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The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as

part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there

are three different vacua leading to three disconnected Fock sectors, all constructed with the same

creation-annihilation operators. These have different spacetime geometric properties as well as different

algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative

norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge

symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts

from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in dþ 1

dimensions is then classified in unitary representations of the Lorentz group SOðd; 1Þ. Moreover, all states

of the single oscillator put together make up a single infinite dimensional unitary representation of a

hidden global symmetry SUðd; 1Þ, whose Casimir eigenvalues are computed. Possible applications of

these new results in string theory and other areas of physics and mathematics are briefly mentioned.

DOI: 10.1103/PhysRevD.79.045009 PACS numbers: 03.65.Ca

I. INTRODUCTION

The relativistic harmonic oscillator in d space and one-
time dimensions that will be discussed in this paper is the
straightforward generalization of the nonrelativistic case
obtained by replacing position and momentum by their
relativistic counterparts x�, p� as SOðd; 1Þ vectors.

There is a long history of studies of the relativistic
harmonic oscillator. Some of these were motivated by
possible physical applications of the relativistic oscillator
as an imperfect model [1]1 to approximate bound states of
quarks in a relativistic setting. This involved solving the
relativistic oscillator eigenvalue equation2 in the space of
the relative coordinate x� ¼ x

�
1 � x

�
2 ,

1
2 ð�@�@� þ x�x�Þc �ðxÞ ¼ �c �ðxÞ; (1.1)

and associating the eigenvalue � with the mass of the
bound state.

Some solutions of this equation appeared in earlier
papers [2,3] and in follow-up applications [4], but the
Lorentz symmetry properties of these solutions remain
obscure to this day [5]. Lorentz covariant solutions based
on a vacuum state c vacðxÞ � expð�x�x�=2Þ, that is a

Lorentz invariant Gaussian, have a number of problems,

including issues of infinite norm and negative norm states,
that were suppressed with ad hoc arguments for the sake of
going forward with the physical application [1]. More
careful analyses, which paid attention to Lorentz properties
by using infinite dimensional unitary representations of
SOð3; 1Þ [6] relevant for this problem [7,8], suggest that
there are solutions of this equation in different spacelike
and timelike patches that should be matched across the
light cone x�x� ¼ 0. Several examples of this covariant

approach using generalized relativistically invariant poten-
tials Vðx�x�Þ that may be different in different patches

were also studied [9]. Proposals to confine the solutions to
only part of the spacelike region were also discussed
[10,11].
It is fair to say that there remains open questions regard-

ing the symmetry properties of the solutions of this differ-
ential equation. Understanding the symmetry properties of
the solutions will be the focus of the present paper.
The same equation arises as a building block in string

theory. The phase space X�ð�;�Þ, P�ð�; �Þ of an open
relativistic string can be expressed in terms of its normal
modes

X� ¼ x�0 ð�Þ þ
ffiffiffi
2

p X1
n¼1

x�n ð�Þ cosðn�Þ;

P� ¼ 1

�
p
�
0 ð�Þ þ

ffiffiffi
2

p
�

X1
n¼1

p
�
n ð�Þ cosðn�Þ:

(1.2)

Except for the center of mass mode ðx�0 ; p�
0 Þ that behaves

like a free particle, the normal modes ðx�n ; p�
n Þ are relativ-

istic harmonic oscillator modes with frequency !n ¼ n.
The quantum wave function of a string in position space
depends on all of these modes,

1Feynman called this approach an imperfect model. Indeed, as
is now known, the physically correct description of systems such
as quark-antiquark bound states is formulated in the context of
quantum chromodynamics. Approximations to chromodynamics
for slow moving heavy quarks is handled in terms of a non-
relativistic potential Vð~rÞ ¼ �j~rj � �=j~rj, rather than the rela-
tivistic oscillator, while for fast moving light quarks this
approach is not an accurate model.

2We absorb all dimensionful parameters as well as the fre-
quency of the oscillator by rescaling the x�, p�.
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c ðX�Þ ¼ c ðx�0 ; x�1 ; x�2 ; � � �Þ: (1.3)

This is the string field that appears in string field theory
[12,13]. It obeys a differential equation ðL0 � 1Þc ðX�Þ ¼
0 where L0 is the zeroth Virasoro operator which is basi-
cally a sum of operators Qn ¼ 1

2 ðp2
n þ n2x2nÞ of the type

that appears in Eq. (1.1),3

L0 ¼ �@�0 @0� þ X1
n¼1

1

2
ð�@�n @n� þ n2x�n xn�Þ � a: (1.4)

If this had been the only equation for the string field
c ðX�Þ, then the solution would have been a direct product
of solutions of Eq. (1.1) with a restriction on the sum of the
eigenvalues,

c ðX�Þ � eik�x0
Y1
n¼1

c �n
ðxnÞ;

X1
n¼1

�n ¼ ð1� k2Þ:

(1.5)

Here the center of mass momentum k� gives the mass

squared of the relativistic string state M2 � �k2 ¼ k20 �
~k2. However, c ðX�Þ must also obey the Virasoro con-
straints Lnc ðX�Þ ¼ 0. Therefore solutions for the free
string field c ðX�Þ are linear combinations of (1.5) with
different �n’s that satisfy the same mass level, taken with
coefficients such that the Virasoro constraints are also
obeyed. Such solutions were obtained in the covariant
quantization approach, which also provided a proof of
the absence of negative norm ghosts in string theory [14–
16].

As will be explained in Sec. III, upon a closer examina-
tion it becomes evident that the relativistic Fock space
treatment of string theory [17] inadvertently specializes
to only the spacelike sector of every normal mode without
any warning, namely,

x�n xn� � 0 and p�
n pn� � 0

for every string mode n � 1:
(1.6)

This can give only non-negative eigenvalues �n � 0, and
hence Eq. (1.5) is solved for k2 by mostly timelike center of
mass momenta k�k� < 0, or positiveM2. The exception is

the tachyon state that is forced to have spacelike momen-
tum k� when all �n ¼ 0, and hence M2 ¼ �k2 ¼ �1
gives a tachyon

c ðX�Þ � hXj0; ki � eik�x0 exp
�
� 1

2

X1
n¼1

nx
�
n xn�

�
(1.7)

when all string modes x
�
n are in the spacelike region. For

excited levels this expression is multiplied by polynomials
in the various x

�
n .

In view of the fact that the single oscillator equa-
tion (1.1) has solutions in different spacetime regions as
indicated above, a natural question arises of whether there
might be more general solutions to string theory beyond
the spacelike region of Eq. (1.6). This is not an easy
question to answer, both because there are the Virasoro
constraints to deal with, and because there is still obscurity
in the previously known solutions of the relativistic oscil-
lator equations (1.1).
This brings us to the main topic of the current paper. We

will investigate the single relativistic oscillator without
prejudice as to its possible physical applications. Our
main interest is to clarify the symmetry and unitarity or
lack thereof of its various solutions in various parts of
spacetime. At the end we will point out possible applica-
tions of our findings.
Our key observations will follow from hidden symme-

tries not discussed before. First we point out that the
symmetries of Eq. (1.1) go beyond the Lorentz symmetry
SOðd; 1Þ. There is a hidden symmetry SUðd; 1Þ that in-
cludes SOðd; 1Þ, and therefore all solutions, unitary or
nonunitary, must fall into irreducible representations of
SUðd; 1Þ. Apparently this was never explored in previous
investigations of Eq. (1.1).
After clarifying the symmetry aspects we will build

three different Fock spaces by using the same relativistic
harmonic oscillator creation-annihilation operators. This
includes a spacelike, timelike, and mixed spacetime sectors
that are distinct from each other. While the spacelike or
timelike sectors have negative norm states, the mixed case
is completely free of negative norm ghosts and is covariant
under SOðd; 1Þ and SUðd; 1Þ in infinite dimensional unitary
representations. There may be more solutions in more
intricate spacetime sectors than those described in this
paper, but we will not attempt to investigate them here
[see comments following Eq. (A16) and footnote 17].
For the single harmonic oscillator we will also discuss a

worldline gauge symmetry that removes ghosts and
thereby introduces a constraint. The covariant quantization
of this constrained model is in agreement with the general
discussion. On the other hand, a gauge fixed quantization
does not capture all the sectors but is in agreement with the
sectors describable in that gauge. This simple example
illustrates how a gauge fixed theory can fail to capture all
the gauge invariant sectors of a gauge invariant theory.4

The new phenomena uncovered here both in the cova-
riant quantization as well as the gauge fixed quantization of
the relativistic oscillator may provide tools and rekindled
interest to revisit string theory.

3The constant a ¼ 1
2 ðdþ 1ÞPnn subtracts the vacuum energy

of all the oscillators. After this renormalization the Virasoro
constraint is determined as L0 ¼ 1.

4Another example is that the usual treatment of the light-cone
gauge in string theory fails to capture the folded string sectors of
string theory [18–20].
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II. RELATIVISTIC HARMONIC OSCILLATOR
AND SUðd; 1Þ

For the sake of clarity, parts of our presentation, includ-
ing this section, will include some material that may be
quite familiar to many readers, but this will be compen-
sated by simple observations that are not that familiar.

The operatorQ ¼ 1
2 ðp � pþ x � xÞwhich is being diago-

nalized, Qc � ¼ �c �, can be written, as usual, in terms of
Lorentz covariant oscillators,

a� ¼ 1ffiffiffi
2

p ðx� þ ip�Þ; �a� ¼ 1ffiffiffi
2

p ðx� � ip�Þ: (2.1)

The covariant quantization rules

½x�; p�� ¼ i	��; (2.2)

with the SOðd; 1Þ Minkowski metric 	��, lead to the

relativistic quantum oscillator commutation rules

½a�; �a�� ¼ 	�� ¼ diagð�1; 1; 1; � � � ; 1Þ: (2.3)

In a unitary Hilbert space the operators x�, p� are

Hermitian; in that case �a� is the Hermitian conjugate of

a�, i.e. �a� ¼ ða�Þy. A unitary Hilbert space without

ghosts (negative norm states) is possible if and only if
x�, p� are Hermitian or, equivalently, if �a� ¼ ða�Þy.

In what follows we will seek unitary Hilbert spaces, but
along the way we also come across nonunitary Fock spaces
in which �a� � ða�Þy. Therefore we prefer the more gen-

eral notation �a� in order not to confuse it with the

Hermitian conjugate of a� when such vector spaces arise.

In terms of a�, �a�, the operator Q takes the form

Q ¼ 1

2
ðp � pþ x � xÞ ¼ �a � aþ dþ 1

2
¼ a � �a� dþ 1

2
:

(2.4)

This operator Q has a larger symmetry than the evident
Lorentz symmetry of the dot products �a � a ¼ 	�� �a�a�.

The hidden symmetry is Uðd; 1Þ whose generators are
Uðd; 1Þ generators: �a�a�: (2.5)

All of these ðdþ 1Þ2 generators commute with Q,

½Q; �a�a�� ¼ ½ �a � a; �a�a�� ¼ 0; (2.6)

hence Q has Uðd; 1Þ symmetry, and the spectrum of Q,
whether unitary or nonunitary, must be classified as irre-
ducible representations of Uðd; 1Þ ¼ SUðd; 1Þ � Uð1Þ un-
less the symmetry is broken by boundary conditions.5 The
Uð1Þ part is just the number operator J0,

J0 � �a � a ¼ a � �a� ðdþ 1Þ; (2.7)

which is essentially the operator Q up to a shift. Therefore
the nontrivial part is SUðd; 1Þ with ðdþ 1Þ2 � 1 generators
that correspond to the traceless tensor

J�� ¼
�
�a�a� � 1

dþ 1
	�� �a � a

�

¼
�
a� �a� � 1

dþ 1
	��a � �a

�
(2.8)

which satisfies 	��J�� ¼ 0. The Lorentz generators L��

for SOðd; 1Þ correspond to the antisymmetric part of the
tensor J��,

L�� ¼ x�p� � x�p� ¼ �ið �a�a� � �a�a�Þ
¼ �iða� �a� � a� �a�Þ: (2.9)

The L�� are Hermitian by construction as long as x�, p�

are Hermitian. So a unitary representation of the Lorentz
group will be obtained if and only if �a� ¼ ða�Þy. We know

that unitary representations of noncompact groups are
infinite dimensional except for the singlet. Hence �a� ¼
ða�Þy can be satisfied only on singlets or on infinite di-

mensional representations of the Lorentz or the SUðd; 1Þ
symmetry.6

In the following we will see that there are different Fock
spaces disconnected from each other, all of which contrib-
ute to the full unitary spectrum ofQ. These Fock spaces are
built with the same oscillators �a�, a� but are based on three

different vacua with different SUðd; 1Þ or SOðd; 1Þ symme-
try properties as well as different spacetime geometric
properties. This shows that there are some surprising fea-
tures of the relativistic harmonic oscillator that are funda-
mentally different from the nonrelativistic one.
Our aim is to identify the physically acceptable unitary

sector of the theory that contains no ghosts and find ways in
which the physical sectors can be singled out by an appro-
priate set of constraints.

III. SYMMETRIC VACUUM, NONUNITARY
FOCK SPACE

We will start with the standard approach to the relativ-
istic oscillator Fock space used by most authors, including

5See the last paragraph of the Appendix for an example of how
the SUðd; 1Þ symmetry is broken to SOðd; 1Þ in the purely
spacelike sector.

