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We study five-dimensional supergravity on S1=Z2 with a physical Z2-odd vector multiplet, which yields

an additional modulus other than the radion. We derive four-dimensional effective theory and find

additional terms in the Kähler potential that are peculiar to the multi-moduli case. Such terms can avoid

tachyonic soft scalar masses at tree level, which are problematic in the single modulus case. We also show

that the flavor structure of the soft terms are different from that in the single modulus case when

hierarchical Yukawa couplings are generated by wave function localization in the fifth dimension. We

present a concrete model that stabilizes the moduli at a supersymmetry breaking Minkowski minimum

and show the low-energy sparticle spectrum.
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I. INTRODUCTION

Supersymmetry (SUSY) is one of the most promising
candidates for physics beyond the standard model. It solves
the gauge hierarchy problem in a sense that it stabilizes
large hierarchy between the Planck scale MPl � 1019 GeV
and the electroweak scale Mweak � 102 GeV under radia-
tive corrections. Especially the minimal supersymmetric
standard model (MSSM) predicts that the three gauge
couplings in the standard model are unified aroundMGUT ’
2� 1016 GeV, which suggests grand unified theory
(GUT). It also has a candidate for cold dark matter if the
R parity forbids decays of the lightest SUSY particle.
Besides, the existence of SUSY is predicted by the super-
string theory, which is a known consistent theory of quan-
tum gravity, together with extra spatial dimensions other
than the observed four-dimensional (4D) spacetime.

Since no SUSY particles have been observed yet, SUSY
must be spontaneously broken aboveMweak. Such effects in
the visible sector are summarized by the soft SUSY break-
ing parameters. Arbitrary values are not allowed for these
soft parameters because they are severely constrained from
the experimental results for the flavor changing processes.
This is the so-called SUSY flavor problem.

Models with extra dimensions have been investigated in
a large number of articles since the possibility was pointed
out that the gauge hierarchy problem is solved by the
introduction of extra dimensions [1,2]. Extra dimensions
can play many other important roles even in the case that
the gauge hierarchy problem is solved by SUSY. For
instance, they can generate the hierarchy among quarks
and leptons by localized wave functions in extra dimen-
sions [3]. In fact, SUSY extra-dimensional models have
attracted much attention as candidates for physics beyond
the standard model.

In many works on extra-dimensional models, the size
and shape of extra-dimensional compact space are treated
as given parameters of the models. However, they should
be considered as dynamical variables called themoduli and
should be stabilized to some finite values by the dynamics.
In order to discuss the moduli stabilization in SUSYextra-
dimensional models, we have to work in the context of
supergravity (SUGRA). The moduli belong to chiral mul-
tiplets when a low-energy effective theory below the com-
pactification scale is described as 4D SUGRA. Vacuum
expectation values (VEVs) of the moduli determine quan-
tities in the 4D effective theory such asMPl, the gauge and
Yukawa couplings. Moduli stabilization is also quite rele-
vant to the soft SUSY breaking terms because moduli
multiplets generically couple to the visible sector in the
effective theory, and their F-terms are determined by the
scalar potential that stabilizes the moduli themselves.
Five-dimensional (5D) SUGRA compactified on an or-

bifold S1=Z2 is the simplest setup for SUSY extra-
dimensional models and has many interesting features
which are common among them. Furthermore, it has an
off-shell description that makes the SUSY structure mani-
fest and also allows us to deal with the actions in the bulk
and at the orbifold boundaries independently [4–6]. There
is another advantage of 5D SUGRA models, that is, the
explicit calculability of 4D effective theory. This is in
contrast to the superstring models whose 4D effective
theories are complicated and difficult to be derived explic-
itly. On the other hand, the 4D effective theory of 5D
SUGRA models can be easily calculated by a method
which we call the off-shell dimensional reduction [7].
This is based on the N ¼ 1 superspace1 description [8,9]
of 5D conformal SUGRA and developed in subsequent
studies [10,11]. This method has the advantage that N ¼
1 off-shell SUSY structure is kept during the derivation of
4D effective theory. Furthermore, this method can be ap-

*abe@yukawa.kyoto-u.ac.jp
†sakamura@riken.jp 1N ¼ 1 SUSY denotes four supercharges in this paper.

PHYSICAL REVIEW D 79, 045005 (2009)

1550-7998=2009=79(4)=045005(16) 045005-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.045005


plied to general 5D SUGRA models. For example, we
analyzed some class of 5D SUGRA models by using this
method, including the SUSY extension of the Randall-
Sundrum model [12] and the 5D heterotic M theory [13]
as special limits of the parameters [14]. The effective
theory approach makes it easy to discuss the moduli stabi-
lization in these models.

In 5D models, there is only one modulus that originates
from the extra dimension, that is, the radion. Most works
dealing with 5D SUSY models assume that it belongs to a
chiral multiplet as the real part of its scalar component
(see, e.g., Ref. [15]). However, this is only true for models
that have no zero mode for the scalar component of a 5D
vector multiplet. If there exist such zero modes in 4D
effective theory, the radion must be mixed with them to
form a chiral multiplet. In this sense, those zero modes are
on equal footing with the radion,2 and thus we also call
them moduli in this paper. They actually correspond to
shape moduli of the internal compact manifold when the
5D SUGRA model is the effective theory of heterotic M
theory compactified on a Calabi-Yau three-fold [13]. In this
paper, we will consider 5D SUGRAwith multi-moduli and
investigate its effective theory, focusing on the flavor
structure of soft SUSY breaking parameters. Such flavor
structure was studied in Ref. [16] in the single modulus
case. The main results there are the following. First, the
soft scalar masses tend to be tachyonic at tree level. This
problem can be solved by sequestering the SUSY breaking
sector from the visible sector because the quantum effects
dominate over the tree-level contribution in such a case.
However, the generation of the Yukawa hierarchy and the
sequestering of the SUSY breaking sector cannot be
achieved simultaneously if they are both realized by local-
ized wave functions in the fifth dimension.

The essential difference from the single modulus case
appears in the Kähler potential in 4D effective action. This
difference comes from contributions mediated by the
Z2-odd N ¼ 1 vector multiplets. Although they have no
zero modes and do not appear in effective theory, the
effective Kähler potential is modified after they are inte-
grated out. We show that this contribution can save prob-
lems in the single modulus case, which are mentioned
above.

In the multi-moduli case, it is generically difficult to
explicitly calculate wave functions in the fifth dimension
for 4D modes because the mode equations are complicated
coupled equations. This makes it hard to derive 4D effec-
tive theory by the conventional Kaluza-Klein (KK) dimen-
sional reduction. In the off-shell dimensional reduction,
however, 4D effective theory is obtained without calculat-
ing wave functions explicitly. This is also one of the
advantages of our method.

Moduli stabilization and SUSY breaking are discussed
in a specific model. We consider a situation where SUSY is
broken by the F-term of one chiral multiplet X in the
effective theory. By utilizing a technique developed in
Ref. [17], we find a vacuum where moduli are stabilized
properly and the F-term ofX is certainly a dominant source
of SUSY breaking. We also examine the flavor structure of
soft SUSY breaking parameters at Mweak in this model by
using the renormalization group equations (RGEs).
The paper is organized as follows. In Sec. II, we give a

brief review of our method to derive 4D effective theory of
5D SUGRA on S1=Z2. In Sec. III, we discuss generic
properties of the soft SUSY breaking parameters in the
multi-moduli case. In Sec. IV, moduli stabilization and
SUSY breaking are discussed in a specific model, and
soft SUSY breaking parameters at Mweak are evaluated
by numerical calculation. Section V is devoted to the
summary. In Appendix A, we comment on how the
Z2-odd part of the 5DWeyl multiplet appears in 5D action.
A detailed derivation of the effective Kähler potential is
provided in Appendix B.

II. 4D EFFECTIVE THEORY WITH MULTI-
MODULI

In this section we briefly review off-shell dimensional
reduction [7] and derive 4D effective action of 5D SUGRA
compactified on an orbifold S1=Z2 with an arbitrary norm
function. The 5D metric is assumed to be

ds2 ¼ e2�ðyÞg��dx
�dx� � ðey4dyÞ2; (2.1)

where�, � ¼ 0, 1, 2, 3, and e�ðyÞ is a warp factor, which is
a function of only y and determined by the dynamics. We
take the fundamental region of the orbifold as 0 � y �
�R, where R is a constant.3

A. N ¼ 1 off-shell description of 5D SUGRA action

Our formalism is based on 5D conformal SUGRA for-
mulation in Refs. [5,6]. 5D superconformal multiplets
relevant to our study are the Weyl multiplet EW , vector
multiplets VI, and hypermultiplets Hâ, where I ¼
1; 2; � � � ; nV and a ¼ 1; 2; � � � ; nC þ nH. Here nC and nH
are the numbers of compensator and physical hypermul-
tiplets, respectively. These 5D multiplets are decomposed
into N ¼ 1 superconformal multiplets [6] as EW ¼
ðEW; L

�; VEÞ, VI ¼ ðVI;�IÞ, and Ha ¼ ð�2a�1;�2aÞ,
where EW is the N ¼ 1 Weyl multiplet, VE is an N ¼ 1
real general multiplet whose scalar component is ey

4, VI is

an N ¼ 1 vector multiplet, and �I, �â (â ¼
1; 2; � � � ; 2ðnC þ nHÞ) are chiral multiplets. An N ¼ 1

2In fact, the radion is regarded as a zero mode for the scalar
component of the graviphoton vector multiplet in the off-shell
5D SUGRA description.

