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The ground state of the multiflavor two-dimensional quantum electrodynamics is determined in the
presence of finite baryon density, and it is shown that the model possesses two phases: the low-density
phase where the external baryon density is totally screened, and the high-density phase where the
screening is only partial. The renormalization of the bosonized version of the model is also performed
for both the zero and the finite-density model giving massless multiflavor two-dimensional quantum

electrodynamics in both cases.
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I. INTRODUCTION

The phase structure and the confinement mechanism of
non-Abelian models are usually investigated in much sim-
pler, usually two-dimensional, “toy”” models [1,2]. These
models are sometimes analytically solvable. For example,
the massless two-dimensional quantum electrodynamics
(QED,) [3] (usually referred to as the Schwinger model)
shows the chiral condensate and a mass gap which are
supposed to be essential elements in modern physics. The
bosonized version of the Schwinger model is a free theory,
which turns into interacting when the fermionic mass is
nonzero [4]. QED, possesses a phase transition at m/g, ~
0.31 as was shown by the density matrix renormalization
group (RG) technique [5] or by continuous RG method [6].
The critical value of m/g. separates the large coupling
(g > m) phase with a unique vacuum characterized by the
field variable ¢ = 0, and the weak coupling (g < m)
phase where, due to spontaneously broken reflection sym-
metry, the model has nontrivial vacua at around ¢ =
+.J7/2.

The ground state of quantum chromodynamics (QCD)
occurs when a color superconductor at high densities [7]
and a periodic chiral condensate appear in the coordinate
space at a large number of colors N, [8] which is recapitu-
lated in the framework of RG equations by mapping QCD
into a Thirring-type model [9]. The high-density behavior
of non-Abelian models are investigated in the framework
of toy models, too [10]. The Schwinger model remains
exactly solvable in the presence of an external finite charge
density and also shows periodic chiral condensate [11,12].
In our previous work [13] we showed that in the finite-
density QED, the system exhibits a single periodic phase
in the thermodynamic limit for arbitrary charge densities;
furthermore, the periodic structure built up in the ground
state has decreasing amplitude and wavelength with in-
creasing charge density. It is assumed [2] that a phase
transition appears in the two-flavor QED, as the density
is increased. According to the bosonization technique [14]
both the massless and the multiflavor QED, can be con-
verted to such local scalar field theoretical models which
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contain periodic self-interaction potentials. The Bose form
of the multiflavor QED, is a sine-Gordon-type scalar field
theory [15-17], where periodic self-interactions are de-
scribed by two-dimensional sine-Gordon (SG) fields which
coupled by a mass matrix. This coupled SG [or layered
sine-Gordon (LSG)] model can also be used to describe the
vortex dynamics of magnetically coupled layered super-
conductors [18], where the number of flavors in the high-
energy model is identical to the number of layers of the
condensed matter system [17]. Moreover coupled SG-type
models have been used to investigate the vortex dynamics
of Josephson-coupled superconductors [19].

The phase transition of these models was obtained from
the microscopic theory which is formulated in the high
energy or ultraviolet (UV) region. In order to obtain the
low energy or infrared (IR) physics, where the measure-
ments are performed and the quantum fluctuations are
taken into account, we need renormalization. The original,
fermionic models, or the toy models, contain strong cou-
plings and they disable performing a perturbative renor-
malization, making it rather difficult to develop a
functional RG method in the fermionic models since the
evolution should be started from a perturbative region
where the theory is almost interaction-free. Furthermore
the RG equations have to preserve the gauge symmetry
[20]. However, the bosonized version of the toy models can
be easily treated by the functional RG method [6,17,21].

Our goal in this article is to clarify the phase transition of
the finite-density two-flavor QED, by the methods used in
[13]. We calculate numerically (and also analytically in the
low- and high-density limits) the ground state field con-
figurations for finite external baryon density in the tree
level. The results show that an induced baryon density
appears which screens the external one totally (partially)
for low (high) external baryon densities, respectively,
showing the existence of two phases as is conjectured in
[2]. We also perform the RG procedure to determine the IR
physics of the zero and finite-density two-flavor QED, and
then generalize the results for an arbitrary number of
flavors. We choose the so-called Wegner-Houghton (WH)
RG method [22] in order to obtain the blocked potential for
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the model, which uses a gliding sharp cutoff k. The exter-
nal baryon density produces coordinate dependent non-
trivial saddle points, therefore we use the tree-level
blocking relation [6,21,23] to get the blocked interaction
potential. The RG evolution gives the flow of the couplings
for the LSG model from which the evolution of the cou-
plings of the fermionic model can be easily determined.