6To be more accurate we should distinguish between funda-
mental and antifundamental representations of SUðd; 1Þ by using
different indices to label them. For example, we can use undotted
indices a� ¼ 1ffiffi

2
p ðx� þ ip�Þ to emphasize that a� is in the

fundamental representation and dotted indices �a _� ¼ 1ffiffi
2

p ðx� �
ip�Þ to emphasize that �a _� is in the antifundamental representa-
tion. Indices are raised or lowered with the Minkowski metric
	� _� that has mixed indices, such as �a� ¼ 	� _� �a _� and a _� ¼
	 _��a�. Because we will not have much use for it, we will forgo
this more accurate notation and use the same type of indices on
all creation or annihilation oscillators. The reader should under-
stand that a lower index on the operator �a is really meant to be a
dotted index �a _�, while an upper index on �a is undotted �a�. The
opposite is true for the operators a�, a

_�.
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string theorists [17]. The corresponding relativistic differ-
ential equation ð� 1

2 @
�@� þ 1

2 x
�x�Þc �ðxÞ ¼ �c ðxÞ in po-

sition space, in the purely spacelike sector, is solved in the
Appendix in 1þ 1 dimensions. Although the Fock space
approach in this section and the position space approach of
the Appendix are in full agreement, a great deal of com-
plementary insight about the issues regarding spacetime
regions is gained from considering the properties of the
probability amplitude c �ðxÞ in position space. So the
reader may benefit from studying the Appendix and com-
paring it to the Fock space approach in this section.

What we want to emphasize is that the familiar Fock
space approach yields only part of the quantum states of
this relativistic system. After explaining this, we will dis-
cuss a much larger Fock space of quantum states in the
following section.

The oscillator approach begins by assuming a normal-
ized Lorentz invariant vacuum state that has a finite posi-
tive norm and is annihilated by the operators a�,

h0j0i ¼ 1; a�j0i ¼ 0; L��j0i ¼ 0: (3.1)

The Uð1Þ quantum number or the level number of this state
is zero

J0j0i ¼ �a � aj0i ¼ 0: (3.2)

A usually unstated property of this vacuum is that it also
requires a spacelike region for x� as well as for p� since,
as a probability amplitude in position space or momentum
space, it has the form

hxj0i � e�x2=2 and hpj0i � e�p2=2; x�; p� spacelike:

(3.3)

The minus sign in the exponent follows from satisfying
a�j0i ¼ 0 in position or momentum space, namely,

a�j0i ¼ 1ffiffiffi
2

p ðx� þ ip�Þj0i ¼ 0

$ 1ffiffiffi
2

p
�
x� þ @

@x�

�
e�ð1=2Þx�x ¼ 0;

iffiffiffi
2

p
�

@

@p� þ p�

�
e�ð1=2Þp�p ¼ 0:

(3.4)

Spacelike regions x � x > 0 and p � p > 0 are necessary so
that the Gaussian is integrable at infinity,

h0j0i �
Z

dnþ1xe�x2 <1 or

h0j0i �
Z

dnþ1pe�p2
<1;

(3.5)

to give a finite norm h0j0i ¼ 1. Actually, these integrals are
infinite as they stand because, unlike the Euclidean analogs

in which both radial and angular integrals are finite, in the
present case the ‘‘angular’’ part contains boost parameters
with an infinite range [see e.g. the parametrization in
Eq. (A1) and Fig. 1]. For a finite norm this infinity must
be divided out (see footnote 10).
It is also possible to restrict to a timelike region by

starting from another Lorentz invariant ‘‘vacuum’’ state
j00i to construct a different Fock space. This second alter-
native is not usually considered. The vacuum j00i is defined
by being annihilated by �a� rather than by a�,

h00j00i ¼ 1; �a�j00i ¼ 0; L��j00i ¼ 0;

�a�j00i ¼ 1ffiffiffi
2

p ðx� � ip�Þj00i

¼ 0 $
8<
:

1ffiffi
2

p ðx� � @
@x�Þeð1=2Þx�x ¼ 0;

iffiffi
2

p ð @
@p� � p�Þeð1=2Þp�p ¼ 0:

9=
;

It corresponds to a normalizable vacuum with x� and p� in
the timelike region, x � x < 0 and p � p < 0, to be able to
normalize h00j00i ¼ 1,

hxj00i � ex
2=2 and hpj00i � ep

2=2; x�; p� timelike:

(3.6)

The Uð1Þ quantum number or the level number of this state
is �ðdþ 1Þ,
J0j00i ¼ �a � aj00i ¼ ½a � �a� ðdþ 1Þ�j00i ¼ �ðdþ 1Þj00i;

(3.7)

so it is clearly distinguishable from the spacelike vacuum.
The Fock space based on the vacuum j00i is not usually

considered because it contains negative norm states for
spacelike oscillators, but by contrast it contains positive
norms for timelike oscillators. For example, the 1-particle
excitation a�j00i has norm

h00j �a�a�j00i ¼ �	��;

negative for spacelike�; �; positive for timelike�; �

(3.8)

However, we will see that the physical states in this Fock
space sector always involve pairs of spacelike and timelike
oscillators, such as a � aj00i. Such paired oscillator states
have a positive norm. In this respect, the spacelike or
timelike vacua stand at an equal footing. We will see that
while the spacelike vacuum leads to a positive spectrum for
Q, the timelike case leads to a negative spectrum. Whether
the negative or positive spectra are suitable in physical
applications depends on the physical interpretation of the
operator Q ¼ 1

2 ðp � pþ x � xÞ in some physical context.

This begins to show that there are several disconnected
sectors of Fock spaces in the spectrum of the relativistic
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harmonic oscillator. As we will see below, both of these
Fock spaces lead to nonunitary vector spaces from which
we will need to fish out a subset of positive norm states.
Furthermore, in the next section, we will discuss a com-
pletely different Fock space that is based on a Lorentz

noninvariant vacuum j~0i that leads to a completely unitary
infinite dimensional Hilbert space.

In the rest of this section we discuss mainly the Fock
space based on the spacelike vacuum j0i and only give
results or make comments about the very similar Fock
space based on the timelike vacuum j00i.

In either spacelike or timelike cases, since the vacuum
respects the SOðd; 1Þ symmetry, one should expect to find
that all the states in either Fock space can be classified as
irreducible unitary or nonunitary representations of
SOðd; 1Þ. Furthermore, the restriction to a spacelike or
timelike region is consistent with an SUðd; 1Þ symmetric
vacuum since we can verify that under an infinitesimal
SUðd; 1Þ transformation we obtain

J��j0i ¼ 0; J��j00i ¼ 0; (3.9)

by using the two forms of J�� given in Eq. (2.8). Hence the

Fock spaces built on these invariant vacua must be classi-
fied as complete irreducible unitary or nonunitary repre-
sentations not just of SOðd; 1Þ but of SUðd; 1Þ.

The total level operator can be written out in more detail
as

J0 ¼ �a � a ¼ ð� �a0a0Þ þ �aiai: (3.10)

Note how the number operator in the timelike direction
ð� �a0a0Þ works to give a positive number for the level in
the spacelike Fock space even when the excitation is in the
timelike direction: ð� �a0a0Þ½ �a0j0i� ¼ ðþ1Þ½ �a0j0i�,
ð� �a0a0Þ½ �a0j0i� ¼ � �a0½a0; �a0�j0i ¼ �a0j0ið�1Þ2

¼ ðþ1Þ �a0j0i: (3.11)

Therefore the total level operator J0 on the covariant states
�a�j0i, excited in either the time or space directions �, has

J0 eigenvalue þ1.
Similarly, the excited states at a general level J0 ¼ n in

the spacelike Fock space are constructed by applying n
creation operators either in space or time directions,

This is a symmetric SUðd; 1Þ or Uðd; 1Þ tensor correspond-
ing to a single-row Young tableau as indicated. So, this
collection of states at level J0 ¼ n form a finite dimen-
sional irreducible representation of SUðd; 1Þ.

The above SUðd; 1Þ representation can be reduced into
irreducible representations of SOðd; 1Þ. This is done by

decomposing the symmetric tensor above into a sum of
traceless tensors (trace is defined by contracting with the
Minkowski metric 	��),

fð �a�1
�a�2

� � � �a�n
� traceÞj0i þ � � �g

¼ SOðd; 1Þ traceless tensors: (3.13)

For example, at level J0 ¼ 2 we have one SOðd; 1Þ tensor
of rank 2 and one of rank zero as listed below,�

�a�1
�a�2

� 	�1�2

dþ 1
�a � �a

�
j0i and �a � �aj0i: (3.14)

Similarly at level n there are the following irreducible
tensors of rank r,

r ¼ n; ðn� 2Þ; ðn� 4Þ; � � � ; ð0 or 1Þ: (3.15)

At level J0 ¼ n, each traceless tensor of rank r listed in
Eq. (3.15) is the basis for a separate finite dimensional
irreducible representation of SOðd; 1Þ.
All finite representations of noncompact groups, except

the singlet, are nonunitary. Therefore, all SUðd; 1Þ or
SOðd; 1Þ representations that emerge in this Fock space at
all levels n, except the singlets, are nonunitary. Hence at
every level J0 ¼ n there are many negative norm states that
are unphysical. We have to discuss the types of constraints
that can eliminate the ghosts to obtain a physical theory.
Let us now identify the negative norm states

which appear among the SUðd; 1Þ or SOðd; 1Þ states in
Eqs. (3.13) and (3.15). These are all the ones that contain
an odd number of timelike oscillators. For example, the
state �a0j0i has a negative norm7:

norm ¼ h0ja0 �a0j0i ¼ h0j½a0; �a0�j0i ¼ ð�1Þh0j0i ¼ �1:

(3.16)

The states at a fixed level n that have an even number of
�a0’s and any number of spacelike oscillators, such as
ð �a0Þmð �ai1 �ai2 � � � �ain�m

Þj0i, have a positive norm for every

even m ¼ 0; 2; 4; � � � (n or n� 1). A constraint that elim-
inates all negative norm states in the spacelike region is to
demand a reflection symmetry from every state under the
operation �a0 ! � �a0 and similarly for a0 ! �a0. This can
be achieved through the operator8 T ¼ expði� �a0a0Þ which
gives Ta0T

�1 ¼ �a0 and T �a0T
�1 ¼ � �a0, and the boost

generator changes sign, TL0iT�1 ¼ �L0i. Therefore, a
ghost-free spectrum is obtained by demanding the follow-
ing constraint:

7The negative norm also implies that h0jx0x0j0i and h0jp0p0j0i
are negative as seen from h0jx0x0j0i ¼ 1

2 h0jða0 þ �a0Þ�ða0 þ �a0Þj0i ¼ 1
2 h0ja0 �a0j0i ¼ � 1

2 . If x0 were Hermitian then
x0x0 would have to be a positive operator with a positive
expectation value. But in this Fock space x0, p0 are not
Hermitian; equivalently, �a0 is not the Hermitian conjugate of
a0, and this is why negative norms arise.

8A similar operator for the timelike region is S ¼ expði� �aiaiÞ.
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Tj
i ¼ ðþ1Þj
i;, ghost-free; unitary subset of states; but not SOðd; 1Þ covariant: (3.17)

However, such states by themselves break the Lorentz
symmetry since they cannot make up complete irreducible
representations of SOðd; 1Þ for any nonzero n. In the ab-
sence of this constraint, in any finite dimensional represen-
tation of SOðd; 1Þ, other than the singlet, there will always
be states with an odd number of timelike oscillators. For
example, at level 2 the irreducible tensor in Eq. (3.14)
contains the negative norm states

�a 0 �aij0i: (3.18)

Therefore, to eliminate the negative norm states all finite
representations of SOðd; 1Þ must be discarded by some
consistent set of constraints. This leaves only the
SOðd; 1Þ singlets9 at each even level J0 ¼ 2k,

ð �a � �aÞkj0i; k ¼ 0; 1; 2; 3; � � � positive norm $ no ghosts: (3.19)

The eigenvalue of Q on these states is � ¼ 2kþ dþ1
2 ,

Q½ð �a � �aÞkj0i� ¼ ½ð �a � �aÞkj0i�
�
2kþ dþ 1

2

�
: (3.20)

These states have positive norms since �a � �a ¼ � �a0 �a0 þ
�ai �ai ensures that every term in ð� �a0 �a0 þ �ai �aiÞk contains
only an even number of �a0’s. All the SOðd; 1Þ generators
L�� in Eq. (2.9) annihilate these states since ½L��; �a � �a� ¼
0 gives

L��½ð �a � �aÞkj0i� ¼ ð �a � �aÞkL��j0i ¼ 0; Lorentz singlets:

(3.21)

So, if the Fock space is restricted to the Lorentz invariant
subset, then there are no ghosts.

The position space probability amplitude for these states
is determined as

c ðþÞ
k ðxÞ � hxjð �a � �aÞkj0i

� ½12ðx� @Þ � ðx� @Þ�ke�ð1=2Þx�x�; spacelike x�:

For example, for k ¼ 1 it becomes

c ðþÞ
1 ðxÞ � ð2x2 � ðdþ 1ÞÞe�ð1=2Þx2 : (3.22)

More generally, this gives the generalized Laguerre poly-

nomial Lðd�1Þ=2
k ðx2Þ with the argument x2 multiplying the

Gaussian e�ð1=2Þx�x� .

c ðþÞ
k ðxÞ ¼ �ke

�ð1=2Þx�x Xk
m¼0

ð�1Þm kþ d�1
2

k�m

� � ðx � xÞm
m!

