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String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory
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The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous
breakdown of the target space D = 4, N = 1 supersymmetry and internal U(1), symmetry to the world
sheet ISO(1, 1) symmetry, is constructed by using the approach of nonlinear realization. The resulting
action describing the low energy oscillations of the string into the covolume (super)space is found to have
an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is
obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.
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L. INTRODUCTION

Topological defects can form as a result of some types of
symmetry breaking if the system has nontrivial degenerate
vacua. Examples include the formation of domain walls if
the vacuum manifold M has disconnected components [1]
and the formation of string topological defects, such as the
Nielsen-Olesen vortex lines, if M is not simply connected
[2]. In elementary particle physics, the known symmetries
of these particles are actually originated from a larger
symmetry group G after a series of spontaneous symmetry
breakings. In the cosmological context, it implies that the
early Universe has gone through a number of phase tran-
sitions, with one or more types of topological defects, such
as the cosmic string, possibly having formed and being left
behind [3].

Vortex string topological defects and their theory have
attracted much attention, in particular, on the structure of
the vortex moduli space for non-Abelian as well as Abelian
theories [2,4-8]. In brane world scenarios, particular atten-
tion has been focused on the vortex string itself, which is
deemed to be especially useful when considering localiza-
tion of gauge fields by using warped compactifications [9].
In addition, in Ref. [5], it is pointed out that the low energy
dynamics of the vortex string in certain field configurations
coincides with a two-dimensional field theory. It has been
found that the vortex string theory has a rich content and is
interesting in its own right from both theoretical and aes-
thetic points of view. On these points, the dynamics of the
vortex string itself and its correlations with lower-
dimensional field theories merit careful investigation and
analysis.

It has been shown that a supersymmetric string topo-
logical defect can form in N = 1 supersymmetric Abelian
Higgs models [7,10,11]. However, recently, a non-BPS
solitonic string was found in an N = 1 supersymmetric
gauge theory [12]. There, the vacuum spontaneously
breaks the total N =1 supersymmetry. Motivated by
this, in the present paper we consider such a vortex topo-
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logical defect (or p = 1 brane), embedded in D = 4 flat
target space with the underlying theory described by the
global N = 1 supersymmetry along with an internal U(1)g
symmetry. Corresponding to the breaking of the (super)
spacetime, the dynamics of the vortex string is then de-
scribed by its long wave oscillation modes in the target
(super)space.

Besides, it is known that the target space N = 1 super-
symmetry can be partially broken down to (0, 2) supersym-
metry on the world sheet of the string [13], and the
resulting string dynamics is described by the Green-
Schwarz superstring theory [14]. On the other hand, if
one further introduces spinor degrees of freedom on the
world sheet of the string, the supersymmetry can be real-
ized as (1,1) or (1,0) instead, which leads to Neveu-
Schwarz and heterotic string theories, respectively [15].
Some discussions about extended versions of two-
dimensional supersymmetry can be found in Ref. [16]. In
addition, other patterns of partially spontaneous break-
down of two-dimensional supersymmetries have been ex-
plored in [17]. However, since there is no observation for
the superpartners for all of the particles in the standard
model of particle physics, the supersymmetry must be a
broken one. In this regard, it is prominent to notice the non-
BPS string admitted by the N = 1 supersymmetry theory
in [12]. Therefore, in this context we consider the Nambu-
Goldstone modes of such an oscillating vortex string,
which correspond to the spontaneous breakdown of the
target space full N =1 supersymmetry to D =2
ISO(1, 1) symmetry on its world sheet. The R symmetry
could also become a broken one, and this has been realized
in both the dynamical and the spontaneous supersymmetry
breaking theories [18-20].

