1

12
R ~X2

�
(E3)

in the background with the metric, Eq. (E2), and the
dilaton, Eq. (E1). Thereafter, we turn to the gauge field.
The analysis in the scalar field theory, Eq. (E3), is not
identical to the gauge theory, but quite analogous.
We can mode decompose the scalar field into modes

which are eigenfunctions of the 3D spatial Laplacian. From
[20], we see that, for the metric, Eq. (E2), the modes satisfy
the equation

r3yk ¼ �ðk2 þ 1Þyk: (E4)

The functions yk are normalized to satisfy the condition

Z
d3x

ffiffiffi
h

p
ykðxÞy�k0 ðx0Þ ¼ �3ðk� k0Þ: (E5)

Here hij is the spatial part of the metric, Eq. (E2). We can

expand the field ~X in these modes,

~X ¼
Z

d3k ~XkðtÞyk: (E6)

This gives rise to decoupled oscillators for each mode, with
the Lagrangian

S ¼
Z

dtd3ke��fj _~Xkj2 � k2j ~Xkj2g; (E7)

where we have used the fact that the Ricci scalar, R ¼ �6,
for the metric, Eq. (E2). We see that for each mode the
Lagrangian, Eq. (E7), is essentially the same as Eq. (31),
with k2 being identified with !2

0. Since the dilaton asymp-

totically goes to a constant here, Eq. (E1), the Lagrangian
for each mode reduces to that of a standard harmonic
oscillator in the far past or future.
Our discussion in Sec. V then leads to the conclusion

that the wave function has a phase factor which is singular
as t ! 0, in this case as well. The phase factor is given by
Eq. (61). The potential energy V½ ~X� for the Lagrangian Eq.
(E3) is

21The conclusions would be essentially the same without the
curvature coupling term 1

12R
~X2.
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V½ ~X� ¼
Z

d3x
ffiffiffi
h

p �
hij

1

2
@i ~X@j ~X þ 1

12
R ~X2

�
: (E8)

For the case of the gauge field, in the background metric,
Eq. (E2), with the dilaton, Eq. (E1), an analysis similar to
that carried out here and in the previous appendix can be
done. Once again choosing the Coulomb gauge is conve-
nient. In this gauge one finds that the wave function has a
phase factor which near the singularity takes the form
Eq. (72), with

V½AiðxÞ� ¼ 1

4

Z
d3x

ffiffiffiffiffiffiffi�h
p

FijF
ij: (E9)

This phase factor diverges, leading to a singular wave
function.

APPENDIX F: UNIVERSAL BEHAVIOR NEAR
SINGULARITIES

In this appendix we discuss some aspects of the univer-
sality of Kasner-like behavior near spacelike singularities
in the class of models we consider. We will consider ten-
dimensional metrics of the form (105) so that the 3þ
1-dimensional Ricci tensor R�� and the dilaton �ðxÞ sat-
isfies the Eqs. (106). It is therefore sufficient to discuss 3þ
1-dimensional dilaton cosmologies.

Consider an AdS cosmology where the 4-metric is a
Bianchi-IX space-time. Using a BKL-type argument
[14,16,17], we show the space-time near the singularity
has Kasner-like behavior. Furthermore, the dilaton drives
the system towards an attractor region, where all the ex-
ponents are positive pi > 0, through a finite number of
Kasner oscillations. This analysis can be directly extended
to all homogeneous spaces with the results that we either
have no oscillations at all or the number of oscillation is
finite. This suggests that the symmetric Kasner singularity
is generic and independent of the spatial 3-geometry, being
either flat or any of Bianchi homogeneous spaces. It is
worth mentioning that with no dilaton, symmetric Kasner
solutions do not exist and the canonical BKL analysis gives
an oscillatory approach to the singularity, with transitions
between distinct asymmetric Kasner regimes.

Let us take the 3þ 1-dimensional boundary metric
~g��ðxÞ in (105) to be of Bianchi-IX type, which has the

following form:

ds24 ¼ �dt2 þ ða2ðtÞl�l� þ b2ðtÞm�m�

þ c2ðtÞn�n�Þdx�dx�; (F1)

where l, m, n are the three frame vectors e1, e2, e3 (for
explicit form of the metric see, for example, [14]
page 390). The spatial symmetry algebra here is SUð2Þ.
a, b, and c are three independent scale factors.22

If we assume that the dilaton is spatially homogeneous,
then @a� ¼ e�a@�� ¼ 0, with @0� nonvanishing.
Decomposing the Ricci tensor along the frame, we then
have

R1
ð1Þ ¼

_ð _a bcÞ
abc

� 1

2ðabcÞ2 ½ðb
2 � c2Þ2 � a4� ¼ 0;

R2
ð2Þ ¼

_ða _bcÞ
abc

� 1

2ðabcÞ2 ½ða
2 � c2Þ2 � b4� ¼ 0;

R3
ð3Þ ¼

_ðab _cÞ
abc

� 1

2ðabcÞ2 ½ða
2 � b2Þ2 � c4� ¼ 0;

(F2)