The paper is organized as follows. In Sec. II we show the
connection between the fermionic and the bosonized mod-
els and then in Sec. III we determine the ground state field
configuration of the finite-density two-flavor QED, and
map its phase structure. We derive the evolution of the
coupling in the framework of the WH-RG method in
Sec. IV, and determine the flow of the couplings in the
case of zero, low, and high densities. Finally, in Sec. V the
conclusion is drawn up.

II. THE MODEL

The multiflavor QED, containing N Dirac fields with an
identical fermionic charge e and a mass m has the
Lagrangian density

1 N .
L = —ZFM,,FW’ + Z} iy (9, —ieA,) P,

i (1)

1

N
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l

where Fo; = dpA; — 91Ap. One can turn from fermionic
field variables ¢, i; into bosonic ones ¢ ; by the boson-
ization rules [2,24]

5‘2’1'1//[3 - _CmMCOS(2ﬁ¢i),
piysi i — —emM sin2\/7 ),

- 1 )
:wiyu d/i: - ﬁg,uva d)i)

- 1
:'*piiﬁ(//i:_)ENm(a,u,¢i)2’ (2)

where N,, means normal ordering with respect to the
fermion mass m, M = e/\/m, and ¢ = exp(y)/2, with
the Euler constant y = 0.5774. The presence of a non-
vanishing external or background densities does not affect
these transformation rules [11]. The Hamiltonian of the
system in Coulomb gauge is given by
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The resulting bosonized form of the Hamiltonian is
I LS mw+ls 24 &
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where 11;(x) denotes the momentum variable canonically
conjugated to ¢;(x). Let us assume that the two distinct
flavored fermion has the same mass m but opposite charge
e. The resulting bosonic Hamiltonian corresponds to the
LSG model

H = NM[[%H% + %H% + %(31‘1’1)2 +%(31¢2)2
2
+ () = 92 = uleos2VT )
+ cos(2\/'7?¢2))i| (6)

with two layers (N = 2), and u = cme/\/a. The assump-
tion for the charges corresponds to the situation where the
net electric charge is zero, which means that the matter is
colorless. It is assumed that this kind of colorless matter
might exist in nuclear stars. Let us denote the two types of
Bose field as ¢; with i = 1, 2. After introducing the new
fields as

6. — \/%(dn + ) )

the charge density j, = p and the baryon density B can be
written as

2 2
=-—=01¢_, B=—09 . 8
p ﬁ ld) \/; 1¢+ ( )
An external baryon charge density can be introduced by
replacing p with p + p,. If we define the corresponding
classical potential as

2
pPo = \/_;ald)w ©

then the uniform, constant external baryon density is sim-
ply ¢. = bx. We separate this linear term in the space
direction ¢, = ¢, + bx, introduce the chemical poten-
tial u, and assume that it is nonvanishing on the interval
[-L;L]. Taking b = —2u2/\/7 then Hamiltonian re-
duces to

H = NML[%#“_ +%(al¢_)2 + M2 +%772+
201647 — ' cos(IT)

X cos(\Im(d. + bx))], (10)
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due to the normal ordering with respect to the bosonic mass
M where the dimensionful coupling u/,

u = C/m3/2€l/2, (11)

is introduced, and ¢/ = ¢(2/)"/*. However, the periodic
part of the Hamiltonian also gives a contribution to the
mass spectrum, i.e. the normal ordering can also be defined
with respect to the “total” mass. In this case the relation
between the mass gap of the multiflavor bosonic model and
the parameters of the original fermionic theory is

Mgy, = 2.008 - mN/ (VD el/ VD), (12)

where N is the number of flavors [16]. The Hamiltonian
(10) is a functional of the field configurations ¢ _ and ¢ .,
and it gives the energy of the system on the tree level. We
look for the ground state field configuration of the model as
the function of the density b.

