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Loop quantum cosmology (LQC) seems to be predicting modified effective Friedmann equations

without extra degrees of freedom. A puzzle arises if one decides to seek for a covariant effective action

which would lead to the given Friedmann equation: The Einstein-Hilbert action is the only action that

leads to second order field equations and, hence, there exists no covariant action which, under metric

variation, leads to a modified Friedmann equation without extra degrees of freedom. It is shown that, at

least for isotropic models in LQC, this issue is naturally resolved and a covariant effective action can be

found if one considers higher order theories of gravity but faithfully follows effective field theory

techniques. However, our analysis also raises doubts on whether a covariant description without

background structures can be found for anisotropic models.
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According to the big bang scenario the Universe appears
to emerge from a singularity. However, this conclusion is
based on purely classical considerations and quantum
gravity is expected to provide a more complete under-
standing of the big bang and maybe even do away with
the initial singularity. In the framework of a spacetime
picture the only way to avoid an isotropic singularity is
to have a bounce, in the sense that at a nonzero volume the
collapse is halted and turned around.

One of the proposals in this direction comes from loop
quantum cosmology (LQC) [1]. It has been shown that the
cosmological singularity in isotropic minisuperspaces is
naturally removed by quantum geometry [2]. The free,
massless scalar model, consisting of a flat, isotropic, and
homogeneous Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) spacetime sourced by a massless scalar field has
been quantized in LQC and can be considered well under-
stood [3,4]. Through an effective Hamiltonian description
it leads to an effective Friedmann equation [3,5]

H2 ¼ 1

3
��

�
1� �

�c

�
; (1)

where aðtÞ is the scale factor, H ¼ _a=a, � is the energy
density, � ¼ 8�G, G is Newtons constant, and a dot
denotes differentiation with respect to coordinate time.
For the full description of the dynamics this modified
Friedmann equation should be supplemented with a
Klein-Gordon equation for the scalar [or the conservation
law _� ¼ �3Hð�þ pÞ where p is the pressure]. This equa-
tion remains unmodified as the loop quantization does not
affect the matter Hamiltonian. Clearly, a bounce occurs
when � ¼ �c. The critical density for this bounce is equal

to �c ¼
ffiffiffi
3

p
=ð2���3l2pÞ, where � is the Barbero-Immirzi

parameter and lp is the Planck length. It has been shown

numerically and proven rigorously that the effective

Friedmann Eq. (1) reliably describes the evolution of the
expectation value of a wave packet in the free massless
scalar model [4,6,7]. Therefore, despite its limitations, this
model and its effective description should be able to give a
useful insight into LQC.
A reasonable question to ask is whether the effective

modified Friedmann equation can be derived from a diffeo-
morphism invariant effective action. This leads to the
following puzzle: Eq. (1) is just the usual Friedmann
equation with a modified source, i.e. there are no extra
degrees of freedom. However, we already know that the
only covariant action which leads to second order equa-
tions under metric variation is the Einstein-Hilbert action
and, assuming an FLRW spacetime, these equations yield
the usual Friedmann equations. Any modification of the
Einstein-Hilbert action would lead to higher order equa-
tions under metric variation.
Regardless of the uncertainty on this issue at the level of

the fundamental underlying theory, covariance is a stan-
dard prerequisite for an effective low energy theory, so the
pertinent question is the following: Does the above puzzle
imply that a covariant formulation of the effective
Hamiltonian leading to Eq. (1) is not possible, with any
implications this might have for the approximations used
or the underlining physics, or can we actually simply
circumvent that previous argument? This is the question
that we want to address here.
One possible answer was given in Ref. [8]: it was argued

that a covariant action can indeed be constructed within the
framework of Palatini fðRÞ gravity (see Ref. [9] for a
review on fðRÞ gravity and references therein), which
assumes that the connection and the metric are independent
variables, but the former does not couple to the matter
(unlike metric-affine fðRÞ gravity [10]). Note that since
the only matter considered is a scalar field, couplings
between the connection and the matter in the effective
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theory cannot be probed. This implies that the latter might
as well be a metric-affine fðRÞ gravity, something that
passed unnoticed in Refs. [8,11].

We would like to focus more on another possible way
out, which does not even go against conventional wisdom
about corrections to the action and variational principle
choices. More precisely, we would like to stick to standard
metric variation and an action with higher order curvature
invariants and propose a different way to do away with the
extra degrees of freedom: order reduction. Even though
lately higher order theories of gravity, such as fðRÞ gravity,
have been mostly considered as exact theories, meaning
that their field equations are considered as genuinely
higher order, it has been long known that another alter-
native is to treat them as effective field theories, i.e. con-
sider the solutions which are perturbatively close to general
relativity (GR) as physical ones and the rest as spurious
[12] (this technique has also been used recently in Ref. [13]
to ‘‘cure’’ the viability issues of infrared modification in
metric fðRÞ gravity).

Which one of the two is the right way to proceed is not
evident by the form of the action, nor is it a matter of
choice. It depends on how this action comes about from a
more fundamental theory, i.e. if the extra degrees of free-
dom can be considered fundamental or are introduced
during the derivation of the effective action. A typical,
but not the only, example of the second case would be a
nonlocal theory which leads to an effective action with
infinite terms and higher order derivatives which produce
spurious degrees of freedom. The nonlocal theory does not
have to be fundamental; it might be an effective theory
itself derivable from a fundamental theory through a
scheme in which locality is lost.

