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We study exact solutions to cosmological topologically massive gravity coupled to topologically

massive electrodynamics at special values of the coupling constants. For the particular case of the so-

called chiral point l�G ¼ 1, vacuum solutions (with vanishing gauge field) are exhibited. These

correspond to a one-parameter deformation of general relativity solutions, and are continuously connected

to the extremal Bañados-Teitelboim-Zanelli black hole with bare constants J ¼ �lM. At the chiral point

this extremal Bañados-Teitelboim-Zanelli black hole turns out to be massless, and thus it can be regarded

as a kind of ground state. Although the solution is not asymptotically AdS3 in the sense of Brown-

Henneaux boundary conditions, it does obey the weakened asymptotic recently proposed by Grumiller

and Johansson. Consequently, we discuss the holographic computation of the conserved charges in terms

of the stress tensor in the boundary. For the case where the coupling constants satisfy the relation l�G ¼
1þ 2l�E, electrically charged analogues to these solutions exist. These solutions are asymptotically AdS3
in the strongest sense, and correspond to a logarithmic branch of self-dual solutions previously discussed

in the literature.
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I. INTRODUCTION

In the last year and a half there has been a revived
interest in three-dimensional gravity. This was mainly
motivated by E. Witten’s proposal [1] that Einstein gravity
in AdS3 is holographically dual to a holomorphically fac-
torizable CFT2. This idea has attracted considerable atten-
tion, and led to intense debate [2–5]. Another model of
three-dimensional gravity that has attracted much attention
recently is topologically massivegravity (TMG), which
corresponds to three-dimensional Einstein gravity coupled
to a gravitational Chern-Simons term without torsion [6];
namely,
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with l�2 ¼ �� and �2 ¼ 8	G, and where B stands for
the boundary term, which we are not writing explicitly here
[see (16) below]. The three-dimensional gravity theory
defined by (1) contains a local massive graviton degree
of freedom [6,7], and it also admits black hole solutions
[8], which makes TMG a very interesting model to be
explored.

One of the interesting properties of TMG is that its
holographic description [9] in terms of a CFT2 captures
several interesting features of the AdS3=CFT2 realization.
As in the case of Einstein gravity in AdS3, the asymptotic
isometry group of TMG in this background is generated by

two copies of the Virasoro algebra with nontrivial central
extension. When the gravitational Chern-Simons coupling
�G takes the special value �G ¼ 1=l, the central charge of
left-moving excitations in the boundary theory vanishes.
This led to the authors of [10] to conjecture that at �G ¼
1=l the boundary conformal field theory that is dual to
TMG is chiral. This affirmation gave rise to an interesting
discussion about the existence of bulk local degrees of
freedom at the chiral point; see Refs. [11–24].
In addition to AdS3, other backgrounds of TMG have

recently shown to be of great interest. In particular, warped
versions of AdS3 have led to fabulous applications such as
the description of extremal four-dimensional Kerr black
holes [25–30]. The connection of these backgrounds to
Gödel black holes [28] are also very interesting.
Here, we will be concerned with topologically massive

gravity coupled to its electromagnetic analog, the topologi-
cally massive electrodynamics (TME). The gauge theory
action is given by the Maxwell term coupled to the Abelian
Chern-Simons term; namely,

IE ¼ � 1
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In this paper, we will consider the special case l�G ¼
1� 2� with � ¼ �l�E. The reason why we are particu-
larly interested in this relation between coupling constants
is that such theories admit a class of solution with interest-
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ing properties. For instance, particular features of exact
solutions at l�G ¼ 1 (" ¼ 0) were noticed even before the
chiral gravity conjecture [15] was formulated; see for
instance [31]. At these points of the space of parameters
several exact solutions reported in the literature are seen to
coincide, and it is precisely when this degeneracy happens
that new solutions with interesting properties usually come
up. In particular, at the chiral point the solutions we will
describe here correspond to an asymptotically AdS3 solu-
tions of TMG in a vacuum (with vanishing gauge field). We
discuss the theory at the chiral point in Sec. II, where we
present these vacuum solutions and discuss their properties
in detail. In Sec. III, we generalize the solutions to the case
of TMG charged under the TME theory with l�G ¼ 1þ
2l�E. The charged solutions turn out to be asymptotically
AdS3, with a gauge field configuration that diverges at the
horizon. We also discuss the relation between the solutions
we present here with self-dual solutions previously re-
ported in the literature. We summarize the results in
Sec. IV.