As for the spontaneous symmetry breaking, the ap-
proach of nonlinear realization has been demonstrated as
a natural, economical, and elegant framework for treating
it. Actually, this method has been applied to a wide range
of physical problems most notably in the form of nonlinear
sigma models, supersymmetry, and brane theories
[13,21,22]. There, the Lagrangian is invariant with respect
to the transformations of some continuous group G, but the
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ground state is not an invariant of G but only of some
subgroup H. In this context, the resulting phenomenologi-
cal Lagrangian becomes an effective theory at energies far
below the scale of spontaneous symmetry breaking.
Consequently, the effective action can be expressed in
terms of the dynamics of the Nambu-Goldstone fields.

In this paper, setting aside the Green-Schwarz formalism
[13,14], we put special emphasis on the string dynamics
from the point of view of an effective two-dimensional
field theory and construct its dual form. The purpose of the
research work has two respects. The non-BPS vortex
string totally breaks the target space supersymmetry, and
the symmetry breaking becomes manifest in terms of
the inhomogeneous transformations of the Goldstone
(Goldstino) fields through the approach of nonlinear real-
ization. As a result, the Maurer-Cartan one-forms naturally
give us the dynamics describing its oscillations into the
codimensional (super)space. On the other hand, the dual
form of the string action is constructed. We hope that it
could shed some light on the correlations between the
vortex strings resulting from embedded higher-
dimensional target spacetime and two-dimensional field
theories.

The organization of this paper is as follows. In Sec. I,
the subgroup SO(1, 1) X SO(2) is taken as the stability
group. The string topological defect therefore totally
breaks the target spacetime supersymmetry and R symme-
try. The centrally extended N = (2,2) supersymmetric
algebra is constructed through dimension reduction, while

the transformations of the Nambu-Goldstone (Goldstino)
|
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fields are derived explicitly through the coset structure by
using the approach of nonlinear realization. In Sec. 11, the
low energy effective action of the oscillating vortex string
is obtained by means of Maurer-Cartan one-forms. Its
dynamics, according to the interplay of the nonlinear real-
ization and brane dynamics [13,22], is described by the
associated Nambu-Goldstone (Goldstino) modes corre-
sponding to the collective degrees of freedom of the coset
manifold. In addition to the transverse long wave oscillat-
ing modes associated with the broken generators in the
(super)space directions, the string dynamics also provides
accommodation for the Nambu-Goldstone (NG) mode re-
lated to the broken R symmetry. The action is found to have
a synthesis form of the Akulov-Volkov and Nambu-Goto
actions:

r,= —dezxﬁldetgl

= —dezxdeté\/det(ﬁij - VapVie) (1)

in which deté = deté,® and é,% = 5,5 —i0,0y®CH —
i0,AyPCA. The couplings of the R axion field to these
NG fields are also derived by using the supersymmetric and
R covariant derivative. In Sec. IV, the dual scalar field
action in the two-dimensional spacetime is constructed
by introducing two vectorial Lagrangian multipliers into
the string action. The resulting action is found to have the
form

1 o
FO = _Tjdzx[J_ det(gab - —gab/gbc/sbcsc d(')CA[()dA,-) + EababAiJia], (2)

detg

where 2., = ¢,¢,8n,p is the metric of the two-
dimensional spacetime and A; = (A}, A,) are the dual sca-
lar fields.

II. TRANSFORMATIONS OF NAMBU-
GOLDSTONE FIELDS

In the four-dimension target space, we consider the
underlying theory with N = 1 supersymmetry and R sym-
metry. Their algebras have the following (anti)commuta-
tion relations:

{Qa’ Qa} = 20-5(1P,U«’ [Rr Qa] = Qa;
[R, Qa] = _Qo'u
[M;LV’ Mpo] = i(n,ua'MVp + anM,ua - ”IupMm (3)