¼ �ke
�ð1=2Þx2Lðd�1Þ=2

k ðx2Þ;

where �k is an overall constant. It can be checked that this

c ðþÞ
k ðxÞ is indeed a solution of the relativistic differential

equation in dþ 1 dimensions, with the specified eigen-
value for every positive integer k,

1

2
½�@�@� þ x�x��c ðþÞ

k ðxÞ ¼
�
2kþ dþ 1

2

�
c ðþÞ

k ðxÞ;
k ¼ 0; 1; 2; � � � : (3.23)

Furthermore, these wave functions clearly have a positive

norm
R
ddþ1xjc ðþÞ

k ðxÞj2 for all k. We see that according to

the symmetry criteria, and unitarity, only these states are
admissible as quantum states in the spacelike Fock space.10

Similarly, there is another set of SUðd; 1Þ singlet states
ða � aÞkj00i in the timelike Fock space given by substituting
a� instead of �a� and using j00i instead of j0i,

J��½ða � aÞkj00i� ¼ 0; (3.24)

Q½ða � aÞkj00i� ¼ �
�
2kþ dþ 1

2

�
½ða � aÞkj00i�; (3.25)

c ð�Þ
k ðxÞ ¼ ~�k½12ðxþ @Þ � ðxþ @Þ�keð1=2Þx�x�

� hxjða � aÞkj00i; timelike x�: (3.26)

The c ð�Þ
k ðxÞ are related to the c ðþÞ

k ðxÞ by an analytic

continuation of x2 ! �x2 from the spacelike to the time-
like region, so they can also be expressed in terms of the

9This is in the case of a single oscillator, as in the current
simplified problem. If there are additional degrees of freedom
then one can find constraints that lead to more interesting ghost-
free solutions. For example, in string theory, with an infinite
number of oscillators, the Virasoro constraints eliminate ghosts
while allowing nonsinglets of SOðd; 1Þ.

10Recall the infinite integrals mentioned following Eq. (3.5).
These resurface again in the norm above. For example, in the
simplified case in Eq. (A13) the delta function normalization
�ðm0 �mÞ blows up for m0 ¼ m. This will be a common infinite
factor for all Lorentz invariant wave functions. The infinity can
be avoided by redefining the norm by simply not integrating over
the extra boost parameters, since those parameters do not appear
in the Lorentz invariant wave functions. If such a redefinition is
not adapted, the infinities may be an argument to discard all of
the Lorentz invariant states c�

k ðxÞ. By comparison, note that the
unitary states based on the Lorentz noninvariant vacuum j~0i
discussed in Sec. IV have no infinities in their norms.
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Laguerre polynomials,

c ð�Þ
k ðxÞ ¼ �ke

ð1=2Þx�x Xk
m¼0

kþ d�1
2

k�m

� � ðx � xÞm
m!

¼ �ke
ð1=2Þx2Lðd�1Þ=2

k ð�x2Þ:
However, it must be emphasized that, as computed11 in

Eq. (3.25), the c ð�Þ
k ðxÞ have the opposite signs for the

eigenvalues of Q as compared to the c ðþÞ
k ðxÞ.

All of these c ð�Þ
k ðxÞ are SOðd; 1Þ invariants, but what are

their SUðd; 1Þ properties? The SUðd; 1Þ symmetry ofQ and
of the vacuum exhibited in Eqs. (2.8) and (3.9) requires that
the spectrum be classified as complete SUðd; 1Þ multiplets.
Which SUðn; 1Þmultiplets do these states correspond to? If
we apply an infinitesimal SUðd; 1Þ transformation on the
SOðd; 1Þ singlets, we find

J��½ð �a � �aÞkj0i� ¼ 2k

�
�a� �a� �

	��

dþ 1
ð �a � �aÞ

�
ð �a � �aÞk�1j0i:

(3.27)

We see on the right-hand side that, except for the case of
k ¼ 0, we generate inadmissible negative norm states. This
also shows that the states ð �a � �aÞkj0i with k � 0 are not in a
singlet of SUðd; 1Þ so that they must be part of nonunitary
representations of SUðd; 1Þ. Hence even though the states
ð �a � �aÞkj0i are unitary with respect to SOðd; 1Þ, they are not
consistent with an SUðd; 1Þ symmetry-consistent unitary
spectrum, except for k ¼ 0.

What happened to the SUðd; 1Þ symmetry? It got broken
by the boundary conditions of restricting the Fock space
inadvertently to a purely spacelike region (see last para-
graph of the Appendix for more insight). If one wishes to
be consistent with SUðd; 1Þ covariance, and also restrict to
the spacelike region, then only the vacuum state can be
kept in the spectrum.

In a broken SUðd; 1Þ scenario all Lorentz singlet states
ð �a � �aÞkj0i are admissible. Similarly, in a broken SOðd; 1Þ
scenario all states of the form (3.17) with an even number
of a0’s can be included in the ghost-free Hilbert space. But,
in an exact SUðd; 1Þ scenario only the vacuum state j0i can
be included. A similar statement applies to the purely
timelike sector where only the second vacuum state j00i
can be included.

We see that, in an SUðd; 1Þ symmetry-consistent space-
like or timelike Fock space, all states other than the vac-
uum states j0i, j00i must be thrown away by some
consistent set of constraints since otherwise the theory
cannot be both consistent with its SUðd; 1Þ symmetry and
free of ghosts. One possibility is to choose the constraint to
be J�� ¼ 0 but this is too restrictive because, as we will

see, it throws away the big sector of unitary states that we

will discuss in the next section. Less restrictive is a con-
straint of the form�

1

2
ðp2 þ x2Þ � �0

�
¼ 0;

no ghosts only for �0 ¼ �dþ 1

2
:

(3.28)

When �0 ¼ dþ1
2 the constraint can be satisfied only by j0i,

and when �0 ¼ � dþ1
2 it can be satisfied only by j00i. For

other values of �0 that appeared in the spectrum above,
such as � ¼ �ðnþ dþ1

2 Þ, the constraint allows also nega-

tive norm states in nonunitary representations of SUðd; 1Þ
with a Young tableau with n boxes as in Eq. (3.12), so only
n ¼ 0 is admissible. We see that the only possible con-
straint of this form can only involve �0 ¼ � dþ1

2 , leading

to only one of the possible states: either j0i or j00i.
A constraint of the type (3.28) with general �0 emerges

as a natural outcome in a worldline theory as a conse-
quence of a gauge symmetry on the worldline, as we will
see in detail in Sec. VI. That kind of local symmetry is
reasonable because it can be used to eliminate the ghosts
that come from timelike directions, thus guaranteeing a
unitary theory.
If �0 is in the range � dþ1

2 < �< dþ1
2 , no state in the

spacelike or timelike sectors can satisfy the constraint
(3.28). So, with such a constraint all the states in the purely
spacelike or purely timelike sectors, including j0i and j00i,
would be excluded.
But in the next section we will find that this type of

constraint is satisfied by many more states beyond those
that appeared in the spacelike or timelike Fock spaces
discussed in this section. There is a large sector of positive
norm quantum states that cannot be built by starting from
the conventional Lorentz invariant vacuum states j0i, j00i,
and those additional states are compatible with the
SUðd; 1Þ symmetry, not as singlets, but as infinite dimen-
sional unitary representations whose Casimir eigenvalues
are determined by �0.

IV. UNITARY FOCK SPACE, NONSYMMETRIC
VACUUM

We will now take a different approach to solving the
eigenvalue problem Qc � ¼ �c �. Rather than starting
with a Lorentz invariant vacuum state as is usually done,
we will consider solving the differential equation

1
2 ð�@�@� þ x�x�Þc �ðxÞ ¼ �c �ðxÞ; (4.1)

without paying attention at first to its Lorentz covariance
properties [2–4]. We will then clarify the symmetry prop-
erties of the solutions by appealing to the hidden symmetry
SUðd; 1Þ.
We can obtain solutions by separating the equation in the

x0, ~x variables,

11This follows from the form of Q ¼ a � �a� dþ1
2 given in

Eq. (2.4), and from the fact that ½a � �a; ða � aÞ� ¼ �2ða � aÞ.
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1
2 ½ð� ~@2 þ ~x2Þ � ð�@20 þ x20Þ�c �ð ~x; x0Þ ¼ �c ð ~x; x0Þ;

(4.2)

with a wave function of the form

c �ð ~x; x0Þ ¼ A�a
ð ~xÞB�b

ðx0Þ; � ¼ ð�a � �bÞ; (4.3)

such that

1
2 ð� ~@2 þ ~x2ÞA�a

ð ~xÞ ¼ �aA�a
ð ~xÞ;

1
2ð�@20 þ x20ÞB�b

ðx0Þ ¼ �bB�b
ðx0Þ:

(4.4)

In a unitary Hilbert space in which x�, p� are all Hermitian
operators, both �a and �b must be positive since the
operators 1

2 ð ~p2 þ ~x2Þ as well as 1
2 ðp2

0 þ x20Þ are positive.

In fact, from the study of the Euclidean harmonic oscillator
in d dimensions and one dimension, respectively, we al-
ready know all possible eigenvalues and eigenstates12 for
ð�a; A�a

ð ~xÞÞ and for ð�b; B�b
ðx0ÞÞ, where

�a ¼ na þ d

2
; with na ¼ 0; 1; 2; 3; � � � ;

�b ¼ nb þ 1

2
; with nb ¼ 0; 1; 2; 3; � � � :

(4.5)

Furthermore, we know that the wave functions take the
form shown in footnote 12, so we can write

A�a
ð ~xÞ ¼ e�ð1=2Þ ~x2

� ðpolynomial of degree na in the variables xiÞ;
B�a

ðx0Þ ¼ e�ð1=2Þx2
0

� ðpolynomial of degree nb in the variable x0Þ:
(4.6)

In this basis there is infinite degeneracy for the same
eigenvalue of Q ! �, since eigenstates with different na,
nb can lead to the same eigenvalue � ¼ �a � �b ¼ nþ
d�1
2 . Thus with both m, n even integers or with both m, n

odd integers, we can write

na ¼ mþ n

2
; nb ¼ m� n

2
; at fixed n;

all m � jnjgives infinite degeneracy:

(4.7)

All solutions with the same eigenstate � can be constructed
from (infinite) linear combinations of the ones above, but
they all must have the form

c �ðx�Þ ¼ e�ð1=2Þð ~x2þx2
0
Þ

� ðpolynomials in the variables x�Þ;
� ¼ nþ d� 1

2
; with n ¼ 0;�1;�2;�3; � � � :

(4.8)

It is evident that these solutions have a positive norm since
the integrals converge in all spacetime directions and they
are positive,

hc �jc �i ¼
Z

ddþ1xjc �ðx�Þj2 ¼ 1: (4.9)

We definitely have, at hand, a unitary basis, but what are
the Lorentz symmetry properties of these solutions?
The striking contrast to the solutions in the previous

section is that the exponent ( ~x2 þ x20) is not Lorentz invari-
ant, and hence these solutions and the solutions of the
previous section are mutually exclusive. They each span
different Hilbert spaces, and the spacetime geometric prop-
erties are very different. The Lorentz symmetry properties
of the solutions (4.8) are not yet evident.
On the other hand, the operator Q is invariant under

SUðd; 1Þ and its Lorentz subgroup SOðd; 1Þ, so we must be
able to organize the solutions at each value � in terms of
the representations of SUðd; 1Þ and any of its subgroups.
These representations are automatically unitary since we
have already ensured that x�, p�, and therefore the Lorentz
generators L�� ¼ x�p� � x�p�, are Hermitian in this ba-

sis. Hence, we must expect infinite dimensional unitary
representations of SOðd; 1Þ and of SUðd; 1Þ at each �. In
fact, this is in agreement with the infinite degeneracy at
each � noted above. We still need to determine what
precisely these unitary representations are, and how to
label states with quantum numbers within the
representation.
We now address this issue. We will explain below that at

each � there is a single irreducible unitary representation
of SUðd; 1Þ whose Casimir eigenvalues are completely
determined by � and d. We will give the detailed content
of this representation in the group theoretical basis when
SUðd; 1Þ is decomposed into SUðdÞ � Uð1Þ. In this way we
will be able to determine the SUðdÞ, and the angular
momentum SOðdÞ 	 SUðdÞ, quantum numbers of each
quantum state.