II. VACUUM SOLUTIONS AT THE CHIRAL POINT

A. Topologically massive gravity and its solution

The equations of motion of TMG follow from varying
(1) with respect to the metric g��. In the presence of matter

[consider in particular (2))], these equations read

R�� � 1

2
Rg�� � 1

l2
g�� þ 1

�G

C�� ¼ �2T��; (3)

where� ¼ �l2, T�� is the stress tensor of the electromag-

netic field, and C�� is the Cotton tensor, given by

C�� ¼ 1
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In three-dimensions the Weyl tensor identically van-
ishes, and the Cotton tensor is the one that comes to play
its role: It is a traceless tensor that vanishes if and only if
the metric is locally conformally flat. A traceless condition
implies that all the solutions of the field equations satisfy

R ¼ � 6

l2
� 2�2T�

�;

and one finds that all three-dimensional Einstein manifolds
solve (3).

Let us begin by considering the theory at the chiral point
l�G ¼ �1. At this point, we can consider solutions with
vanishing gauge field, and the coupling �E then takes an
arbitrary value. More precisely, at the chiral point l�G ¼ 1
one finds a vacuum solution of TMG, whose metric reads

ds2 ¼ �N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðN�ðrÞdt� d�Þ2

þ N2
kðrÞðdt� ld�Þ2; (5)

where

N2ðrÞ ¼ r2

l2
� �2Mþ �4M2l2

4r2
; N�ðrÞ ¼ �2Ml

2r2
; (6)

and

N2
kðrÞ ¼ k logððr2 � �2Ml2=2Þ=r20Þ; (7)

where k and r0 are two real arbitrary constants. We use the
convention �tr� ¼ þ1. It is not hard to verify that (5)
solves (3) in a vacuum when l�G ¼ 1.
That is, metric (5) represents an exact solution of topo-

logically massive gravity that emerges at the chiral point.
The Cotton tensor associated to this solution is propor-
tional to k, so that it is a genuine solution to TMG in the
sense that it does not solve the Einstein equation, except for
the particular case k ¼ 0, where the metric becomes the
extremal Bañados-Teitelboim-Zanelli (BTZ) black hole
[32,33]. For all values of k the metric is clearly circularly
symmetric and static, and thus compatible with SOð2Þ � R
symmetry.
In its Arnowitt-Deser-Misner form, the metric reads

ds2 ¼ �N 2
?ðrÞdt2 þ

dr2

N2ðrÞ þR2ðrÞðd��N �ðrÞdtÞ2;
(8)

where we have defined

N 2
?ðrÞ ¼ N2ðrÞ � r2N2

�ðrÞ � N2
kðrÞ þR2ðrÞN 2

�ðrÞ;
(9)

and

R 2ðrÞ ¼ r2 þ l2N2
kðrÞ;

N �ðrÞ ¼ R�2ðrÞðr2N�ðrÞ þ lN2
kðrÞÞ:

(10)

Metric (5) is actually nicely behaved. Despite the ab-
struse form of the off-diagonal component g�t, the deter-

minant of the metric is clearly detg ¼ �r2, and the metric
is Lorentzian for all values of the radial coordinate r. The
metric seems to present a horizon at r2 ¼ �2Ml2=2.
Nevertheless, for k � 0 the metric in its form (5) is not
defined for r2 � �2Ml2=2 (for k ¼ 0 region r2 < �2Ml2=2
would correspond to the interior of the BTZ black hole).
Let us analyze this aspect together with the geodesic
structure in more detail: At r2 ¼ �2Ml2=2, function N2

k

diverges, while N2 vanishes. Then, by analyzing the geo-
desic equation for massive particles, one observes that the
divergence of N2

k contributes to the radial effective poten-

tial with a term like �� ðk=r2Þ logðr2 � �2Ml2=2Þ. This
means that for k > 0, massive particles are scattered back
when they approach r2 ¼ �2Ml2=2, and this means that at
least for positive k, the ‘‘horizon’’ is not actually there. In
fact, for k > 0 the circle r2 ¼ �2Ml2=2 turns out to be
located at an infinite geodesic distance from any point. For
k < 0 the geodesic distance to a point at r2 ¼ �2Ml2=2
turns out to be finite. However, by taking a look at the
angular component of the geodesic equation one realizes
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that the trajectories of massive particles wind indefinitely
around the circle defined by r2 ¼ �2Ml2=2 and thus these
geodesic cannot be extended across this circle [34].

