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Hartnoll, Herzog, and Horowitz [Phys. Rev. Lett. 101, 031601 (2008).] discuss a holographic black hole

solution which exhibits a superconductorlike transition. In the superconducting phase the black holes

show infinite DC conductivity. This gives rise to the possibility of deforming the solutions by turning on a

time independent current (supercurrent), without any electric field. This type of deformation does not exist

for normal (nonsuperconducting) black holes, due to the no-hair theorems. In this paper we have studied

such a supercurrent solution and the associated phase diagram. Interestingly, we have found a ‘‘special

point’’ (critical point) in the phase diagram where the second order superconducting phase transition

becomes first order. Supercurrent in superconducting materials is a well studied phenomenon in

condensed matter systems. We have found some qualitative agreement with known results.
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I. INTRODUCTION

The AdS/CFT correspondence [1] has proved to be one
of the most fruitful ideas in string theory. It has provided
important insights into the nature of strongly coupled
gauge theories. Various field theoretic phenomena like
confinement/deconfinement transition [2], chiral symmetry
breaking [3], transport properties [4], etc. have been under-
stood from a string theory (gravity) viewpoint. In recent
times, there have been various works which aim at con-
structing string theory (gravitational) duals to condensed
matter systems [5–14].

A superconductor (or BEC in general) is one of the most
studied systems in condensed matter physics [15] and is
also equally important in the study of the phase diagram of
QCD [16]. However, there are certain aspects of super-
conductivity, e.g. high temperature superconductivity etc.,
that are still not completely understood. As superconduc-
tivity is a field theoretical phenomenon, it is interesting to
ask if gauge gravity duality can be used to provide some
insights into superconductivity. It turns out that there exists
a gravitational system which closely mimics the behavior
of a superconductor. We will briefly describe the basic
setup. Recently it has been shown by Gubser that in the
AdS4 background one can have condensation of a charged
scalar field [17].1 It is shown that there exist solutions that
allow for a condensing scalar to be coupled to the black
hole if the charge on the black hole is large enough. The
scalar couples to a Uð1Þ gauge field under which the black

hole is charged, and its condensation breaks the gauge
symmetry spontaneously, giving a mass to the gauge field.
The exact backreacted gravity solution with the condensa-
tion of scalar field is difficult to find. In [22] the gauge
fields and coupled scalar part of the Lagrangian has been
solved and studied numerically, neglecting the gravity
backreaction. It has also been shown that the system under-
goes a second order normal conductor/DC superconductor
transition after the scalar condenses. Various related works
discuss other aspects of superconductivity including partial
discussions of the Meissner effect and the non-Abelian
case [23–29].
Here we carry these investigations further by presenting

a DC supercurrent-type solution. Infinite DC conductivity
in the dual field theory means that there are states in the
field theory with time independent nonzero DC current (but
without any external voltage). Such a phenomenon is well
known in condensed matter systems. It is known from
various experiments that the supercurrent can sustain itself
for several years in a superconducting coil. In terms of
AdS/CFT, the above-mentioned supercurrent states will
correspond to a deformation of superconducting black
holes by the spatial component of the gauge fields with a
nontrivial radial dependence. We have numerically con-
structed such a solution. The solution may be thought of as
a vector hair to a superconducting AdS black hole and may
be interpreted as a bound state of soliton and a black hole.
As one would expect, a type of no-hair theorem [see Eq.
(16) and the following discussions] prevents any such non-
trivial solution from occurring in the case of a normal
(nonsuperconducting) AdS black hole.
We also have studied the interesting and novel phase

diagram of such a system. It is shown that the critical
temperature of the superconducting transition decreases
with the introduction of a chemical potential for super-
current and most interestingly at some point the order of
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1Possible ways to have scalar hair in asymptotically flat

Einstein-Yang-Mills-Higgs systems (also related mechanism in
non-Abelian gauge gravity systems) has been discussed by
authors (see [18–21] and references therein).
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phase transition changes from second order to first order.
Thereby we have shown the existence of a ‘‘special point’’2

in the phase diagram, where the line of second order
transitions ends and the first order transition begins
(Fig. 1).