3In principle, R has nothing to do with the radius of the
orbifold r, which is given by proper length along the fifth
coordinate.
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complex general multiplet L� (�: spinor index) in EW

consists of Z2-odd components and is irrelevant to the
following discussion (see Appendix A). Thus we neglect
its dependence of the 5D action in the following.

The 5D SUGRA action can be written in terms of these
N ¼ 1 multiplets [8,9]. Then we can see that VE has no
kinetic term.4 After integrating VE out, the 5D action is
expressed as [11]

L ¼ � 1

4

�Z
d2�N IJð�ÞW IW J þ H:c:

�
þ � � �

� 3e2�
Z

d4�N 1=3ðV Þfdâb̂ ��b̂ðe�2igtIV
I Þâĉ�ĉg2=3

� e3�
�Z

d2��âdâ
b̂�b̂ ĉð@y � 2igtI�

IÞĉ
d̂
�d̂ þ H:c:

�

þ X
#¼0;�

L#�ðy� #RÞ; (2.2)

where dâ
b̂ ¼ diagð12nC ;�12nH Þ and �â b̂ ¼ i�2 � 1nCþnH .

Here �2 acts on each hypermultiplet ð�2a�1;�2aÞ.N is a
cubic polynomial called the norm function, which is de-
fined by

N ðXÞ � CIJKX
IXJXK: (2.3)

A real constant tensor CIJK is completely symmetric for
the indices and N IJðXÞ � @2N =@XI@XJ. The superfield

strength W I and V I � �@yV
I þ�I þ ��I are gauge-

invariant quantities. The generators tI are anti-Hermitian.
The ellipsis in (2.2) denotes supersymmetric Chern-
Simons terms that are irrelevant to the following discus-
sion. The boundary Lagrangian L# (# ¼ 0, �) can be
introduced independently of the bulk action. Note that
(2.2) is a shorthand expression for the full SUGRA action.
We can always restore the full action by promoting the d4�
and d2� integrals to the D- and F-term action formulae of
the N ¼ 1 conformal SUGRA formulation [18], which are
compactly listed in Appendix C of Ref. [6].

The vector multiplets VI are classified into ðVI0 ;VI00 Þ by
their orbifold parities so that VI0 (I0 ¼ 1; 2; � � � ; n0V) and
VI00 (I00 ¼ n0V þ 1; � � � ; nV) are odd and even, respectively.
As for the hypermultiplets ð�2a�1;�2aÞ, we can always
choose the orbifold parities as listed in Table I by using
SUð2ÞU, which is an automorphism in the superconformal
algebra.

As explained in Ref. [7], n0V moduli come out from�I0 in
4D effective theory. In the case of n0V ¼ 1, the correspond-

ing modulus is identified with the radion multiplet. The 4D
massless gauge fields, such as the standard model gauge

fields, come out from VI00 . For a gauge multiplet of a non-
Abelian gauge group G, the indices I00 and J00 run over
dimG values andN I00J00 are common for them. The index a
for hypermultiplets are divided into irreducible represen-
tations of G. In the following we consider a case that n0V ¼
2 and nC ¼ 1 as the simplest case with multi-moduli. An
extension to the cases that n0V > 2 is straightforward.
In 5D SUGRA, every mass scale in the bulk action is

introduced by gauging some of the isometries on the hyper-

scalar manifold5 by some vector multiplets VI0 . For ex-
ample, the bulk cosmological constant is induced when the
compensator multiplet ð�1;�2Þ is charged, and a bulk
mass parameter for a physical hypermultiplet is induced

when it is charged for VI0 . Of course, we can also gauge

some of the isometries by VI00 . This leads to the usual
gauging for chiral multiplets by a 4D massless gauge
multiplet in 4D effective theory. In the following we will

omit theVI00 dependence of the action except for the kinetic
terms because it does not play a significant role in the
procedure of the off-shell dimensional reduction and can
be easily restored in 4D effective action. In this paper we
consider a case that only the physical hypermultiplets

ð�2a�1;�2aÞ (a ¼ 2; � � � ; nH þ 1) are charged for VI0

(I0 ¼ 1; , 2). This corresponds to a flat background geome-
try of 5D spacetime. We assume that all the directions of
the gauging are chosen to �3 direction for ð�2a�1;�2aÞ
since gauging along the other directions mixes �2a�1 and
�2a, which have opposite parities. Namely, the generators
and gauge couplings are chosen as

ðigtI0 Þâb̂ ¼ �3 � diagð0; c2I0 ; c3I0 ; � � � ; cðnHþ1ÞI0 Þ; (2.4)

where �3 acts on each hypermultiplet ð�2a�1;�2aÞ, and
caI0 (a ¼ 2; � � � ; nH þ 1) are gauge coupling constants for

VI0 .

Then, after rescaling chiral multiplets by a factor e3�=2,
we obtain

TABLE I. The orbifold parities for N ¼ 1 multiplets.

VI0 �I0 VI00 �I00 �2a�1 �2a

� þ þ � � þ

4This does not mean that ey
4 is an auxiliary field. It is also

contained in �I (I ¼ 1; 2; � � � ; nV), which have their own kinetic
terms.

5The hyperscalar manifold is USpð2; 2nHÞ=USpð2Þ �
USpð2nHÞ for nC ¼ 1, and SUð2; 1Þ=SUð2Þ �Uð1Þ for nC ¼ 2.
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L ¼ � 1

4

�Z
d2�N IJð�ÞW IW J þ H:c:

�
þ � � � � 3

Z
d4�N 1=3ðV Þ

�
j�1j2 þ j�2j2 � XnHþ1

a¼2

ð ��2a�1e�2ca�V�2a�1

þ ��2ae2ca�V�2aÞ
�
2=3 � 2

�Z
d2�

�
�1@y�

2 � XnHþ1

a¼2

�2a�1ð@y þ 2ca ��Þ�2a

�
þ H:c:

�

þ X
#¼0;�

�Z
d2�ð�2Þ2Wð#Þð�̂2aÞ þ H:c:

�
; (2.5)

where ca � V � P
2
I0¼1 caI0V

I0 and �̂2a � �2a=�2. For
simplicity, we have introduced only superpotentials Wð#Þ
in the boundary Lagrangians. The hypermultiplets appear
in Wð#Þ only through �̂2a because physical chiral multip-
lets must have zero Weyl weights in N ¼ 1 conformal
SUGRA [18] and �2a�1 vanish at the boundaries due to
their orbifold parities.

B. 4D effective action

Following the procedure explained in Sec. 3 of Ref. [7],
we can derive the 4D effective action. First, we remove all
�I from the bulk action by 5D gauge transformation. Since

�I0 are even under the orbifold parity and thus have zero

modes, the gauge transformation parameters �I0 must be
discontinuous at one of the boundaries. In the notation of

Ref. [7], �I0 are discontinuous at y ¼ �R. The gaps cor-

respond to zero modes for �I0 . Such zero modes are called

moduli TI0 in this paper and are defined by6

TI0 � 2
Z �R

0
dy�I0 ðyÞ: (2.6)

Namely,

lim
	!þ0

�I0 ðy ¼ �R� 	Þ ¼ �1
2T

I0 ; (2.7)

which means

lim
	!þ0

~VI0 ðy ¼ �R� 	Þ ¼ �ReTI0 ; (2.8)

where ~VI0 are the N ¼ 1 vector multiplets after the gauge

transformation. Since �I0 are continuous at the other

boundary (y ¼ 0), ~VI0 obey ordinary Dirichlet boundary
conditions there,

~V I0 ðy ¼ 0Þ ¼ 0: (2.9)

Next we neglect the kinetic terms for parity-odd N ¼ 1
multiplets because they do not have zero modes which are
dynamical below the compactification scale. Then the
parity-odd multiplets play a role of Lagrange multipliers
and their equations of motion extract zero modes from the

parity-even multiplets.7 In fact, ~VI00 ,�2, and �̂2a become y
independent and are identified with 4D zero modes after
the parity-odd fields are integrated out. By performing the

y-integral, the following expression is obtained:

Lð4DÞ ¼ � 3

4

�Z
d2�CI0J00K00TI0 ~W

J00 ~W
K00 þ H:c:

�

� 3
Z

d4�j
j2
�Z �R�	

0
dyN̂ 1=3ð�@y ~VÞ

�
�
1� XnHþ1

a¼2

e2ca� ~V j�̂2aj2
�
2=3

�

þ
�Z

d2�
3fWð0Þð�̂Þ þWð�Þðe�ca�T�̂Þg þ H:c:

�
;

(2.10)

where
 � ð�2Þ2=3 is the 4D chiral compensator multiplet,

and N̂ is a truncated function of the norm function defined
by

N̂ ðXÞ � CI0J0K0XI0XJ0XK0
: (2.11)

Notice that ~VI0 (I0 ¼ 1, 2) still have y dependence while the
other fields are now y independent. In the single modulus
case (i.e., n0V ¼ 1), the y integral in (2.10) can be easily
performed because the integrand becomes a total derivative
for y [11]. On the other hand, in the multi-moduli case (i.e.,

n0V � 2), ~VI0 must be integrated out by using their equa-
tions of motion [7]. To simplify the discussion, let us
assume that each hypermultiplet is charged for only one

of VI0 (I0 ¼ 1, 2). Namely, we can classify the physical

hypermultiplets �̂2a (a ¼ 2; � � � ; nH þ 1) into Qi (i ¼
1; 2; � � � ; n1) and S� (� ¼ 1; 2; � � � ; n2) so that Qi are
charged for V1 and S� are charged for V2. Here nH ¼
n1 þ n2. Then the parenthesis in the second line of (2.10) is
rewritten as�

1�Xn1
i¼1

e2ci
~V1 jQij2 �

Xn2
�¼1

e2c�
~V2 jS�j2

�
2=3

: (2.12)

Detailed calculations are summarized in Appendix B. The
result is

Lð4DÞ ¼ � 1

4

�Z
d2�

X
r

frðTÞ trðW rW rÞ þ H:c:

�

þ
Z

d4�j
j2�ðjQj2; jSj2;ReTÞ

þ
�Z

d2�
3WðQ; S; TÞ þ H:c:

�
; (2.13)

where the vector multiplets are summarized in matrix

6The normalization of TI0 is different from that in Ref. [7] by a
factor �.