From (5) we also notice that gtt vanishes at r2 ¼
�2Ml2 þ kl2 logððr2 � �2Ml2=2Þ=r20Þ, and this always

happens if k � 0. In particular, we know that for the
spinning BTZ (i.e. k ¼ 0) the radius r ¼ �2Ml2 defines
its ergosphere [33]. For k > 0, however, metric function gtt
only vanishes if the parameters satisfy

�2M � 2kð1� logðl2k=r20ÞÞ: (11)

For instance, let us consider the case M ¼ 0, for which
the metric (5) takes the simple form

ds2 ¼ l2

r2
dr2 þ r2

l2
ðd�2 � dt2Þ þ k log

�
r2

l2

�
ðdt� d�Þ2

¼ l2

r2
dr2 þ r2

l2
dxþdx� þ k log

�
r2

l2

�
ðdx�Þ2; (12)

where we defined x� ¼ �� t, we absorbed a factor l in�,
and fixed r0. From this expression we observe that if k < 0
the component gtt vanishes at r

2 ¼ �2jkjl2 logðr=r0Þ, and
that g�� may also vanish depending on r0. On the other

hand, if k > 0 then the component g�� vanishes at r2 ¼
�2kl2 logðr=r0Þ, and gtt may also vanish.

Now, let us move on and discuss the asymptotic behavior
of (5). In the large r limit, metric (5) takes the asymptotic
form

gtt ¼ � r2

l2
þOðlogðrÞÞ þOð1Þ; grr ¼ l2

r2
þOðr�4Þ;

(13)

g�� ¼ r2 þOðlogðrÞÞ þOð1Þ;
g�t ¼ OðlogðrÞÞ þOð1Þ: (14)

We observe from this large r expansion that this solution
is not asymptotically AdS3 according to the definition
given by Brown and Henneaux in [35]. Nevertheless, (5)
does still obey the weakened AdS3 asymptotic recently
proposed by Grumiller and Johansson in [12,21]. To see
this, let us set l ¼ 1 for notational convenience, and define
the new coordinates x� ¼ �� t and y ¼ r�1. In terms of
these coordinates, the large r expansion of (5) reads

g�� ¼ OðlogðyÞÞ þOð1Þ; g�þ ¼ y�2 þOð1Þ;
gyy ¼ y�2 þOð1Þ; (15)

together with gþþ ¼ 0 and gy� ¼ 0. It is worth noticing

that asymptotic behavior (15) is strictly included in the
boundary conditions proposed in [12,21], which, in addi-
tion, would also permit a next-to-leading behavior like
gþy ¼ OðyÞ and gy� ¼ Oðy logðyÞÞ. These weakened

boundary conditions were recently discussed within the
context of chiral gravity, and these were shown to be
consistent with conformal asymptotic symmetry. In turn,

this would permit to define a consistent stress tensor in the
boundary. Our solution can be thought of as a realization of
the boundary conditions of [12,21].

B. Conserved charges and boundary terms

Because the off-diagonal term in (5) grows logarithmi-
cally �2k logðrÞ at large distances [36], it turns out that
metric (5) is not asymptotically AdS3 in the sense of [35].
However, we can still proceed to compute conserved
charges of this solution by holographic methods. After
all, the solution is still asymptotically AdS3 in the sense
of the boundary conditions recently proposed in [12,21].
Then, we can resort to the method of defining an effective
stress tensor induced on the boundary @M, as in the case
of asymptotically locally AdS3 solutions [39] (see also the
seminal paper [40]).
Consider the action with the boundary term,

IG ¼ 1
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(16)

whereK ¼ TrK ¼ Ki
i is the trace of the extrinsic curvature

Kij. Here, we see the Gibbons-Hawking term B appears.

This action can be expressed in terms of Gaussian coor-
dinates ds2 ¼ d�2 þ �ijdx

idxj, with Kij ¼ 1
2@��ij. This

reads [9,12]

IG ¼ 1
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where TrK2 ¼ Kj
iK

i
j. In this expression, the Gibbons-

Hawking term does not appear because it cancels against
a total derivative coming from the bulk contribution.
Expression (17) turns out to be an action for the metric
�ij, which corresponds to the induced metric in the bound-

ary. The stress tensor Tij associated to the boundary mani-
fold [40] is then obtained by varying (17) with respect to
�ij and evaluating it on-shell; namely, �IG ¼ 1

2 �R
@M d2x

ffiffiffiffiffiffiffiffi��
p

Tij��ij. The conserved charges computed

with this stress tensor [see (20) below] diverge and then it
is necessary to regularize the action by adding an appro-
priate counterterm [9]. Such counterterm turns out to be a
cosmological constant term in the boundary; namely,

�IG ¼ � 1

l�2

Z
d2y

ffiffiffiffiffiffiffiffi��
p

; (18)

which only depends on geometric quantities of the bound-
ary, not affecting the equations of motion in the bulk. A
similar counterterm can be seen to appear when analyzing
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other backgrounds of TMG. For instance, if one considers
the warped AdS3 black hole of [8,27], the counterterm in
the boundary is also given by (18) but replacing the overall
factor �1=l�2 by a �G-dependent factor that coincides
with that in (18) when �G ¼ 3=l [41].