The starting point is a new vacuum state j~0i which is
different than the Lorentz invariant vacuum states j0i, j00i
of the previous section. The new vacuum state is defined as
the state for which the excitation numbers na, nb are both

12The wave function of an arbitrary excited state of the
d-dimensional Euclidean harmonic oscillator at eigenvalue � ¼
nþ d=2, and SOðdÞ orbital angular momentum quantum number
l, has the form

Anl
i1i2���il ð ~xÞ ¼ e� ~x2=2j ~xjlLl�1þd=2

n ð ~x2ÞTi1i2���il ðx̂Þ:
Here Ti1i2���il ðx̂Þ is the symmetric traceless tensor of rank l
constructed from the unit vector x̂i � xi=j ~xj (this is equivalent
to the spherical harmonics in d ¼ 3 space dimensions). L�

�ðzÞ is
the generalized Laguerre polynomial with argument z ¼ ~x2, and
indices � ¼ n and � ¼ l� 1þ d=2. The quantum numbers
take the following values: The excitation level n is any positive
integer n ¼ 0; 1; 2; 3; � � � , while at fixed n the allowed values of l
are l ¼ n; ðn� 2Þ; ðn� 4Þ; � � � ; ð1 or 0Þ.
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zero. Hence, it is defined by the following equations:

�a 0j~0i ¼ aij~0i ¼ 0;

so �a0 rather than a0 acts as an annihilator:
(4.10)

The position space representation of this state justifies this
definition since the oscillators a�, �a� defined in Eq. (2.1)

have the following form in position space, and therefore

they act on the state j~0i as creators/annihilators as indi-
cated,

hxj~0i � exp

�
� x20 þ ~x2

2

�
; (4.11)

annihilators: �a0 ¼ 1ffiffiffi
2

p
�
x0 þ @

@x0

�
; ai ¼ 1ffiffiffi

2
p

�
xi þ @

@xi

�
;

(4.12)

creators : a0 ¼ 1ffiffiffi
2

p
�
x0 � @

@x0

�
; �ai ¼ 1ffiffiffi

2
p

�
xi � @

@xi

�
:

(4.13)

The extra sign in front of @
@x0

in a0, �a0 is due to lowering the

timelike index with the Minkowski metric p0 ¼ �i @
@x0

¼
þi @

@x0
. Then it is convenient to define the excitation num-

ber operators as13

N̂ a ¼ �aiai; N̂b ¼ a0 �a0; (4.14)

where the orders of a0 �a0 are reversed compared to tradi-
tional notation. The eigenvalues ðna; nbÞ of these operators
vanish on j~0i,

N̂ aj~0i ¼ 0; N̂bj~0i ¼ 0: (4.15)

It should be noted that the Lorentz covariant commutation
rule in the timelike direction ½a0; �a0� ¼ �1 indicates that

an excited state of the form ða0Þnb j~0i is correctly identified
as an eigenstate of N̂b ¼ a0 �a0 with eigenvalue nb,

N̂bfða0Þnb j~0ig ¼ ½a0 �a0; ða0Þnb�j~0i ¼ a0½ �a0; ða0Þnb�j~0i
¼ nbfða0Þnb j~0ig: (4.16)

The general state of the form (4.5) with na, nb excitations
has the Fock space representation

jna; nbi ¼ ð �ai1 �ai2 � � � �aina Þða0Þnb j~0i; (4.17)

where each index ik labels a vector of SOðdÞ as well as the
fundamental representation of SUðdÞ.

In term of these, the total level operator J0 ¼ �aiai �
�a0a0 which we identified in Eq. (2.7) becomes J0 ¼ �aiai �
a0 �a0 � 1, or

J0 ¼ N̂a � N̂b � 1: (4.18)

Therefore the total level of the vacuum state j~0i is
J0j~0i ¼ ðN̂a � N̂b � 1Þj~0i ¼ ð�1Þj~0i: (4.19)

We contrast this ð�1Þ eigenvalue with the J0 eigenvalues of
the vacua j0i, j00iwhich were 0 and ð�d� 1Þ respectively,
as shown in Eqs. (3.2) and (3.7). We also see that the Q !
� eigenvalue of the vacuum is � ¼ d�1

2 ,

Qj~0i ¼
�
J0 þ dþ 1

2

�
j~0i ¼ d� 1

2
j~0i: (4.20)

Similarly, for the general state jna; nbi we have
J0jna; nbi ¼ ðna � nb � 1Þjna; nbi;

Qjna; nbi ¼
�
na � nb þ d� 1

2

�
jna; nbi

(4.21)

in agreement with Eq. (4.8).

It must now be emphasized that the vacuum state j~0i is
neither Lorentz nor SUðd; 1Þ invariant since the Lorentz
boost operators L0i ¼ ið �a0ai � �aia0Þ or the SUðd; 1Þ gen-
erators J0i ¼ �a0ai contain two creation operators. So the

vacuum j~0i cannot be invariant under the subset of SOðd; 1Þ
or SUðd; 1Þ infinitesimal transformations generated by the
operators that contain double creation,

L0ij~0i � 0; J0ij~0i � 0: (4.22)

However, this structure of double creators or double anni-
hilators is tailor-made for the oscillator approach to repre-
sentation theory for noncompact groups or supergroups
developed in [21–24]. Using those techniques we will
classify the states as parts of infinite dimensional unitary
representations as explained below.
First we note that the oscillators a� that are in the

fundamental representation of SUðd; 1Þ contain both crea-
tion and annihilation operators (see footnote 13 for a0 �
�b),

a� ¼ a0
ai

� �
¼ �b

ai

� �
: (4.23)

Therefore, a general SUðd; 1Þ transformation mixes
creation with annihilation operators. Similarly, the anti-
fundamental representation given by �a� ¼ ð �a0 �aj Þ ¼
ðb �aj Þ has the same property, and so does the adjoint

representation of SUðd; 1Þ which classifies the generators
as the traceless product of the fundamental and antifunda-
mental representations,

13It may be helpful to define a new notation for the timelike
oscillators, �a0 � b and a0 � �b, so that the operators that have
the bar on top, namely, �b, �ai, are creation operators. Indeed the b,
�b satisfy the usual commutation rules with the þ1 on the right-
hand side: ½b; �b� ¼ ½ �a0; a0� ¼ þ1 similar to ½ai; �aj� ¼ �ij. Then
Nb ¼ �bb ¼ a0 �a0 is the familiar excitation number.
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J�� ¼ �a�a� �
	��

dþ 1
�a � a

¼ �a0a0 þ �a�a
dþ1

�a0aj

�aia0 �aiaj � �ij

dþ1
�a � a

 !
� J00 J0j

Ji0 Jij

� �
:

(4.24)

All of these J�� are symmetries of the operator Q as we

noted earlier. The double annihilation part of J�� is the

upper right corner, J0j ¼ �a0aj ¼ baj, and the double cre-

ation part is the lower left corner, Ji0 ¼ �ai �b, of this matrix.
Note that the d� dmatrix Jij has a traceless part qij, while

its trace is related to the remaining generator J00 as fol-
lows:

Jij ¼ qij þ �ij

J00
d

; J00 ¼ q0
dþ 1

: (4.25)

The generators of the subgroup SUðdÞ � Uqð1Þ �
UJ0ð1Þ 	 SUðd; 1Þ � UJ0ð1Þ are then

qij ¼ �aiaj �
�ij

d
N̂a; q̂0 ¼ N̂a þ dðN̂b þ 1Þ;
J0 ¼ N̂a � N̂b � 1:

(4.26)

The general excited state in Eq. (4.17), jna; nbi, can now
be identified by its SUðdÞ � Uqð1Þ � UJ0ð1Þ quantum num-

bers, by using a Young tableau as follows:

jna; nbi ¼ ð �ai1 �ai2 � � � �aina Þða0Þnb j~0i; (4.27)

q0 ¼ na þ dðnb þ 1Þ; n0 ¼ na � nb � 1: (4.29)

Note that the eigenvalue q0 is a positive integer such that
q0 � na ¼ dðnb þ 1Þ is positive, and furthermore, it is a
nonzero multiple of d. The Young tableau corresponds to a
completely symmetric SUðdÞ tensor of rank na which fully
describes the SUðdÞ content of the state jna; nbi. This
tensor together with the labels q̂0 ! q0 and J0 ! n0, or
equivalently Q ! � ¼ n0 þ dþ1

2 ¼ na � nb þ d�1
2 , are a

complete set of quantum numbers for any representation
of SUðd; 1Þ � UJ0ð1Þ that appears in this theory.

The orbital angular momentum l of any state corre-
sponds to its SOðdÞ representation. The rank l of a traceless
symmetric tensor determines the angular momentum. The
completely symmetric tensor of SUðdÞ in Eq. (4.27) is
decomposed into traceless symmetric tensors of rank l as
follows:

SO ðdÞ tensors: l ¼ na; ðna � 2Þ; ðna � 4Þ; � � � ; ð1 or 0Þ;
(4.30)

where each state with angular momentum l at levels nb and
na ¼ lþ 2r is given by

ð �ai1 �ai2 � � � �ail � traceÞð �aj �ajÞrða0Þnb j~0i: (4.31)

Hence the states jna; nbi contain a direct sum of states of
the type (4.31) with the angular momenta l specified in
Eq. (4.30).
Now we are ready to identify all the states in the same

infinite dimensional representation of SUðd; 1Þ � UJ0ð1Þ.
For a fixed J0, or equivalently a fixed Q ¼ J0 þ dþ1

2 !
nþ d�1

2 , we must include all the states jna; nbi that satisfy
na � nb ¼ n. These may be presented as a direct sum of
states, meaning any linear combination of those states,

� ¼ d� 1

2
þ n:(P1

k¼0 
ð �ai1 �ai2 � � � �aikþn
Þða0Þkj~0i if n � 0P1

k¼0 
ð �ai1 �ai2 � � � �aikÞða0Þkþnj~0i if n � 0:
(4.32)

More explicitly, we give the example of n ¼ 0 by writing it
out,

� ¼ d� 1

2
: j~0i 
 ½ �aia0j~0i� 
 ½ �ai �ajða0Þ2j~0i�


 ½ �ai �aj �akða0Þ3j~0i� 
 � � � ; (4.33)

and similarly for n ¼ 1, �1,

� ¼ d� 1

2
þ 1: �aij~0i 
 ½ �ai �aja0j~0i� 
 ½ �ai �aj �akða0Þ2j~0i�


 � � � ; (4.34)

� ¼ d� 1

2
� 1: a0j~0i 
 ½ �aiða0Þ2j~0i� 
 ½ �ai �ajða0Þ3j~0i�


 � � � : (4.35)

Evidently, each distinct value of � completely determines
the allowed jna; nbi and the corresponding SUðdÞ �
Uð1Þ � Uð1Þ tensors of each infinite dimensional tower.
Note also that for each � there is a single tower.
It is easy to show that each tower at fixed � is an

irreducible representation of SUðd; 1Þ. Under an SUðd; 1Þ
group transformation g ¼ expði!��J��Þ, towers with dif-

fering eigenvalues � � �0 cannot mix with each other
since J�� commutes with Q. Hence a single tower with

fixed � is irreducible under the SUðd; 1Þ group transforma-
tion. Furthermore, all the states within each tower mix
because the double creation operators Ji0 ¼ �aia0 ¼ �ai �b
and the double annihilation operators J0j ¼ �a0aj ¼ baj
applied repeatedly mix all the states under the SUðd; 1Þ
group transformation g ¼ expði!��J��Þ.
In fact, all states in a given tower are obtained by

repeatedly applying the double creation SUðd; 1Þ group
generators Ji0 ¼ �aia0 ¼ �ai �b on the lowest state,

jtoweri� ¼
�X1
k¼0


ðJi10Ji20 � � � Jik0Þ
�
jlowesti�: (4.36)
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Therefore, only the lowest state in the tower is sufficient to
uniquely label the SUðd; 1Þ content of the entire tower.
These unique labels correspond to the SUðdÞ Young tab-

leau and the Uqð1Þ charge q̂0 ¼ N̂a þ dðN̂b þ 1Þ, identi-
fied in Eq. (4.26). These are the appropriate quantum
numbers for the basis SUðdÞ � Uqð1Þ 	 SUðd; 1Þ at a fixed
�,

We can easily compute the Casimir operators for the
irreducible unitary representations identified above. The
quadratic Casimir operator of SUðd; 1Þ is given by

C2 ¼ 1
2J��	

��J��	
��

¼ 1
2ðJijJji þ ðJ00Þ2 � Ji0J0i � J0iJi0Þ: (4.38)

After inserting the oscillator form of the J�� given in

Eq. (4.24), and rearranging the oscillators, we find that
C2 is rewritten as a function of only the UJ0ð1Þ generator,

C2ðSUðd; 1ÞÞ ¼ dJ0
2

�
J0

dþ 1
þ 1

�
: (4.39)

Hence C2 is diagonal on any state jna; nbi,

C2jna; nbi ¼ dðna � nb � 1Þðna � nb þ dÞ
2ðdþ 1Þ jna; nbi;

(4.40)

and it has the same eigenvalue for all the states in the same
tower as follows:

C2jtoweri� ¼ 1

2
d

�
�� d� 1

2

��
1

dþ 1

�
�� d� 1

2

�
þ 1

�
� jtoweri�: (4.41)

Similarly, all SUðd; 1Þ Casimir operators Cn � TrðJÞn are
found to be only a function of J0, so all Casimir eigenval-
ues are functions of only �.

This result on the Casimirs Cn confirms that the full
SUðd; 1Þ properties of each tower are completely deter-
mined by the eigenvalue of the operatorQ ! �. Indeed, as
seen explicitly in Eqs. (4.32), (4.33), and (4.34), all the
states in each tower, and their SUðdÞ � Uqð1Þ � UJ0ð1Þ
quantum numbers, are predetermined by the fixed value
of �.

Now that we have determined that each jtoweri� corre-
sponds to a single unitary representation of SUðd; 1Þ, what
can we say about which unitary representations of the
Lorentz group SOðd; 1Þ classify the quantum states?
In particular, which eigenvalues of the SOðd; 1Þ Casimir

C2 ¼ 1
2L��L

�� appear? This is predetermined by the

group theoretical branching rules SUðd; 1Þ ! SOðd; 1Þ as
applied to each representation. From this it is evident that
each jtoweri� of the type (4.32) can be written as an infinite
direct sum of unitary representations of SOðd; 1Þ.

jtoweri� ¼ X
jSOðd; 1Þ irrepsi�: (4.42)

It is not easy to see directly in the oscillator formalism
precisely which eigenvalues of C2ðSOðd; 1ÞÞ ¼ 1

2L��L
��

appear in this sum. This is because the natural Fock basis
jna; nbi we used above is labeled by the eigenvalues of the

operators N̂a, N̂b which are not simultaneous observables
with this Casimir,

½12L��L
��; N̂a� � 0; ½12L��L

��; N̂b� � 0; (4.43)

although N̂a � N̂b is. So, we do not expect that the opera-
tor 1

2L��L
�� would be diagonal in the basis jna; nbi.