III. THE TREE-LEVEL PHASE STRUCTURE

The minimum of the energy is searched numerically
among the static field configurations, 7. (x) = 0 by means
of conjugate gradient method as a function of the finite
baryon density b. We made numerical calculations in order
to minimize the tree-level energy as the functional of the
field variables ¢_ and ¢ .. The results show that at the
energy minimum ¢ _(x) = 0 for all values of b. This result
is not surprising since in the Hamiltonian in Eq. (10) one
has a massive sine-Gordon (MSG) model [1,2,24,25] with
zero density for the field variable ¢ _(x), and this model
exhibits trivial field configurations on the tree-level ap-
proximation [13]. Therefore we can treat a simpler
Hamiltonian

ot = [[or +houbr - w576 + )]
13)

which corresponds to a SG model [26] with finite density.
Equation (13) leads to the equation of motion

(93 — %), + V2amu! sin(\2m (b, + bx)) = 0. (14)

Considering the static equation of motion and using a
simple redefinition of the field variable, v/27 (¢ + bx) —
o gives the static SG equation [27] which is identical to
the evolution equation of a pendulum. Depending on the
initial energy C of the pendulum, the model has two
phases. When C is large, it makes periodic rotation corre-
sponding to the kink (or antikink) crystal in the original
model [27]. In the low-energy phase the pendulum swings,
and we have a kink-antikink crystal. The external baryon
charge contributes to the energy by the term 77b2. Then the
large density limit corresponds to the kink-antikink crystal,
while at low densities the kink crystal solution appears.
The general analytic solution is
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(£+=_b.x+

1 am<\/277u’x’ r2) (15)

X k

with am(x, r?) the Jacobian elliptic function, and r =
V2/(2 + C/27u’). The coupling u’ plays a key role in
the RG procedure, so we keep it explicitly. We consider
the limiting low density (r — oo or small values of ») and
high density (r — 0 or high values of b) cases. The series
representation of the function am(x, r2) is

TX q(r)" . nTX
2K () Zn(q(r)2”+l) Sy 19

n=1

am (x, %) =

where K(r) is the complete elliptic integral of the first kind
and q(r) = exp(—7K(1 — r)/K(r)). In the low-density
limit g(r) — —1 and the second term is just the Fourier
expansion of the first term with opposite sign in the right-
hand side of Eq. (16), giving am(x, 7*) — 0, so

¢ = —bx (17)

as is conjectured in [2]. It gives a constant induced density
equal to the external one with opposite sign, resulting total
screening. At large densities the field configuration
changes. When b is large C = 7b? and the amplitude A,
of the nth Fourier expansion in Eq. (16) scales as A, ~
1/b?"; therefore it is a good approximation to keep only the
fundamental mode. Then the field configuration becomes

~ u'
¢+ = N

a sinusoidal-type one, giving sinusoidal induced density
which only partially screens the external density, and the
net baryon density turns to finite values signalling a phase
transition going from low densities to high ones. In Fig. 1
two typical numerically obtained field configurations are
plotted. The wavelength € is insensitive for the fermion
mass m, furthermore it decreases according to a power law
in b for several orders of the density. The numerical fit
gives that € = V27 /b is equal to the ““specific volume” of
the external density similarly to the case of MSG model
[13], as can be seen in Fig. 2. The amplitude A is a constant
and independent of fermion mass for low densities since it
is independent of the coupling u’. Because of the linear
form of ¢ its value is A = b{€/2 = Jm/2. Going to a
high-density regime the amplitude decreases as A ~ 1/b?
and an m dependence appears. We plotted the amplitudes
A,, in Fig. 3. The limiting low- and high-density cases are in
good agreement with their analytically calculated value in
Egs. (17) and (18). Figure 3 shows that the phase transition
appears around the critical value b.. Using the field con-
figurations obtained in Eqs. (17) and (18) one can calculate
the total energy density £ by inserting them back into Eq.
(13). For low densities it is (I refers to linear field configu-
rations)

sin(v2bx), (18)
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FIG. 1. The form of the field configuration for » = 0.1 (upper

figure) and b = 5 (lower figure).

b2
E1=——u, 19
1= 5 u (19)
while in high densities one obtains (p refers to periodic

field configurations)
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FIG. 2. The baryon density dependence of the wavelength € of
the field configuration ¢ .
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FIG. 3. The baryon density dependence of the Fourier modes
A,,n=1,2,3. A, follow a power law behavior at high densities
as it was obtained analytically.