Including the counterterm (18), and in the case of
asymptotically AdS3 spaces, the boundary stress tensor
takes the form

2�2Tij ¼ 2

�
Kij � �ij TrK � 1

l
�ij

�
þ 1

�G

�kðið�jÞl@�Kkl

þ 2@�K
jÞ
k Þ: (19)

This expression can be used to compute conserved
charges associated to isometries on the boundary @M.
One is mainly concerned with the conserved charges that
are associated to Killing vectors @t and @�, which corre-

spond to the mass and the angular momentum, respec-
tively. To define the charges it is convenient to make use
of the Arnowitt-Deser-Misner formalism adapted to the
boundary @M. Then, the charges are defined by [40]

Q½�� ¼
Z

ds�iujTij; (20)

where ds is the volume element of the constant-t surfaces
at the boundary, u is a unit vector orthogonal to the
constant-t surfaces, and � is the Killing vector that gen-
erates the isometry in @M.

To see how it works, let us consider the BTZ solution,
whose metric is

ds2 ¼ �N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðd�þ N�ðrÞdtÞ2; (21)

with

N2ðrÞ ¼ r2

l2
� �2Mþ �4J2

4r2
; N�ðrÞ ¼ �2J

2r2
: (22)

It is straightforward to compute the mass and the angular
momentum of ([32]) following the recipe described above.
The mass and the angular momentum of BTZ black hole in
TMG are then given by

MBTZ ¼ Mþ J

l2�G

; JBTZ ¼ J þ M

�G

; (23)

respectively. It is well known [8,9] that this result differs
from the charges of the same solution for GR, which are
recovered if 1=�G ¼ 0. In particular, these values for the
mass and angular momentum in TMG imply that at the
chiral point �G ¼ 1=l all the BTZ black holes in TMG
fulfill the relation JBTZ ¼ lMBTZ ¼ lMþ J. More specifi-
cally, if J ¼ �lM at the chiral point both the mass and the
angular momentum vanish.

Then, we can use the same idea to compute the mass and
angular momentum of (5). It yields

MðkÞ ¼ 6	k

�2
; JðkÞ ¼ � 6	lk

�2
: (24)

This is consistent with the fact that (5) is a perturbation
of the extremal BTZ black hole with J ¼ �lM at the chiral
point �G ¼ 1=l. Recall that BTZ black hole with bare
parameters obeying J ¼ �lM in chiral gravity have zero
mass and zero angular momentum, and then we interpret it
as the ground state for (5). Notice that, as long as Newton
constant is positive, the BTZ black hole in TMG has
positive mass, and our solution (5) has also positive mass
for k > 0. Conversely, if we adopt the wrong sign for the
Newton constant [what amounts to change �2 ! ��2 in
(1) but keeping �2M unchanged] then the BTZ black hole
turns out to have negative mass, while (5) has positive mass
for k < 0.
Before concluding this section, let us mention that at the

point l�G ¼ �1 one also finds a vacuum solution of TMG
with the form

ds2 ¼ �N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðN�ðrÞdtþ d�Þ2

þ N2
kðrÞðr2 � �2Ml2=2Þðdtþ ld�Þ2: (25)

Unlike solution (5), this metric tends to that of the
extremal BTZ black hole when r approaches the horizon
r2 ¼ �2Ml2=2. The off-diagonal term in (25), however,
grows in a more drastic way, behaving like �2kr2 logr at
large distances.
Also, a charged solution at the chiral point exists, and it

has a form like (5) and (25) with its charge associated to k.
Now, we move on to discuss charged solutions.

III. CHARGED SOLUTIONS WITH A
CHERN-SIMONS TERM

A. The solutions

In this section, we will show that solution (5) admits a
natural generalization when TMG is coupled to TME (2), if
the coupling constants satisfy

l�G ¼ 1þ 2l�E: (26)

For further convenience, we define the parameter " ¼
�l�E ¼ 1

2 ð1� l�GÞ, which is an arbitrary real number. In

particular, the theory at the chiral point corresponds to " ¼
0 and " ¼ 1. For the case l�G ¼ 1þ 2l�E ¼ 1� 2" > 1,
the metric of the charged solution takes the form

ds2 ¼ �N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðd�� N�ðrÞdtÞ2

� N2
QðrÞðdt� ld�Þ2; (27)

with

N2ðrÞ ¼ r2

l2
� �2Mþ �4M2l2

4r2
; N�ðrÞ ¼ �2Ml

2r2
;
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and with

N2
QðrÞ ¼ 1

2�
2Q2ðr2 � �2Ml2=2Þ�l�E

� logððr2 � �2Ml2=2Þ=r20Þ;
and the electromagnetic field takes the form

AðrÞ ¼ A0ðr2 � �2Ml2=2ÞÞ�l�E=2ðdtþ ld�Þ;

A2
0 ¼ Q2 2ðl�E þ 1Þ

l�Eð2l�E þ 1Þ :
(28)

Again, metric (27) corresponds to a deformation of the
extremal BTZ black hole, which corresponds to the un-
charged case Q ¼ 0. If l�E > 0, function N2

Q in (27)

diverges at the horizon r2 ¼ �2Ml2=2, but the curvature
invariants remain constant. In fact, for all the solutions we
find the Ricci scalar

R ¼ � 6

l2
; (29)

and the Kretschmann scalar,

R����R
���� ¼ R��R

�� ¼ 12

l4
; (30)

and one also finds C��C
�� ¼ 0.