It has also been shown that the superconducting phase
transits back to the normal phase at a certain value of the
supercurrent (critical current). The associated transition
may be second order or first order depending on
temperature.

In this paper we start by discussing the equations and
general setup (Sec. II), then we discuss the superconduct-
ing black hole solution studied in [22] and also introduce
our supercurrent solution (Sec. III). In Sec. IV we discuss
the various phase diagrams associated with our model. We
also comment on some possible connection with superfluid
phase diagram (Sec. V) and the issue of gravity backreac-
tion (Sec. VI). In the concluding section we discuss some
future directions and open questions.

II. EQUATIONS AND ACCOUNTING OF THE
BOUNDARY CONDITIONS

In this section we will describe the setup on the gravity
side which gives a superconducting system in the boundary
theory. Following [22], we consider the planar limit of the
four-dimensional AdS black hole:

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ; (1)

where

fðrÞ ¼ r2

L2
�M

r
(2)

and L is the radius of the anti-de Sitter space and the
temperature of the black hole (and also the boundary field
theory) is given by

T ¼ 3M1=3

4�L4=3
: (3)

In this note we will adopt the convention that M ¼ L ¼ 1.
At the phenomenological level, superconductivity is usu-
ally modeled by a Landau-Ginzburg Lagrangian where a
complex scalar field develops a condensate in a super-
conducting phase. In order to have a scalar condensate in
the boundary theory, the authors of [22] introduce a Uð1Þ
gauge field and a conformally coupled charged complex
scalar field c in the black hole background. The
Lagrangian of the system is

L ¼
Z

dx4
ffiffiffiffiffiffiffi�g

p �
� 1

4
FabFab � Vðjc jÞ � j@c � iAc j2

�
;

(4)

where the potential is given by

Vðjc jÞ ¼ �2
jc j2
L2

(5)

which corresponds to the conformal mass m2
conf ¼ �2=L2.

As argued in [22], the mass term is negative but above the
Breitenlohner-Freedman (BF) bound [30] and thus does
not cause any instability in the theory. As we will see
below, the presence of the vector potential effectively
modifies the mass term of the scalar field as we move
along the radial direction r and allows for the possibility
of developing hairs for the black hole in parts of the
parameter space. Notice that in our model there is no
explicit specification of the Landau-Ginzburg potential
for the complex scalar field. The development of a con-
densate relies on more subtle mechanisms for violations of
the no-hair theorem.
Here we consider the possibility of a DC supercurrent in

this setup. For this purpose, we will have to turn on both a
time component At and a spatial component Ax for the
vector potential. We are interested in static solutions and
will also assume all the fields are homogeneous in the field
theory directions with only radial dependence. It is more
convenient to analyze the system by making a coordinate
transformation z ¼ 1=r. The metric becomes

ds2 ¼ �fðzÞdt2 þ dz2

z4fðzÞ þ
1

z2
ðdx2 þ dy2Þ (6)

with

fðzÞ ¼ 1

z2
� z: (7)

The horizon is now at z ¼ 1, while the conformal boundary
lives at z ¼ 0. Like [22] we will also neglect the gravity
backreaction of gauge and scalar fields. How this limit can
be taken consistently is discussed in [22,23]. The equations
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FIG. 1 (color online). Phase diagram in the Sx, T plane show-
ing the critical point, first order, and second order transition. For
T < Tsp the phase transition is first order. The dotted line is the

extension of the second order transition line.