This shows that the energy density is always negative and
the field configuration in Eq. (18) is energetically favorable
in comparison with a trivial one which would give £ = 0.
In Fig. 4 we plotted £, and &; and the numerically deter-
mined total energy density. At low densities the linear field
configuration is preferable and the sinusoidal one is pre-
ferred for high densities. The high-density phase then
contains a coordinate dependent ground state which is
supposed to flatten out when one takes into account the

05 1 1 1 1
0.0 0.4 0.8 1.2 1.6 20 |

-0.5 vl il vl el vl vl il
10°

FIG. 4. The baryon density dependence of the energy density
in case of linear &; (dotted line) and periodic £, (dashed line)
configurations. We also plotted the numerically determined total
energy density by a solid line. The numerical results coincide
with the linear field configuration at low densities and with the
periodic field configuration at high densities. The inset shows
how the baryon density B, increases as the background baryon
density b grows.

045004-4



MASSLESS FERMIONS IN MULTIFLAVOR QED,

quantum fluctuations beyond the tree-level approximation
[2]. The critical density b, which separates the low- and the
high-density phases can be read off correctly from Fig. 3 as
the intersection of the Fourier modes, which is b, = 0.3.
The baryon density at the origin B(x = 0) = B, can play
the role of the order parameter of the phase transition. It is
zero in the low-density phase and is finite in the high one,
as can be seen in the inset of Fig. 4. According to the inset
of Fig. 4 the phase transition seems a continuous one.

IV. RENORMALIZATION

The phase structure of the finite-density two-flavor
QED, is determined at the tree level where the observa-
tional scale k is in the UV regime. We use the RG method
to lower the scale & into the IR limit in order to consider the
effect of the quantum fluctuations systematically. Here we
perform the RG treatment of the LSG model for zero, and
then for finite density. We treat the model in a more general
form containing the arbitrary frequency parameter 8. The
bosonization works for the specific choice 8> = 4, gives
the Hamiltonian in Eq. (6), and in this article we map the
phase structure as the function of the baryon density b.
However, the phase structure can be also considered in
terms of the frequency B with the critical value 82 = 167
in the LSG model [28]. At the scale where the microscopic
theory is formulated the local potential approximation is
usually valid, implying that during the blocking transfor-
mation a constant field configuration gives the minimum of
the potential [22,29]; furthermore, the RG methods based
on the evolution of the effective action [30] are also for-
mulated with constant field configurations. We showed in
the preceding section that for the finite-density two-flavor
QED; it is not the case. The nontrivial saddle point field
configuration makes unstable modes, and one should take
into account coordinate dependent field configuration to
find the real extremum of the Lagrangian, or at least better
than the constant field configuration could give [23,31].
Therefore we choose the WH-RG method where one can
change to tree-level blocking relation when the nontrivial
saddle point appears [23]. In this RG method the blocked
potential can be derived by means of the differential RG in
momentum space at the gliding momentum scale k €
[0, A]. In the WH-RG approach the field fluctuations are
ordered by their decreasing frequencies and during the
blocking step one integrates out the high-frequency modes
above the cutoff k, keeping the generating functional in-
variant. We decompose the field variables into the high-
frequency ¢} = [ Ipl>k 1) peif”‘ and the low-frequency
b, = [ 0=lpl=k P ,e'7* modes. The high-frequency modes
are integrated out step by step in infinitesimal momentum
shells of thickness Ak,

e Sk-sarl$] = [fD[¢/]e*Sk[¢+¢’], 21)

with S¢[ ¢ ] the blocked action in Euclidean spacetime. The
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higher frequency Fourier modes are split further into the
sum of the saddle point field configuration ¢*P and the
remaining field fluctuations: ¢’ = ¢ + ¢. In order to
evaluate the blocked action in Eq. (21), we expand the
blocked action in the Taylor series around its saddle point
field configuration. Then, for trivial saddle points ¢ = 0
one arrives at the WH-RG equation [28]