It is worth noticing that (29) holds even for charged
solutions. This implies that the gauge field configuration
is such that T

�
� ¼ 0. We will return to this point below. It is

also interesting that the Kretschmann scalar turns out to be
independent of the parameters of the solution Q and M.
This is a curious fact since solutions of Einstein gravity
coupled to matter yielding a traceless stress tensor generi-
cally depend on the integration constants of the solution
[42]. The fact that both the Ricci and Kretschmann scalars
take the same value for all the members of the family of
metrics (27) could lead us to suspect that all these geome-
tries correspond to discrete quotients of the same (vacuum)
space. However, this cannot be the case for all the solutions
since the case Q ¼ 0 [resp k ¼ 0 in (5)] is locally AdS3,
while Q � 0 has a nonvanishing Cotton tensor.

The asymptotic behavior of (27) is determined by the
following expansion:

gtt ¼ � r2

l2
þOð1Þ þOðr�2l�E logðrÞÞ;

grr ¼ l2

r2
þOðr�4Þ;

g�� ¼ r2 þOð1Þ þOðr�2l�E logðrÞÞ;
g�t ¼ Oð1Þ þOðr�2l�E logðrÞÞ;

and gr� ¼ grt ¼ 0. That is, solutions (5) are asymptoti-

cally AdS3 for l�E ¼ �" > 0. However, for l�E > 0, the
gauge field (28) diverges at the horizon r2 ¼ �2Ml2=2. It
turns out that solutions for which the gauge field vanishes
at the horizon (e.g. for l�E < 0) diverges dramatically at

the boundary, and vice versa, and thus no hair is allowed in
this sense.

B. The logarithmic branch of self-dual solutions

As mentioned, the fact that the Ricci scalar of (27) takes
the value R ¼ �6l�2 tells us that these charged solutions
satisfy the traceless condition T�

� ¼ 0, which in three-
dimensions implies F��F

�� ¼ 0. This is reminiscent of

the self-dual solutions discussed by Ait Moussa and
Clément in [43]. Then, a natural question is whether our
solutions are somehow related to those of [43]. We will see
that, even though solutions (27) were not considered in
[43], these can be obtained starting from the ones consid-
ered in that paper by taking the limit l�G ! 1þ 2l�E

appropriately, and then extending the manifold. To see this,
let us define the coordinate

2

�E

� ¼ r2 � �2Ml2

2
:

In terms of the new radial coordinate � the metric (27)
takes the form

ds2 ¼ �
�

2

l2�E

�þ 1

2
Q2��l�E logð�Þ � 1

2
M

�
dt2

� lðQ2��l�E logð�Þ �MÞdtd�þ l2d�2

4�2

þ l2
�

2

l2�E

�� 1

2
Q2��l�E logð�Þ þ 1

2
M

�
d�2;

(31)

where we defined

Q 2 ¼ ð�E=2Þl�E�2Q2; M ¼ �2M:

In [43], similar solutions were considered for the case
l�G � 1 � 2l�E, and these have the slightly different
form

ds2 ¼�
�

2

l2�E

�þ1

2
Q2��l�E þ1

2
J�ð1�l�GÞ=2�1

2
M

�
dt2

� lðQ2��l�E þJ�ð1�l�GÞ=2�MÞdtd�

þ l2d�2

4�2
þ l2

�
2

l2�E

��1

2
Q2��l�E

�1

2
J�ð1�l�GÞ=2þ1

2
M

�
d�2: (32)

Therefore, solutions (27) arise in the limit l�G ! 1þ
2l�E of (32). At the point (26), two independent solutions
to the field equations degenerate and thus the logarithmic
form �Q2��l�E log� stands as a new linear independent

solution. The other solution�J��l�E ¼ J�ð1�l�GÞ=2 con-
tributes by setting the scale �0 [related to r0 in (27)], where
the logarithm vanishes.
The case (32) we consider here is somehow special. It is

continuously connected to the vacuum solutions (5) and
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(25). Likely, solution (5) can be associated to a particular
limit of solutions studied in [44].

