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Vortices of a new type, carrying non-Abelian flux moduli CPn�1 � CPr�1, are found in the context of

softly broken N ¼ 2 supersymmetric quantum chromodynamics. By tuning the bare quark masses

appropriately, we identify the vacuum in which the underlying SUðNÞ gauge group is partially broken to

SUðnÞ � SUðrÞ �Uð1Þ=ZK, where K is the least common multiple of ðn; rÞ, and with NsuðnÞ
f ¼ n and

NsuðrÞ
f ¼ r flavors of light quark multiplets. At much lower energies, the gauge group is broken completely

by the squark vacuum expectation values, and vortices develop which carry non-Abelian flux moduli

CPn�1 � CPr�1. For n > r, at the length scale at which the SUðnÞ fluctuations become strongly coupled

and Abelianize, the vortex still carries weakly fluctuating SUðrÞ flux moduli. We discuss the possibility

that these vortices are related to the light non-Abelian monopoles found earlier in the fully quantum-

mechanical treatment of 4D supersymmetric quantum chromodynamics.

DOI: 10.1103/PhysRevD.79.045011 PACS numbers: 11.27.+d

I. INTRODUCTION

Attempts to understand better the mechanism of con-
finement of the non-Abelian variety, which is probably the
case for the realistic world of QCD, has eventually led to
the discovery of vortices with non-Abelian continuous flux
moduli [1,2], triggering a remarkable development of re-
search activity in related problems [3–25]. A typical sys-
tem considered is a UðnÞ theory with Nf ¼ n scalar quark

flavors, whose vacuum expectation value (VEV) breaks the
gauge symmetry completely, leaving however the color-
flavor diagonal SUðnÞCþF symmetry unbroken (color-
flavor locking). Vortices in such a system develop continu-
ous zero modes (moduli) parametrizing

SUðnÞ=SUðn� 1Þ �Uð1Þ � CPn�1;

where the divisor represents the symmetry respected by
individual vortices. When the vortex orientation is allowed
to fluctuate along z (the direction of the vortex length) and
in time t, the dynamics of such fluctuations is described by
a two-dimensional CPn�1 sigma model [2,4,5]. If the
original system is the bosonic sector of a N ¼ 2 super-
symmetric model, the sigma model has ð2; 2Þ supersym-
metry, as half of the supersymmetry is broken by the
vortex. In the infrared limit, the sigma model becomes
strongly coupled, and the 2D system reproduces exactly
[4,5] the dynamics of the corresponding 4D gauge theory
in the Coulomb phase, encoded by Seiberg-Witten curves
[26–28], realizing thus the idea of duality between a two-
dimensional sigma model and a four-dimensional gauge
theory discussed earlier by Dorey [29].

Beautiful as it may be, the very result of the analysis
shows that the vortices considered in Refs. [2,4,5] dynami-
cally Abelianize to Abrikosov-Nielsen-Olesen (ANO) vor-
tices. This fact can be seen in both two and four

dimensions. In the sigma model analysis, the fluctuations
inside the vortex become strongly coupled and generate the
mass scale �; there are n degenerate ground states [7]
(Witten-Cecotti-Fendley-Intriligator-Vafa index [30,31]).
Monopoles appear as kinks (domain walls) connecting
two adjacent vortex ground states. Each monopole is con-
fined by two vortices carrying the ‘‘adjacent’’ Uð1Þ fluxes,
a typical situation for a monopole arising from the breaking
of SUð2Þ � UðnÞ to Uð1Þ. The global SUðNfÞ ¼ SUðnÞ
flavor symmetry is not spontaneously broken by the vortex
dynamics1; this, however, does not contradict the fact that
the monopoles in the infrared carry only Abelian magnetic
Uð1Þn charges.
In four dimensions, the model considered can be seen as

the (bosonic part of the) low-energy effective action of
N ¼ 2 supersymmetric SUðNÞ, with N ¼ nþ 1 and with
Nf ¼ n flavors. The gauge group is broken by the adjoint

scalar VEV

h�i ¼ diag

�
m1; m2; . . . ; mn;�

Xn
j¼1

mj

�
; mi ! m;

(1.1)

to SUðnÞ �Uð1Þ=Zn �UðnÞ. The light monopoles and the
magnetic gauge quantum numbers of these, in the limit of
smallmi and�, can be read off from the singularities of the
Seiberg-Witten curves [32,33]. Semiclassically (large mi),
instead, the vacua of this theory are classified according to
the number of quark flavors which remain massless due to
the cancellation between the bare quark mass and the
adjoint scalar VEV in the superpotential

~Qð ffiffiffi
2

p
�þMÞQ;

1Of course, this is consistent with Coleman’s theorem.
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where M is the (bare) quark mass matrix. The model
considered in Refs. [2,4,5], as can be seen from the form
of the VEV of the adjoint scalar, corresponds to the r ¼
n ¼ Nf vacuum of the above theory.