— NvaMyup),
[Qa’ M,uv] = i%(a-p,y)aBQBr

[Q_ar M,ul/] = l%(a_-;u/)aIBQ_B

|
The coordinates of the target N = 1, D = 4 superspace are
defined by {x*, %, 6,}. Placing the vortex string along the
x axis, the world sheet of the vortex string is then parame-
terized by {x°, x'} in the static gauge. The related symme-
tries of the string defect are the Lorentz boost along the
x-axis direction, i.e. the SO(1,1) Lorentz symmetry
(formed by the generator M a b =0, 1), and the rota-
tional SO(2) invariance (formed by the generator T =
M?3) in the y — z plane. When the target space supersym-
metry and the R symmetry are both spontaneously broken
by the embedded vortex string, the stability subgroup H of
the vortex string world sheet is given by the direct product
of the symmetry groups SO(1, 1) X SO(2), which is
spanned by the set of unbroken generators {M“,T}.
These are the automorphism generators of the unbroken
generators P, associated with the translational directions
in D = 2 spacetime. The broken automorphism generators
are K{ =M, K§ = M*, and R. The broken (super)
spacetime generators are Q, and Q, [or g and s; see
definitions in (4)] in the superspace related to the
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Grassmann coordinate directions 6, and 6, and P, and P

related to translational directions transverse to the brane.
In D = 2 dimensions, the spinor has a representation of

dimension 2%/2 = 2, which is the same dimension as that of

the D = 3 spinor representation. Taking the metric tensor
|

q2
$2

Through dimension reduction, the target spacetime sym-
metry can be rewritten as the centrally extended N = (2, 2)
supersymmetry in two dimensions, in which the number of
fermionic charges is the same as that of N =1, D =4
supersymmetry (SUSY). Thus one finds

{9, g9} =2(y*C);;P, — 20,2,
{55550 =2(y*C); P, — 2012y,
[R, q;] = is;, [R,s;] = —ig; 3
[M”hy q:1= _%’Y?th]u [M“br si]= _%’Y?jbsj
(K5, 4.1 = 3vi;s),
[Kf, 6];’] = _%(0'37‘1)1‘](],':

{9 5;} = —2i0%Z,,

(K3, 51 = —3va,0
[KY, 5:] = —5(0y")i;s),

where C=19" =02 i=12; y*=L[y" "], a, b=
0, 1. The central charges Z; and Z, are identified with
the two spatial translation generators P, and Ps, i.e. Z; =
(Z,, Z,) = (P,, P3). The commutation relations of the gen-
erators M and 7 (T = M%) with these of the coset mani-
fold are given by

2

[M, P] = —igP,, M, Z]=0,

[M) Kla] = _isabKib’ [Mr R] = 0’ [Tr Pa] = 07
[T, Zl] - isiij, [T, Kla] - lsle;l, [T, R] - O,

[2T, 19,] = isijﬁj’ [M, T] = 0, (6)

where M, = —e, ,M, ;= (%, %) = (63q, s), and
&1, = 1. The remaining communication relations are

[P, K= —in"Z;,  [Z,Ki]=—iP's
[K{, KP] = —i8;;Me" — in“Ts;.

ij

)

The coset representative elements ) = G/H =
G/SO(1,1) X SO(2) with respect to the stability group
H can be exponentially parameterized as

O = P pi($iZi+ X)) pitd! Kig pirR
= eix"Pa ei(¢i(x)zi+9i(x)qi+Xi(-x)5i)eiu;‘(x)Kin eif(X)R (8)
in static gauge. The induced transformations for the col-

lective coordinates x%, ¢;, 0;, A;, u;, and r parameterizing
the coset space can be derived from the left action of full
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as n*» = (4, —) and y* = (02, ic!), the Majorana spinors
g and s with two real components in two dimensions are
related to the D =4 Weyl spinors Q, and Q,, by the
following relations:

(Ch ) _ %Qlei(w/4) — %Qzei(ﬂrr/4) + %Qieﬂ‘(n-/@ _% A, o~ ilm/4)
L0 =it/ £ 10,0~/ 1 1§ it/ 1 ,

2
L0yl

“)

(S1 ) B %Qle—i(w/ét) — %Qze_i(”/“) 4 %Q_iei(”/4) _% ‘2ei(7r/4)
2Line*i(w/ét) + %Qze*i(”/“) _ %Qiei(w/ét) _ 2LiQQei<7r/4) .

|
group elements on (). Since the full symmetry group G is

broken down to the subgroup H’' (formed by the set
{P?%, M, T}), a Nambu-Goldstone bosonic field correspond-
ing to R symmetry breaking is therefore expected, and it
becomes necessary to include its dynamics in the strings
full actions.