2This is actually a critical point. However, we refrain from
using the word ‘‘critical’’ to avoid any possible confusion with
Tc, Sc, etc.
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of motion for the fields in this coordinate system are

c 00 þ f0

f
c 0 þ 1

z4

�
A2
t

f2
� z2A2

x

f
þ 2

L2f

�
c ¼ 0

A00
t � 2

c 2

fz4
At ¼ 0 A00

x þ
�
2

z
þ f0

f

�
A0
x � 2c 2 Ax

z4f
¼ 0:

(8)

To require regularity at the horizon wewill have to set At ¼
0 at z ¼ 1. Since we have a set of coupled equations, this
will in turn give the constraints at the horizon:

zc 0 ¼ 2

3
c � 1

3
z2A2

xc
2 A0

x ¼�2

3

�
c

z

�
2
Ax At ¼ 0;

(9)

where z ¼ 1. Examining the behavior of the fields near the
boundary, we find

c ��1zþ�2z
2 þ � � � At ��� �zþ � � �

Ax � Sx þ Jxzþ � � � : (10)

The constant coefficients above can be related to physical
quantities in the boundary field theory using the usual
dictionary in gauge/gravity correspondence. �, � are the
chemical potential and the density of the charge carrier in
the dual field theory, respectively. Jx corresponds to the
current, while Sx gives the dual current source. �1;2 are

both coefficients multiplying normalizable modes of the
scalar field equation. They are the expectation values of
operators in the field theory:

�i � hOii: (11)

In this paper, we will mainly study the �1 ¼ 0 case and
also briefly discuss the �2 ¼ 0 case. It turns out both
exhibit similar behavior when it comes to DC
superconductivity.

We want to parametrize our solutions in terms of dimen-
sionless quantities. From the analysis in the Appendix we
see that T, �, �1, Sx have dimension one, while �, �2, Jx
have dimension two. The dimensionless combinations are

ðT� ; Sx� ; Jx
�2 ;

ffiffiffiffiffiffiffi
hO2i

p
� ; hO1i

� Þ. With the regularity conditions [Eq.

(9)] and �1 ¼ 0 (or �2 ¼ 0), we are left with a two
parameter family of solutions; which we characterize by

two dimensionless quantities T
� ,

Sx
� . Since the effect of

temperature is governed by T
� , we can in practice keep

the temperature fixed and achieve the same effect by
changing 1=�.

III. NATURE OF THE SOLUTION

A. Superconducting black hole

Here we discuss the space-time profile of the super-
conducting black hole solution found in [22] and put Ax ¼
0 in Eq. (8). At a small value of � the only solution to the

set of Eq. (8) is given by

At ¼ �ð1� zÞ c ¼ 0: (12)

The effective mass of the field c in this background is
given by

m2
eff ¼ �2� A2

t

fðzÞ : (13)

Hence, as we increase � the effective mass becomes less
than the BF bound in a sufficiently large region of space
and, consequently, a zero mode develops for the field c
(Fig. 2) at 1=� ¼ 1=�c � 0:246. As � is increased fur-
ther, the field c condenses and a new branch of solution
shows up which has a nonzero value of c . [As discussed in
Eq. (10), there are two possible boundary condition for c .
Here we concentrate on the �1 ¼ 0 case, the �2 ¼ 0 case
is similar.] It has been argued in [22] that this new solution
has a lower free energy than the regular black hole solution
with c ¼ 0 and there is a second order phase transition
associated with this phenomenon. We present the phase
diagram in the next chapter which may be thought as the
Ax ¼ 0 case in our context.3 Here we will present the
general nature of the solution.
We plot the solution for some generic values of 1=� �

0:105, 0.079 [Fig. 3(a) and 3(b)]. As one can see, �2

increases as we increase the value of �.4

The conductivity of this system can be calculated by
looking at the frequency (!) dependent fluctuation equa-
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FIG. 2 (color online). The zero mode of c at � ¼ �c with a
normalization c ¼ 1 at the horizon and with the boundary
condition �1 ¼ 0.

3As we increase � further there is a possibility of a multinodal
(in radial direction) solution, but as in [22] we will not consider
such solutions. These solutions probably are thermodynamically
unfavorable.

4Another interesting property is that as we increase �, � ¼
A0
tðzÞ at the boundary z ¼ 0 increases, however the charge of the

black hole � ¼ A0
tðz0Þ decreases. Although the total charge of

the configuration is increased by increasing �, the condensation
becomes more dense and carries most of the charge.
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tion of Ax in this back ground. It has been shown in [22]
that the imaginary part of conductivity has a pole at! ¼ 0.
Consequently, the real part of the conductivity will have a
delta function at ! ¼ 0. This example of an infinite DC
conductivity is an example of superconductivity. In con-
trast to that, an ordinary black hole (with c ¼ 0) has a
finite DC conductivity.