On the other hand, the light monopoles in Table I cor-
respond to the limit mi ! m ! 0, and we need to know to
which quantum vacuum each semiclassical vacuum corre-
sponds. This problem of matching the semiclassical and
fully quantum-mechanical vacua one by one has been
solved by using the vacuum counting and by symmetry
considerations. The classical r vacua r ¼ 0; 1; . . . ; Nf

found in the semiclassical regime

jmij � j�j � �

are found to correspond [33–35] to the quantum r vacua
r ¼ 0; 1; . . . ; Nf=2 as

fr; Nf � rgðclassÞ()r; r ¼ 0; 1; . . . � Nf=2: (1.2)

Note that the quantum r vacua, valid at

jmij; j�j ��

[with SUðrÞ the non-Abelian magnetic gauge symmetry],
exist only up to r � Nf=2 for dynamical reasons [36].

According to the matching [Eq. (1.2)], the model con-
sidered in Refs. [2,4,5] must correspond to the r ¼ 0
quantum vacuum. The latter is characterized by the fact
that all monopoles are Abelian (see Table I); furthermore,
none of them carries any flavor SUðNfÞ quantum numbers.

The condensation of the light monopoles (which occurs
when the adjoint scalar mass ��2 is added in the theory)
does not break SUðNfÞ symmetry, consistent with the

finding from the vortex dynamics.2

On the other hand, one knows [32,33] that in four-
dimensional N ¼ 2 supersymmetric QCD there appear
light monopoles carrying non-Abelian SUðrÞ charges (r
vacua with 2 � r � Nf=2 in Table I). There must be ways

to understand the nature of non-Abelian monopoles, start-
ing from the more familiar concept of semiclassical regular
monopoles. In particular, one wonders whether non-

Abelian vortices which do not Abelianize dynamically
completely, and thus are naturally related to non-Abelian
monopoles through the monopole-vortex matching argu-
ment [3,19], can be found in some appropriate semiclassi-
cal regime.
We shall show below that the new types of vortex

solutions with desired properties can indeed be found.
The underlying model is the same as the one discussed in
Refs. [2,33]: an N ¼ 2 supersymmetric SUðNÞ gauge
theory with Nf ¼ N flavors. But the gauge group is broken

partially down to SUðnÞ � SUðrÞ �Uð1Þ gauge symmetry
(N ¼ nþ r) by the adjoint scalar VEV.

II. NON-ABELIAN VORTICES WITH MORE THAN
ONE NON-ABELIAN MODULI FACTORS

The model on which we shall base our consideration is
the softly broken N ¼ 2 supersymmetric QCD with
SUðNÞ and Nf ¼ N flavors of quark multiplets:

L ¼ 1

8�
Im�cl

�Z
d4�Trð�yeV�e�VÞ

þ
Z

d2�
1

2
TrðWWÞ

�
þLðquarksÞ þ

Z
d2��Tr�2;

(2.1)

L ðquarksÞ ¼ X
i

�Z
d4�ðQy

i e
VQi þ ~Qie

�V ~Qy
i Þ

þ
Z

d2�ð ffiffiffi
2

p
~Qi�Qi þmi

~QiQ
iÞ
�
; (2.2)

where �cl � �0=�þ 8�i=g20 contains the coupling con-

stant and the theta parameter and � is the adjoint scalar
mass, breaking softly N ¼ 2 supersymmetry to N ¼ 1.
We tune the bare quark masses as

m1 ¼ � � � ¼ mn ¼ mð1Þ;

mnþ1 ¼ mnþ2 ¼ � � � ¼ mnþr ¼ mð2Þ;

N ¼ nþ r;

nmð1Þ þ rmð2Þ ¼ 0; (2.3)

or

TABLE I. Confining vacua of SUðNÞ gauge theory with Nf flavors. In the superconformal r ¼ Nf=2 vacuum, relatively nonlocal
monopoles and dyons both appear as the low-energy effective degrees of freedom. ‘‘Almost SCFT’’ means that the theory is a
nontrivial superconformal theory when � ¼ 0 but confines upon � � 0 perturbation. In the theory with Nf ¼ N considered here, the

vacua at the ‘‘baryonic root,’’ in free magnetic phase, are absent. They appear only for Nf > N, with an effective gauge group