Consider the transformations of the Nambu-Goldstone
(Goldstino) fields induced by the left action of full group
element g

g= ol @ Pyt 2, Zi A M+t K+ pT+E,q;+ 751+ fR) 9)
on the coset representative elements (). The result can be
uniquely decomposed as the product of the new coset £}/
and the element of H, i.e.

g = QO'h, (10)
where )/ is given by
O = eix“‘Paei(cﬁ;(x’)Z,»+éf(x/)q,»+)\_§(x’)s,~)eiu;"(x’)K,»aeir/(x’)R (11)
and the stability group element can be written as
h = ei(h’M-Fp’T)' (12)

Note that the Lie algebras of the Lorentz group have the
same complex extension as that of the group SU(2) X
SU(2). Accordingly, after redefining generators

(13a)
and
T, =XT+ iMm), T, = }(—Kl — iK?),
1 2 272 2 1 (13b)

T; = {(K| — iK)),
the following commutation relations are obtained:
[S1, Su] = ieapSp, [Sa, Spl = ieapSy,
[Ty, Tal = ieap Ty, [Ta, Tp] = ieapT), (14)
[Sian Tyl = 0,

where A/, Bl = 2, 3, EAIBEAIC = (SBIC/, and Er3 = T &3 =
1. Therefore, Eq. (10) becomes
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i@ Pat2,Zi+bS1+pi T +mA/SA,+nA/TA,+§',.q,.+f7,-s,-+fR)eix“Paei(</>,-z,-+é,-q,-+A',-s,)ei(uA/sA/+uB,T,,/)eirR
— ¥ Pai(BZ; 48+ Als; )el(u;,SA/+v’B,TB/)eir’Rei(b’lsl+p’1 1) (15)

Applying Baker-Campbell-Hausdorff formulas extensively to Eq. (15), up to the first order of the parameters of g, leads to
the induced general infinitesimal coordinate transformations along with those of the Nambu-Goldstone (Goldstino) fields
on the two-dimensional world sheet:

X =x+a® +i&i(y9C);;0; + ini(yC);A; + e¥x, b —
¢ = +zy = i&(01);;0, — in(0);;A;
b= s+ 25— 0,(0D);;H; + E(oD)A; —

0, =0;+ &+ fX -
Ap= A+ 19— [0 —

ctp; + i20,(y°C)yi€; + 2, (y1C)yyi; +
—c{x, + phy — i2§i(0'1)ij5j — i2)_ti(a-1)l.ji7j -
Xo = pd1 = 28(02);jA; + 20,(0%) 7 +
19j(0'3'}/al)j[naa’ — SNV M — Sp Ay + -,
— e K (YY) i + O

(16)

libejsab’yji - lEC

i%b/ijsaby;.’ib + ijcd _jy;.’;naa/ r=r+f+--

As a result, the Nambu-Goldstino fields are found to transform inhomogeneously, and these inhomogeneous terms
explicitly signal the breakdown of the supersymmetry. As for the spacetime symmetry breaking, the Nambu-Goldstone
fields are those associated with the broken (super)translations only [23]. The Nambu-Goldstone fields u¢ are actually
superfluous (nondynamic) and can be eliminated by the inverse Higgs mechanism [24] [also see Eq. (32)]. Their
transformations, however, can be obtained by considering the infinitesimal transformations of the Nambu-Goldstone

fields u,/, vy and by, p;, through Eq. (15), i.e.