R0
0 ¼

€a

a
þ

€b

b
þ €c

c
¼ � 1

2
ð _�Þ2; (F3)

and the dilaton field equation is given by

€�þ _�

�
_a

a
þ

_b

b
þ _c

c

�
¼ 0: (F4)

The above system of ordinary differential equations is
very difficult to solve analytically but if we ignore curva-
ture terms (i.e., terms in (F2) with no time derivatives) one
has a ¼ tp1 , b ¼ tp2 , c ¼ tp3 , e� ¼ t�,

X
pi ¼ 1;

X
p2
i ¼ 1� �2

2
; (F5)

as an approximate solution near the singularity at t ¼ 0.
In the usual BKL analysis, � ¼ 0, which forces one of

the pi to be negative. The negative pi means that time
evolution towards the singularity necessarily makes one of
the curvature terms (treated as a perturbation to the time-
derivative terms) dominate the others at some point, for

instance a4 � t�jp1j (if pð0Þ
1 < 0). This forces the metric to

evolve and transit from one Kasner regime to another
according to the following law:

pð1Þ
1 ¼ �pð0Þ

1

1þ2pð0Þ
1

; pð1Þ
2 ¼pð0Þ

2 þ2pð0Þ
1

1þ2pð0Þ
1

; pð1Þ
3 ¼pð0Þ

3 þ2pð0Þ
1

1þ2pð0Þ
1

:

(F6)

However, with a nontrivial dilaton, we can have one of the
following situations: All pi > 0, in which case no transi-
tions take place since curvature terms (perturbations) die
off as we approach the singularity, e.g.,

½ðb2 � c2Þ2 � a4� � �a4 � t4=3 ! 0

near the singularity t ! 0. Other Ricci components have
similar behavior. This means that the symmetric Kasner
case with all pi ¼ 1

3 is stable against these perturbations as

we approach this dilaton-driven symmetric Kasner singu-
larity and there is no forced transition to a distinct Kasner
regime. The other possibility is that one of the pi’s is
negative, in this case, we can have a finite number of

22If we take equal scale factors a ¼ b ¼ c, the spatial metric
becomes d�2 ¼ ðdx21 þ dx22 þ dx23 þ cosx1dx2dx3Þ, with con-
stant curvature, Rij ¼ 1

2
ij, R ¼ 3
2 .
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oscillatory transitions between different Kasner regimes.
This occurs since with every transition� increases and as it
reaches a specific value (� ¼ 1) all the pi become positive
[see (F5)], and then no further transitions occur. If we
consider any of the other types of Bianchi spaces, we
should replace the curvature terms in (F2) with that of
this Bianchi space. But these terms have no time deriva-
tives so they will not change the leading behavior of the
solution. Furthermore, these curvature terms either die off
as we approach the singularity, in which case we have no
oscillation at all, or one of them (p1 < 0) gets larger as we
approach the singularity. This leads to a finite number of
oscillations as in Bianchi-IX. Again the dilaton will drive
the system to an attractor region where the oscillation
stops.

We will now see that the dilaton in fact drives the system
towards an ‘‘attractor’’ region given by p1, p2, p3 > 0,
through a finite number of oscillations. Once the system
reaches this region, there is no further oscillation.

The equations

X
i

pi ¼ 1;
X
i

p2
i ¼ 1� �2

2
; (F7)

for a Kasner-like cosmology with dilaton e� ¼ t� can be
described by the following parametrization:

p1 ¼ x; p2 ¼ 1� x

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 þ 2x� 3x2

p

2
;

p3 ¼ 1� x

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 þ 2x� 3x2

p

2
;

(F8)

in terms of p1, �. For a solution to exist, the radical being
positive forces

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3�2

p

3
� p1 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3�2

p

3
: (F9)

The above range for p1 can be divided into three regions. In
these regions the values of the pi’s are permuted among
each other, as in Fig. 1. To avoid redundancy one should
constrain p1 to one region which we choose to be

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3�2

p

3
� p1 � 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 3�2
p

6
: (F10)

The square root here being positive implies �2 � 4
3 , i.e.,

j�j � 2ffiffi
3

p � 1:1547. The lower limit on p1 becomes posi-

tive if 4� 3�2 � 1, i.e., �2 � 1. At this point, x ¼ 0,
�2 ¼ 1, all pi > 0. This shrinking of the allowed space
of fpig is a key difference from the case � ¼ 0 without
dilaton.

Now let us say the system starts with say pð0Þ
1 ¼ xð0Þ < 0.