B. Supercurrent solution

The conductivity is given by [from Eq. (10)]

� ¼ Jx
_Sx
: (14)

An infinite value of conductivity (as discussed at the end of
the previous chapter) implies Jx may be nonzero even if
_Sx ¼ 0. This is natural to expect in a superconductor, that
current may flow without any applied voltage. Hence, one
may expect that one can deform the superconducting black
hole solutions by turning on nonzero Jx (consequently a
nonzero Ax). Here we have constructed such a solution
numerically by solving the coupled equation (8). As we are
solving the coupled equation our solution is valid for any
value of Ax within the approximation scheme of neglecting
the gravity backreaction. The solution is characterized by
two chemical potentials Sx, � which are the boundary
values of the fields Ax and At [Eq. (10)]. To find this
solution we start with fields satisfying appropriate bound-
ary conditions near the black hole horizon [Eq. (9)] and
integrate up to the boundary z ¼ 0. Just like the case of the
superconducting black hole solution, we can put either �1

or �2 to zero. Here we present the solution with �1 ¼ 0,
the case �2 ¼ 0 is similar.
It should be noted that such a solution does not exist in

an ordinary black hole background. From Eq. (8) we have
for the c ¼ 0 case

A00
x þ

�
2

z
þ f0

f

�
Ax ¼ 0

) z2fA00
x þ ðz2fÞ0Ax ¼ 0

) z2fðz2fA0
xÞ0 ¼ 0

) d2

dy2
Ax ¼ 0; dy ¼ dz

z2f

) Ax ¼ c1 þ c2y:

(15)

Near the horizon z2fðzÞ ¼ �3ð1� zÞ þ � � � . Hence,

y� logð1� zÞ ) Fzx � @zAx � c2
1

1� z
: (16)

The energy density near the black hole horizon has a
contribution from the gzzgxxF2

zx term and consequently
diverges as 1=ð1� zÞ near the black hole horizon. Hence,
the only possible finite energy solutions are a constant
(c2 ¼ 0, z independent) Ax solution with other fields given
by Eq. (12). As discussed Jx ¼ 0 for such solutions. The
free energy competition between such a normal solution
and a supercurrent solution gives rise to an intricate phase
diagram. Actually the order of the superconducting phase
transition changes from second order to first order as we
tune the boundary value of Ax. It should also be noted that
the introduction of field Ax changes the effective mass of
the field c ,
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FIG. 3 (color online). Plots of c and At at 1=� � 0:105, 0.079 with the boundary condition�1 ¼ 0. The lower curve corresponds to
a smaller value of �.
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m2
eff ¼ �2� A2

t

fðzÞ þ z2A2
x: (17)

This implies that the introduction of too much Ax may
destroy superconductivity and suggests the possibility of a
critical value of Sx, beyond which there is no supercon-
ductivity. These issues related to phase transition have been
discussed in Sec. IV. Here we will show how the solution
looks.

From Eq. (9), one may argue that the slope of the field c
at the horizon changes sign as one turns on Ax. This may be
seen from the solutions with generic conditions 1=� �
0:174, Sx=� � 0:369 [Figs. 4(a) and 4(b)] and 1=� �
0:087, Sx=� � 0:609 [Figs. 5(a) and 5(b)]. As we turn
on more Sx the value of c at the horizon decreases.
Figure 4(a) shows one configuration which is near the
phase boundary. Turning on Sx further will eventually
destroy the condensate.