Indeed, if we construct the SOðd; 1Þ Casimir operator

C2ðSOðd; 1ÞÞ ¼ 1
2L��L

�� ¼ �1
2ðJ�� � J��ÞðJ�� � J��Þ;

(4.44)

¼ �ðJ��J
��Þ þ J��J

�� ¼ �ðJ��J
��Þ þ 2C2ðSUðd; 1ÞÞ;

(4.45)

we see that the last part 2C2ðSUðd; 1ÞÞ is diagonal on each
state of the jtoweri�, but the first part J��J

�� contains

double creation and double annihilation pieces, and hence
it cannot be diagonal in the basis jna; nbi. However, it is
guaranteed that this basis can be rearranged in the form
(4.42), as a superposition of unitary representations of the
Lorentz group SOðd; 1Þ with diagonal 1

2L��L
��, simply

because at fixed n we have an irreducible representation of
SUðd; 1Þ. When each SOðd; 1Þ representation in (4.42) is
branched down to the SOðdÞ subgroup of SOðd; 1Þ, then the
SOðdÞ quantum numbers must agree with those given in
Eq. (4.30), namely, l ¼ na; ðna � 2Þ; � � � , (0 or 1). So, we
can deduce that those SOðd; 1Þ representations that contain
this set of angular momenta must enter in expressing
jna; nbi in terms of an SOðd; 1Þ basis.

V. UNITARITY CONSTRAINTS ON THE FULL
THEORY

We have examined above three distinct Fock spaces

based on the three vacua j0i, j00i, j~0i. All the states in
these Fock spaces are eigenstates of the same operator Q.
After including the unitarity condition we found all the
physically acceptable positive norm states.
In the quantum theory the existence of different sectors

is the analog of different boundary conditions on the
solutions of a given differential equation. We saw that
the unitary sectors based on j0i, j00i are all Lorentz invari-
ant and they are distinguished from each other by being in
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the spacelike or timelike regions of spacetime. On the other
hand, none of the unitary states jna; nbi or jtoweri� based

on the vacuum j~0i are Lorentz singlets, since C2 is non-
vanishing on any of them. So, the different sectors may be
distinguished on the basis of their Lorentz, SUðd; 1Þ, and
geometric properties.

In the absence of boundary conditions that naturally
emerge for a specific physical system, all sectors are
a priori included. How can we ensure that negative norm

ghosts will not appear? We saw that although the sector j~0i
is free of ghosts, the sectors j0i, j00i contained them. It is
only by imposing unitarity by ‘‘hand,’’ or equivalently by
requiring Lorentz singlets (which may be viewed as a
boundary condition), that we could distinguish the positive
norm singlets in the sectors j0i, j00i. However, requiring
Lorentz invariants only as boundary conditions on the

solutions of the entire theory also eliminates the j~0i sector
completely.

A more comprehensive set of constraints is of the form14

1
2 ðp2 þ x2Þ � �0 ¼ 0: (5.1)

This allows states from all sectors j0i, j00i, j~0i as long as �0

is an eigenvalue of Q ¼ 1
2 ðp2 þ x2Þ. The possible eigen-

values in each sector were

j0i: � ¼ dþ 1

2
þ ðpositive integerÞ; (5.2)

j00i: � ¼ �dþ 1

2
� ðpositive integerÞ; (5.3)

j~0i: � ¼ d� 1

2
þ ðpositive or negative integerÞ: (5.4)

We argued in Eq. (3.28) that the only way to avoid ghosts in
the spacelike or timelike sectors was to choose �0 ¼
� dþ1

2 . Such values of �0 include only the vacua j0i, j00i,
respectively, in the spacelike and timelike sectors, and also

the infinite number of states in the jtoweri�0
in the j~0i

sector. Moreover, if we choose �0 in the range �0 ¼
0;�1;�2; � � � ;� d�1

2 , we include only the corresponding

towers jtoweri�0
in the j~0i sector, but no states at all from

the spacelike or timelike sectors based on j0i, j00i.
Hence, if the theory is restricted to the following range

only,15

� dþ 1

2
� 1

2
ðp2 þ x2Þ � dþ 1

2
; unitary range; (5.5)

then it is guaranteed to be a unitary theory without any
negative norm ghosts. If 1

2 ðp2 þ x2Þ is taken outside of this
range, then there will always be ghosts coming from the
sectors j0i, j00i. For definiteness, we list all the quantum
states that satisfy this range:

� ¼ dþ 1

2
: j0i 
 �ai

X1
m¼0


ð �ai1 �ai2 � � � �aimÞða0Þmj~0i; (5.6)

� ¼ d� 1

2
:
X1
m¼0


ð �ai1 �ai2 � � � �aimÞða0Þmj~0i; (5.7)

� ¼ d� 3

2
:
X1
m¼0


ð �ai1 �ai2 � � � �aimÞða0Þmþ1j~0i; (5.8)

..

.

� ¼ �d� 3

2
:
X1
m¼0


ð �ai1 �ai2 � � � �aimÞða0Þmþd�2j~0i; (5.9)

� ¼ �d� 1

2
:
X1
m¼0


ð �ai1 �ai2 � � � �aimÞða0Þmþd�1j~0i; (5.10)

� ¼ �dþ 1

2
: j00i 
 X1

m¼0


ð �ai1 �ai2 � � � �aimÞða0Þmþdj~0i:

(5.11)

Note that the cases of � ¼ � dþ1
2 include the Lorentz

singlets j0i; j00i, but these singlets do not appear for the
other listed values of �. Furthermore, note that only for
� ¼ þ dþ1

2 is there an additional �ai outside of the sum in

Eq. (5.6). This makes j0i evidently orthogonal to the tower
at � ¼ þ dþ1

2 . The lowest state in each case has SOðdÞ
angular momentum zero, l ¼ 0. Only the case of � ¼
� dþ1

2 has two zero angular momentum states, one of which

is an SUðd; 1Þ singlet while the other is not.

VI. WORLDLINE THEORY WITH GAUGE
SYMMETRY

A theory with constraints is obtained by constructing a
gauge invariant action. Each constraint is the generator of a
gauge symmetry. The gauge symmetry can be used to
eliminate degrees of freedom and, in particular, it can
remove ghosts and render the theory to be unitary.
A constraint of the type


ðx; pÞ ¼ 1
2ðp2 þ x2Þ � �0 ¼ 0 (6.1)

is obtained in the following worldline theory,

Sð�0Þ ¼
Z

d�

�
_x�p� � eð�Þ

�
1

2
ðp2 þ x2Þ � �0

��
(6.2)

14In a theory with more degrees of freedom more general
constraints can also be considered; see footnote 9.
15We have not discussed at all the possibility of solutions in the
spacelike and timelike sectors that are matched across the light
cone x2 ¼ 0 as outlined following Eq. (A16). It is possible that
those are already accounted for in the j~0i sector, but we are not
certain if there are additional ones. If those have �’s within the
range in Eq. (5.5), they will be part of the constrained theory.
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where eð�Þ is the gauge field that plays the role of a
Lagrange multiplier locally on the worldline at each instant
�. The gauge transformations with a local parameter �ð�Þ
are

��x
�ð�Þ ¼ �ð�Þp�ð�Þ; ��p

�ð�Þ ¼ ��ð�Þx�ð�Þ;
��eð�Þ ¼ d

d�
�ð�Þ: (6.3)

The Lagrangian transforms to a total derivative

��Sð�0Þ ¼
Z

d�
d

d�

�
1

2
ðp2 � x2Þ�ð�Þ � �0�ð�Þ

�
! 0;

(6.4)

which can be dropped in the variation of the action (note
p2 � x2, not p2 þ x2). Hence this action has a local gauge
symmetry ��S ¼ 0.

One consequence of the gauge symmetry is to impose
constraint (6.1) as the equation of motion for the gauge
field,

0 ¼ @S

@eð�Þ ¼ 
ðx; pÞ ¼ 1

2
ðp2 þ x2Þ � �0: (6.5)

The generator of the gauge transformations is 
ðx; pÞ.
Saying that 
ðx; pÞ vanishes is equivalent to saying that
the generator of gauge transformations vanishes, meaning
that the sector that satisfies it must be gauge invariant.

There are various ways to quantize the theory defined by
the Sð�0Þ above. The first approach is covariant quantiza-
tion in which we work with the quantum rules ½x�; p�� ¼
i	��, in an enlarged Hilbert space that includes all the

degrees freedom, including the redundant gauge degrees of
freedom that are part of x�, p�. Then, among the quantum
states in this enlarged space, we pick the gauge invariant
physical states by demanding that they satisfy the vanish-
ing of the gauge generator,

gauge invariants : ½12ðp2 þ x2Þ � �0�jphysicali ¼ 0:

(6.6)

If we follow this approach we see that the gauge invariant
states hxjphysicali ¼ c �0

ðxÞ are only those that satisfy the

differential equation of the relativistic harmonic oscillator
with a fixed eigenvalue �0,

ð�1
2@

�@� þ 1
2x

�x�Þc �0
ðxÞ ¼ �0c ðxÞ: (6.7)

There is no mention of boundary conditions, and therefore
we must include all sectors that solve this constraint. This
is the problem we analyzed in the previous sections. From
that analysis we conclude that, provided �0 is chosen as
one of the quantized values in the range (5.5), then the
resulting theory Sð�0Þ is guaranteed to be a ghost-free
unitary theory.

Outside of this range we expect that ghosts will be
present. Therefore Sð�0Þ, with �0 fixed to any one of the

values �0 ¼ � dþ1
2 ;� d�1

2 ; � � � ; d�1
2 ; dþ1

2 , leads to a physi-

cally acceptable unitary theory.
A second approach is noncovariant quantization in

which we first choose a gauge and solve the constraint
once and for all. The phase space that solves 1

2 ðp2 þ x2Þ ¼
�0 is then automatically a parametrization of the gauge
invariant sector. However, one must be careful that there
may be more than one sector of phase space which can
solve this equation at the classical level. If we choose a
gauge in which the timelike degree of freedom is elimi-
nated, then the remaining Euclidean degrees of freedom
cannot introduce any negative norm ghosts. The quantum
states are then automatically unitary, but one must check
that nonlinear expressions are properly quantum ordered so
as to ensure that the global symmetries of the theory have
not been violated. Only if the global symmetries are treated
properly—in the present case SUðd; 1Þ and its subgroup
SOðd; 1Þ—can one declare that the theory has been suc-
cessfully quantized in the gauge fixed version. In what
follows we show how this is done in the present theory
defined by the action Sð�0Þ, and how the results agree with
the SUðd; 1Þ properties of the covariant quantization
approach.

VII. GAUGE FIXED QUANTIZATION

We can choose a gauge that reduces the theory to the
purely spacelike harmonic oscillator. Let us first consider
the following canonical transformation from ðx0ð�Þ; p0ð�ÞÞ
to ðtð�Þ; Hð�ÞÞ at the classical level (i.e. quantum ordering
ignored),

x0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hð�Þ þ 2c

p
sinðtð�ÞÞ;

p0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hð�Þ þ 2c

p
cosðtð�ÞÞ;

(7.1)

where c is some constant that will be fixed later. This
covers the entire ðx0; p0Þ plane if Hð�Þ þ c � 0. The new
set ðt; HÞ is canonical as can be seen by computing the
corresponding term in the Lagrangian,

� _x0p0 ¼ � _tH þ total derivatives:

The total derivatives can be dropped since they are irrele-
vant in the action. The Lagrangian in Eq. (6.2) takes the
form

L ¼ � _tH þ _xipi � e½12ð ~p2 þ ~x2Þ �H � c� �0�; (7.2)

which shows that the constraint
ðx; pÞ that vanishes in the
physical sector now has taken the form


ðx; pÞ ¼ 1
2ð ~p2 þ ~x2Þ �H � c� �0 ¼ 0: (7.3)

Next we choose the gauge

tð�Þ ¼ �; (7.4)

and solve the constraint 
ðx; pÞ ¼ 0 to determine the
canonical conjugate of the gauge fixed t, namely, Hð�Þ,
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H ¼ 1
2ð ~p2 þ ~x2Þ � c� �0: (7.5)

The gauge fixed form of the action Sð�0Þ above describes
precisely the spacelike nonrelativistic harmonic oscillator
after using _t ¼ 1,

Sfixedð�0Þ ¼
Z

d�

�
@� ~x � ~p�

�
1

2
ð ~p2 þ ~x2Þ � c� �0

��
:

(7.6)

It is possible to fix the constant c in terms of �0, but this is
not necessary at this stage because ð�c� �0Þ seems to be
an irrelevant constant that may be dropped. We will wait
till we compute SUðd; 1Þ Casimir eigenvalues at the quan-
tum level to learn the role of c and its relationship to �0

when we compare the results of covariant quantization to
those of the gauge fixed quantization.

The quantum states of this nonrelativistic harmonic
oscillator in d Euclidean dimensions are well known.
They are constructed by defining creation-annihilation op-
erators ai, �ai in the usual way and applying them on a

vacuum j0̂i that diagonalizes this Hamiltonian,

aij0̂i ¼ 0; h ~xj0̂i � expð�1
2
~x2Þ: (7.7)

The general quantum state is a superposition of the follow-
ing states that make up a tower,

jtoweri�0
¼ X1

na¼0


jnai ¼
X1
na¼0


ð �ai1 �ai2 � � � �aina Þj0̂i (7.8)

We compare this spectrum to the towers listed in
Eqs. (5.7), (5.8), (5.9), and (5.10). From this comparison
we see that the gauge fixed version reproduces the spec-
trum of the covariant quantum theory for the action Sð�0Þ
at fixed values of �0, provided �0 is fixed to one of the
values

�0 ¼ dþ 1

2
;
d� 1

2
;
d� 3

2
; � � � ;� d� 3

2
;�d� 1

2
;

(7.10)

but not the value �0 ¼ � dþ1
2 , since in that last case there is

an additional state j00i in Eq. (5.11) which does not show
up in Eq. (7.8).