@+ ko)V, = — % log((1 + V(I + 722) — (712)2),
(22)

for the LSG model with N = 2 and the second derivatives
V;f = 04,09, V, (all dimensionless quantities are denoted

by a tilde superscript), which is introduced as the sum of
the dimensionless mass term and the dimensionless peri-
odic potential,

Vil ¢dy) = M(p, — ¢)* + Ui(by, ¢2), (23)

which is the generalized FEuclidean form of the
Hamiltonian in Eq. (6). The ansatz for the periodic part
of the potential is

Uk = [ﬁnlnz COS(H1E¢1)COS(n2ﬂ¢2)

+ ﬂnlnz Sin(”lﬂ¢l) Sil’l(l’lzﬁ(ﬁz)]. (24)

The scale dependence is entirely encoded in the dimen-
sionless couplings i, ,, = u,, ,,/k* and ¥, ,, = v, , /k*.
By inserting Eq. (23) into the functional evolution equation
in Eq. (22) and Fourier expanding it, we obtain a set of
coupled differential equations for these couplings. The
right-hand side of the WH-RG equation in Eq. (22) turns
out to be periodic, while the left-hand side contains peri-
odic and nonperiodic parts, as well. Separating them, we
obtain a trivial evolution,

- ~ (k\2
i = () ©5)
hence the dimensionful bosonic mass M, remains constant
during the RG procedure. We note that the RG flow equa-
tion in Eq. (22) keeps the periodicity of the periodic piece
U, of the blocked potential in both directions of the
internal space with unaltered length of periods, therefore
B does not evolve in the local potential approximation.

During the successive integrations of the higher momen-
tum modes of Eq. (22) by the method of steepest descent, it
is assumed that the saddle points (¢, ¢3’) are zero. It
remains trivial until the second functional derivative of the
blocked action S [the argument of the logarithm in Eq.
(22)] is positive definite. When

SE=0+VHI+VP) = (V) =0, (26)

the restoring force for the field fluctuations with momenta
in the momentum shell k — Ak < |p| < k vanish, i.e. their
amplitudes can grow to finite values, and ¢*P becomes
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nonvanishing, and the spinodal instability appears. Then,
the tree-level blocking relation is needed [6,21,23,32]

Si—arlP1, h2] = J}E}i(bnsp(sk[d’l + oV, by + dFD. (27)

In case of two layers the exchange of the field variables is a
symmetry of the model, therefore the saddle point can be
considered the same for both fields, namely,

T = ¢F = ¢ = 2p,; cos(kx!). (28)

It is assumed that the periodic coordinate dependence
appears only in the space direction, which suits well to
the treatment of the inhomogeneous ground states.
Restricting ourselves to a finite interval [—L; L] there is
a periodic boundary condition for the saddle point,
¢(x — L) = ¢*®(x + L). Then the tree-level blocking
for the boson mass M, has the form

Mi_pi(dh — ¢3)* = Mi(p) — ¢3)* — koM, = 0.
(29)

So M; = M is a constant in the case of tree-level blocking
as well. Thus, M, ~ k2 is a relevant coupling for all
scales. The blocking step

Vil 891 = min] 208 + 3 [y, + v,

ny,ny

X cos(B(n ¢ — ny$9))(2(ny — ny)
X Bpk) + (unlnz - vnlnz) COS(B(”]¢(1)

+ D)2, + nz)ﬁpk)]] (30)

determines the tree-level evolution for the couplings. The
SG and the MSG models showed that the phases of these
models can be distinguished by the appearance of the
spinodal instability [6,21]. Since only the fundamental
mode is relevant both in the SG and the MSG models,
perhaps it is not so surprising that the condition of spinodal
instability gave a very good approximation for a single
coupling. Close to the scale of spinodal instability kg; the
effective potential starts to form a parabolic shape [21], so
the minimum of the blocked potential is situated always at
the values of the field variables ¢»; = ¢, = 0. Taking into
account the first few couplings (i, iy, and ;) and
inserting it into Eq. (26), one obtains