Notice that for Q ¼ 0 the region �l2�E�
2M=4 < � <

0 corresponds to the region inside the horizon of the
extremal BTZ black hole. Recall that for k < 0 the point
� ¼ 0 is at a finite geodesic distance from any point
located at � > 0, and the geodesics end there. On the other
hand, for k > 0 the point � ¼ 0 is at infinite geodesic
distance, as it happens for the self-dual solutions consid-
ered in [43].

C. Reduced field equations

The relation with the self-dual solutions (32) suggests
that we could use the techniques used [43] to rederive our
solutions (31). The idea in [43] was to reduce the field
equations of TMG to a relativistic dynamical system,
which is easily solved by choosing the appropriate ansatz.

Consider with [43] the following parameterization of the
metric

ds2 ¼ habð�Þdxadxb þ 1

�2R2ð�Þ d�
2;

Að�Þ ¼ c að�Þdxa;
(33)

where a, b ¼ 0, 1, with x0 ¼ t, x1 ¼ ’, and htt þ h�� ¼
2T, htt � h�� ¼ 2X, h�t ¼ Y. Here,X0 ¼ T,X1 ¼ X, and

X2 ¼ Y are functions of � that satisfy the Minkowski
product R2 ¼ X2 ¼ �T2 þ X2 þ Y2 ¼ �ijX

iXj with i,

j ¼ 0, 1, 2. We also denoted c 0 ¼ At and c 1 ¼ A� for

convenience.
In terms of this variables, the action takes the form

IG þ IE ¼ 1

2

Z
d2x

Z
d�

�
1

2�2
� _Xi

_Xi þ 2

�2l2
��1

þ 1

2�2�G

�2"ijkX
i _Xj €Xk þ � _c�0�iX

i _c

��Ec�0 _c

�
; (34)

where X ¼ ðX0; X1; X2Þ, Xi ¼ �ijX
j with i, j, k ¼ 0, 1, 2.

We also denoted _X ¼ @�X, €X ¼ @2�X, etc. The compo-

nents of the vector � ¼ ð�0;�1;�2Þ are given by �0 ¼
�1, �0 ¼ i�2�1, and �2 ¼ �3, where �i are the Pauli
matrices acting on the two-component vectors c ¼
ðc 0; c 1Þ. Notice also that � stands in (34) as a Lagrange
multiplier. The first two terms in the action above corre-
spond to the Einstein-Hilbert term and the cosmological
constant term, while the third one corresponds to the
gravitational Chern-Simons term. On the other hand, the
terms involving c come from the gauge field A ¼ c adx

a

with a ¼ 0, 1.
The products in (34) are defined as X � Y ¼ XiYj�ij,

ðX ^ YÞk ¼ �kl"ijlX
iYj, and then the action can be written

as follows:

IG þ IE ¼ 1

2

Z
d2x

Z
d�

�
1

2�2�G

�2X � ð _X ^ €XÞ

þ 1

2�2
� _X2 þ � _c�0� �X _c ��Ec�0 _c

þ 2

�2l2
��1

�
: (35)

Varying this action with respect to c , we find

@

@�
ð�ð� �XÞ _c þ�Ec Þ ¼ 0: (36)

This equation yields

� _SE ¼ 2�E

R2
X ^ SE; with SE ¼ ��2

2
�c�c : (37)

Also, varying (35) with respect to X we find

€X ¼ �

2�G

ð3ð _X ^ €XÞ þ 2ðX ^X
:::ÞÞ

� 2�2
E

�2R2

�
SE � 2

R2
XðSE �XÞ

�
(38)

and

S E �X ¼ �2R2

2�2
E

�
X � €X� 3�

2�G

X � ð _X ^ €XÞ
�
: (39)

The Hamiltonian constraint comes from varying (35)
with respect to � ,

H ¼ 1

4�2

�
_X2 þ 2X � €X� �

�G

X � ð _X ^ €XÞ � 4

l2�2

�
¼ 0: (40)

Now, let us look for solutions of the form

X ð�Þ ¼ uGð�Þ þ vFð�Þ; (41)

where F and G are functions of �, while u and v are two
vectors such that u � v ¼ �iju

ivj ¼ 0, and v2 ¼
�ijv

ivj ¼ 0. This implies u ^ v ¼ �v, that is,

�kl"ijlu
ivj ¼ �vk, where � is an arbitrary constant. We

can make the choice [45]

u ¼ 1

2l
ð1� l2; 1þ l2; 0Þ;

v ¼ � 1

4
ð1þ l2; 1� l2;	2lÞ

(42)

and then u2 ¼ �iju
iuj ¼ 1. Then, we have two possible

choices for �, namely, � ¼ �1; , which correspond to each
possibility for the sign� in (42). This ambiguity in the sign
will be ultimately related to the sign of l�G.
In terms of the ansatz (41) and (42), the Hamiltonian

constraint (40) reads

_G 2 þ 2GG
:::� 4

l2�2
E

¼ 0: (43)
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On the other hand, the equations of motion give