7The effects of the parity-odd multiplet L� in the 5D Weyl
multiplet on effective theory are negligible because it couples to
matter multiplets only in derivative forms (see Appendix A).
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forms for the non-Abelian gauge multiplets and the index r indicates different gauge multiplets. Each function in (2.13) is
defined as

fr �
X2
I0¼1

krI0T
I0 ;

� � �3N̂ 1=3ðReTÞ
�
1�X

i

1� e�2ci Re T
1

3ciReT
1

jQij2 �
X
�

1� e�2c� Re T2

3c� ReT
2

jS�j2
�

þX
i;j

�ijjQij2jQjj2 þ
X
i;�

�i�jQij2jS�j2 þ
X
�;�

���jS�j2jS�j2 þOð�̂6Þ;

W � Wð0Þð�̂Þ þWð�Þðe�ca�T�̂Þ; (2.14)

where krI0 are constants determined from CI0J00K00 , �̂ ¼ Qi or S�, and

�ij � N̂ 4=3N̂ 11

3N̂ N̂ 11 � 2N̂ 2
1

1� e�2ðciþcjÞ Re T1

2ðci þ cjÞReT1
� N̂ 1=3N̂ 2

1

3N̂ N̂ 11 � 2N̂ 2
1

ð1� e�2ci Re T
1Þð1� e�2cj Re T

1Þ
6cicjðReT1Þ2 ;

�i� � N̂ 4=3N̂ 12

3N̂ N̂ 12 � 2N̂ 1N̂ 2

1� e�2ci Re T
1�2c� Re T2

ci ReT
1 þ c� ReT

2
� N̂ 1=3N̂ 1N̂ 2

3N̂ N̂ 12 � 2N̂ 1N̂ 2

ð1� e�2ci Re T
1Þð1� e�2c� Re T2Þ

3cic� ReT
1 ReT2

;

��� � N̂ 4=3N̂ 22

3N̂ N̂ 22 � 2N̂ 2
2

1� e�2ðc�þc�Þ Re T2

2ðc� þ c�ÞReT2
� N̂ 1=3N̂ 2

2

3N̂ N̂ 22 � 2N̂ 2
2

ð1� e�2c� Re T2Þð1� e�2c� Re T2Þ
6c�c�ðReT2Þ2 : (2.15)

Here N̂ I0 ðXÞ � dN̂ =dXI0 and N̂ I0J0 ðXÞ �
d2N̂ =dXI0dXJ0 . The arguments of N̂ , N̂ I0 , N̂ I0J0 are
understood as ðReT1;ReT2Þ.

When all the gauge couplings ci, c� vanish, the exact
form of � is obtained as (B20). We can easily check that
the above result is consistent with (B20) by taking the limit
of ci, c� ! 0.

Some of the non-Abelian gauge multiplets may con-
dense and generate superpotential terms at low energies,
which have a form of expf�arfrðTÞg where ar ¼ Oð4�2Þ,
because the gauge kinetic function fr is proportional to the
inverse square of the gauge coupling [see Eq. (4.3).]

Before ending this section, we note that there is no
‘‘radion chiral multiplet’’ in the multi-moduli case. In 5D
conformal SUGRA, we have to fix the extra symmetries by
imposing gauge-fixing conditions in order to obtain

Poincaré supergravity.8 The dilatation symmetry is fixed
by a condition:

N ðMÞ ¼ CIJKM
IMJMK ¼ 1; (2.16)

in the unit of 5D Planck mass, where MI is a real scalar
component of VI and is related to a scalar component of�I

by MI � 2Re�Ij�¼0=ey
4. This means that the size of the

orbifold �r is determined by

�r �
Z �R

0
dy ey

4 ¼ 2
Z �R

0
dyN 1=3ðRe�Þj�¼0

’ N̂ 1=3ðReTÞj�¼0: (2.17)

The last equation holds when the background geometry of
5D spacetime is flat and the backreaction to the geometry
due to 5D scalar field configurations is negligible. In the

single modulus case (i.e., N ¼ N̂ ¼ ðM1Þ3), the above
relation is reduced to

�r ¼ ReT1j�¼0; (2.18)

which means that T1 is the radion multiplet. In the multi-
moduli case, on the other hand, we cannot redefine a chiral
multiplet whose scalar component gives the size of the
orbifold by holomorphic redefinition. It is given by a
combination of VEVs of all the moduli. In other words,
the radion mode cannot form an N ¼ 1 chiral multiplet
without mixing with the other moduli in the multi-moduli
case.

III. SOFT SUSY BREAKING TERMS

A. Flavor structure of soft parameters

In this section we discuss the flavor structure of soft
SUSY breaking terms. We introduce a chiral multiplet X
that is relevant to SUSY breaking in addition to the MSSM
field content which consists of gauge multiplets Vr (r ¼ 1,
2, 3) and matter chiral multiplets Sl, where l runs over
quark, lepton, and Higgs multiplets. Each chiral multiplet
Sl can be either Qi or S� in (2.14). We identify X as one of

8In the procedure of the off-shell dimensional reduction, we do
not impose such gauge-fixing conditions to keep the N ¼ 1 off-
shell structure. They should be imposed after the 4D effective
action is obtained.

FLAVOR STRUCTURE WITH MULTI-MODULI IN 5D . . . PHYSICAL REVIEW D 79, 045005 (2009)

045005-5



Qi without loss of generality. We take the unit of 4D Planck
mass, i.e., MPl ¼ 1, in the rest of this paper.

The Yukawa couplings among Sl can be introduced only
at orbifold boundaries due to N ¼ 2 SUSY in the bulk.
Here we assume that they exist only at one boundary (y ¼
0), for simplicity. Namely, we introduce the following
boundary superpotential:

Wð0Þ
yukawa ¼

X
a;b;c

�abc�̂
2a�̂2b�̂2c; (3.1)

where �abc are constants.
9

Here we focus on the gaugino masses Mr (r ¼ 1, 2, 3),
the scalar massesml, and the A parameters Almn, which are
defined as

L soft ¼ �X
l

m2
l j~Slj2 � 1

2

�X
r

Mr
~�r ~�r

þ 1

6

X
l;m;n

ylmnAlmn
~Sl
~Sm

~Sn þ H:c:

�
; (3.2)

where ~Sl, ~�r are canonically normalized sfermions and
gauginos, and ylmn are the physical Yukawa coupling con-
stants for canonically normalized fields. These soft SUSY
breaking terms are generated through the mediation by

moduli TI0 (I0 ¼ 1, 2) as well as the direct couplings to
the SUSY breaking superfield X.

Let us rewrite � in (2.14) as

� ¼ �0ðReTÞ þ
X
l

YlðReT; jXj2ÞjSlj2 þOðS4Þ; (3.3)

where

�0ðReTÞ � �3N̂ 1=3ðReTÞ; YlðReT; jXj2Þ
� N̂ 1=3ðReTÞZlðReT1Þ

þ�lXðReTÞjXj2 þOðjXj4Þ; (3.4)

with

ZlðReTÞ �
8<
:

1�e�2cl Re T1

cl Re T
1 ; when Sl 2 fQig

1�e�2cl Re T2

cl Re T2 ; when Sl 2 fS�g
(3.5)

and

�lX¼
(
�i¼X;j¼lþ�i¼l;j¼X¼2�i¼X;j¼l whenSl2fQig
�i¼X;�¼l whenSl2fS�g :

(3.6)

Then the physical Yukawa couplings and the soft parame-
ters in (3.2) are expressed in terms of YlðReT; jXj2Þ as
[19,20]

ylmn � �lmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YlYmYn

p ; Mr � FA@A lnðRe frÞ;

m2
l � �FA �F

�B@A@ �B lnYl; Almn � �FA@A lnðYlYmYnÞ;
(3.7)

where indices A, B run over all the chiral multiplets. The
hierarchical structure of the Yukawa couplings is realized
by varying cl in an Oð1Þ range (see, e.g., [21,22]). The
small fermion masses for Sl are obtained by taking cl
negative so that Zl are large enough.10 For the Higgs
multiplets, cl is taken to be positive in order to realize
the large top quark mass.
Let us assume that FX is a dominant source of SUSY

breaking, i.e.,

jFXj 	 jFT1 j; jFT2 j: (3.8)