IV. RESULTS

A. �1 ¼ 0

In this section we discuss the phase diagram associated
with our solution. Let us for the moment set �1 ¼ 0. This
corresponds to choosing a boundary condition such that
c ðzÞ � z2 at the boundary (z ! 0).
We first look at the case when Ax ¼ 0. Solving for the

condensate strength as a function of temperature or, equiv-
alently, 1=�, we get the curve shown in Fig. 6. For small
values of 1=� the condensate strength reaches a saturation
value. Near the point�2 ¼ 0 the curve has the dependenceffiffiffiffiffiffiffi
�2

p
=�� ð1=�� 1=�cÞ1=2, as expected. This corre-

sponds to a second order phase transition. If the parameter
1=� is increased further the condensate ceases to exist, i.e.,
c ðzÞ ¼ 0 beyond this point. The critical value 1=�c ¼
0:246. For a fixed boundary value of 1

� , solutions with

�2 � 0 always has less free energy than the normal black
hole solution given in Eq. (12).
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FIG. 4 (color online). Nature of solution for 1
� � 0:174 and Sx

� � 0:369.
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FIG. 5 (color online). Nature of solution for 1
� � 0:087 and Sx

� � 0:609.
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1. � fixed, Sx varying

Let us now consider the effect of turning on Ax. As
explained in the Sec. II, turning on Ax has the effect of
introducing a global Uð1Þ current Jx in the dual field
theory. The boundary value of Ax, Sx acts as a chemical

potential for this current. In Fig. 7 we plot the scaled

condensate strength
ffiffiffiffiffiffiffi
�2

p
=� as a function of the scaled

Ax chemical potential Sx=� for different values of 1=�.
The plot on the left is for 1=� � 0:146, while for the plot
on the right 1=� � 0:217. We see an interesting behavior
here: for all values of 1=� there is a critical value of the
current above which there is no condensate. However, the
nature of this transition seems to change with the value of
1=�. For small values of this parameter, we seem to find a
first order transition from the superconducting to the
normal state when Sx reaches a critical value Sx;c [see

Fig. 7(a)]. For values above a special value 1=�sp, the

nature of the transition seems to change to second order
[see Fig. 7(b)]. Note that the values of 1=� or temperature
that we consider are below the usual critical temperature
that exists for Ax ¼ 0, which is at 1

�c
� 0:246 in this case.

The critical value Sx;c can be determined by comparing

the free energies of the solution with supercurrent solution

and the c ¼ 0 solution for the same value of Sx
� . In Fig. 8

we plot the difference in free energies of the two branches
as a function of Sx=�. The figure on the left [Fig. 8(a)] is
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 7 (color online). Phase structure in the presence of a nontrivial Ax field. The vertical line in the left-hand figure marks the first
order transition.

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
µ

2 µ

FIG. 6 (color online). Plot of �2 as a function of 1=�, for
Ax ¼ 0.

PALLAB BASU, ANINDYA MUKHERJEE, AND HSIEN-HANG SHIEH PHYSICAL REVIEW D 79, 045010 (2009)

045010-6



for 1=� ¼ 0:146. We see the ‘‘swallow tail’’ curve typical
of first order transitions. At Sx;c=� ¼ 0:46 the branches

cross, and the system jumps to the normal phase where the
condensate ceases to exist. In the right-hand side figure
[Fig. 8(b)], we again plot the free energy difference for
1=� ¼ 0:217. We see a smooth transition to the normal
phase, which is second order. The critical value of Sx=� is
0.22 in this case. Details of the ‘‘swallow tail’’ diagram is
discussed in a similar situation in the next subsection.

We can also calculate the critical (or maximal) value of
the ‘‘current’’ Jx. This can be done by reading off the
current from a plot of Sx=� vs Jx, shown in Fig. 9. For
the two cases considered above, the critical currents are
Jx;c ¼ 4:2 and Jx;c ¼ 0:36, respectively.

2. Sx fixed, � varying

In the above discussion, we explored the phase structure
by taking constant 1=� sections. Equivalently, we can
consider constant Sx=� sections. Figure 10 shows the

variation of the condensate
ffiffiffiffiffiffiffi
�2

p
=� with 1=�, with

Sx=� ¼ 0:1, 0.5, respectively, for the left- and right-hand
side plots.
The plot of the free energy difference between the

normal and the supercurrent branches reveals the nature
of the phase transition (see Fig. 11). We see again that for
small values of Sx=� the phase transition is first order
(1=�c ¼ 0:134), and it changes to second order for higher
values of Sx=� (1=�c ¼ 0:24). When the transition is first
order there are three branches of the solution. Similar to the

FIG. 8 (color online). Free energy for the different phases.