SUðNf � NÞ.
r Deg. freed. Eff. gauge group Phase Global symmetry

0 Monopoles Uð1ÞN�1 Confinement UðnfÞ
1 Monopoles Uð1ÞN�1 Confinement UðNf � 1Þ �Uð1Þ
2; ::; ½Nf�1

2 	 NA monopoles SUðrÞ �Uð1ÞN�r Confinement UðNf � rÞ �UðrÞ
Nf=2 Rel. nonloc. � � � Almost SCFT UðNf=2Þ �UðNf=2Þ

2The authors thank R. Auzzi and G. Marmorini for discussions
on this point.
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mð1Þ ¼ rm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p ; mð2Þ ¼ � nm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p ; (2.4)

and their magnitude is taken as

jm0j � j�j � �: (2.5)

The adjoint scalar VEV can be taken to be

h�i ¼ � 1ffiffiffi
2

p mð1Þ1n�n 0
0 mð2Þ1r�r

 !
: (2.6)

Below the mass scale v1 � jmij, the system thus reduces to
a gauge theory with gauge group

G ¼ SUðnÞ � SUðrÞ �Uð1Þ
ZK

; K ¼ LCMfn; rg;
(2.7)

where K is the least common multiple of n and r. The
higher n color components of the first n flavors (with the

bare mass mð1Þ) remain massless, as well as the lower r
color components of the last r flavors (with the bare mass

mð2Þ): They will be denoted as qð1Þ and qð2Þ, respectively.
They carry the charges �1 and ��2:

�1 � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrðrþ nÞp ; �2 � nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nrðrþ nÞp ; (2.8)

with respect to the Uð1Þ gauge symmetry generated by

tð0Þ ¼ �11n�n 0
0 ��21r�r

� �
; Trtð0Þ2 ¼ 1

2
: (2.9)

Non-Abelian gauge groups are generated by the standard
SU generators

tasuðnÞ ¼
ðtaÞn�n 0

0 0r�r

� �
; tbsuðrÞ ¼

0n�n 0
0 ðtbÞr�r

� �
;

(2.10)

a ¼ 1; 2; . . . ; n2 � 1; b ¼ 1; 2; . . . ; r2 � 1, with the nor-
malization

Tr nðtata0 Þ ¼ �aa0

2
; Trrðtbtb0 Þ ¼ �bb0

2
:

Our model for studying the vortices then is3

L ¼ � 1

4g20
F02
�� � 1

4g2n
Fn2
�� � 1

4g2r
Fr2
�� þ 1

g20
jD��

ð0Þj2

þ 1

g2n
jD��

ðnÞj2 þ 1

g2r
jD��

ðrÞj2 þ jD�q
ð1Þj2

þ jD�
�~qð1Þj2 þ jD�q

ð2Þj2 þ jD�
�~qð2Þj2 � VD � VF;

(2.11)

plus fermionic terms, where VD and VF are theD-term and
F-term potentials, respectively. The D-term potential VD

has the form

VD ¼ 1

8

X
A

�
TrtA

�
2

g2
½�;�y	 þX

i

ðQiQ
y
i � ~Qy

i
~QiÞ
��

2
;

(2.12)

where the generator A takes the values 0 for Uð1Þ, a ¼
1; 2; . . . ; n2 � 1 for SUðnÞ, and b ¼ 1; 2; . . . r2 � 1 for
SUðrÞ. VF is of the form

g20j��ð0Þ þ ffiffiffi
2

p
~Qtð0ÞQj2 þ g2nj��ðaÞ þ ffiffiffi

2
p

~QtðaÞsuðnÞQj2

þ g2r j��ðbÞ þ ffiffiffi
2

p
~QtðbÞsuðrÞQj2 þ ~Q½Mþ ffiffiffi

2
p

�	
� ½Mþ ffiffiffi

2
p

�	y ~Qy þQy½Mþ ffiffiffi
2

p
�	y½Mþ ffiffiffi

2
p

�	Q;

(2.13)

where

M ¼ mð1Þ1n�n 0
0 mð2Þ1r�r

 !

is the mass matrix and the (massless) squark fields have the
form

QðxÞ ¼ qð1ÞðxÞn�n 0
0 qð2ÞðxÞr�r

 !
;

~QðxÞ ¼ ~qð1ÞðxÞn�n 0
0 ~qð2ÞðxÞr�r

 !
;

(2.14)

if written in a color-flavor mixed matrix notation. The light
squarks (supersymmetric partners of the left-handed
quarks in supersymmetric model) are summarized in
Table II.
We set VD to zero identically, in the vacuum and in the

vortex configurations, by keeping

~q ð1Þ ¼ ðqð1ÞÞy; qð2Þ ¼ �ð~qð2ÞÞy; (2.15)

the redefinition

qð1Þ ! 1ffiffiffi
2

p qð1Þ; ~qð2Þ ! 1ffiffiffi
2

p ~qð2Þ (2.16)

brings the kinetic terms for these fields back to the original
form.