(1 +2My — iy B* — i1 8% — 911 8°)
X (1 =i B* — iy B> + 9118%) = 0. (31
The fundamental mode follows the scaling relation

K +2M >B2/167r< k)—2+B2/87r

N ) I (32)

A

The scale kgy can be situated below or above the mass scale
M, so one can distinguish two cases:

PHYSICAL REVIEW D 79, 045004 (2009)

(1) kg; < M. The results of the Appendix show ii;; =
71, (the massive modes) and Eq. (31) reduces to

(1 +2M; — iig, B — 2, BA)(1 — iig; B?) = 0.
(33)

The expression cannot be zero if 82 > B2 since iy,
is irrelevant. If 82 < 82 then the expression 1 —
iig; 8% will always go below zero, because now iy,
is relevant and grows up.

(2) kgt > M. Then the massive modes are irrelevant

keeping their UV scaling according to Eq. (32) but
the coupling iij, scales relevantly when B2 < 2,
which implies that the expression in the second
parenthesis in Eq. (31) can be negative. When 8% >
2, then there is no spinodal instability.
The discussion gives that the critical value of 8 changes as
compared to the case of the SG model, now B2 = 167.
Since in our model B = 4 the spinodal instability al-
ways occurs. It was shown [33] that in this phase the
couplings i, ,, are relevant at least in the UV region.

We have taken into account eight couplings when we
solved the evolution equations numerically. As in [6,21]
we obtained that the higher modes do not affect the scaling
of the fundamental mode. However, the other couplings
flow by different scaling behavior as obtained by an ex-
tended UV RG approach [17,33]. We started the evolution
with the WH-RG method then at the scale kg we turned to
the tree-level blocking equations. In the region 8> > 2 a
very interesting scaling law appears, as shown in the
Appendix. Furthermore, when 2 = 47 we run into the
region of spinodal instability. The numerical results can be
seen in Fig. 5. We numerically obtain that the dimension-
less fundamental mode goes to a constant as in [21] inde-
pendently of the relation between kg; and M, and the IR
value of iy (0) is superuniversal, independent of any UV
parameter. When kg < M the flow of the fundamental
mode qualitatively changes as the scale k goes below M.
From Eq. (32) one obtains iiy; (k — o0) ~ k™! in the UV
limit but well below the mass scale M when k?> < 2M? the
flow scales according to iig; (k << M) ~ k=3/2, and after we
reach the scale kg and go towards the IR regime the flow
runs into iy (0). The evolution is similar in the case of
kst > M, but since the tree-level blocking relation in Eq.
(30) is independent of M, then below M the scaling cannot
change. Because of the necessity of the double Fourier
expansion we are unable to get as reliable numerical data
as in [21], and we cannot read off the IR form of the
effective potential. From the solution of the condition S} =
0 [6,21] and the qualitative value of iy (0) = 0.14 one
expects

~ 1
Vieo = =5 (47 + 6. (34)

The IR physics of the zero density LSG model is free, the
dimensionful coupling vanishes as k— 0 at 8% = 4.
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FIG. 5. The scaling of the fundamental mode @, for two
different values of bosonic mass, M; = 0.141 (dashed lines)
and M, = 0.04 (solid lines). For M, the UV (k~') and the IR
(k~3/2) scaling laws are drawn as reference.

However, there are two phases with the critical value 32
and they can be distinguished by the different scaling
behavior of the dimensionful couplings; namely, when
B? < B2, then the coupling scales as uy, ~ k>, while in
the case of B2 > B2 the scaling relation is uy ~ k#'/37.
Nevertheless according to the flow of the dimensionless
couplings, in the phase B2 < 2 the fundamental mode
goes to a constant value, so it is marginal but in the other
phase it vanishes; therefore it is irrelevant in the IR limit.