As we will see below, the gauge fixed version (7.8)
reproduces the subtlety that for �0 ¼ dþ1

2 there is a

Lorentz invariant state j0i as listed in Eq. (5.6). That is,
at �0 ¼ dþ1

2 the tower in (7.8) is actually split into two

representations of SUðd; 1Þ. But the gauge fixed version
could not reproduce the other Lorentz invariant state j00i at
�0 ¼ � dþ1

2 in Eqs. (5.11). Similarly, the unitary sector

jna; nbi for all nb < na that appears in covariant quantiza-
tion is entirely missed in the fixed gauge. By contrast, all

the states jna; nbi for nb � na are recovered in the gauge
fixed version (7.8), even those beyond the list in (7.10).
The discrepancy between covariant quantization and

gauge fixed quantization is attributable to an assumption
made inadvertently when making the gauge choice.
Namely, the canonical transformation (7.1) is valid only

when
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ c

p
is real. After using Eq. (7.5), we see that the

reality condition requires

0 � H þ c ¼ 1
2ð ~p2 þ ~x2Þ � �0: (7.11)

Hence, in the present gauge we have evidently limited
ourselves to the quantum states that satisfy �0 � 1

2 ð ~p2 þ
~x2Þ. This explains why the gauge fixed version of the theory
defined by Sfixedð�0Þ can be related to the covariant theory
Sð�0Þ only under this condition, and does not necessarily
cover all the gauge invariant sectors of the theory defined
by Sð�0Þ (for a similar example in string theory, see foot-
note 4). This is consistent with the fact that the gauge fixed
version could not reproduce all the unitary sectors with
� � dþ1

2 . In the guaranteed unitary range � dþ1
2 � �0 �

dþ1
2 , all the states except the Lorentz invariant state j00i at
�0 ¼ � dþ1

2 are recovered. The missing state j00i should be
recoverable by exploring other gauge choices, but we will
not pursue this more careful gauge fixing in this paper.

VIII. SUðd; 1Þ AND SOðd; 1Þ SYMMETRY IN GAUGE
FIXED THEORY

We now discuss the unitary representations of the global
symmetry SUðd; 1Þ and SOðd; 1Þ in the gauge fixed version,
paying attention to quantum ordering of operators. In
particular, we want to show that the gauge fixed version
agrees with the covariant version when we compute eigen-
values of the Casimir operator C2ðSUðd; 1ÞÞ.
In the gauge fixed version, the timelike oscillator �a0 ¼

1ffiffi
2

p ðx0 � ip0Þ is computed in terms of the spacelike oscil-

lators ai, �ai after inserting the canonical transformation
(7.1) and the gauge tð�Þ ¼ �. At the classical level this
takes the form

�a 0ð�Þ ¼ iei�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ c

p ¼ iei�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aið�Þaið�Þ þ c

q
: (8.1)

At the quantum level one must address operator ordering
ambiguities. Since c has not been fixed so far, we absorb all
such ambiguities into c and define the quantum version of
a0 with the orders of �aiai as given above. We can now
compute the generator ofUJ0ð1Þ at the quantum level in the

gauge fixed version and find the constant value J0 ¼ �c,

J0 ¼ �a � a ¼ � �a0a0 þ �aiai ¼ �c: (8.2)

Recall that in the covariant versionQ ¼ J0 þ dþ1
2 , so when

Q, J0 are fixed to Q ¼ �0 and J0 ¼ �c, we determine c as

c ¼ dþ 1

2
� �0: (8.3)
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We see that c is positive only if �0 � dþ1
2 . This is necessary

since the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aiai þ c

p
was defined for all eigen-

values of the operator �aiai only if c is positive c � 0.
The generators of SUðd; 1Þ can now be computed in the

gauge fixed version by inserting the gauge fixed form of a0
and �a0 into the expression of J�� given in Eq. (2.8),

J00 ¼ N̂a þ cd

dþ 1
; Jij ¼ �aiaj þ c

dþ 1
�ij; (8.4)

J0i ¼ iei�ðN̂a þ cÞ1=2ai; Ji0 ¼ �ie�i� �aiðN̂a þ cÞ1=2;
(8.5)

where N̂a ¼ �aiai is the number operator. Note that J00 ¼
�ijJij is not independent as expected from 	��J�� ¼ 0.

The nonlinear generators J0i, Jj0 must satisfy the following

commutation rules according to the SUðd; 1Þ algebra [the
commutator is evaluated with all �aið�Þ and ajð�Þ at equal
�],

½J0i; Jj0� ¼ �ijJ00 � 	00Jji: (8.6)

We can check explicitly that this commutator is indeed
satisfied for any constant c. The critical point in the calcu-

lation is to use the property aiN̂a ¼ ðN̂a þ 1Þai, leading to
aifðN̂aÞ ¼ fðN̂a þ 1Þai for any function of N̂a, and simi-

larly for the Hermitian conjugate, �aifðN̂a þ 1Þ ¼ fðN̂aÞ �ai.
Then we can compute the commutator ½J0i; Jj0� as follows:

½J0i; Jj0� ¼ ððN̂a þ cÞ1=2aiÞð �ajðN̂a þ cÞ1=2Þ
� ð �ajðN̂a þ cÞ1=2ÞððN̂a þ cÞ1=2aiÞ (8.7)

¼ aiðN̂a � 1þ cÞ1=2ðN̂a � 1þ cÞ1=2 �aj � �ajðN̂a þ cÞai
¼ aiðN̂a � 1þ cÞ �aj � �ajðN̂a þ cÞai
¼ ðN̂a þ cÞai �aj � ðN̂a � 1þ cÞ �ajai
¼ �ijðN̂a þ cÞ þ �ajai

¼ �ij

�
J00 þ c

dþ 1

�
þ
�
Jji � c

dþ 1
�ij

�
¼ �ijJ00 þ Jji;

(8.8)

in agreement with SUðd; 1Þ as in Eq. (8.6). It is easy to
check that the rest of the commutation rules for SUðd; 1Þ
are satisfied,

½J��; J��� ¼ 	��J�� � 	��J��: (8.9)

Hence we have constructed correctly the SUðd; 1Þ algebra.
This implies that we have successfully quantized the theory
Sð�0Þ in the gauge fixed version.

We can now learn the properties of the SUðd; 1Þ repre-
sentation by analyzing the transformation properties of the
states. The Young tableaux in Eq. (7.8) already inform us
about their transformation properties under the subgroup
SUðdÞ. To learn the transformation rules under the coset
generators Ji0, J0i, we apply these nonlinear forms on the

states. We see that Ji0, J0i create or annihilate excitations,

Ji0jnai ¼ �aiðN̂a þ cÞ1=2jnai � jna þ 1i ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na þ c

p
; (8.10)

J0ijnai ¼ ðN̂a þ cÞ1=2aijnai � jna � 1i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na � 1þ c

p
;

(8.11)

so they mix all SUðdÞ Young tableaux with each other for
all values of na. So SUðd; 1Þ transformations connect all
levels na to each other, thus showing that the SUðd; 1Þ
representation is infinite dimensional as long as c > 0.
When c ¼ 0, we see that all operators J�� in Eqs. (8.4)

and (8.5) annihilate the vacuum state,

½J���c¼0j0̂i ¼ 0: (8.12)

Therefore, for c ¼ 0 the vacuum state is SUðd; 1Þ and
Lorentz invariant, and we must identify it with the
Lorentz invariant state j0i listed in Eq. (5.6),

½j0̂i in gauge fixed version with c ¼ 0�
$ ½j0i in covariant version�: (8.13)

Furthermore, when c ¼ 0, all the states starting with na ¼
1 form an irreducible infinite dimensional representation,
so they can be written just like Eq. (5.6),

c ¼ 0; or �0 ¼ dþ 1

2
: j0̂i 
 �ai

X1
m¼0


ð �ai1 �ai2 � � � �aimÞj0̂i:

(8.14)

Hence at �0 ¼ dþ1
2 we have identified an SUðd; 1Þ or

SOðd; 1Þ singlet, together with an infinite dimensional
unitary representation of SUðd; 1Þ whose lowest state has
angular momentum l ¼ 1. For all the other cases of
� d�1

2 � �0 � d�1
2 , the lowest state has angular momen-

tum zero l ¼ 0, but it is not a Lorentz or SUðd; 1Þ singlet.
At �0 ¼ � dþ1

2 , according to covariant quantization in

Eq. (5.11), we should expect a Lorentz singlet together
with another zero angular momentum state as part of an
infinite dimensional representation, but the Lorentz invari-
ant state j00i is missed in the gauge fixed version.
It is interesting to compute the Casimir operator

C2ðSUðd; 1ÞÞ in the gauge fixed version. To do so we insert
the gauge fixed J�� of Eqs. (8.4) and (8.5) into Eq. (4.38)

and manipulate orders of operators as in Eq. (8.7). After
rearranging operators we find that C2 is just a constant
determined by c as follows,

C2 ¼ 1
2ðJijJji þ ðJ00Þ2 � Ji0J0i � J0iJi0Þ (8.15)
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¼
�
1

2

�
�aiaj þ c

dþ 1
�ij

��
�ajai þ c

dþ 1
�ij

�

þ 1

2

�
N̂a þ cd

dþ 1

�
2 � 1

2
�aiðN̂a þ cÞ1=2ðN̂a þ cÞ1=2ai

� 1

2
ðN̂a þ cÞ1=2ai �aiðN̂a þ cÞ1=2

�
(8.16)

¼ ð�cÞd
2

�
1þ ð�cÞ

dþ 1

�
: (8.17)

This is the same result as the covariant approach (4.39)
with J0 fixed in the gauge fixed version to J0 ¼ �c, con-
sistent with Eq. (8.2).

It may be interesting to discuss also the SOðd; 1Þ content
of each tower. The Hermitian Lorentz generators are

SO ðd; 1Þ: L�� ¼ x�p� � x�p� ¼ �iðJ�� � J��Þ
(8.18)

which take the following explicit forms in terms of oscil-
lators,

rotation : Lij ¼ �ið �aiaj � �ajaiÞ; (8.19)

boost : L0i ¼ �iððN̂a þ cÞ1=2ai � �aiðN̂a þ cÞ1=2Þ:
(8.20)

It is emphasized that these operators satisfy the SOðd; 1Þ
Lie algebra

½L��; L��� ¼ �ið	��L�� þ 	��L�� � 	��L��

� 	��L��Þ; (8.21)

and, in particular, the commutator of two boosts gives
SOðdÞ rotations at the quantum level,

½L0i; L0j� ¼ �iLij ¼ i	00Lij: (8.22)

This can be checked explicitly for our nonlinear L0i by
using the same methods as Eq. (8.7).

Since the L�� are Hermitian they act in infinite dimen-

sional unitary representations of the Lorentz group. This
implies that each tower of SUðd; 1Þ at fixed �0 splits into an
infinite number of irreducible SOðd; 1Þ towers; the precise
content of which SOðd; 1Þ representations appear depends
on the constant c.

In this section we exhibited new interesting nonlinear
oscillator representations of SUðd; 1Þ which should have
generalizations to other noncompact groups. This type of
oscillator representation was not previously considered in
[21–24]. The new nonlinear expressions for the generators
given in Eqs. (8.4) and (8.5) were obtained by starting from
previous oscillator methods and then replacing some of
those oscillators by nonlinear expressions in terms of the
other oscillators. The same method was used to find new
interesting SUð2; 3Þ symmetry properties based on twistors

[25] that describe spinning particles in various 1T-physics
systems and explain dualities among them. This nonlinear
approach to constructing generators and representations of
noncompact groups could be of interest in many applica-
tions in both physics and mathematics.

IX. NONRELATIVISTIC OSCILLATOR AS A
RELATIVISTIC SYSTEM

While the focus in this paper was the relativistic har-
monic oscillator, we were led to the nonrelativistic case as
a consequence of a gauge choice. Looking at this process in
reverse, this shows that the nonrelativistic oscillator pro-
vides a nonlinear realization of a relativistic system. So the
nonrelativistic oscillator must have some hidden relativis-
tic symmetry of its own. This is possibly a surprising
proposition, but it is true as explained below.
In d Euclidean dimensions the nonrelativistic oscillator

has evident SOðdÞ symmetry and also a well-known SUðdÞ
hidden symmetry that leaves the Hamiltonian invariant.
However, the discussion above suggests that we should
seek an even larger hidden symmetry SUðd; 1Þ that in-
cludes Lorentz symmetry SOðd; 1Þ.
We recall that the generator of the gauge symmetry of

the relativistic action Sð�0Þ is
ðx; pÞ ¼ Qðx; pÞ � �0 as in
Eq. (6.5). By using Poisson brackets ��Aðx; pÞ ¼
�fAðx; pÞ; 
ðx; pÞg the gauge transformation rules for all
observables Aðx; pÞ are obtained. In particular, note that the
gauge transformations of ��x

� and ��p
� in Eq. (6.3)

follow in this way. Since the SUðd; 1Þ generators J��

commute with the SUðd; 1Þ invariant Q as shown in
Eq. (2.6), it must have vanishing Poisson brackets with
the gauge generator 
ðx; pÞ when the J�� of Eq. (2.8) is

written out in terms of phase space,

fJ��ðx; pÞ; 
ðx; pÞg ¼ 0 $ ��J�� ¼ 0: (9.1)

Therefore, the J�� are gauge invariant physical

observables.
Since both Sð�0Þ and its global symmetry generators J��

are gauge invariants, it must be that their gauge fixed
versions Sfixedð�0Þ, Jfixed�� also maintain the same SUðd; 1Þ
global symmetry properties. That is, when written out in
terms of the remaining Euclidean degrees of freedom ~x, ~p,
we must find that Jfixed�� is the generator of SUðd; 1Þ sym-

metry of the nonrelativistic harmonic oscillator action,

Snonrel ¼
Z

d�

�
@� ~x � ~p� 1

2
ð ~p2 þ ~x2Þ

�
: (9.2)

The explicit form of Jfixed�� ð ~x; ~p; �Þ is obtained directly from
Eqs. (8.4) and (8.5). If these Jfixed�� are symmetry generators,

they must be conserved when the equations of motion of
the nonrelativistic oscillator are used,
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d

d�
Jfixed�� ð ~xð�Þ; ~pð�Þ; �Þ ¼ 0; for _xi ¼ pi; _pi ¼ �xi or

_ai ¼ �iai; _�ai ¼ þi �ai: (9.3)

Note that Jfixed0i , Jfixedi0 depend explicitly on � in addition to

the implicit dependence on � that comes through ~xð�Þ,
~pð�Þ. Indeed, this extra dependence on � is essential to
show that the Jfixed0i , Jfixedi0 are conserved.