This is indeed the case in the model considered in Sec. IV.
Then the soft scalar masses are given by

m2
l ’ �jFXj2 @X@ �XYl

Yl

’ �jFXj2 �lX

N̂ 1=3Zl

: (3.9)

We have assumed that jXj 
 1 in order for the expansion
of Yl in (3.4) to be valid, which is also realized in the model
in Sec. IV.
In the single modulus case, �lX is calculated as

�lX ¼ N̂ 1=3ðReT1Þ 1� e�2ðclþcXÞ Re T1

3ðcl þ cXÞReT1

¼ 1� e�2ðclþcXÞ Re T1

3ðcl þ cXÞ : (3.10)

Notice that this is always positive11 irrespective of the
values of cl and cX. This means that the soft scalar masses
are tachyonic [16]. The tree-level contribution (3.9) is

exponentially suppressed when e�2cl Re T
1 	 1 and

e�2cX Re T1 
 1, which corresponds to the case that the
visible matter multiplets Sl and the SUSY breaking mul-
tiplet X are localized around opposite boundaries. In such a
case, quantum effects to the soft scalar masses become
dominant and may save the tachyonic masses at tree level.
However, the large top quark mass cannot be realized in
this case because the top Yukawa coupling is suppressed by
large Yl.
This problem can be evaded in the multi-moduli case

because �lX is modified. We explain the situation by two
examples of the norm function. In the following we assume

that cX > 0, i.e., e�2cX Re TI0 
 1.

9In general, �abc can depend on X, but we do not consider this
possibility, for simplicity.

10In general, ReTI0 can be negative as long as N ðReTÞ is
positive. However, we assume that ReTI0 > 0 (I0 ¼ 1, 2) in the
following.
11Since T1 is the radion in this case, ReT1 must be stabilized at
a positive value.
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Example 1:

N̂ ðXÞ ¼ ðX1Þ3 þ ðX2Þ3 (3.11)

In the case that Sl 2 fQig, the first term of �lX is positive

while the second term is negative since 3N̂ N̂ 11 �
2N̂ 2

1 > 0. For the first and second generations,

e�2cl Re T
1 	 1 to realize the small fermion masses. Then

the second term dominates and the soft squared masses
become positive. Furthermore, the soft masses are almost
degenerate because the cl dependence are cancelled in
(3.9) when the second term of �lX dominates. For the
top quark, on the other hand, we have to take cl such that

e�2cl Re T
1
<� Oð1Þ in order to realize the large top quark

mass. Thus �lX is positive, which leads to the tachyonic
stop masses.

In the case that Sl 2 fS�g, the sign of �lX becomes
opposite because of the identity (B19). Therefore the stop
masses are now nontachyonic.

In summary, if we take Sl 2 fS�g for the top quark
multiplets and Sl 2 fQig for the other multiplets, all the
soft masses are nontachyonic and they are almost degen-
erate for the first two generations. Since the severest con-
straints on soft masses come from the flavor changing
processes for the first two generations, this setup can solve
the SUSY flavor problem.

Example 2:

N̂ ðXÞ ¼ ðX1Þ2X2 (3.12)

In this case, the situations for Sl 2 fQig and Sl 2 fS�g in
Example 1 are interchanged since now 3N̂ N̂ 11 �
2N̂ 2

1 < 0. In summary, we can construct a phenomeno-
logically viable model if we take Sl 2 fQig for the top
quark multiplets and Sl 2 fS�g for the other multiplets. We

comment on the possibility to choose N̂ such that �lX is

negative for any values of cl and cX. From (2.15), such N̂
must satisfy N̂ 11 < 0 and 3N̂ N̂ 11 � 2N̂ 2

1 > 0 in the

case that Sl 2 fQig, or N̂ 12=ð3N̂ N̂ 12 � 2N̂ 1N̂ 2Þ< 0

and N̂ 1N̂ 2=ð3N̂ N̂ 12 � 2N̂ 1N̂ 2Þ> 0 in the case that
Sl 2 fS�g. However, the two conditions are incompatible
in either case. Therefore the first two generations and the
top quark multiplets must be charged for different gauge

multiplets VI0 in order to avoid tachyonic soft masses.
As for the A parameters, the contribution from FX is

negligible because it accompanies with the VEV of �X,
which is assumed to be tiny. Thus the dominant contribu-

tions come from FTI0
(I0 ¼ 1, 2) and are, in general, flavor

dependent. The resultant A parameters are much smaller
than the soft masses ml due to the assumption (3.8).
Furthermore, the flavor dependence of the A parameters

can be small if there is a hierarchy between FT1
and FT2

.

For instance, let us assume that jFT1 j 	 jFT2 j and Yl are
almost independent of the first modulus T1. These condi-
tions are satisfied for the first two generations in Example 2

[see Eq. (4.29)]. Then the A parameters are estimated as

Almn ’ �FT1

�
@T1Yl

Yl

þ @T1Ym

Ym

þ @T1Yn

Yn

�

’ �3FT1
@T1fN̂ 1=3ðReTÞg ¼ �FT1 N̂ 1

2N̂ 2=3
ðReTÞ;
(3.13)

which are almost independent of the flavor indices.
The gaugino masses are estimated to be the same order

as the A parameters because the gauge kinetic functions fr
only depend on the moduli TI0 . The situation can be
changed by introducing gauge kinetic functions that de-
pend on X at the boundaries.
The soft SUSY breaking parameters obtained by (3.7)

should be understood as those at the compactification

scale, which is close to the Planck scaleMPl when ReT
I0 ¼

Oð1Þ. Thus we have to evaluate the soft parameters at
Mweak obtained by RGEs in order to check whether the
tachyonic sfermion mass problem and the SUSY flavor
problem are really solved or not. We will discuss this issue
by numerical calculations in a specific model in Sec. IVC.

B. Interpretation of �lX from 5D viewpoint

The essential difference between the single and multi-
moduli cases appears in the form of �lX. Especially the
second term of�lX in the multi-moduli case has a peculiar
flavor structure. Here we give an interpretation of it from
the 5D viewpoint.
The condition under which the second term of �lX

dominates, i.e., e�2cl Re T
I0 	 1 and e�2cX Re TI0 
 1, cor-

responds to a situation in which the zero modes Sl and X
are geometrically separated from each other. In fact, in
such a situation, the contact interactions �lX are exponen-
tially suppressed in the single modulus case [16]. This
suggests that in the multi-moduli case, there exist some
heavy modes that couple to both Sl and X, which induce
contact interactions after they are integrated out. Such
heavy modes are identified with the parity-odd vector

multiplets VI0 .
Specifically, the dominant part of �lX when

e�2cl Re T
I0 	 1 and e�2cX Re TI0 
 1 comes from diagrams

depicted in Fig. 1.
The internal line in this figure corresponds to the nth KK

mode of VI0 , which should be integrated out. The effective

gauge couplings gðnÞl and gðnÞX are defined as

gðnÞl ¼ cl
Z �R

0
dyfflðyÞg2fðnÞV ðyÞ;

gðnÞX ¼ cX
Z �R

0
dyffXðyÞg2fðnÞV ðyÞ;

(3.14)

where flðyÞ, fXðyÞ, and fðnÞV ðyÞ are wave functions in the

extra dimension for Sl, X, and V
I0ðnÞ, respectively. Thus the

contribution in Fig. 1 disappears when either of cl or cX
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vanishes. In fact, we can easily check from (2.15) that �lX

is reduced to

�lX ¼ N̂ 1=3ðReTÞ 1� e�2cX Re T1

3cX ReT
1

; (3.15)

when cl ¼ 0. This is the same form as the single modulus
case (3.10) with cl ¼ 0. Namely, the additional contribu-
tion corresponding to Fig. 1 disappears.

Now let us consider the flavor dependence of the con-
tribution from Fig. 1, which appears through the cl depen-

dence of gðnÞl . The wave function flðyÞ has an exponential

profile whose power is proportional to cl. We focus on the

situation in which e�2clRe T
I0 	 1. Then flðyÞ is localized

around y ¼ �R. In contrast, fðnÞV vanishes at the boundaries

because VI0 are odd under the orbifold parity, which means

that fðnÞV behaves as a linear function around y ¼ �R. Thus

the cl dependence of g
ðnÞ
l in (3.14) is estimated as Oð1=clÞ

when fðnÞl is localized around y ¼ �R strongly enough.

Therefore the flavor dependence of the effective coupling

gðnÞl is cancelled and the contribution from Fig. 1 becomes

flavor universal.
Finally, we comment on the physical degrees of freedom

of the vector multiplets that contribute to�lX. Suppose n
0
V

vector multiplets VI0 ¼ ðVI0 ;�I0 Þ (I0 ¼ 1; � � � ; n0V). Then
n0V moduli TI0 come out from �I0 , and the remaining

degrees of freedom in �I0 are absorbed into VI0 as longi-
tudinal components of the massive KK vector multiplets.