A. Massless fermions in multiflavor QED,

One can easily generalize the previous analysis for
multiflavor systems. We note that the critical value is 82 =
87wN/(N — 1) [17], so the spinodal instability always ap-
pears at 3> = 4. The results of the RG analysis can be
easily generalized and can show that the dimensionless
coupling ii; tends to constant values in the IR limit.
Transforming the couplings of the scalar model (u; and
M) into the fermionic ones (g, and m;) one has

e e’
Ml% — _k’ U = _77.7(2N+l)/2Nm(2N71)/NeI/N' (35)
T 2
The dimensionful minimal coupling e; does not scale
independently of N, therefore the fermionic mass my
should follow the irrelevant scaling of u;

My ~ K2AN/CN=D] _, 0, (36)

meaning that in the IR limit we always have massless
multiflavor QED,. The pure QED, with N =1 is not
massless, since the tree-level blocking gives trivial (which
isrelevant in d = 2) scaling for the dimensionless coupling
ii;.. Therefore the fermionic mass becomes constant, show-
ing that the cases N = 1 and N # 1 significantly differs
[15,17].

PHYSICAL REVIEW D 79, 045004 (2009)

1. Low-density phase

Now let us turn to the case when b # 0. The renormal-
ization is rather involved in finite-density systems due to
the coordinate dependent ground state field configurations.
However in the low-density phase average baryon density
is zero (the low external baryon density is totally screened
by the induced density), and the resulting Hamiltonian
becomes the same as in the zero density case. Therefore
we look for the RG evolution of the model eventually
among constant field configurations just in the case of b =
0, so all the results obtained there are valid in this phase
too. It implies that the low-density LSG model is free, the
fundamental mode is marginal, and the dimensionful cou-
pling scales as uy; ~ k>. The corresponding low-density
two-flavor QED, is massless in the IR limit.

2. High-density phase

We consider the RG evolution only for the high-density
limit. Here we always have a nontrivial saddle point ¢,
and the quantum fluctuations take place around this field
configuration. However, during the blocking steps ¢*P also
changes, which contributes to the evolution of order O(%°),
therefore we concentrate on the evolution only of the ¢*P.
Using the tree-level blocking relation in Eq. (27), one
obtains

Sl = M;Ak%\/% cos(v27¢) sin(v2mbL)

= /;[%(31475}))2

+ uj, cos(\/2_77(¢ + PP + bx))], (37)

with ¢ a constant field configuration. In the high-density
limit the amplitude A; is small and can be considered
perturbatively. Furthermore at high densities one can retain
only the fundamental mode. Then the numerically deter-
mined form of the saddle point field configuration is

&P = —A, sin(\2m(bx + ¢)) + A, sin(\27 ), (38)

with A; = u}/ V27b?. After identifying the corresponding
functionals in Eq. (38) one obtains

12
, =u(1—ﬁi) (39)
k—Ak k 4[94

for the infinitesimal blocking step. The blocking relation in
Eq. (39) clearly shows that dimensionful coupling u) de-
creases, and tends to zero so as the amplitude A;. Since the
ratio Ak/k is kept small in the WH-RG procedure, the
blocking relation in Eq. (39) is valid for the dimensionless
couplings too, implying that the fundamental mode is
irrelevant in the high-density phase. The quantum fluctua-
tions really wash out the wavy field configurations,
although at that price that in the IR limit one obtains a
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free theory in the high-density phase, too, so the high-
density two-flavor QED, is also massless.

V. CONCLUSIONS

We determined the phase structure of the bosonized
version of the two-flavor QED, and showed that in the
tree level the induced baryon density totally screens the
low external baryon density b. In the case of high densities
the screening is only partial; furthermore, a wavy induced
baryon density is obtained. We also performed the renor-
malization of the bosonized model in both phases. When b
is zero then during the evolution a nontrivial saddle point
appears and the tree-level blocking gives a dimensionful
periodic potential which flattens out, implying massless
two-flavor QED; in the IR limit. It is also the case when b
is small, since there is a total screening and the model
becomes similar to that of the zero density one. The
evolution of the bosonized model in the high-density phase
shows that the amplitude A of the periodic field configu-
ration decreases as the quantum fluctuations are integrated
out step by step as is the fermionic mass, and in the IR limit
we obtain a massless theory with a trivial ground state. The
scaling of the dimensionless fundamental mode is marginal
in the low density and irrelevant in the high-density phases
in the bosonized model; therefore, the phases found at the
tree level survive the RG evolution and exist in the IR limit.
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APPENDIX A: IRRELEVANT RENORMALIZABLE
OPERATOR IN THE LSG MODEL