FIG. 9 (color online). Plot of Jx as a function of Sx=�.
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phase diagram of AdS5 black holes in global coordinate,
there is one nucleation temperature (1=�N) where there is
generation of two new solutions. In Fig. 10(a) 1=�N �
0:14. For a value of 1=� just below 1=�N, there are two
possible solutions: the one with the higher value of con-
densate is stable (branch II), while the other one is unstable
(branch III) (we have not done a local stability analysis, but
this is the most likely case from the global stability). The
stable solution becomes dominant over the nonsupercon-
ducting solution (branch I) at � ¼ �c. The unstable solu-
tion merges with the nonsuperconducting branch at an
even lower value of 1=�. The ‘‘swallow tail’’ diagram in
Fig. 11(a) shows this clearly. When the transition is of
second order, there is no branch crossing and the non-
superconducting solution becomes unstable for �>�c

and the free energy of the condensate branch (II) is always
less than the nonsuperconducting branch (I).

The critical value of the current Jx can be determined
similarly as above.

FIG. 10 (color online). Phase structure in presence of a nontrivial Ax field. The vertical line in the left-hand graph marks first order
transition.
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FIG. 11 (color online). Free energy for the different phases.
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In order to better understand the phase structure, we can
look at a three-dimensional plot showing the variation of
the three relevant dimensionless parameters in this case,

namely 1=�, Sx=�, and
ffiffiffiffiffiffiffi
�2

p
=�. This is shown in Fig. 12.

The curves in Fig. 7 are constant 1=� sections of this plot,
while Fig. 10 shows constant Sx=� sections. We can

clearly see the change in the behavior of
ffiffiffiffiffiffiffi
�2

p
=� as a

function of Sx=� with changing 1=�. Below 1=�c0 ¼
0:22 the dependence is nonmonotonic, indicative of a first
order transition. Above this value the dependence becomes
monotonic and we have a second order phase transition.

3. Phase boundary

We can also look at the phase structure on the S=�, 1=�
plane. Figure 13 shows the result. The blue line indicates
the region of second order phase transitions (the line in the
right-hand sign of the dot), which changes into first order at
the red line (the line at the left-hand side of the dot). The
area enclosed by the transition line and the axes represent
the condensate phase, while above the line the system is in
the normal phase. The intercepts of this curve with the axes
define two critical points: at Sx ¼ 0, there is a second order
phase transition as 1=� is increased at 1=�c ¼ 0:246,
while near 1=� ¼ 0 there is a first order phase transition
with increase in Sx=� at Sx;c=� ¼ 0:874.

B. �2 ¼ 0

We now consider the case where �2 ¼ 0. This corre-
sponds to the boundary condition when c ðzÞ � z as z ! 0.
Then for Ax ¼ 0 we get the dependence of the scaled
condensate strength �1=� on 1=� shown in Fig. 14.
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FIG. 13 (color online). Phases of the Abelian Higgs model.
The nature of the phase transition changes from second order
(blue line) to first order (red line) at the ‘‘special point’’ (green
dot).
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FIG. 14 (color online). Plot of �1 as a function of 1=�, for
Ax ¼ 0.
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FIG. 15 (color online). Plot of �1 as a function of 1=�, for Ax � 0.
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Near 1=� ¼ 0 the condensate strength diverges,5 while
near the critical value of 1=� ¼ 1=�c the curve has the

dependence �1=�� ð1=�� 1=�cÞ1=2 as before. So we
again have a second order phase transition at this point.
The critical value 1=�c ¼ 0:89.