w, =uy +m —lbu P> COth(l v u)(l
o A AT 5Dl Epa W 3
, N coth(i%w/v )( 1

vV, — Upg Np — — VAl EAlnl B —— —
B B B 2/01 A'E€A'B Vv )

and

%u-m
coth(i §4/u?)(i 34fu)
(17b)
. Tven
pL=pP1 T e
coth(i $4/v2)(i14/v3)

where u + m = uympe g, ui = uyuy etc., and uy, vy,
myr, hg, by, and p; are related to uf, c¢f, b, and p through

Egs. (10), (13), and (15) up to field redefinitions.
|

U mug &gy
AJu - u u'mMBISBlA!_i—‘,—

1

: ib/luB’sB’A’—i_"'r
- u (172)
1
2

U " NUJ Epp /
NV Vv nvgeyp ——————— t —plvggyp T

v-v

I
III. EFFECTIVE ACTIONS

As a result of Egs. (16) and (17), the NG fields non-
linearly and spontaneously break the supersymmetric and
R symmetries. The effective actions of the string can be
constructed by using the zweibein and connection one-
forms from the coset structure ~'d(Q), which can be
explicitly expanded with respect to the G generators as

Q_ldQ = i(CUAPA + d)ﬂiﬁi + wZ,-Zi + a)f’_K,»A + CI)TT + (I)MM + O)RR)

= i(0"Py + @,q; + @55+ 0 Z; + wj(‘iKiA + w;T + wyM + wgR). (18)

Under the transformation of Eq. (10), the coset transforms
as ) — '/, and the Maurer-Cartan one-forms transform
according to

Q1dQ = h(Q'dQ)h ™' + hdh™!. (19)

Obviously, all of the one-forms transform homogeneously
under G except the connection one-forms w,, and wr,
which transform by a shift. The covariant coordinate one-
forms @ transform as the zweibein e,” on the tangent
bundle to G/H, while w,; and w; transform as connec-

Itions to this bundle. The zweibein e,* can be obtained by
expanding the covariant coordinate one-forms w” with
respect to the general coordinate differentials dx’, i.e.

= a’x"ebA. On the other hand, the connection one-
forms w,, and wy can be used to construct the covariant
derivatives for the fields localized on the brane world
volume [25]. These are the building blocks that can be
used to construct the invariant actions. Applylng the
differential formulas exp(—b)dexp(b) =

Zk 0 (k+1)'
(ady)*db to Eq. (18), where ad,(a) =

[b, a], gives us
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i0"P, = (idx® + d6,(y2C);;0; + dA,(YPC);jA)PA(85" + ujp(U~ " (coshv/U — 1))t

+i(de; + dy (U sinhU) jul Py, (20)
iw.,Z; = i(d$; + dip;)(coshv/U);Z; + (idx® + dGyPCH + dAyPCA)u;p(coshv/UU~/? tanhV/U) ;,Z;,
where x# = (x°, x!), the matrix U,; = ufu;,, and
dip, = i(d6o 0 + dro | N), dip, = 00d\ — dOd? A, 21)

in which A, B =
débe,r = dxbel
eaA = (5(13 -

=2,8(8,* + u;p(U™ " (coshv/U —

in which Vg, =é5'(d,¢; + d,4;), and é5'99,

0, 1. The capital letters A and B are used to represent the covariant spacetime coordinate indices, and the
lowercase letters a and b are used to represent 1 + 1 general coordinate indices in what follows. Considering w
in the static gauge, the zweibein is therefore found to be

A—

i0,0v2CO — 10, AyPCA)(8 5" + up(U~ " (cosh/U — 1));;u?) + (9,¢; + 3,4p)(U~/? sinh/U);jut
D)yjut + V(U1 sinhv/U),ju?) (22)

is the Akulov-Volkov derivative, defined by ¢, = 6,8 —

i0,0y5C6 — i9,AyBCA [26]. Under the transformations of Eq. (19), the covariant coordinate differentials transform as

iw’APA — l'dx/aea/APA — ei(bM+pT)l'dxbebBPBe—i(bM+pT) —

where Ly* is the local H representation with vector in-
dices. As a result, the transformation of zweibein induced
by Eq. (23) has the property

dxb
eld = P bBLBA. 24)

In addition, P, is invariant under the action of SO(2);
therefore, the SO(2) induced total variation of zweibein is
a SO(2) scalar, i.e.