Since we have already shown that these Jfixed�� ð ~x; ~p; �Þ
close to form the SUðd; 1Þ Lie algebra at the quantum level
at any �, they also satisfy the same property at the classical
level under Poisson brackets. Using these generators we
can define infinitesimal SUðd; 1Þ transformation laws by
using Poisson brackets at any fixed �, namely, �! ~x ¼
1
2!

��f ~x; Jfixed�� ð�Þg and �! ~p ¼ 1
2!

��f ~p; Jfixed�� ð�Þg. More ex-

plicitly, the transformation laws at any � are

�! ~xð�Þ ¼ 1

2
!��

@Jfixed�� ðx; p; �Þ
@ ~p

;

�! ~pð�Þ ¼ � 1

2
!��

@Jfixed�� ðx; p; �Þ
@~x

:

(9.4)

The transformations under the SUðdÞ � Uð1Þ subgroup are
familiar hidden symmetry transformations of the nonrela-
tivistic harmonic oscillator. However, the transformations
generated by the classical

1ffiffiffi
2

p ðJfixedi0 þ Jfixed0i Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð ~p2 þ ~x2Þ þ c

s
ðxi cos�� pi sin�Þ;

(9.5)

1ffiffiffi
2

p
i
ðJfixedi0 � Jfixed0i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð ~p2 þ ~x2Þ þ c

s
ðxi sin�þ pi cos�Þ

(9.6)

are new nonlinear symmetry transformations that were not
noted before. It can now be verified that the nonrelativistic
harmonic oscillator action above is indeed invariant under
all of the SUðd; 1Þ transformations. It can be verified that
the new transformations give �!Snonrel ¼

R
d� d

d� ðstuffÞ !
0, where the total derivative can be dropped in the trans-
formation of the action, thus verifying the expected
SUðd; 1Þ global symmetry. Again, the explicit � depen-
dence generated by the expressions in (9.5) and (9.6) is
crucial for this result. A consequence of this symmetry
via Noether’s theorem is that the Jfixedi0 � Jfixed0i given in

Eqs. (9.5) and (9.6) are conserved, as already claimed
above in Eq. (9.3).

This hidden symmetry of the nonrelativistic harmonic
oscillator was not known before. These transformations
leave the action, not the Hamiltonian, invariant. As a
consequence of the symmetry, all the states of the non-
relativistic harmonic oscillator taken together at all energy

levels must fit into irreducible unitary representations of
SUðd; 1Þc and its Lorentz subgroup SOðd; 1Þ.
Note that the parameter c is used to construct the non-

linear generators J0iðcÞ and Ji0ðcÞ in Eq. (8.5), so the
SUðd; 1Þc transformations are different for every c. This
means different representations of SUðd; 1Þ can be realized
on the same Fock space consisting of all the states in
Eq. (7.8). They will transform differently as a representa-
tion basis depending on the choice of the parameter c.
When c � 0, all the states form a single irreducible repre-
sentation of SUðd; 1Þ with Casimir eigenvalue
C2ðSUðd; 1ÞcÞ ¼ � cd

2 ð1� c
dþ1Þ. The lowest state of this

infinite tower has zero SOðdÞ orbital angular momentum

l ¼ 0 since it is the vacuum state j0̂i. The branching of the
SUðd; 1Þc representation into representations of the
Lorentz group SOðd; 1Þ depend on c, so we expect to
describe different relativistic content by using the same
nonrelativistic harmonic oscillator degrees of freedom.
The c ¼ 0 case is special, because then the vacuum state

j0̂i of the nonrelativistic harmonic oscillator is a singlet of
SUðd; 1Þ0 and of SOðd; 1Þ, so it is a Lorentz invariant as
explained in Eq. (8.12). The remaining states at all energy
levels given in Eq. (8.14) make up a single irreducible
unitary representation of SUðd; 1Þ0 with Casimir 0. The

lowest energy state of this c ¼ 0 infinite tower is �aij0̂i
which has SOðdÞ angular momentum l ¼ 1. This is clearly
different SOðd; 1Þ content compared to the c � 0 case for
which the lowest state of the irreducible tower had angular
momentum l ¼ 0.
This different SUðd; 1Þ or SOðd; 1Þ rearrangement of the

same states for different values of c seems surprising when
viewed from the perspective of the nonrelativistic oscilla-
tor. However, when compared to the corresponding
jtoweri�0

in Eqs. (5.6), (5.7), (5.8), (5.9), (5.10), and

(5.11) in covariant quantization, the hidden information
in c about the SOðd; 1Þ properties becomes evident. The
comparison shows that c corresponds to the various powers

of a0 applied on the vacuum j~0i to get the lowest state

ða0Þc�1j~0i in different towers (for c � 1). The additional
information gained from the Lorentz properties of a0 in
covariant quantization explains why the same nonrelativ-
istic Fock space (7.8) relates to different relativistic
SOðd; 1Þ or SUðd; 1Þ content as the value of c changes.
Note that if the starting point were the nonrelativistic

oscillator, then there would be no conditions on the value
of c for constructing the SUðd; 1Þc generators in Eq. (8.5).
Of course, when c is quantized as indicated before, c ¼
0; 1; 2; � � � ; ðdþ 1Þ, the nonlinear structures J0i, Ji0 corre-
spond to just a gauge fixed sector of the relativistic oscil-
lator with a unitarity constraint. Other values of c on the
real line seem to describe relativistic systems beyond the
oscillator.
Note that c is a Lorentz invariant; therefore, in physical

applications it could be related to certain relativistically
invariant observables, such as the mass of a bound state.
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Such relativistic properties of the nonrelativistic oscil-
lator may lead to further insights.

X. MORE REVISITS?

We have shed new light on the symmetries and the
quantum sectors of the relativistic harmonic oscillator.
Since much of this was not noted before, it may lead to
additional new observations in old or new applications of
this commonly used dynamical system.

Of course, for each physical system there may be various
sets of new constraints not discussed in this paper that
would influence the allowed physical states as noted in
footnote 9. In particular, the richer structure of the many
oscillators in string theory leads to the Virasoro constraints
for removing ghosts rather than those in Eq. (3.28).
Whatever the ghost killing constraints may be, it would
be of interest to reanalyze the relevant systems to find out
whether the additional Fock spaces discussed in this paper
lead to additional quantum states that may reveal new
physical properties.

This paper is not focused on string theory, but rather on
the single relativistic harmonic oscillator. Our initial aim
was to clarify some facts about the symmetry aspects of the
relativistic oscillator that appeared confusing. The clarifi-
cation provided here leads us to ask, what happens in string
theory? In what follows we provide some brief preliminary
remarks on this topic.

Past work in string theory has been carried out by relying
on the Fock space built exclusively from the covariant
spacelike vacuum j0i of Sec. III, while being unaware of
the other Fock space sectors with more general geometry
discussed in Secs. III and IV. As is well known from
previous studies of string theory, although not made pre-
viously explicit, the spacelike sector is completely consis-
tent. Its results have been reproduced in many approaches,
leading to the remarkable properties of string scattering
amplitudes.

The question that arises now is not whether anything was
wrong with that treatment of strings, but whether there
might be more physical phenomena in string theory beyond
the usual self-consistent spacelike sector, and hence be-
yond the Veneziano amplitudes. The question is natural
since the conventional relativistic Fock space used in string
theory inadvertently excludes a huge sector of unitary
quantum states for each single mode as discussed in
Sec. IV. As made clear following Eq. (A16), the relativistic
oscillator actually likes to cross between spacelike and
timelike regions. Such allowed motions of each single
mode simply have never entered the discussion, and there-
fore there is much room for investigation.

In that connection, it is worth noting that from the ear-
liest period of string theory there have been indications that
the light-cone gauge fails to capture all of the gauge
invariant physics in string theory (see footnote 4). A simi-
lar phenomenon of missing gauge invariant sectors was

seen in the gauge fixed relativistic oscillator discussed in
this paper. Therefore, gauge fixed treatments, while being
quite revealing, cannot be trusted as being complete.
These observations provide new motivation to revisit the

covariant quantization of string theory to see whether the
concepts discussed in this paper play a role. In the standard
treatment of string theory each mode is associated with the
spacelike vacuum j0i, so the standard overall string vac-
uum is j0; 0; 0; � � �i, where each 0 corresponds to a mode. Is
it possible to have string configurations built on more

complicated vacua, such as j0; ~0; 00; � � �i, etc. where the
various modes could be in various spacetime regions? It is
not so easy to answer this question because of the Virasoro
constraints.
The sector with all the modes in the timelike Fock space

based on j00; 00; 00; � � �i, abbreviated as j00i, is not difficult
to decipher because the analysis is parallel to the usual
treatment. The only change is that in this sector all
creation-annihilation operators ��

n , �
��n switch roles rela-

tive to the familiar spacelike sector. Then we find that this
sector has a lot of serious problems. The eigenvalues of
Qn ¼ 1

2 ðp2
n þ n2x2nÞ are strictly negative and L0

0 ¼ p2
0 þP

nQn þ a, which is normal ordered relative to j00i (see
footnote 3), has only negative eigenvalues. Hence the
Virasoro constraint L0

0 ¼ 1 gives only tachyons. The

Virasoro constraints L�nj
0i with n > 0 (not Ln) can be
satisfied by using the same arguments as [14–16] but
switching �

�
n with �

��n at every step. However, the solu-
tions still have ghosts at every mass level because the
oscillators �i

n in d space dimensions produce negative
norm states (as opposed to only one time component �0�n

in the usual arguments). Evidently, this sector is not accept-
able on physical grounds and must be eliminated with
some consistent set of gauge symmetries or other argu-
ments. The supersymmetric version of string theory may
avoid this sector altogether, but this needs to be investi-
gated more explicitly.
A more interesting case is the ghost-free fully unitary

sector based on the vacuum of type j~0; ~0; ~0; � � �i which we

abbreviate as j~0i. For example, the string state jk; ~0i has a
spacetime configuration of the form [note the relative þ
sign in ðx2n0 þ ~x2nÞ]

c ðXÞ � hXjk; ~0i � eik�x0 exp
�
� 1

2

X1
n¼1

nðx2n0 þ ~x2nÞ
�
;

(10.1)

where x
�
n can be in any spacetime region, unlike the usual

string field in Eq. (1.7) where x�n was strictly spacelike.
This is one of the eigenstates of L0. There are now an
infinite number of eigenstates for each eigenvalue ofQn ¼
1
2 ðp2

n þ n2x2nÞ, as explained in Sec. IV, leading to the same

eigenvalue of L0. All of these states are in infinite dimen-
sional unitary representations of SUðd; 1Þ. After applying
the Virasoro constraints the solutions get rearranged into
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representations of the overall Poincaré symmetry.16 The
good thing is that there are no ghosts at all in this Fock
space. However, it is not straightforward to solve the

Virasoro constraints for string states built on jk; ~0i because
the creation-annihilation operators in the time direction�0

n,
�0�n have their roles inverted while those in the space
directions ~�n, ~��n remain the same. Solutions seem likely
to exist but none are known at this stage. If solutions of the
Virasoro constraints can be exhibited, they would be of
great interest in string theory. This seems to be a challeng-
ing problem that we leave to future work.
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APPENDIX: SOð1; 1Þ OSCILLATOR IN POSITION
SPACE

In this appendix we solve the differential equation
ð� 1

2@
�@� þ 1

2 x
�x�Þc �ðxÞ ¼ �c �ðxÞ in the purely space-

like region17 and show that we arrive at the same conclu-
sion as the oscillator approach using the Fock space
methods of Sec. III. For simplicity, we will concentrate
on one-space and one-time dimensions. Therefore, the
Lorentz symmetry is SOð1; 1Þ while the larger hidden
symmetry is SUð1; 1Þ.