However, not all VI0 are independent degrees of freedom.
For example, only n0V � 1 gauginos are independent be-
cause of the gauge-fixing condition for S supersymmetry in
the superconformal algebra, that is,12

N̂ I0 ðMÞ�I0 ¼ 0; (3.16)

where MI0 and �I0 are the gauge scalars and gauginos. As

for the vector components of VI0 , one of their combinations
is identified with the graviphoton, which belongs to the 5D
SUGRA multiplet. It has been noticed that the 5D SUGRA
multiplet does not generate the contact interactions be-
tween Sl and X [23]. In fact, only n0V � 1 equations are

independent among the equations of motion for VI0 as we
can see from (3.24) of Ref. [7]. As a result, the number of

independent VI0 that contribute to�lX is n0V � 1. Therefore
the contribution from Fig. 1 exists only in the multi-moduli
case.

IV. MODULI STABILIZATION AND FLAVOR
STRUCTURE

In this section, we investigate stabilization of the moduli
and flavor structure of the soft SUSY breaking terms in a
specific model.

A. A model for the hidden sector

For the moduli stabilization and SUSY breaking, we
introduce the following boundary superpotentials in addi-
tion to the Yukawa couplings in (3.1):

Wð0Þ ¼ J0H þWð0Þ
SBð�Þ; Wð�Þ ¼ �J�H; (4.1)

where J0 and J� are constants,Wð0Þ
SB denotes terms relevant

for SUSY breaking, and H, �aSB 2 fS�g, where the index
aSB runs over hypermultiplets in the SUSY breaking sec-
tor. Then, including the nonperturbative effects such as
gaugino condensations, the 4D effective superpotential is
obtained as

W ¼ ðJ0 � J�e
�cHT

2ÞH þWð0Þ
SBð�Þ þWðnpÞ; (4.2)

where WðnpÞ denotes terms coming from the nonperturba-
tive effects and is assumed to have a form of

WðnpÞ ¼ c� Ae�aT1
; (4.3)

where A ¼ Oð1Þ, a ¼ Oð4�2Þ, and lnc�1 ¼ Oð4�2Þ. The
T1-dependent (constant) term originates from, e.g., a bulk
zero-mode (boundary) gaugino condensation. The effect of

the tadpole terms in Wð#Þ (# ¼ 0, �) is discussed in
Ref. [24] in the single modulus case, and they stabilize
the (radius) modulus at a supersymmetric Minkowski vac-
uum. We will see that the first term of (4.2) stabilizes T2

just like in the single modulus case. We can choose the
O’Raifeartaigh model [25] as the SUSY breaking sector

Wð0Þ
SB, for example. It is reduced to the Polonyi-type super-

potential after heavy modes are integrated out. Namely,
below the mass scale of the heavy modes �,

Wð0Þ
SBð�Þ ! �2

XX; (4.4)

where X is one of �aSB that remains at low energies. The
constant�X is supposed to be around the TeV scale. When
heavy modes are integrated out, the Kähler potential also
receives the following correction at one loop [26]:

�K ¼ �Zð1Þ

�2
jXj4; (4.5)

where Zð1Þ ¼ Oð1Þ is a constant.13

FIG. 1. Feynmann diagrams contributing to �lX in the multi-
moduli case. The index n labels the KK excitation number.

12To simplify the discussion, here we consider a case that there
are no VI00 , namely n0V ¼ nV .

13When the SUSY breaking sector is introduced both in Wð0Þ
and Wð�Þ, Zð1Þ depends on the moduli TI0 .
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Therefore the effective superpotential below� becomes

W ¼ ðJ0 � J�e
�cHT

2ÞH þ c� Ae�aT1 þ�2
XX þ � � � ;

(4.6)

where the ellipsis denotes irrelevant terms to moduli stabi-
lization and SUSY breaking, such as the Yukawa couplings
for the MSSM fields. From (2.14) and (4.5), the effective
Kähler potential K is

K ¼ �3 ln

�
��

3

�
þ �K

¼ � lnN̂ þ ZHðReT2ÞjHj2 þ ZXðReT1ÞjXj2

þX
l

ZlðReTÞjSlj2 � Zð1Þ

�2
jXj4 þ � � � ; (4.7)

where

ZH � 1� e�2cH Re T2

cH ReT2
; ZX � 1� e�2cX Re T1

cX ReT
1

: (4.8)

As we will see in the next subsection, the one-loop correc-
tion �K is necessary to obtain a small VEVof X.

B. Moduli stabilization and SUSY breaking

Now we search for a vacuum of the model by solving the
minimization condition for the scalar potential, which is
obtained by the formula

V ¼ eKfKA �BDAWD �B
�W � 3jWj2g; (4.9)

where DAW � WA þ KAW. The indices A, B run over all
the chiral multiplets in the effective theory, but it is enough
to take A, B ¼ T1, T2, H, X in the following calculations
since the MSSMmultiplets do not contribute to the moduli
stabilization or SUSY breaking. The lower index A of each
function denotes derivatives of it for A.

Following Refs. [16,17], let us define a ‘‘reference
point’’ which seems to be close to the genuine stationary
point of the scalar potential. We define the reference point
ðT1; T2; H; XÞj0 such that the following conditions are sat-
isfied there:

DT1W ¼ aAe�aT1 þ KT1W ¼ 0;

DT2W ¼ cHw�e
�cHT

2
H þ KT2W ¼ 0;

DHW ¼ J0 � J�e
�cHT

2 þ KHW ¼ 0;

VX ¼ 0:

(4.10)

Here we assume that

1>MH � cHJ�e
�cHT

2 j0 	 aAe�aT1 j0 ¼ Oð�2
XÞ;

ReT1j0;ReT2j0 ¼ Oð1Þ; jXjj0 
 1: (4.11)

From the first two conditions in (4.10), we obtain

Hj0 ¼ KT2

KT1

aAe�aT1

cHJ�e
�cHT

2

��������0
¼ O

�
�2

X

MH

�
;

Wj0 ¼ �K�1
T1 aAe

�aT1 j0 ¼ Oð�2
XÞ:

(4.12)

From the third condition,

J0 � J�e
�cHT

2 j0 ’ �ZH
�HWj0 ¼ O

�
�4

X

MH

�

 Oð�2

XÞ:
(4.13)

We have assumed that cH ¼ Oð1Þ> 0, i.e., ZH & Oð1Þ.
Thus, the values of the moduli at the reference point are
determined as

T1j0 ’ 1

a
ln
Að1� K�1

T1 aÞ
cþ�2

XX

��������0
; T2j0 ’ 1

cH
ln
J�
J0

:

(4.14)

The first equation is consistent with (4.11) since lnðA=cÞ ¼
Oð4�2Þ. The second equation is similar to the relation in
Ref. [24] if T2j0 is replaced by the VEV of the radion.
Besides, T2 and H have a large supersymmetric mass of
order OðMHÞ, just like the situation in Ref. [24].
From (4.9) and (4.10), we obtain

Vj0 ¼ eKfKX �XjDXWj2 � 3jWj2g
’ eKfZ�1

X j�Xj4 � 3jWj2g: (4.15)

Thus we can make Vj0 ¼ 0 by tuning �X as

j�Xj4 ’ 3ZXjWj2: (4.16)

This is consistent with the second equation in (4.12) when
cX > 0.
The value of Xj0 is determined by the last condition in

(4.10). Under the condition that Vj0 ¼ 0, VX at the refer-
ence point is estimated as

e�KVX ¼ @XK
X �XjDXWj2 þ KA �X@XDAWD �X

�W

þ KX �BDXW@XD �B
�W � 3 �WWX

’ @XK
X �XjDXWj2 þ KX �XDXW@XD �X

�W � 3 �WWX

’ 4j�Xj4Zð1Þ

�2Z2
X

�X � 2�2
X
�W: (4.17)

We have omitted the symbol j0. Therefore, we obtain

Xj0 ’ �2Z2
XW

2�2
XZ

ð1Þ

��������0
¼ Oð�2Þ: (4.18)

The last assumption in (4.11) can be satisfied by assuming
that � 
 MPl ¼ 1.
The true vacuum is represented by

hAi ¼ Aj0 þ �A; (4.19)

where A ¼ T1, T2, H, X. Since T2 and H have a large
mass, �T2 and �H are negligible [27] if we take MH as
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aroundMGUT or so.14 Thus T2 and H can be replaced with
their VEVs, which are equal to the values at the reference
point in the following calculation. Now we find a true
vacuum by solving the minimization conditions:

VT1 ¼ VX ¼ 0: (4.20)

We can evaluate the derivatives of the potential as

e�KVT1 ’ KT1 �T1 jWT1T1 j2j0� �T1 þ ��2
XK

T1 �TI0
K �TI0WT1T1 j0� �X

þ 3KT1 jWj2j0;
e�KVX ’ �2

XKT1 �Wj0�T1 þ�2
XK

TI0 �T1
K

TI0WT1T1 j0� �T1

þ 2�2
X
�W

�X

��������0
� �X: (4.21)

Here we have used (4.16) and

jXjj0 
 1; jWT1T1 j2 ¼Oða�2
XÞ	 jWj; jWT1 j ¼Oð�2

XÞ:
(4.22)

Using the relation followed from the first condition in
(4.10):

WT1T1 ¼ �a2Ae�aT1 ¼ aKT1W; (4.23)

we obtain by solving (4.20),

�T1 ’ � 3

a2KT1 �T1
KT1

��������0
;