TABLE II. The light particles and their charges with respect to
the Uð1Þ � SUðnÞ � SUðrÞ gauge groups in our model.

Fields Uð1Þ SUðnÞ SUðrÞ
qð1Þ �1 n 1
~qð1Þ ��1 n
 1
qð2Þ ��2 1 r
~qð2Þ �2 1 r


3One could very well start with a model of this sort directly.
The squark VEVs can be induced by a Fayet-Iliopoulos term
introduced by hand. By an SURð2Þ rotation, which rotates ðq; ~qyÞ
as a doublet, such a model can be seen to be equivalent to the one
being considered here.
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The VEVs of the adjoint scalars are given by

h�ð0Þi ¼ �m0; h�ðaÞi ¼ h�ðbÞi ¼ 0; (2.17)

while the squark VEVs are given [from the vanishing of
each term of Eq. (2.13)] by

hQi ¼ vð1Þ1n�n 0
0 �vð2Þ
1r�r

 !
;

h ~Qi ¼ vð1Þ
1n�n 0
0 vð2Þ1r�r

 !
;

(2.18)

with

jvð1Þj2 þ jvð2Þj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ r

nr

s
�m0: (2.19)

There is a continuous vacuum degeneracy; we assume that

vð1Þ � 0; vð2Þ � 0

in the following. The presence of the flat direction implies
the existence of the so-called semilocal vortex moduli; but
we shall not be concerned with these here.

‘‘Non-Abelian’’ vortices exist in this theory as the vac-
uum breaks the gauge group G [Eq. (2.7)] completely,
leaving at the same time a color-flavor diagonal symmetry

½SUðnÞ � SUðrÞ �Uð1Þ	CþF (2.20)

unbroken. The full global symmetry, including the overall
global Uð1Þ, is given by

UðnÞ �UðrÞ: (2.21)

The minimal vortex in this system corresponds to the
smallest nontrivial loop in the G group space [Eq. (2.7)].
It is the path in the Uð1Þ space

ei	r1n�n 0
0 ei	n1r�r

� �
; 	: 0 ! 2�

nr
; (2.22)

that is,

1 N�N ! Y; Y ¼ e2�i=n1n�n 0
0 e2�i=r1r�r

� �
;

(2.23)

followed by a path in the SUðnÞ � SUðrÞ manifold

1 n�n ! Zn ¼ e�ð2�iÞ=n1n�n;

1r�r ! Zr ¼ e�ð2�iÞ=r1r�r

(2.24)

back to the unit element. For instance, one may choose
ð
: 0 ! 2�;�: 0 ! 2�Þ

ei
ðn�1Þ=n 0
0 e�i
=n1ðn�1Þ�ðn�1Þ

 !
;

ei�ðr�1Þ=r 0
0 e�i�=r1ðr�1Þ�ðr�1Þ

 !
:

As

Y K ¼ 1N�N; K ¼ LCMfn; rg; (2.25)

it follows that the tension (and the winding) with respect to
the Uð1Þ is 1

K of that in the standard ANO vortex.

The squark fields trace such a path asymptotically, i.e.,
far from the vortex core, as one goes around the vortex; at
finite radius the vortex has, for instance, the form

qð1Þ ¼ ei�f1ð�Þ 0
0 f2ð�Þ1ðn�1Þ�ðn�1Þ

 !
;

~qð2Þ ¼ ei�g1ð�Þ 0
0 g2ð�Þ1ðr�1Þ�ðr�1Þ

 !
;

(2.26)

where � and � stand for the polar coordinates in the plane
perpendicular to the vortex axis and f1;2 and g1;2 are profile
functions. The adjoint scalar fields � are taken to be equal
to their VEVs [Eq. (2.17)]. They are accompanied by the
appropriate gauge fields so that the tension is finite. The
BPS equations for the squark and gauge fields and the
properties of their solutions are discussed in the appendix.
The behavior of numerically integrated vortex profile func-
tions f1;2 and g1;2 is illustrated in Fig. 1.