Sso@)(e,’) = 0. (25)

Obviously, under the R transformation (16), the total varia-
tion of zweibein is R invariant according to Eq. (19):

dr(e,B) =0. (26)

In order to construct the action of the R axion related to the
broken R symmetry, from Eq. (18) one finds
|

w, = (d¢; + di;)(coshv/U);; + (dxP —

idxbebBLBAPA, (23)

iwgR = idrR = idx®9,rR = iw" e, 199, rR. 27

The covariant derivative is then given by

Vyr= e;l“

dur, (28)
in which it has a covariant coordinate index A. Under the
transformation of Eq. (16) it is also R invariant

Or(Vyr) = 0. (29)

Furthermore, in Eq. (22) one may note that there are no
derivative terms for the Nambu-Goldstone fields u{. As a
result, they have no dynamical degrees of freedom. These
superfluous fields can be eliminated by using their equa-
tions of motion or by imposing covariant constraints on the
system. Imposing w, = 0 as the covariant constraint on
Eq. (20) yields

id0y®CO — idAyPCA)ujp(coshVUU~/? tanh/U) ;

= dx“(8,% — i0,0y5CO — ia,Ay*CA) (Ve ;(coshVU);; + u;5(coshyUU~ 1/ tanh/U) ;)
= dx“éaB(VBd)j(cosh\/U)ﬁ + ujB(cosh\/vU*('/z) tanh\/v)ﬂ) =0. (30)
[
Hence one can find Plugging Eq. (32) into U;; = ufu;, amounts to

de)i = —ujB(Uf(l/z)tanh\/U)ﬁ (31)

or, inversely,
8 = —Vzd,(U 12 tanh/U) ;. (32)
Introduce a new quantity

Hkk’ = vB¢ka¢k! = (tanh\/_[j)ik/. (33)

= (U2 tanh/U) 'V 3 b VB o (U112 tanh\/U),;}
= (U2 tanh/U) ' Hye (U0 tanhU)  1. (34)

The zweibein is secured as
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e = 2,8(8,* + u;p(U™ (coshv/U — 1);ut
+ V(U172 sinh\/ﬁ)iju?
= 2,5(85" + Vo H ;" (cosh/U — 1
— tanh/U sinh/U)  Hy, /P VA )
= 8,%(8" + VP (T—H
— D uH VA, (35)

By using Eq. (35), the metric tensor of the two-dimensional
world sheet becomes

8ab = eaAebBﬂAB = éaA,ébBl("’A’B’ —Vu Vo))
(36)

The transformation properties of i¢;Z; under the action of
H can be concluded by considering Egs. (6) and (19). It
follows that ¢; is a SO(2) vector but a SO(1, 1) scalar.
Therefore the total variation is

850 (VadVp ;) = 0. (37)
Considering Eq. (16), one can show it is also R invariant
Sr(VadiVp ;) = 0. (38)

Besides, in the case of R variation of ¢,® =6,% —
i0,0y5CH — id,AyBCA, after plugging in Eq. (16) one
finds

8r(e,”) = 0. (39)

Under the general coordinate transformations of Eq. (16),
by using Eq. (24) one can find the following invariance:

dzx’\/l detg’| = d’x' dete,"

= d%x det

b

ax“

b

dax
det | oy dete,  detL 4"

= d’xdete, B = dzxw detg]|. (40)

Therefore, considering Egs. (37)—-(39), the SO(1, 1) X
SO(2) and R invariant effective action of the vortex string
is found to be

-T f dsz | detg|

—dezxdeté J— det(mup — Vad;Vp ;)