�X ’ 3XðKT1 �T1
K �T1 þ KT1 �T2

K �T2Þ
2aKT1 �T1

��������0
:

(4.24)

Thus we can evaluate DAW (A ¼ T1, T2, H, X) as

DT1W ’ � 3W

aKT1 �T1

��������0
¼ O

�
�2

X

a

�
;

DT2W ’ � 3ð2KT1T2 � KT1KT2ÞW
a2KT1 �T1

KT1

��������0
¼ O

�
�2

X

a2

�
;

DHW ’ 0; DXW ’ �2
X:

(4.25)

The F-terms are calculated from these by the formula

FA ¼ �eK=2KA �BDBW.
In the case that the norm function is chosen as (3.11), the

inverse of the Kähler metric is

KA �B’

2f2ðReT1Þ3�ðReT2Þ3g
3ReT1 2ðReT1ÞðReT2Þ

2ðReT1ÞðReT2Þ 2f�ðReT1Þ3þ2ðReT2Þ3g
3ReT2

Z�1
H

Z�1
X

0
BBBB@

1
CCCCA:

(4.26)

Thus the F-terms are estimated as

FT1 ’ 3 �W

afðReT1Þ3 þ ðReT2Þ3g1=2 ¼ O
�
�2

X

a

�
;

FT2 ’ 9ðReT1Þ2ðReT2Þ �W
afðReT1Þ3 þ ðReT2Þ3g1=2f2ðReT1Þ3 � ðReT2Þ3g

¼ O
�
�2

X

a

�
;

FH ’ 0;

FX ’ � cX ��2
X ReT

1

fðReT1Þ3 þ ðReT2Þ3g1=2 ¼ Oð�2
XÞ; (4.27)

where we used the relation (4.16). Therefore, the relation
(3.8) holds in this model.
In the case that the norm function is chosen as (3.12), the

inverse of the Kähler metric becomes diagonal, i.e.,

KA �B ’ diagð2ðReT1Þ2; 4ðReT2Þ2; Z�1
H ; Z�1

X Þ; (4.28)

and the F-terms are estimated as

FT1 ’ 3 �W

aðReT1ÞðReT2Þ1=2 ¼ O
�
�2

X

a

�
;

FT2 ’ 3ðReT2Þ1=2 �W

a2ðReT1Þ3 ¼ O
�
�2

X

a2

�
;

FH ’ 0;

FX ’ � cX ��2
X

ðReT2Þ1=2 ¼ Oð�2
XÞ;

(4.29)

where we again used the relation (4.16). Thus (3.8) holds.

In this case, further hierarchies exist between FT1
and FT2

.
Finally, we comment that the above moduli stabilization

with hierarchical F-terms is motivated by a type IIB flux
compactification [28], where a size modulus is stabilized
by a nonperturbative effect, while complex structure mod-
uli are stabilized at a high scale by a flux induced super-
potential. In our model, the terms with J0 and J� in (4.2)
play a similar role to the flux induced superpotential if T1

and ðT2; HÞ are identified with the size modulus and the
shape moduli, respectively.

C. A model for the visible sector and sparticle spectrum

Now we study some phenomenological consequences
such as the hierarchical Yukawa matrices and the soft
SUSY breaking parameters. The visible (MSSM) sector
consists of

ðQi;Ui;DiÞ: quark supermultiplets ði ¼ 1; 2; 3Þ;
ðLi; EiÞ: lepton supermultiplets ði ¼ 1; 2; 3Þ;

ðH u;H dÞ: Higgs supermultiplets: (4.30)

As we saw in the previous subsection, the F-terms in the
SUSY breaking sector have a hierarchical structure. From
(4.27) or (4.29) with (4.16), we obtain14They are estimated as �T2, �H ¼ Oð�X=MHÞ.
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FT1

ReT1
’ 3m3=2

aReT1
¼ O

�
m3=2

4�2

�
;

FX ’ �
ffiffiffiffiffiffi
3

ZX

s
m3=2 ¼ Oðm3=2Þ;

(4.31)

and

FT2

ReT2
�
8<
:

FT1

ReT1 forN ðXÞ ¼ ðX1Þ3þðX2Þ3
1

4�2
FT1

ReT1 forN ðXÞ ¼ ðX1Þ2X2
; (4.32)

where m3=2 � eK=2Wj0 is the gravitino mass. For simplic-

ity, we have assumed thatWj0 and�X are real and positive.
These relations hold also in the case that VEVs of the

moduli take values of Oð10Þ as long as aReTI0 ¼
Oð4�2Þ (I0 ¼ 1, 2).

For numerical estimations in the following, we assume
that a ¼ T1j0 ¼ T2j0 ¼ 2�. We focus on the second case

in (4.32). Then contributions from FT2
can be neglected

due to the suppression factor 1=ð4�2Þ. We take MSB �
FT1

=ð2ReT1Þ as a reference scale of SUSY breaking. The
gravitino mass is then expressed as m3=2 ’ ð8�2=3ÞMSB.

We assume an approximate global Uð1ÞR symmetry that
is responsible for the dynamical SUSY breaking. We as-
sign RðXÞ ¼ 2, RðH uÞ ¼ RðH dÞ ¼ 1, RðQiÞ ¼
RðUiÞ ¼ RðDiÞ ¼ RðLiÞ ¼ RðEiÞ ¼ 1=2 where Rð�Þ is
the R charge of �, and assume that R symmetry is broken

only by the nonperturbative effects WðnpÞ. In this case, the
holomorphic Yukawa couplings and the �-term in the 4D
effective superpotential as well as the gauge kinetic func-
tions are independent of X. We further assume that the
Yukawa couplings and the �-term originate from only the
y ¼ 0 boundary. Then they are parametrized as

fr ¼ kr1T
1 þ kr2T

2;

WMSSM ¼ �H uH d þ �u
ijH uQiUj þ �d

ijH dQiDj

þ �e
ijH dLiEj; (4.33)

where r ¼ 1, 2, 3 for Uð1ÞY , SUð2ÞL, SUð3ÞC, respectively,
and kr1, kr2, �, �u;d;e

ij are constants. These constants are

understood as values at the compactification scale, which is
close to MPl. The constant kr2 is related to kr1 by the
condition that the three gauge couplings are unified to a
definite value at MGUT. In the following, we neglect the
RGE running between MPl and MGUT.

The hierarchical structure of the physical Yukawa cou-
plings ylmn defined in (3.7) are generated with certain
choices of V1 or V2 charges, cl, for the visible matter
multiplets Sl ¼ ðQi;Ui;Di;Li; Ei;H u;H dÞ, which ap-
pear nontrivially in the superspace wave functions Yl

shown in (3.4). In this case, as discussed previously, the
tachyonic sfermion masses would be avoided by suitably
gauging Sl by either the Z2-odd Uð1Þ vector multiplet V1

or V2. In order to obtain a realistic pattern of Yukawa
matrices without inducing tachyonic sfermion masses, we

adopt the gauging for quarks and leptons as (see Example 2
in Sec. III A)

Q i¼3; Ui¼3 2 fQig gauged by V1; (4.34)

Q i�3;Ui�3;Di;Li; Ei 2 fS�g gauged by V2; (4.35)

and employ a charge assignment given by Refs. [21,22],
that is,

cQi
ReT ¼ ð�4:5;�3; 3Þ;

cUi
ReT ¼ ð�7:5;�3; 3Þ;

cDi
ReT2 ¼ ð�4:5;�4:5;�3Þ;

cLi
ReT2 ¼ ð�4:5;�4:5;�1:5Þ;

cEi
ReT2 ¼ ð�6;�1:5;�1:5Þ;

(4.36)

where ReT in the first two lines represents ReT2 for the
first two generations and ReT1 for the third generation. For
the Higgs multiplets, we take the gauging

H u 2 fS�g; H d 2 fQig; (4.37)

and a charge assignment

cH u
ReT2 ¼ 3; cH d

ReT1 ¼ 12: (4.38)

Note that onlyH u is tachyonic with this gauging, which is
a sufficient condition for the electroweak symmetry break-
ing even when the gaugino masses are tiny compared with
the scalar masses, for which the radiative electroweak
breaking might be impossible. We choose cH d

as a larger

value than others to allow for a mildly large value of

tan� � hH ui=hH di ¼ 5; (4.39)

which is adopted in the following numerical evaluations.
The physical Yukawa matrices are found as

yu ’
"8 "5 "3

"7 "4 "2

"5 "2 "0

0
BB@

1
CCA; yd ’

"5 "5 "4

"4 "4 "3

"2 "2 "1

0
BB@

1
CCA;

ye ’
"7 "4 "4

"7 "4 "4

"5 "2 "2

0
BB@

1
CCA; (4.40)

where " ¼ 0:22 is the Cabibbo angle. We have omitted an

Oð1Þ coefficient �u;d;e
ij for each element. These matrices

realize the observed quark and charged lepton masses as
well as the Cabibbo-Kobayashi-Maskawa (CKM) matrix

with Oð1Þ values of �u;d;e
ij .