SE ¼ ��E

4�G

G2ð�3 _F €Gþ3 _G €Fþ2GF
:::� 2FG

:::Þv

þ ðGuþ FvÞG €G� 1

2
ð €Guþ €FvÞG2: (44)

Varying with respect to �we obtain _SE. We findX ^ SE

with R2 ¼ G2, and we can go back to (37) and find

_S E ¼ 2

R2
X ^ SE;

with � ¼ �E.
Then, we can solve both for u and for v. Before doing

this, let us further specify the ansatz

Gð�Þ ¼ a� Fð�Þ ¼ �2Q2�" ln�� �2M; (45)

where Q and M are two arbitrary real constants, while a
and " are two real parameters to be determined. This ansatz
automatically satisfies the equation for u, and thus we only
have to solve for v. The Hamiltonian constraint (40) de-
mands

a2 ¼ � 4�

�2
E

¼ 4

l2�2
E

; (46)

which is only possible if � ¼ �l�2 < 0. Then, we have
a ¼ �2=l�E.

On the other hand, from the equation for v we find

�E

�G
a2
�
"� 1

2

��
1

2
"�a� 1

�
"ð"� 1Þ

¼ a

�
"

2
a� �

�
"ð"� 1Þ; (47)

and

�E

�G
a3�"

�
2"2 � 9

4
"þ 1

2

�
þ a2"

�
� 3

2
"þ 1

�

¼ �E

�G

a2
�
3"2 � 3"þ 1

2

�
� að2"� 1Þ�: (48)

Let us first analyze the cases 0 � " � 1. From (47) we
find that � ¼ �1 and a ¼ �2=", which implies l�E ¼
�". Then, from both (47) and (48) we get �G=�E ¼
ð2"� 1Þ=". That is,

l�G ¼ 2l�E 	 1: (49)

For these cases " ¼ 0 and " ¼ 1, Eq. (47) is trivially
satisfied and we get no restriction for a and �E. For " ¼ 0
Eq. (48) yields l�G ¼ 1, which corresponds to the chiral
point. In fact, " ¼ 0 corresponds to the solution (5) since
for this configuration we also find c 0 ¼ c 1 ¼ 0, so that

A� ¼ 0: (50)

Similarly, for " ¼ 1 Eq. (48) implies l�G ¼ �1 with
c t ¼ c ’ ¼ 0, and this is solution (25).

For the generic case, the metric takes the form

ds2 ¼
�
� 2

l2�E

�� 1

2
�2Q2��l�E logð�Þ þ 1

2
�2M

�
dt2

þ lð�2Q2�� logð�Þ � �2MÞdtd’� l2
�
� 2

l2�E

�

þ 1

2
�2Q2��l�E logð�Þ � 1

2
�2M

�
d’2 þ l2

4�2
d�2

(51)

and the gauge field configuration is

Að�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2ð1� "Þ�"

"ð2"� 1Þ

s
ðdtþ ld�Þ

¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1	 l�EÞ

l�Eð2l�E 	 1Þ

s
��l�E=2ðdtþ ld�Þ: (52)

Expressions (51) and (52) correspond to solutions (27).
Thus, we have rederived solutions (27) by using the
method of [43]. This method also permits to compute
conserved charges of the solutions in a rather systematic
way. This amounts to calculate the so called superangular
momentum J, which is a current that gathers the conserved
charges of this type of background with two commuting
Killing vectors. The expression for such current is

J ¼ Lþ SG þ SE;

where

L ¼ 1

2�2
X ^ _X;

SG ¼ 1

4�2�G

ð2X ^ ðX ^ €XÞ � _X ^ ðX ^ _XÞÞ:

Evaluated in (51), these take the form

L ¼ �a

2
ðQ2ð"� 1Þ�" log�þQ2�" þMÞv;

SG ¼ a2

4�G

ðð2"� 1Þð"� 1ÞQ2�" log�

þ ð4"� 3ÞQ2�" �MÞv;
and, from (44), we can also find the expression for SE. For
the vacuum solution (5), which corresponds to the case
" ¼ 0, we find

J ¼ � 2k

l�2
v; (53)

where we have set a to take a convenient value. Notice that
(53) turns out to be proportional to k=�2, like in (24). In
[46] the computation of conserved charges from the ex-
pression for J is discussed in detail, and the mass and
angular momentum can be computed as quantities associ-
ated to Killing vectors @t and @�, respectively.