We note here only that the necessary boundary condi-
tions on the squark profile functions have the form

f1ð1Þ ¼ f2ð1Þ ¼ vð1Þ; g1ð1Þ ¼ g2ð1Þ ¼ vð2Þ;

while at the vortex core

f1ð0Þ ¼ 0; g1ð0Þ ¼ 0; f2ð0Þ� 0; g2ð0Þ� 0:

(2.27)

The most important fact about these minimum vortices

is that one of the qð1Þ and one of the ~qð2Þ fields must
necessarily wind at infinity, simultaneously. As the indi-

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). Numerical result for the profile functions
f1;2 and g1;2 as functions of the radius �, for SUð3Þ � SUð2Þ �
Uð1Þ theory. The coupling constants and the ratio of the VEVs
are taken to be g0 ¼ 0:1, g3 ¼ 10, g2 ¼ 1, and jv2j=jv1j ¼ 3,
respectively.
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vidual vortex breaks the (global) symmetry of the vacuum
as

½SUðnÞ � SUðrÞ �Uð1Þ	CþF

! SUðn� 1Þ � SUðr� 1Þ �Uð1Þ3; (2.28)

the vortex acquires Nambu-Goldstone modes parametriz-
ing

CPn�1 � CPr�1: (2.29)

They transform under the exact color-flavor symmetry
SUðnÞ � SUðrÞ as the bifundamental representation
ðn; rÞ. Allowing the vortex orientation to fluctuate along
the vortex length and in time, we get a CPn�1 � CPr�1

two-dimensional sigma model as an effective Lagrangian
describing them. The details have been worked out in
Refs. [4,5] and need not be repeated here.

The most important characteristics of these vortices is
the following. Let us assume without losing generality that
n > r, excluding the special case of r ¼ n for the moment.
As has been shown in Refs. [4,5], the coupling constant of
the CPn�1 sigma models grows precisely as the coupling
constant of the 4D SUðnÞ gauge theory. At the point the
CPn�1 vortex moduli fluctuations become strong and the
dynamical scale � gets generated, with vortex kinks
(Abelian monopoles) acquiring mass of the order of �,
the vortex still carries the unbroken SUðrÞ fluctuation
modes (CPr�1), as the SUðrÞ interactions are still weak.
See Fig. 2.

Our vortex, at that mass (or length) scale, will carry one
of the Uð1Þ flux arising from the dynamical breaking of
SUðnÞ �Uð1Þ ! Uð1Þn, as well as an SUðrÞ flux. Of
course, the vortex of the model [Eq. (2.11)] will eventually
generate another (much lower) mass scale at which also the
CPr�1 fluctuations become strong and Abelianize.

Not all of the properties of the theory will survive,
however, if Eq. (2.11) is a low-energy effective action,
arising from the symmetry breaking

SUðNÞ ! G ¼ SUðnÞ � SUðrÞ �Uð1Þ
ZK

;

at some high mass scale�jm0j.4 As the SUðNÞ theory does
not support vortices [�1ðSUðNÞÞ ¼ 1], any vortex solution
appearing in the low-energy effective theory is only ap-
proximately stable: They eventually terminate at massive,
regular monopoles of �2ðSUðNÞ=GÞ. As

�2ðSUðNÞ=GÞ ��1ðGÞ

there is actually a one-to-one map between the vortex
solution of the low-energy G theory and the regular mono-
poles of the high-energy theory. (See Table III and below.)
It is in this context of monopole-vortex correspondence

that we propose that our vortex, carrying the CPr�1 mod-
ulations, is related to the monopoles the carrying SUðrÞ
charges, appearing in the r vacua of the 4D, SUðNÞ theory.
As an indirect support for our conjecture, note that the
global symmetry of our system isUðrÞ �UðN � rÞ, just as
in the quantum r vacua of the 4D, SUðNÞ theory. Another,
very suggestive hint that our idea is indeed correct is that,
both in the 4D, SUðNÞ theory and in the low-energy vortex
theory, the relevant case occurs only for r < Nf=2.

The special case r ¼ 1 corresponds to the UðNÞ model
[2,4,5,15], mentioned in the introduction, and in this case
the vortices dynamically Abelianize. This is not in contra-
diction with the claim made above, after Eq. (1.2), that the
UðnÞ models considered in those papers corresponded to
the quantum r ¼ 0 vacuum of the SUðnþ 1Þ model, with
Nf ¼ n. The point is that here we start with the underlying

theory with SUðNÞ, Nf ¼ N, where N ¼ nþ r; the

classical-quantum vacuum matching condition [Eq. (1.2)]
implies that the UðnÞ models studied earlier, if embedded
in our general scheme, correspond to the r ¼ 1, rather than
r ¼ 0, vacua. The symmetry breaking pattern [Eq. (2.21)]
also perfectly matches the full quantum result in Table I, as
it does for generic r.
There is no difficulty in generalizing our construction

and finding vortices with fluctuations corresponding to
more than two non-Abelian factors

SUðnÞ � SUðr1Þ � SUðr2Þ � � � � ;

SU(n)

SU(r)

1.0 1.2 1.4 1.6 1.8 2.0

1

2

3

4

5

FIG. 2 (color online). A schematic representation of the run-
ning of the SUðnÞ and SUðrÞ coupling constants. For n > r the
SUðnÞ interactions become strong first, at some mass scale �. At
that scale, there are still weakly fluctuating SUðrÞ moduli.