Then there is a transition to a new Kasner regime with pð1Þ
i

and �ð1Þ given by

pð1Þ
1 ¼ �pð0Þ

1

1þ 2pð0Þ
1

; pð1Þ
2 ¼ pð0Þ

2 þ 2pð0Þ
1

1þ 2pð0Þ
1

;

pð1Þ
3 ¼ pð0Þ

3 þ 2pð0Þ
1

1þ 2pð0Þ
1

; �ð1Þ ¼ �ð0Þ

1þ 2pð0Þ
1

:

(F11)

Now, pð0Þ
1 < 0 means that �ð1Þ >�ð0Þ, i.e., � increases

under the Kasner transition. More generally, for p� < 0
and pþ > 0 being either of the other two positive expo-
nents, this can be expressed as the iterative map

pðnþ1Þ
i ¼ �pðnÞ�

1þ 2pðnÞ�
; pðnþ1Þ

j ¼ pðnÞ
þ þ 2pðnÞ�
1þ 2pðnÞ�

;

�ðnþ1Þ ¼ �n

1þ 2pðnÞ�
; (F12)

for the bounce from the (n)-th to the (nþ 1)-th Kasner
regime with exponents pi, pj. The fixed point of this

transformation is � ¼ 0, and it is unstable for p� < 0
[an iterative map xnþ1 ¼ fðxnÞ has an unstable fixed point
x� ¼ fðx�Þ if f0ðx�Þ> 1]. Furthermore, the rate of increase
of � is small for small �, since

�nþ1 � �n ¼ �n

� �2p�
1þ 2p�

�
: (F13)

Thus a system with near constant dilaton (�� 0) takes a
long iteration time to flow towards the pi > 0 attractor
region (although the flow is ensured due to the unstable
fixed point). For instance, with p0

1 ¼ x0 ¼ 0:3, �0 ¼
0:001, the system flows (initially slowly) to pi > 0 after
15 oscillations, with �15 ¼ 1:0896.
This flow towards the pi > 0 attractor region in fpig

space can be seen geometrically: the intersection of the

sphere
P

p2
i ¼ 1� �2

2 with the plane
P

pi ¼ 1 is a circle

p3

p2

–0.2

0

0.2

0.4

0.6

0.8

1

–0.4 –0.2 0.2 0.4 0.6 0.8 1

p1

FIG. 1. Here p3 and p2 are plotted as functions of p1 for � ¼
0 case. Notice how the regions �1=3 � p1 � 0, 0 � p1 � 2=3,
2=3 � p1 � 1 have the same values for pi’s.
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on the plane. Under the bounce iterations, the sphere radius
shrinks and so the circle radius also shrinks until the circle
lies entirely in the pi > 0 quadrant.

The finiteness of the number of oscillations means that
the bulk cosmology flows towards the pi > 0 attractor
region, driven by the dilaton.

Before we close this section we would like to comment
on the nature of the flow towards the attractor region.

Inverting (F12), we get p� ¼ pðnþ1Þ
i

1þ2pðnþ1Þ
i

and so on.23 Thus

we can trace back from the symmetric Kasner, giving (up
to five iterations) the flow

�
� 1

5
;
9

35
;
33

35

�
!

�
� 5

21
;
7

21
;
19

21

�
!

�
� 3

11
;
5

11
;
9

11

�

!
�
� 1

5
;
3

5
;
3

5

�
!

�
1

3
;
1

3
;
1

3

�
: (F14)

An alternative distinct flow to the same symmetric Kasner
endpoint begins at ð�9

29 ;
15
29 ;

23
29Þ, merging with the above flow

at ð� 3
11 ;

5
11 ;

9
11Þ. With each step backwards, � decreases.

This shows that there are multiple trajectories that get
attracted to any of the points in the fpi > 0g attractor
region, perhaps as for any attractorlike behavior.

Furthermore we suspect that the flow exhibit chaotic
behavior, i.e., small changes in the initial conditions give

rise to drastic changes in the final endpoints. For example,
consider changing the starting point for the flow (F14)
above by a small perturbation (by 1

70 � 0:014, i.e., a 7%

change to the smallest exponent, � 1
5 ). This gives

�
� 13

70
;
9

35
;
65

70

�
!

�
� 2

11
;
13

44
;
39

44

�
!

�
� 3

28
;
2

7
;
23

28

�

!
�
1

11
;
3

22
;
17

22

�
; (F15)

the flow endpoint being distinct from the symmetric
Kasner.
We have used rational Kasner exponents above for

simplicity in illustration: more generally, one expects that
there exist ‘‘nearby’’ (not necessarily rational) Kasner ex-
ponents pi with nonconstant dilaton (� � 0) in the neigh-
borhood of exponents with constant dilaton (� ¼ 0). In
this case, a small change in the exponents in the set
fpi; � � 0g would give exponents in the set fpi; � ¼ 0g,
which latter set belong to the canonical BKL analysis and
oscillate forever, thus exhibiting no attractor behavior.
More explicitly consider exponents fp1; p2; p3; � ¼ 0g
corresponding to a nondilatonic asymmetric Kasner cos-
mology which oscillates indefinitely, and perturb infinitesi-
mally as fp0

1 ¼ p1 þ �; p0
2 ¼ p2; p

0
3 ¼ p3 � �g. Now,

�2 ¼ 2ð1�P
p02
i Þ � 4ðp3 � p1Þ� � 0, if p1 � p3. This

latter set fp0
i; � � 0g thus flows to the attractor region,

while the former does not. These examples and arguments
suggest that small perturbations to initial conditions appar-
ently give rise to large departures from the endpoints, in
other words, chaotic behavior.
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