We will discuss the spacelike region shown in Fig. 1,
knowing that the timelike region is similar as indicated in
Sec. III. Accordingly, we parametrize x� as follows to
ensure spacelike x�:

x0 ¼ jxj sinh; x1 ¼ x cosh;

both x;  range from�1 to þ1:
(A1)

This parametrization matches the parabolas in Fig. 1 for
fixed positive or negative values of x, and as x is varied the
entire spacelike region is covered. The differentials

dx0 ¼ "ðxÞ sinhdxþ jxj coshd;
dx1 ¼ coshdxþ x sinhd;

(A2)

dx ¼ �"ðxÞ sinhdx0 þ coshdx1;

d ¼ coshdx0

jxj � sinhdx1

x
;

(A3)

where "ðxÞ � signðxÞ, are useful to compute the deriva-
tives by using the chain rule @

@x� ¼ @
@x� @ þ @x

@x� @x to obtain

@

@x0
¼ "ðxÞ

�
cosh

x
@ � sinh@x

�
;

@

@x1
¼ � sinh

x
@ þ cosh@x:

(A4)

The SOð1; 1Þ boost generator becomes (note the extra sign
due to raising/lowering the timelike index p0 ¼
�i@=@x0 ¼ þi@=@x0)

L01 ¼ x0p1 � x1p0 ¼ �ix0
@

@x1
� ix1

@

@x0
¼ �i"ðxÞ@:

(A5)

The operator Q in x� space is then computed as

Q ¼ 1

2
ðp � pþ x � xÞ ¼ 1

2

�
�@2x � 1

x
@x þ 1

x2
@2

�
þ 1

2
x2:

(A6)

The solution of the eigenvalue equation Qc �m ¼ �c �m

takes the separable form

c �mðx; Þ ¼ x�1=2F�mðxÞeim; (A7)

x0

x1

FIG. 1. Parabolas in the spacelike region of ðx0; x1Þ at some
fixed x ¼ �a and any .

16The separate SUðd; 1Þ of each single oscillator is not expected
to survive in string theory because the Virasoro constraints
couple all the modes, including the center of mass mode, to
each other. Certainly there is at least an overall Poincaré sym-
metry, so that the states get rearranged into representations of
Poincaré with its little group [e.g. SOðdÞ for massive states]. Of
course, then the infinite dimensional SUðd; 1Þ representations
dissociate [they already are in the SUðdÞ � Uð1Þ basis in
Eq. (4.32)] and are rearranged properly according to Poincaré
symmetry (or a larger hidden symmetry if any such thing
remains).
17There are more general Lorentz covariant solutions that have
different forms in various spacelike and timelike regions with
continuity conditions across the light cone x�x� ¼ 0 in Fig. 1.
This will become evident in the discussion following Eq. (A16).
For this kind of solution the setting in Sec. IV is more conve-
nient. In this section we will seek solutions with support only in
the spacelike regions, because those are the only ones described
by the standard SOðd; 1Þ covariant Fock space approach dis-
cussed in Sec. III, to which we compare the solutions in this
appendix.
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where the factor of x�1=2 is inserted for convenience. The
eigenvaluem of the operator (� i@) must be real if L01 ¼
�i"ðxÞ@ is to be Hermitian. This condition on m imposes
unitarity; hence only positive norms are possible (see foot-
note 7). The range of m is the entire continuous real line
�1<m<1. Then F�mðxÞ satisfies�

�@2x �
m2 þ 1

4

x2
þ x2 � 2�

�
F�mðxÞ ¼ 0: (A8)

This is a one-dimensional problem with an effective po-
tential that has an attractive (negative) component

VeffðxÞ ¼ �m2 þ 1
4

2x2
þ 1

2
x2: (A9)

VeffðxÞ is plotted in Fig. 2. For this shape of potential we
expect that there are normalizable bound states. We also
need to define a normalization and include in the spectrum
only the normalizable solutions of this equation.

We can choose the square integrable norm

hc �mjc �0m0 i ¼
Z

d2xðc �mðxÞÞ�c �0m0 ðxÞ (A10)

¼
Z 1

�1
dxF�

�mðxÞF�0m0 ðxÞ
Z 1

�1
deiðm0�mÞ (A11)

¼ �ðm�m0Þ2�
Z 1

�1
dxF�

�mðxÞFk0m0 ðxÞ (A12)

¼ �ðm�m0Þ�kk0 : (A13)

In this case we must require a finite integral in x space,

2�
Z 1

�1
dxF�

kmðxÞFk0mðxÞ ¼ �kk0 : (A14)

Next we solve for the allowed values of k, m. The
Schrödinger equation in Eq. (A8) is related to the confluent
hypergeometric equation, and the solutions are given by a
linear superposition of the confluent hypergeometric func-
tions Mða; b; x2Þ, Uða; b; x2Þ. The solution that is well

behaved at x2 ! 1 is given by

c �mðxÞ ¼ �e�x2=2ximUð½12 � 1
2�þ 1

2im�; ½1þ im�; x2Þ;
(A15)

where � is a normalization constant. This expression is
even when m is replaced by �m due to the property
Uða; b; zÞ ¼ z1�bUð1þ a� b; 2� b; zÞ. This is in agree-
ment with the unitarity condition of Eq. (3.17), since the
operator T in that equation also reverses the sign of the
boost operator L0i ! �L0i, and hence demands that only
states that are even under m ! �m can appear in the
unitary spectrum. Since we have already demanded unitar-
ity of L0i, it has to be true that only states even under m !
�m should emerge automatically in the spectrum of Q.

The behavior at x ! �1 is convergent, c �mðxÞ �
jxj��1e�ð1=2Þx2ð1þOð1=x2ÞÞ. The small x ! 0 behavior
is given by (replace m by m i" with small, real ")

c �mðxÞ !
8<
: if m � 0 �ð1�imÞ

�ð1��
2 �1

2imÞ
jxj�im

�imþ" x
2"; " ! 0þ

if m ¼ 0 �1
�ð12�1

2�Þ
ðlnx2 þOð1ÞÞ:

(A16)

Therefore, the norm
R
dxjxjjc �mðxÞj2 is integrable at x ¼

0, �1; hence c �mðxÞ is normalizable. This is in line with
expectations on the basis of the shape of the effective
potential in Fig. 2.
The probability density jc �mðx; Þj2 does not generally

vanish at x ¼ 0, which is everywhere at the light cone
x�x� ¼ 0 in Fig. 1. The physical meaning of this result

is that the oscillating particle in a spacelike region gener-
ally has a nonvanishing probability at the light cone. A
similar computation in the timelike region will also show
that the light cone is an allowed region of spacetime.
Therefore it would make sense to match the probability
amplitude in the spacetime region to the one in the timelike
region at the light cone. Then we would get solutions in
which the oscillating particle moves easily from the space-
time to the timelike regions and vice versa. This kind of
general solution is discussed in a more convenient setting
in Sec. IV.
There are, however, quantum states in which the leakage

from the spacetime to the timelike regions does not occur
at all. This is seen by examining Eq. (A16) and noting that
for Lorentz singlets (m ¼ 0) the probability amplitude
vanishes at the light cone when 1

2 � 1
2� is a negative integer

or zero. Hence only for the following quantized values of
m, � is it consistent to have a purely spacelike relativistic
harmonic oscillator:

m ¼ 0 and � ¼ 1þ 2k;

with integer k ¼ 0; 1; 2; 3; � � � : (A17)

For these values of � the solution U reduces to a poly-
nomial as follows:

-30

-20

-10

0

10

-3 -2 -1 1 2 3r

FIG. 2 (color online). The dashed line is for m ¼ 0, and the
solid line is for m � 0.
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c k ¼ ~�ke
�x2=2Uð�k; 1; x2Þ ¼ �ke

�x2=2L0
kðx2Þ; (A18)

where L0
kðx2Þ is the Laguerre polynomial with argument x2.

L0
kðx2Þ ¼

Xk
m¼0

ð�1Þmk!
ðm!Þ2ðk�mÞ! x

2m; k ¼ 0; 1; 2; 3; � � � :

(A19)

So, the probability density xjc j2 vanishes at the light cone.
This result in d ¼ 1 is in full agreement with the oscil-

lator approach of Sec. III for general d. The oscillator
method, which was valid only for the spacelike region,
also yielded only Lorentz singlets Eq. (3.20) as the only
positive norm states in a unitary representation of the
Lorentz group SOðd; 1Þ. Furthermore, the eigenvalues of
Q ! � ¼ 1þ 2k agree when specialized to d ¼ 1.

What happened to the finite dimensional Lorentz repre-
sentations with ghosts that showed up in the Fock space
approach in Sec. III? Those had emerged in Fock space by
applying oscillators �a� on the vacuum j0i. What do we get

if we follow the same approach in position space? To
investigate this we start with the oscillators in the
Cartesian basis,

a0 ¼ 1ffiffiffi
2

p
�
�x0 þ @

@x0

�
; �a0 ¼ 1ffiffiffi

2
p

�
�x0 � @

@x0

�
;

(A20)

a1 ¼ 1ffiffiffi
2

p
�
x1 þ @

@x1

�
; �a1 ¼ 1ffiffiffi

2
p

�
x1 � @

@x1

�
; (A21)

and transform them to the ðx; Þ basis as

a0 ¼ "ðxÞffiffiffi
2

p
�
� sinhðxþ @xÞ þ cosh

x
@

�
; (A22)

�a 0 ¼ "ðxÞffiffiffi
2

p
�
� sinhðx� @xÞ � cosh

x
@

�
; (A23)

a1 ¼ 1ffiffiffi
2

p
�
coshðxþ @xÞ � sinh

x
@

�
; (A24)

�a 1 ¼ 1ffiffiffi
2

p
�
coshðx� @xÞ þ sinh

x
@

�
: (A25)

Clearly, a0, a1 both annihilate the ground state

c vacðx; Þ ¼ hxj0i ¼ e�x2=2 since it is independent of 

and satisfies ðxþ @xÞe�x2=2 ¼ 0,

a0j0i ! a0e
�x2=2 ¼ 0; a1j0i ! a1e

�x2=2 ¼ 0:

(A26)

If we try to create states with �a1, �a0, we automatically
obtain solutions to the differential equation, but we see that
the  dependence is not normalizable as follows:

�a0j0i ) "ðxÞffiffiffi
2

p
�
� sinhðx� @xÞ � cosh

x
@

�
e�x2=2

¼ � ffiffiffi
2

p jxje�x2=2 sinh; (A27)

�a1j0i ) 1ffiffiffi
2

p
�
coshðx� @xÞ þ sinh

x
@

�
e�x2=2

¼ ffiffiffi
2

p
xe�x2=2 cosh: (A28)

These are solutions, but they do not have the unitary form e�im: (A29)

Indeed, the boost L01 ¼ �i"ðxÞ@ is Hermitian only for
the e�im basis; it is not Hermitian for the ðsinh; coshÞ or
e� basis. Therefore, such excited states cannot be in-
cluded in the spectrum if unitarity is imposed from the
beginning as was done in this section.

We emphasize that the oscillator states �a0j0i, �a1j0i are
excluded for two reasons. First, they are not in a unitary
representation of the Lorentz group SOð1; 1Þ or of the
hidden symmetry group SUð1; 1Þ; second they are not
normalizable according to the square integrable norm de-
fined above because their norm diverges for the  integralR1
�1 dðsinhÞ2 ¼ 1, etc. It is important to emphasize that

the square integrable norm above is different than the Fock
space norm. On that issue note that �a0j0i, �a1j0i are normal-
izable if one uses the definition of the norm in the non-
unitary Fock space of Sec. III; however this admits
negative as well as positive norms.

Following the oscillator approach in position space we
obtain square integrable normalizable states only for the
singlets as follows. We compute �a � �a and note that it is

independent of ,

�a � �a ¼ � �a0 �a0 þ �a1 �a1 ¼ 1

2

�
x� 1

x
� @x

�
ðx� @xÞ:

Therefore, ð �a � �aÞk creates -independent excited states,
which are Lorentz singlets. For k ¼ 1we can now compute
the oscillator state in Eq. (3.20). This gives

ð �a � �aÞhxj0i ¼ 1

2

�
x� 1

x
� @x

�
ðx� @xÞe�x2=2

¼ 2ðx2 � 1Þe�x2=2; (A30)

which is in agreement with Eq. (A18) for k ¼ 1,

c 1ðxÞ ¼ �e�x2=2L0
1ðx2Þ ¼ �e�x2=2ð1� x2Þ: (A31)

More generally, we can verify that the oscillator states ð �a �
�aÞkhxj0i reproduce the Laguerre polynomials

c kðxÞ � ð �a � �aÞkhxj0i (A32)
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¼
�
1

2

�
x� 1

x
� @x

�
ðx� @xÞ

�
k
e�x2=2 (A33)

� �ke
�x2=2L0

kðx2Þ: (A34)

These are certainly normalizable in x space, and have a
positive norm, so they are included in the positive norm
spectrum. This is in complete agreement with the results
for general d of Sec. III.

In the present approach the selection of the correct set of
states emerged automatically on the basis of normalizabil-
ity and unitarity of the Lorentz generator L01 with the
chosen norm of Eqs. (A10) and (A14). Of course, this
amounts to the same criterion of Sec. III.

However, in the present approach we have not seen so
far why only the vacuum state hxj0i must be kept. For this,
we apply the SUð1; 1Þ generators, such as �a0a1 or �a1a0 on
the states c �mðx; Þ, and note that this takes us out of the
unitary space eim as explained in Eqs. (A27)–(A29). This
means that the restriction to only the spacelike region, plus
unitarity, generally breaks the SUð1; 1Þ covariance of the
problem. This is like breaking symmetries via boundary
conditions. The covariance can be fully maintained only in
the vacuum state. Thus, if one is to seek solutions that are
consistent with SUð1; 1Þ covariance, then only the vacuum
state can satisfy this criterion. Again, this is in agreement
with the Fock space approach of Sec. III.
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