4There are many known examples of such artifacts of an
approximation in physics. The Landau pole of QED and the
infrared divergence in the integration over the size of the
instantons in QCD are two well known examples. In our context,
the presence of the ‘‘semilocal’’ vortex solution is believed to be
the artifact of the low-energy, strict BPS approximation, if the
system is embedded in a system with a larger gauge group [37].
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as long as we remain in the semiclassical region with jmij,
j�j � �. However, the main aim of this paper is to
identify the semiclassical origin of the non-Abelian mono-
poles seen in the fully quantum effective low-energy action
of the theory at mi ! 0, ���. In such a limit, the break-
ing of the gauge symmetry is a dynamical question; the
result of the analysis of the 4D theory (Table I) suggests
that in that limit the surviving non-Abelian dual group
SUðr1Þ � SUðr2Þ � � � � gets enhanced to a single factor
SUðrÞ. In order for gauge groups with more than one non-
Abelian factor to survive dynamically at low energies, a
nontrivial potential in the adjoint scalar field� needs to be
present in the underlying theory [34].

III. CONCLUSION

In this note we have constructed vortices of a new type,
having non-Abelian moduli,

CPn�1 � CPr�1;

resulting from the partial breaking of the SUðnÞ �
SUðrÞ �Uð1Þ global symmetry to SUðn� 1Þ � SUðr�
1Þ �Uð1Þ3 by the vortex. For n > r, CPn�1 field fluctua-
tions propagating along the vortex length become strongly
coupled in the infrared, the SUðnÞ �Uð1Þ part dynami-
cally Abelianizes; the vortex, however, still carries weakly
fluctuating SUðrÞ modulations. See Fig. 3. In our theory
where the SUðnÞ � SUðrÞ �Uð1Þ model emerges only as
the low-energy approximation of an underlying SUðNÞ
theory, such a vortex is not stable. If these vortices end at
a monopole, their CPr�1 orientational modes are turned
into the dual SUðrÞ color modulations of the monopole.
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APPENDIX: VORTEX CONFIGURATIONS

To be complete, we present here the vortex equations
and their solutions of the model equation (2.11), in the
vacuum equations (2.17) and (2.18). The action of our
model, after setting � to its VEV [Eq. (2.17)], and after
making the ansatz reduction on the squark field equations
(2.15) and (2.16), takes the form

S ¼
Z

d4x

�
1

4g2n
ðFa

��Þ2 þ 1

4g2r
ðFb

��Þ2 þ 1

4g20
ðFð0Þ

��Þ2

þ jD�q
ð1Þj2 þ jD�~q

ð2Þj2 þ g2n
2
ðqð1Þytaqð1ÞÞ2

þ g2r
2
ð~qð2Þtb~qð2ÞyÞ2 þ g20

2
ð�1q

ð1Þyqð1Þ

þ �2~q
ð2Þ~qð2Þy � Þ2

�
; (A1)

 ¼ ffiffiffi
2

p
�m0: (A2)

The tension can be written completing the squares à la
Bogomolnyi [38] as

CP

CP  

n-1

r-1

Abelian
monopoles

1/Λ

Non-Abelian
monopole   SU(r) xU(1)

r r r

FIG. 3 (color online). Our vortex has CPn�1 � CPr�1 orienta-
tional modes which can fluctuate along the vortex length and in
time (top figure). At low energies CPn�1 orientational modes
fluctuate strongly and Abelianize, leaving the weakly fluctuating
CPr�1 modes (middle figure). The vortex ends at a monopole
which, absorbing the CPr�1 fluctuations, turns into a non-
Abelian monopole. The latter transforms according to the fun-
damental representation of the dual SUðrÞ group (bottom pic-
ture). The kink monopoles are Abelian.

TABLE III. The effective low-energy degrees of freedom and
their quantum numbers at the confining vacuum characterized by
a magnetic dual SUðrÞ gauge group.

SUðrÞ Uð1Þ0 Uð1Þ1 . . . Uð1Þn�1 Uð1ÞB
nf � q r 1 0 . . . 0 0

e1 1 0 1 . . . 0 0
..
. ..