We can now turn on Ax in this setting, and investigate the
response of the system as we increase the chemical poten-
tial for the Ax field, Sx at various values of 1=�. The results
are shown in Fig. 15. The story here is qualitatively similar
to the�1 ¼ 0 case: we again see the existence of a critical
current above which there is no condensate. For small
values of 1=� there is a first order phase transition as Sx
is varied, as seen on the left-hand side plot [Fig. 15(a)].
Here 1=� ¼ 0:61. For larger values of 1=� the nature of
the transition changes to second order, as seen on the right-
hand side plot for 1=� ¼ 0:813 [Fig. 15(b)]. Note again
that we are below the critical value 1=�c ¼ 0:89where the
condensate ceases to exist for Ax ¼ 0.

As in the �1 ¼ 0 case, we can look at the behavior of
�1=� as a function of 1=� and Sx=�, shown in Fig. 16.
Below 1=�c0 � 0:6, �1=� is a nonmonotonic function of
Sx=� and we have a first order transition at a critical value
Sx:c=�. For 1=� > 1=�c0 the dependence becomes mono-
tonic, and the transition becomes second order.

V. CONNECTION TO SUPERFLUIDS

We note here that, due to the global nature of the
associated Uð1Þ symmetry, the condensation phenomenon
we witness here is more similar to a superfluid. The phase
structure we find can be interpreted by comparing with the
known behavior of superfluids [15]. Consider a charged
superfluid confined to a thin film. The system can be
described by a Landau-Ginzburg–type theory with the

following Lagrangian:

L ¼ �ðTÞjc j2 þ �

2
jc j4 þ 1

2m
jð�ir�AÞc j2; (18)

where c is the condensate. The supercurrent can be de-

fined in terms of c ðrÞ ¼ jc ðrÞjei’ðrÞ as

J ¼ jc j2
m

ðr’�AÞ � jc j2vs; (19)

where vs is the mechanical fluid velocity. We can think of J
as being the response to the mechanical velocity vs. Note
that in the field theory we get from our gravity picture, both
the condensate c and the vector potential A are spatially
homogeneous. Then vs / A, i.e., a constant mechanical
velocity is induced by a uniform vector potential.6

At low temperatures the quasiparticle energies are
shifted by an amount proportional to the fluid velocity vs,
and this reduces the energy gap as vs is increased. There
exists a critical velocity where the gap goes to zero; at this
point the system undergoes a first order transition to the
normal state. Experimentally, it is known for superfluids at
temperatures close to zero that as vs is increased, the
supercurrent J initially increases in proportion to vs.
However, once vs reaches a critical value vs;c, the current

drops steeply to zero. This corresponds to the first order
phase transition at the critical velocity.
The situation is quite different near the critical tempera-

ture. There is still a phase transition, but it can be shown to
be of second order. The current drops to zero smoothly at
the critical velocity.
These observations agree qualitatively with our model if

we identify the quantity Sx with the magnitude mechanical
velocity of the fluid vs.

VI. GRAVITY BACKREACTION

It is an important question how the solutions change as
we incorporate the gravity backreaction. Without the scalar
condensation such a solution is just the standard Reissner
Nordstrom black hole in AdS3þ1 space. The metric of
which is given by [31]

ds2 ¼ L2

z2
ð�fðzÞdt2 þ dx2 þ dy2Þ þ L2dz2

z2fðzÞ
At ¼ �

�
1� z

z0

�
fðzÞ ¼ 1þ q2z4 � ð1þ q2Þz3: (20)

The whole solution including the At can be given a Lorentz
boost with velocity v in the x direction and the resulting
solution has a Anew

x given by Anew
x ¼ �At, where � ¼

vffiffiffiffiffiffiffiffiffi
1�v2

p . As At has a nontrivial dependence on the radial

0.0

0.2

0.4

0.6

Sx
µ

0.4
0.6

0.8
1.01

µ

0

1

2

3

1

µ

FIG. 16 (color online). Plot of �1=� as a function of 1=� and
Sx=�.

5Note that for large values of the condensate �1 the gravity
backreaction is important and our approximation is no longer
valid.