By evaluating one-loop RGEs for MSSM15 (including
the anomaly mediated contributions [29] which can be
sizable in gaugino masses and A-terms), we can estimate
the soft SUSY breaking parameters at MZ ’ 90 GeV. For

15We neglect all Yukawa couplings except for the top Yukawa
coupling in evaluating MSSM RGEs.
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cX ReT
1 ¼ 7:5, the gaugino masses Mr and the scalar

masses m2
Sl

at MZ as functions of k � k11 ¼ k21 ¼ k31
normalized by MSB are shown in Fig. 2. From the figure,
we find that the gauginos become heavier for larger jkj, and
the gaugino masses and scalar masses are comparable for
jkj * 5. For k ¼ 1, the A-terms are evaluated at MZ as

Au

MSB

’
"�1 "�1 "�1

"�1 "�1 "�1

"�1 "�1 "�1

0
BB@

1
CCA; Ad

MSB

’
"�2 "�2 "�2

"�2 "�2 "�2

"�2 "�2 "�2

0
BB@

1
CCA;

Ae

MSB

’
1 1 1

1 1 1

1 1 1

0
BB@

1
CCA: (4.41)

We remark that A-terms in the quark sector are enhanced
by the radiative corrections mainly from gluinos, while
there is no enhancement in the lepton sector.

Rotating scalar masses and A-terms into the super-CKM
basis, we can estimate the mass insertion parameters atMZ

which are defined by (see, e.g., [22,30])

ð�f
LLÞij�

ððVf
LÞym2

~fL
Vf
LÞijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
~fL
Þiiðm2

~fL
Þjj

q ; ð�f
RRÞij�

ððVf
RÞym2

~fR
Vf
RÞijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
~fR
Þiiðm2

~fR
Þjj

q ;

ð�f
LRÞij�

vfððVf
LÞy ~AfV

f
RÞij��f�ijðmfÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
~fL
Þiiðm2

~fR
Þjj

q ; ð�f
RLÞij�ð�f

LRÞyij;

(4.42)

where m2
~fL;R

are the diagonal sfermion mass matrices and

ð ~AfÞij ¼ ðyfÞijðAfÞij are the scalar trilinear couplings. The
fermion index f and the sfermion indices ~fL;R represent

f ¼ ðu; d; eÞ, ~fR ¼ ð~u; ~d; ~eÞ, and ~fL ¼ ð~q; ~q; ~lÞ, and then
vf ¼ ðsin�; cos�; cos�Þv, �f ¼ ðcot�; tan�; tan�Þ�, re-

spectively, where v ’ 174 GeV and� is determined by the
minimization condition of the Higgs potential. The unitary

matrices Vf
L;R are defined by ðVf

LÞyyfVf
R ¼ diagððmfÞi=vfÞ.

The mass insertion parameters are severely constrained
by the experiments of flavor changing processes. Among
these parameters, ð�e

LRÞ21 might have the severest con-
straint from the observations of � ! e
 processes and
ð�d

LLÞ23 from b ! s
 processes in our model. Although
b ! s
 is less restrictive than � ! e
, the former can be
relevant because there are large mass splittings between the
third generation squarks and the first two generations with
our gauging (4.34) and the charge assignment (4.36). For
MSB ¼ 100 GeV and withOð1Þ values of the holomorphic

Yukawa couplings �u;d;e
ij , we find jð�e

LRÞ21j & Oð10�6Þ and
jð�d

LLÞ23ð�d
LRÞ33j & Oð10�3Þ within jkj � 10. Then,

roughly speaking, these parameters are typically within
the allowed region [22] for MSB ¼ 100 GeV. We would
study these issues in more detail in a separate work [31].

V. SUMMARY

We have studied 4D effective theory of 5D supergravity
with multi-moduli, focusing on the contact terms between
the hidden and visible hypermultiplets and a resulting
flavor structure of soft SUSY breaking terms induced at
tree level. The essential difference from the single modulus
case appears in the Kähler potential.

FIG. 2 (color online). The gaugino masses Mr and the scalar masses m2
l atMZ as functions of k � k11 ¼ k21 ¼ k31. The parameters

are chosen as cX ReT
1 ¼ 7:5.
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In the single modulus case, induced soft scalar masses
by the contact term in the Kähler potential tend to be
tachyonic at tree level. This contribution becomes expo-
nentially small when the visible sector is geometrically
sequestered from the SUSY breaking sector. In such a
case, quantum effects to the soft scalar masses become
dominant and may save the tachyonic masses at tree level.
However, the hierarchical fermion masses by localized
wave functions along the extra dimension is incompatible
with such a sequestering structure [16].

In the multi-moduli case, on the other hand, due to the
exchange of Z2-odd vector multiplets there is an additional
contribution to the soft scalar masses that is not suppressed
even when the quark, lepton multiplets, and SUSY break-
ing multiplet are localized around opposite boundaries.
This additional contribution can save the tachyonic scalar
mass problem in the single modulus case and can be even
flavor universal. The tree-level contribution to the soft
scalar masses always dominates over quantum effects in
the multi-moduli case.

Based on these generic features, we constructed a con-
crete model that stabilizes moduli at a SUSY breaking
Minkowski minimum where hierarchical Yukawa cou-
plings are generated. We have shown the low-energy spar-
ticle spectrum of this model and analyzed the mass
insertion parameters which are relevant to some observ-
ables of flavor changing neutral currents. We should stress
that, in our model, all the nontrivial structures at low
energies are generated dynamically from the parameters
of Oð1Þ (in the Planck unit), such as the coefficients of the
norm function for the vector multiplets, the charges asso-
ciated with the hypermultiplet gauging, and the boundary
induced holomorphic Yukawa couplings.

There are a lot of directions to proceed based on our
work. It would be interesting to study models with different
parameter choices from those we have chosen in this paper
[31]. We may also extend the following models to the case
with multi-moduli, e.g., the models with two compensator
hypermultiplets [14], a twisted SUð2ÞU gauge fixing [32],
an anomalous Uð1Þ symmetry [33], moduli mixing non-
perturbative effects [34] and the one in which both moduli
T1 and T2 remain dynamical at low energies [35], and so
on. Another direction is to consider higher dimensional
supergravity than five dimensional, e.g., magnetized extra
dimensions [36], magnetized orbifold models [37] which
can realize certain localized wave functions for the matter
fields with a more fundamental origin of the model, i.e., the
string theory.

Although our 5D model has no correspondence with a
certain string compactification known until now, the study
of our simple model would be helpful to understand some
basic nature of all the models where physics beyond (M)
SSM is governed by the dynamics in extra dimensions. Of
course, our model itself provides a concrete and dynamical
example of physics beyond the standard model.
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APPENDIX A: Z2-ODD PART OF 5D WEYL
MULTIPLET

In supergravity, coordinate derivatives are covariantized
for the local SUSY transformation by the gravitino. The 4D
derivatives @� appearing in (2.2) are covariantized by the

Z2-even gravitino c i¼1
�R in the N ¼ 1 Weyl multiplet EW

when we promote the d4� and d2� integrals to the D- and
F-term action formulae of the N ¼ 1 conformal SUGRA
formulation [18]. Here the index i denotes the doublet
index for SUð2ÞU. On the other hand, the derivative @y
explicitly appearing in the superspace action should be
covariantized by an N ¼ 1 multiplet which contains c i¼1

yR .

Let us first consider @y appearing in the third line in (2.2).

As mentioned below Eq. (52) in Ref. [8], it should be

promoted to the ‘‘covariant derivative’’ @̂y written as

@̂ y � @y þ��D� þ��@�; (A1)

where �� and �� are N ¼ 1 superfields with 4D spinor

and vector indices. In order for @̂y�
â to be a chiral super-

field, �� and �� should satisfy the conditions:

�D _��
� ¼ 0; �� ¼ i

8
�D _��

� �� _��
� : (A2)

The solution to these conditions is

�� ¼ �D2L�; �� ¼ �4i�
�
� _�

�D _�L�; (A3)

where L� is a complex general multiplet with a spinor
index, which contains the Z2-odd components of the 5D
Weyl multiplet. Since the above solution has an ambiguity
of adding a chiral superfield�� to ��, we can devide ��

into two parts as

�� ¼ �� þ��; (A4)

so that�� contains the same component fields as��. The
lowest component of �� is identified with c i¼1�

yR .

In order for the Lagrangian (2.2) to be invariant under

the gauge transformation:�â ! ðe2ig�ItI Þâ
b̂
�b̂, we have to

modify the gauge transformation of �I as

�I ! �I þ @̂y�
I; (A5)

while that of VI remains unchanged as VI ! VI þ�I þ
��I. Thus the gauge-invariant quantity V I defined below
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(2.3) should also be modified. The naive modification is

V I � �@̂yV
I þ �I þ ��I: (A6)

However, this is not real or gauge invariant. So we further

modify the definition of @̂y as

@̂ y � @y þ��D� þ �� _�
�D _� þ i

4
�� �� _��

�
�D _�D�

þ i

4
������ _�D

� �D _�; (A7)

which reduces to the previous definition (A1) when it

operates on a chiral superfield. With this definition of @̂y,

the quantity V I in (A6) is now real and gauge invariant.
Now we obtain the couplings of the Z2-odd part of the

5D Weyl multiplet to the matter fields by replacing @y
explicitly appearing in (2.2) with @̂y defined in (A7). In

fact, the terms involving L� are necessary for reproducing
the correct coefficient functions of the kinetic terms for the
gauge fields, �ð1=2ÞðN IJ �N IN J=N Þ, where the ar-
guments of N ’s are the real scalar components of the 5D

vector multiplets. If @y is not promoted to @̂y in the 5D

action, the reproduced coefficient functions become incor-
rect ones, �ð1=2ÞN IJ, as mentioned in Appendix B of
Ref. [9].16 As a further nontrivial cross-check, we can also
see that the couplings of �� to the matter multiplets

reproduce the correct matter couplings of Vð1Þ
� þ iVð2Þ

� ,
which are the Z2-odd components of the SUð2ÞU (auxil-
iary) gauge field, if the F-term of �� is identified as

2iðVð1Þ
� þ iVð2Þ

� Þ.
As we can see from (A7) with (A3), the Z2-odd part of

the 5DWeyl multiplet couples to the matter multiplets only
in derivative forms. Thus we can neglect their effects on
the low-energy effective theory.