Ty

-7 f d?x deté \/det(Bl-j — Vi, Vig)). (41)

As a result, it follows that the string action takes a factor-
ized form of Akulov-Volkov and Nambu-Goto actions.
Moreover, considering Egs. (28) and (29), the action of
the R axion field, which is invariant under both the super-
symmetric and R symmetries, is given by

PHYSICAL REVIEW D 79, 045017 (2009)

'y = TRdex detglly = TRfdzxdeteVArVAr.
42)

Consequently, the total effective actions of the vortex
string describing its long wave oscillations into the target
(super)space as well as the internal R space are found to be

I=T,+ T,

= —T[dzxdetéJdet(Bu - VA(ﬁlvA(bj)

+ Tg [dzxdeteVArVAr, (43)

where deté is the determinant of é,% and T stands for string
tension. T is related to the coupling of the R axion field to
other Nambu-Goldstone (Goldstino) fields.

If instead the R symmetry is not broken, then the stabil-
ity subgroup takes the form H, = SO(1,1) X SO(2) X R
which is spanned by the set of unbroken generators
{M, T, R}. Such a p =1 brane topological defect then
breaks the full G symmetry down to the subgroup H|
(formed by the set {M, P,, T, R}). As a result, its coset
becomes ) = G/H; = G/SO(1, 1) X SO(2) X R, while
the representative elements are parameterized as

QO = e "Papl( @i WZ+ 1)) it (K
= (ixP, ei(¢,-(x)z[+é[(x)q,+/L(x)s[) et (K (44)
in the static gauge.
By means of Eq. (8), one finds
O =Q,e"k, (45)
It further leads to
Qa0 = e_i’RQfld(Qlei’R)
= ¢ RO 1A, )e R + e iR iR
= e "Ri(w|Py + @1, t @158 T 0. Z;
+ a)*l‘kiK,-A + 07T + o yM + 0 zR)
X ™R + 7R deirR
= i(w'Py + @, q; + @5 T 0, Z,
+ a)/,?iK,-A + w;T + woyM + wgR). (46)
It can be shown that

A

A — — .
W = W, Wy = Wiy

S

g = @14, cosh(—ir) — i@, sinh(—ir);

(47)

S

5, = i@y, sinh(—ir) + @, cosh(—ir);
A _ A . _ .
Wy = W wr = W,
Wy = Wiy, a)R=w1R+dr=dr.

Since R is the automorphism generator of the supercharges
and commutes with the Poincaré group generators, it is
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obvious that the R symmetry one-form vanishes in
Q;'dQ, ie. iwgR = 0. Furthermore, it can be shown
that the covariant coordinate one-form wf = " is also R
invariant when ; — Ql1 In this context, in accordance
with the expansion w{ = dx‘e,,*, the effective action of
the string is purely described by Eq. (41), i.e. the invariant
synthesis form of the Akulov-Volkov and Nambu-Goto
actions:

Iy, = —T[dzxdetel

It is possible for the matter and gauge fields to be trapped
on the brane in the presence of topological defects [27,28],
and the localized matter degrees of freedom on the brane
world volume can be introduced by using the covariant

derivative of Eq. (28). In the action of Eq. (43), the cou-
|

o

—Tjdzxdeté\/det(&j - VA¢IVA¢/)

PHYSICAL REVIEW D 79, 045017 (2009)

pling constant T is related to the R symmetry breaking
scale, which might be different from the scale of SUSY
breaking. As a result, the action of the string, which is
actually described by the Nambu-Goldstone modes corre-
sponding to its low energy oscillations into the covolume
(super)space, can be reinterpreted as an effective two-
dimensional field theory, in which the otherwise possible
SUSY breaking terms have been integrated out.