The evolution equation will generate the higher order
Fourier modes, so one should take them into account
according to the ansatz in Eq. (24). We introduce a trunca-
tion in the number of couplings, namely n;, n, = 2. Then
we have eight apparently independent Fourier modes. The
dimensionless WH-RG equation is

£ OP) + OVO2 + 20120, — (02)],
(AD)

Now one has to Fourier expand the equation to get the
evolution equation for the couplings. The resulting system
of the ordinary differential equation is tackled by a nu-
merical program. As we mentioned, the RG flow always
runs into the spinodal instability when 8% < 2. In Fig. 6
one can see the typical IR flow of the couplings. One can
reach the following conclusions from the numerical analy-
sis:

PHYSICAL REVIEW D 79, 045004 (2009)

(1) We numerically obtained that instead of eight cou-
plings we have only five independent ones, i, (k —
0) = 0y1(k —0), ii1,(k—0) = T,(k—0), and
firy(k — 0) = Uy, (k — 0), implying that the ansatz
of the periodic part of the potential in Eq. (23) can
be simply taken as

- 1 —
Vk = EM((ﬁl - ¢2)2 + Z un,nz

ny,n,=0
X cos(n Bed; — nyBeh,).

This result is independent of the value of S.

(2) At the scale around the mass of the theory ~\/1\7I X
the scaling of the couplings change. There are

(A2)

modes which scale trivially below 4/ M, namely,
i yn, ~ k77 (A3)
and they are referred as massive modes.

Furthermore the other modes have qualitatively
new scaling behavior. Numerical results show that
in general the Fourier amplitudes scales according
to the law

~ __ pIn—ml[(B%/87)—2]-26, .
unlnz k' 218/ 1 1

(A4)

with the Kronecker delta §,,. This result is also
valid for arbitrary value of B, but when 8 < 3. the
Egs. (A3) and (A4) are correct until k > kg;. Below
the scale of the spinodal instability the scaling rela-
tions of the flow changes.

(3) Starting from different UV initial values of the
Fourier modes one obtains that only the fundamen-
tal mode ii(; is sensitive for the initial conditions.
The sensitivity matrix has the same structure as in

-20

-40

log(u n 1n2),10g(v n 1n2)

-60

-80

-100

-120

-140 L L L L
20 18 -16 -14

0210 8 6 4 2 0
log(k/ A)

FIG. 6. For B?> =247 the IR behavior of various Fourier
amplitudes is presented for the LSG model.
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[15]
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the case of the SG and MSG models [6,21] where
the matrix has only one nonzero column. We nu-
merically obtained that the quantity

I k20 @ (AS)
dg (A
is independent of i, ,(A) and ¥, (A).

Consequently, according to the sensitivity matrix
the only relevant operator is the fundamental mode
iiy; which drives the IR behavior of all the other
couplings. On the other hand, according to the scal-
ing law in Eq. (A4) iy, ~ kB*/372 with positive
exponent in the case of 8 > B, giving an irrelevant
scaling.

PHYSICAL REVIEW D 79, 045004 (2009)

By the numerical solution of the RG equation derived for
the LSG model we show that for 8 > . one can parame-
trize the RG flow of the couplings by the initial value of the
fundamental mode i, (A), including the IR relevant mas-
sive modes. The results of the sensitivity matrix show that
the fundamental mode is the only relevant operator of the
model; nevertheless it goes to zero, so according to com-
mon classification of the couplings it is irrelevant.
Therefore, the scaling of all the higher harmonics and
hence the low energy effective theory of the LSG model
is driven by an irrelevant coupling, showing the essential
importance of the investigation of irrelevant operators and
the RG technique.
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