6Note that since our system is homogeneous, we can make the
direction along the vector potential periodic without any mod-
ifications. A constant vector potential cannot be gauged away
and is thus physically meaningful.
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coordinate z, Ax will also have the same nontrivial depen-
dence. The dual of such a configuration is naturally inter-
preted as a boosted gauge theory plasma with charge. This
solution may also be thought as the ‘‘backreacted’’ version
of our constant Ax solution in a normal (nonsuperconduct-
ing) black hole background.

Now, let us assume the likely scenario that a super-
conducting black hole solution survives after considering
gravity backreaction. Such a backreacted superconducting
solution may also be given a Lorentz boost and the result-
ing solution will have a nontrivial dependence on Ax. Our
supercurrent solution should not be confused with such a
trivial boosted solution. Our solution should be interpreted
as a solution where the black hole horizon remains fixed (or
is moving with a constant velocity) but the condensate has
an arbitrary velocity with respect to the horizon. The
supercurrent solution cannot be generated by boosting, as
it does not obey the constraint of a boosted solution, i.e.
Anew
x ¼ �At and gnewtx ¼ ��ðgtt þ gxxÞ. With a chemical

potential Sx, it is likely that the dominant solution at low
temperature will be a supercurrent-type solution. Whether
the structure of the phase diagram changes significantly
after considering the gravity backreaction is an open
question.

VII. CONCLUSIONS

In this paper we exhibit a static solution to the system
with a charged scalar field coupled to the AdS black hole,
which in the dual field theory corresponds to a static
current flowing in a superconducting fluid with no emf
applied. We see an interesting phase structure, with a first
order transition to the normal state at low temperatures as
the fluid velocity is increased. At temperatures close to the
critical value Tc, the transition becomes second order. As
mentioned in the previous section, it would be nice to
verify whether the phase diagram is modified in the fully
backreacted geometry.

The model we have considered does not have any mag-
netic field in the boundary, as Ax does not depend on any of
the field theory directions y. One can turn on a nontrivial
magnetic field by incorporating a dependence on y in Ax,
i.e., Ax � Axðz; yÞ. This can be used to study phenomena
such as the Meissner effect. In particular, one can check the
nature of the superconductor, i.e., whether it is type I or
type II. In the latter case, one can try to find vortex
solutions. However, in this case the field equations become
coupled nonlinear partial differential equations, which are
harder to solve. It would also be interesting to study the
modifications of these models to include impurities etc.

Embedding the superconducting gravity solutions into
string/M theory is an important issue. Whether any probe
brane configuration in some AdS-like space gives rise to
the type of Lagrangian we are discussing, would be an
interesting avenue to explore.

As we have discussed, the Uð1Þ symmetry in our model
is realized globally in the boundary. It will be an interesting

direction to set up some brane/gravity model where the
symmetry breaking is local. That would be more akin to
real life superconducting materials.
We have just begun to understand strongly coupled

physics of condensed matter systems holographically.
Exploring these modifications may allow us to extract
new information about the universality classes and phase
structures of strongly coupled systems.
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APPENDIX: A NOTE ON DIMENSIONS

Let us start with the metric

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ: (A1)

Here ds2 is dimensionless; hence, if we scale the boundary
coordinates x, y, t by a constant�, then r needs to be scaled
by ��1. Thus fðrÞ should scale as ��2. From the equation
for At,

A00
t þ 2

r
A0
t � 2�2

f
At ¼ 0; (A2)

we see that c does not need to be scaled. Also, from the
equation for c ,

c 00 þ
�
f0

f
þ 2

r

�
þ A2

t

f2
c þ 2

L2f
c ¼ 0; (A3)

we see that c 00 and A2
t

f2
c must scale the same way, so At

scales like r [since fðrÞ scales like r2]. Now we know the
boundary coordinates x, y, t have mass dimension �1.
From the scaling behavior, we can now determine the
dimensions of all other operators:

½c �¼ 0 ½r�¼ ½A�¼ ½��¼ ½�1�¼ 1 ½��¼ ½�2�¼ 2:

(A4)
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