IV. DUAL SCALAR FIELD THEORY

From the two-dimensional point of view, the effective
action of the vortex string has a factorized form of Akulov-
Volkov-Nambu-Goto actions. In what follows, a form of
the dual scalar field theory is introduced. The dual action is
found to describe the dynamics of some scalar fields lo-
calized on the world volume and whose metric is given by
Sy = &,40 »214p. To begin, we start with the string action

= 7 [@xdee\1 - V16,V ~ V6.V + (Vo (V) — (V') (49)

Introducing two vectorial Lagrangian multipliers L into
the action gives us

T,=-T / Pafdete 1 — B + BB — (1,1,
+deteL}(liy — Vad))], (50)

where [y = V,¢; and 12 = V,¢;V ;. Applying the
equations of motion of ¢; amounts to

d,(detee 9Ly = 0. (S
Introduce two vector density quantities ¢ with weight —1:
F¢ = detée 1914, (52)

Considering Eq. (51), their solutions are found to be
Fé = &%9,A, (53)

where the fields A; transform as scalars in the 1+
I-dimensional spacetime. Define the covariant vectors

1
F, = 6 Fb =5 671014 54
ia dete 8ab i gaheA i ( )
Therefore one has
LiBLB = FiaFjbgab- (55)

Note that
detéL?VA¢l = detéL?é;la(aa(ﬁi + aalﬂi). (56)

Considering Eq. (51) and integrating by parts, the
¢;-dependent term in Eq. (56) can be eliminated form

|
the action. Hence, Eq. (50) becomes

T,=-T / daldeteyf1 — 2 + BB — (1,1,
+deteLi} (lia — 2'"0,9)], (57)

in which ¢, are given by Eq. (21). Solving for the equa-
tions of motion of /;4 leads to

1= BB+ LI
V1= B+ BB = (L)
B — BB+ L1

V1 — B+ BB = (L)

Li =

(58)
Ly

Then the complete dual form of action (57) has the follow-
ing form:

r, = —T]dzxdeté[\/(l 11+ 12) — (L, Ly
+ 146" i(=0,00,0 — d,AaA)
+ 146" (=00%9,A + 9,00%N)]. (59)

By using Eq. (52) it can be shown that L4 = F¢ det'é¢ A.
Define
Jig = —i(0,00,0 + 3, oA,
a ) a : a_ : (60)
Joy = —(00%3,1 — 9,00°A).

The action (59) is converted to
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A / dPrfdete (L + L)1 + 13) — (L, - Ly
+ F?Jia]

= _T/d2x[deté \/det(c‘ilj + FiaFjbgab) +F?"ia]

= —dezx[\/— detg\/det(ﬁab + FiaFic ACb) + F?Jia]’

(61)
|

PHYSICAL REVIEW D 79, 045017 (2009)

where g,, = éaAéanAB. Therefore the action that de-
scribes the dynamics of the scalar fields A; localized on
the world sheet with the metric ., = &,4¢,5m,p is se-
cured as

Ty = 7 [y det@un + FiaFa) + FiJi]

detg

1 e o
= _T[dle:\/_ det(gab - _gab’gbc’sbcgc dacAiadAz) + SababAiJia]' (62)

As a result, this action, as a two-dimensional field theory,
gives us a scalar field theory that is dual to the action of
Eq. (41).

On the other hand, if one turns to the geometrical
structure of the vortex string, the stings geometrical and
physical characteristics would be inevitably involved in the
action. For example, the action could be supplemented
with an extrinsic curvature coupling term as embedded in
a higher-dimensional target spacetime [29]. Furthermore,
in the context of spontaneous symmetry breaking due to
the non-Abelian vortex string, the inclusion in the effective
action of the NG modes arising from oscillations in the
internal space would become natural and necessary. In
such a case, in addition to the position moduli space
discussed here, the moduli space of the vacuum is enlarged

|

to include the internal coset space of G/H, where G is the
full internal symmetry of the theory and H is the symmetry
which leaves the vacuum invariant [6,7,10,11]. Therefore,
the string dynamics, whose moduli space includes both
spacetime and internal space symmetry breaking, would be
of interest to the general theory of vortex string and is
worthy of further exploration and investigation.
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