Remarkably, the mass and angular momentum computed
with this method agree with our result (24), which was
calculated by considering the stress tensor in the boundary
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[47]. We will not give the details of this computation here;
instead, we draw the reader’s attention to the very interest-
ing papers [8,43,44,48].

IV. SUMMARY

We have studied solutions to cosmological topologically
massive gravity at special values of the coupling constants.
First, we considered the theory at the chiral point, for
which vacuum solution (5) was exhibited. This solution
corresponds to a one-parameter deformation of GR solu-
tions and is continuously connected to the extremal BTZ
black hole. To be more precise, solution (5) has two
parameters, k and M, and when k ¼ 0 the solution turns
out to be the extremal BTZ black hole with bare parameters
satisfying J ¼ �lM. It is well known that for all values of
J and M, the BTZ black holes in TMG at the chiral point
[15] satisfy the extremality relation JBTZ ¼ lMBTZ ¼
lMþ J. In turn, the (massless) extremal BTZ with lMþ
J ¼ 0 can be thought of as a kind of ground state of
solutions (5), which are labeled by a real number k.

Solution (5) fails to be asymptotically AdS3 in the sense
of Brown-Henneaux boundary conditions [35], and this is
because of a logarithmic damping at large distances.
Nevertheless, it is still asymptotically AdS3 in the sense
of the boundary conditions recently proposed by Grumiller
and Johansson in [12,21]. Then, the holographic computa-
tion of conserved charges in terms of the boundary stress
tensor yielded (24), and the mass and angular momentum
turn out to be proportional to k=�2. Therefore, the sign of
the mass of (5) can be chosen to be opposite to that of the
BTZ black hole in this theory. That is, if one adopts the
negative sign for the Newton constant (as it is usual in
TMG) then the solutions with positive mass (k < 0) are
those that allow geodesic to reach the radius r2 ¼ �2Ml2=2
at a finite proper time, while for the case k > 0 that circle is
at infinite geodesic distance.

We also considered solutions (27), which are charged
analogues to (5) that exist when the coupling constants
satisfy the relation l�G ¼ 1þ 2l�E. Unlike vacuum solu-
tions we found at the chiral point, their charged analogues
may have a stronger damping at large distances and then
represent asymptotically AdS3 solutions in the sense of
[35]. However, for asymptotically AdS3 solutions both the
gauge field and the effective potential of the geodesic
equation for massive particles diverge at the horizon.

Like vacuum solutions, charged solutions (28) have
constant scalar curvature R ¼ �6l�2. This implies that
the corresponding gauge field configurations fulfill the
condition T�

� ¼ F��F
�� ¼ 0. This is reminiscent of the

self-dual solutions studied in Ref. [43], and we have ac-
tually shown that solutions (27) can be thought of as a
limiting procedure starting from the self-dual solutions of
[43].

It is also remarkable that both solutions (5) and (27) have
constant Kretschmann scalar, given by R����R

���� ¼

12l�4. This means that all the quadratic invariants turn
out to be independent of the two parameters of the solu-
tions. Nevertheless, it is worth emphasizing that both M
and Q still represent actual parameters labeling the solu-
tions, as they enter in the computation of the charges in a
nontrivial way, and, besides, parameter Q is the one that
permits to interpolate between (27) and the extremal BTZ
black hole.
Before concluding, let us comment on the relation be-

tween the solutions we discussed here and a class of
pp-wave solutions recently discussed in the literature.
Just recently, we were taught [49] that solution (5) can be
obtained from one of the pp-wave solutions considered in
[11,50] by an appropriate coordinate transformation, in
addition to the compactification of the direction we de-
noted by �. For instance, the metrics considered in [50]
have the form

ds2 ¼ dR2 þ e2Rdxþdx� þ Rfðx�Þðdx�Þ2; (54)

where fðx�Þ is an arbitrary function of x� (for instance, see
Eq. (3.21) of Ref. [50], with l ¼ 1, � ¼ 1, � ¼ R, u ¼
xþ=2, v ¼ x�, and x� ¼ t��, with � being compact;
see also [11,31], where pp-wave solutions of TMG are
discussed). It is easy to see that (54) can be written as our
solution (5) by means of the appropriate coordinate trans-
formation. For instance, consider the case M ¼ 0, as in
(12), which takes the form (54) by choosing f ¼ 2k and
defining the radial coordinate R ¼ logðrÞ. A similar rela-
tion holds between (25) and the solution presented in
Eq. (3.22) of [50] for the case l�G ¼ �1. This allows to
interpret our charged solutions (27) as a generalization of
some of the solutions considered in [11,50].
The solution we have presented here generalizes the

extremal BTZ black hole solution at the chiral point, and
it represents an exact realization of the boundary condi-
tions proposed in [12,21].
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