. ..
. ..

. . .
. ..

. ..
.

en�1 1 0 0 . . . 1 0
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T ¼
Z

d2x

� Xn2�1

a¼1

�
1

2gn
FðaÞ
ij � gn

2
ðqð1Þytaqð1ÞÞ�ij

�
2

þ Xr2�1

b¼1

�
1

2gr
FðbÞ
ij � gr

2
ð~qð2Þtb~qð2ÞyÞ�ij

�
2

þ
�

1

2g0
Fð0Þ
ij � g0

2
ð�1 Trnq

ð1Þyqð1Þ

þ�2 Trr~q
ð2Þy~qð2Þ � Þ�ij

�
2 þ 1

2
jDiq

ð1Þ � i�ijDjq
ð1Þj2

þ 1

2
jDi~q

ð2Þ � i�ijDj~q
ð2Þj2 � Bð0Þ

�
; (A3)

where Bð0Þ � 1
2 �ijF

ð0Þ
ij is the magnetic flux density along

the z direction. The first-order Bogomolnyi equations are
obtained by setting to zero all square bracket terms in Eq.
(A3), that is, all terms except the last, topological invariant,
winding-number term. Their solutions can be elegantly
expressed in terms of the moduli matrices (z � xþ iy)

qð1Þ ¼ S�1
n ðz; �zÞe��1c ðz;�zÞHðnÞ

0 ðzÞ;
~qð2Þ ¼ S�1

r ðz; �zÞe��2c ðz;�zÞHðrÞ
0 ðzÞ;

(A4)

where HðnÞ
0 ðzÞ and HðrÞ

0 ðzÞ are n� n and r� r matrices,

respectively, holomorphic in z, while Sn (Sr) is a regular
SLðn;CÞ [SLðr; CÞ] matrix; c ðz; �zÞ is a complex function,
which can be chosen real by an appropriate choice of
gauge.

�1 ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrðrþ nÞp ; �2 ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nrðrþ nÞp (A5)

are theUð1Þ charges of the qð1Þ and ~qð2Þ fields, respectively;
see Eq. (2.9). Sn (Sr) corresponds to the complexified
SUðnÞ [SUðrÞ] transformations. Note that H0’s and S’s
are defined up to transformations of the form

HðnÞ
0 ðzÞ ! VnðzÞHðnÞ

0 ðzÞ; Snðz; �zÞ ! VnðzÞSnðz; �zÞ;
where VnðzÞ is an arbitrary regular, holomorphic n� n

[vis-à-vis, r� r for HðrÞ
0 ðzÞ, Sr] matrix of determinant

one. HðnÞ
0 ðzÞ and HðrÞ

0 ðzÞ, called moduli matrices, contain

all of the moduli parameters [15]. SUðnÞ, SUðrÞ, and Uð1Þ
gauge fields are given by ( �@ � @=@�z)

AðnÞ
1 þ iAðnÞ

2 ¼ �2iS�1
n ðz; �zÞ �@Snðz; �zÞ;

AðrÞ
1 þ iAðrÞ

2 ¼ �2iS�1
r ðz; �zÞ �@Srðz; �zÞ;

Að0Þ
1 þ iAð0Þ

2 ¼ �2i �@c :

(A6)

These ansatz solve the matter part of the Bogomolnyi
equations

ðD1 þ iD2Þqð1Þ ¼ ðD1 þ iD2Þ~qð2Þ ¼ 0 (A7)

automatically (they reduce to �@H0 ¼ 0). In order to sim-
plify the (linearized) gauge field equations, let us introduce

�n ¼ SnS
y
n ; �r ¼ SrS

y
r ;

the (Bogomolnyi) gauge field equations (sometimes called

master equations) are5

@ð��1
n

�@�nÞ ¼ g2n
4
e�2�1c

�
��1

n HðnÞ
0 HðnÞy

0

� 1

n
Trnð��1

n HðnÞ
0 HðnÞy

0 Þ1n�n

�
;

@ð��1
r

�@�rÞ ¼ g2r
4
e�2�2c

�
��1

r HðrÞ
0 HðrÞy

0

� 1

r
Trrð��1

r HðrÞ
0 HðrÞy

0 Þ1r�r

�
;

@ �@c ¼ g20
4

�
�1e

�2�1c Trnð��1
n HðnÞ

0 HðnÞy
0 Þ

þ �2e
�2�2c Trrð��1

r HðrÞ
0 HðrÞy

0 Þ � 

�
:

Since SUðnÞ, SUðrÞ, and Uð1Þ all commute with each
other, the above construction is basically just a straightfor-
ward generalization of the formulas given in the case of
UðnÞ � SUðnÞ �Uð1Þ theory; see, e.g., [11], except for
one point. As there is just one Uð1Þ gauge group factor but
two non-Abelian groups SUðnÞ and SUðrÞ, the moduli
matrices are subject to a constraint. In fact, from Eq.
(A4) and the fact that Sn (Sr) belongs to SLðn;CÞ
[SLðr; CÞ], it follows that

e�2�1nc detHðnÞ
0 HðnÞy

0 ¼ detðqð1Þqð1ÞyÞ;
e�2�2rc detHðrÞ

0 HðrÞy
0 ¼ detð~qð2Þ~qð2ÞyÞ:

As �1n ¼ �2r [see Eq. (A5)], these are consistent with the
asymptotic behavior

qð1Þqð1Þy � jv1j21n�n; ~qð2Þ~qð2Þy � jv2j21r�r;

if a constraint

detHðnÞ
0 HðnÞy

0

detHðrÞ
0 HðrÞy

0

� jv1j2n
jv2j2r

(A8)

is satisfied at large jzj. So for a vortex of winding number k,

detHðnÞ
0 HðnÞy

0 / detHðrÞ
0 HðrÞy

0 � jzj2k;
i.e., the same winding in q and ~q fields, but with the
condition Eq. (A8).

5For instance, the SUðnÞ gauge field components can be
written from Eq. (A6) as

A1 ¼ �iðS�1 �@Sþ Sy@ðSyÞ�1Þ;
A2 ¼ �ðS�1 �@S� Sy@ðSyÞ�1Þ:

By a straightforward algebra one finds then (F12 ¼
@1A2 � @2A1 þ i½A1; A2	)

ðSyÞ�1F12S
y ¼ �2@ð��1 �@�Þ; � ¼ SSy:
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The tension for the minimum vortex (k ¼ 1) can be
worked out easily as follows. A typical such vortex has
the form Eq. (A4), where the moduli matrices can be
brought to the form locally, e.g.,

HðnÞ
0 ðzÞ ¼ c1z 0

0 1ðn�1Þ�ðn�1Þ

� �
;

HðrÞ
0 ðzÞ ¼ c2z 0

0 1ðr�1Þ�ðr�1Þ

� �
;

with

c1
c2

¼ vn
1

vr
2

: (A9)

Note that one of c1 and c2, for instance, c1, can be set to
unity by an appropriate choice of Sn and c . The other is
then fixed uniquely. In order for the behavior (by setting
c1 ¼ 1)

HðnÞ
0 ðzÞHðnÞ

0 ðzÞy ¼ �2 0
0 1ðn�1Þ�ðn�1Þ

 !

to be consistent with qð1Þqð1Þy � jv1j21n�n, the large �
behavior of c and Sn must be such that

e�2�1c S�1
n ðSyn Þ�1 � 1=�2 0

0 1ðn�1Þ�ðn�1Þ

 !
;

this is possible if

Sn � eðn�1Þ�1c 0
0 e��1c1ðn�1Þ�ðn�1Þ

 !

and

e�2n�1c � 1=�2; ∴ c �
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ r

2nr

s
log�2:

Of course, the same conclusion for c is reached by con-

sidering the asymptotic behavior of ~qð2Þ and Sr. As F
ð0Þ
12 ¼

�4 �@@c ,

T ¼ 
Z

d2xFð0Þ
12 ¼ 

Z
d2xr2c ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ r

2nr

s


¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ r

nr

s
�m0;

that is

T ¼ 4�ðjvð1Þj2 þ jvð2Þj2Þ:

An (axially symmetric) vortex of generic SUðnÞ �
SUðrÞ orientations can be represented by the moduli matrix
of the form

HðnÞ
0 ðzÞ ¼ c1z 0

b 1ðn�1Þ�ðn�1Þ

� �
;

HðrÞ
0 ðzÞ ¼ c2z 0

c 1ðr�1Þ�ðr�1Þ

� �
;

where b (c) is an (n� 1)-component [(r� 1)-component]
complex vector, representing the inhomogeneous coordi-
nates of CPn�1 (of CPr�1). Under the color-flavor SUðnÞ
[SUðrÞ] symmetry group, they transform as in the funda-
mental representation of SUðnÞ [SUðrÞ]. This is the content
of some of the claims made in the main text.
The BPS equations actually allow more general kinds of

vortex solutions. The moduli space, for general winding
numbers and with more general position and orientation
parameters, shows a very rich and interesting spectrum.
This and other questions will be discussed elsewhere.
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