APPENDIX B: DERIVATION OF THE EFFECTIVE
KÄHLER POTENTIAL

Here we explain the derivation of the Kähler potential in
4D effective theory shown in (2.14) with (2.15). From
(2.10) with (2.12), the effective Kähler potential is written
as

� � �3e�K=3

¼ �3
Z �R�	

0
dyN̂ 1=3

�
1�X

i

e2ci
~V1 jQij2

�X
�

e2c�
~V2 jS�j2

�
2=3

; (B1)

where the argument of N̂ is ð�@y ~V
1;�@y ~V

2Þ. The equa-

tion of motion for ~V1 is read off from (2.10) as

N̂ 1=3

P
i
4cie

2ci ~V
1 jQij2

ð1�P
i
e2ci

~V1 jQij2�P
�
e2c�

~V2 jS�j2Þ1=3

�@y

�
N̂ 1

N̂ 2=3

�
1�X

i

e2ci
~V1 jQij2�

X
�

e2c�
~V2 jS�j2

�
2=3

�
¼0:

(B2)

In the absence of matter multiplets Qi and S�, the above
equation is reduced to

@y

�
N̂ 1

N̂ 2=3

�
¼ 0: (B3)

Note that N̂ I0=N̂
2=3

(I0 ¼ 1, 2) depends only on the ratio
v � @y ~V

2=@y ~V
1, i.e.,

F I0 ðvÞ � N̂ I0

N̂ 2=3
: (B4)

Thus (B3) means that v � �v, where �v is independent of y.
Then, from the definition of v, we obtain a relation

@y ~V
2 ¼ �v@y ~V

1: (B5)

By integrating this for y over ½0; �RÞ, the quantity �v is
determined as

�v ¼ ReT2

ReT1
: (B6)

We have used (2.8) and (2.9). In the presence ofQi and S�,
the ratio v is expanded in terms of them as

v ¼ �vþX
i

AijQij2 þ
X
�

B�jS�j2 þ
X
i;j

CijjQij2jQjj2

þX
i;�

Di�jQij2jS�j2 þ
X
�;�

E��jS�j2jS�j2 þOð�̂6Þ;

(B7)

where �̂ ¼ Qi, S�. The coefficients Ai, B�, Cij, Di�, and

E�� are independent of Qi and S�, which satisfy

Z �R

0
dy

�X
i

AijQij2þ
X
�

B�jS�j2þ
X
i;j

CijjQij2jQjj2

þX
i;�

Di�jQij2jS�j2þ
X
�;�

E��jS�j2jS�j2
�
@y ~V

1 ¼Oð�̂6Þ:

(B8)

From (B1) and (B7), we obtain

16This discrepancy does not cause a problem in the derivation
of the 4D effective action because N I are Z2 odd for the
Z2-even gauge fields and are dropped in the procedure of the
off-shell dimensional reduction [7].
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� ¼ 3
Z �R�	

0
dyN̂ 1=3ð1; vÞ@y ~V1

�
1�X

i

e2ci
~V1 jQij2 �

X
�

e2c�
~V2 jS�j2

�
2=3

¼ �3N̂ 1=3ð1; �vÞ
�
ReT1 �X

i

1� e�2ci Re T
1

3ci
jQij2 �

X
�

1� e�2c� Re T2

3c� �v
jS�j2 �

X
i;j

1� e�2ðciþcjÞ Re T1

18ðci þ cjÞ jQij2jQjj2

�X
i;�

1� e�2ðciþc� �vÞ Re T1

9ðci þ c� �vÞ jQij2jS�j2 �
X
�;�

1� e�2ðc�þc�Þ Re T2

18ðc� þ c�Þ �v jS�j2jS�j2
�
þX

i;j

Z �R

0
dy

�
�F 2ð �vÞAi@y

�
e2cj

~V1

3cj

�

þF 0
2ð �vÞ
2

AiAj@y ~V
1

�
jQij2jQjj2 þ

X
i;�

Z �R

0
dy

�
F 1ð �vÞAi@y

�
e2c�

~V2

3c� �v
2

�
�F 2ð �vÞB�@y

�
e2ci

~V1

3ci

�

þF 0
2ð �vÞAiB�@y ~V

1

�
jQij2jS�j2 þ

X
�;�

Z �R

0
dy

�
F 1ð �vÞB�@y

�
e2c�

~V2

3c� �v2

�
þF 0

2ð �vÞ
2

B�B�@y ~V
1

�
jS�j2jS�j2 þOð�̂6Þ: (B9)

Here we have used the identity

F 1ðvÞ þ vF 2ðvÞ ¼ 3N̂ 1=3ð1; vÞ: (B10)

In order to calculate the remaining integrals in (B9), we
will express Ai and B� in terms of ~V1 and ~V2. First, we
divide them as

Ai ¼ Ai0 þ�Ai; B� ¼ B�0 þ�B�; (B11)

where Ai0 � Aiðy ¼ 0Þ and B�0 � B�ðy ¼ 0Þ. In the ab-
sence of Qi, (B2) is reduced to

@y

�
F 1ðvÞ

�
1�X

�

e2c�
~V2 jS�j2

�
2=3

�
¼ 0; (B12)

which means that

F 1ðvÞ
�
1�X

�

e2c�
~V2 jS�j2

�
2=3

¼ F 1ðv0Þ
�
1�X

�

jS�j2
�
2=3

; (B13)

where v0 � vðy ¼ 0Þ. Comparing the coefficients of jS�j2
in both sides, we obtain

e2c�
~V2 ¼ 1þ 3F 0

1ð �vÞ
2F 1ð �vÞ�B� þOðjS�j2Þ: (B14)

Similar relations are derived for ~V1 and �Ai. In the pres-
ence of both Qi and S�, they are modified as

�Ai ¼ 2F 2ð �vÞ
3F 0

2ð �vÞ
ðe2ci ~V1 � 1Þ þOðjQij2; jS�j2Þ;

�B� ¼ 2F 1ð �vÞ
3F 0

1ð �vÞ
ðe2c� ~V2 � 1Þ þOðjQij2; jS�j2Þ:

(B15)

From (B8) with these relations, we can determine Ai0 and
B�0 as

Ai0 ¼ 2F 2ð �vÞ
3F 0

2ð �vÞ
�
1� 1� e�2ci Re T

1

2ci ReT
1

�
þOðjQij2; jS�j2Þ;

B�0 ¼ 2F 1ð �vÞ
3F 0

1ð �vÞ
�
1� 1� e�2c� Re T2

2c� ReT
2

�
þOðjQij2; jS�j2Þ:

(B16)

Now we can calculate the remaining integrals in (B9) at

leading order of the j�̂j2 expansion by using (B15) and
(B16). Since we can use a relation @y ~V

2 ¼ �v@ ~V1 in front of

the quartic terms in (B9), the integrands can be rewritten as
total derivatives for y. After somewhat lengthy calcula-
tions, we obtain the expression of � in (2.14) with (2.15).
Here we have used the following identities:

F 0
1ðvÞ þ vF 0

2ðvÞ ¼ 0; (B17)

F 0
1ð �vÞ ¼ ReT1@Re T2

�
N̂ 1

N̂ 2=3

�

¼ ReT1 � 3N̂ N̂ 12 � 2N̂ 1N̂ 2

3N̂ 5=3
; (B18)

3N̂ N̂ 12 � 2N̂ 1N̂ 2 ¼ � 1

�v
ð3N̂ N̂ 11 � 2N̂ 2

1Þ
¼ � �vð3N̂ N̂ 22 � 2N̂ 2

2Þ:
(B19)

The arguments of N̂ , N̂ I0 , and N̂ I0J0 are ðReT1;ReT2Þ.
Finally, we comment on a special case in which all the

gauge couplings ci, c� vanish. In this case, ~VI0 appear in

the action (2.10) only through @y ~V
I0 . Then the equation of

motion (B2) is reduced to (B3), which means that v ¼ �v.
Thus the y integral in (B1) can be easily performed as
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�¼ 3
Z �R

0
dy@y ~V

1N̂ 1=3ð1; �vÞ
�
1�X

i

jQij2�
X
�

jS�j2
�
2=3

¼�3ReT1N̂ 1=3ð1; �vÞ
�
1�X

i

jQij2�
X
�

jS�j2
�
2=3

¼�3N̂ 1=3ðReTÞ
�
1�X

i

jQij2�
X
�

jS�j2
�
2=3

: (B20)

Therefore we can obtain the full form of � without ex-

panding by j�̂j2 in this case.
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