Instead of discarding spurious solutions due to the extra
degrees of freedom one by one, the technique of order
reduction can be used to derive field equations which are
second order and provide only the physical solutions [12].
So, even if higher order theories of gravity cannot lead to
second order field equations under metric variation if they
are considered as exact theories, this is not the case if they
are approached as effective theories. In the latter case, they
could very well lead to modified Friedmann equations of
the sort of Eq. (1). As we are about to show, one can
actually specify the corresponding action (or at least a
family of actions) starting from a Friedmann equation
with a modified source, such as Eq. (1). The need to apply
such an effective field theory scheme to find the covariant
action may just be a manifestation of the characteristics of
the underlying fundamental theory or the way one derives
the effective description, such as nonlocality.

For simplicity we start from the easiest form of a higher
order action, metric fðRÞ gravity. The action is

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ SMðg��;c Þ; (2)

where g�� is the metric and g its determinant, f a general

function of the Ricci scalar of the metric R, SM denotes the
matter action, and c collectively denotes the matter fields.
Variation with respect to g�� yields

f0R�� � 1
2fg�� � ½r�r� � g��h�f0 ¼ �T��; (3)

where T�� ¼ �ð2= ffiffiffiffiffiffiffi�g
p Þ�SM=�g�� is the stress energy

tensor as usual, r� is the metric covariant derivative, and

h ¼ r�r� and the prime denotes differentiation with

respect to R. A useful equation is the one obtained by the
contraction of Eq. (3)

f0R� 2fþ 3hf0 ¼ �T; (4)

where T ¼ g��T��. Clearly, unlike GR, R is not related

algebraically to T. Without loss of generality we can
parametrize f as

fðRÞ ¼ Rþ 2�þ �’ðRÞ: (5)

The parameter � is dimensionless and marks the deviation
fromGR. One can think of’ as a function incorporating all
possible corrections to the Einstein-Hilbert action. For
instance, if f is thought of as a series expansion then ’ ¼
. . .þ a�1l

�4
p =Rþ a2l

2
pR

2 þ a3l
4
pR

3 þ . . . , where lp is the

Planck length and the ai coefficients are dimensionless.
Since we want to treat metric fðRÞ gravity, not as an

exact but as an effective field theory whose solution ought
to be perturbatively close to GR, we have to perform an
order reduction to the field equation in order to do away
with the spurious degrees of freedom. Note that � does not
exactly play the role of a small parameter here nor does it
need to be small. Actually it could easily be absorbed in ’
and in the series expansion example we gave earlier, it
would be redundant as it could be eliminated by a redefi-
nition of the ai’s. However, � is helpful since it allows us to
use the order reduction technique developed in Refs. [12]
(a parameter is needed the vanishing of which leads back to
GR). For the whole scheme to be valid of course, �’ � R
at the range of curvatures considered (here essentially R �
l�2
p , but this can vary according to the application). This

can be assumed now and verified a posteriori. At the same
time working at order � would essentially mean that we are
working to first order in a parameter in which ’ is linear as
a correction in an effective action (e.g. � one of the ai’s).
Because of the form of the field equations, the order

reduction amounts to just replacing R and R�� in order �

terms with the expression one gets for them from the � ¼ 0
version of the same equations. Equation (3) reduces to

G�� þ �½’0ðRTÞð�T�� � 1
2�Tg�� ��g��Þ � 1

2’ðRTÞg��

� ½r�r� � g��h�’0ðRTÞ� ¼ �T��; (6)

where we have used Eq. (4) to help us express R to the
lowest order and
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RT ¼ ��T � 4�: (7)

Let us derive the modified Friedmann equation corre-
sponding to the order-reduced field Eqs. (6). Assuming a
FLRW line element

ds2 ¼ �dt2 þ aðtÞ2
�

dr2

1� kr2
þ r2d	2 þ r2sin2	d
2

�
;

(8)

where k ¼ �1, 0, 1 (hyperbolic, flat, hyperspherical) is the
spatial curvature, and a perfect fluid description of matter
for which T�� ¼ ð�þ pÞu�u� þ pg��, where � and p are
the energy density and pressure of the fluid, respectively,
and u� the 4-velocity, the zero-zero component of Eq. (6)
yields

3H2 þ 3k

a2
¼

�
1� 1

2
ð1þ 3wÞ�’0

T

�
��� �’0

T�

� 1

2
�’T � 3�H _’0

T; (9)

where ’T ¼ ’ðRTÞ, ’0
T ¼ ’0ðRTÞ, H � _a=a, and we have

assumed a barotropic equation of state p ¼ w�. Recalling
now that energy is conserved in metric fðRÞ gravity, we can
use the equation _� ¼ �3Hð1þ wÞ� and the chain rule to
express _’0

T in terms of �:

_’ 0
T ¼ ’00ðRTÞ@RT

@T
_T ¼ �3�’00

Tð1þ wÞð1� 3wÞH�;

(10)

where ’00
T ¼ ’00ðRTÞ. Replacing this back in Eq. (9) and

using the � ¼ 0 value for H2 in this term one gets

H2 ¼ 1

3
��� k

a2
� �

3

�
1

2
ð1þ 3wÞ’0

T��þ ’0
T�þ 1

2
’T

� 3

�
��� 3k

a2

�
�’00

Tð1þ wÞð1� 3wÞ�
�
: (11)

Let as now find the condition for Eq. (11) to lead to
Eq. (1). We first have to assume that the matter is actually a
scalar field (w ¼ 1) and that spacetime is spatially flat (k ¼
0) in order to be in agreement with the approach leading to
Eq. (1). We also set� ¼ 0, as it is obvious that Eq. (1) does
not have a cosmological constant contribution. Equa-
tion (11) becomes

H2 ¼ 1

3
��� �

3

�
2’0

T��þ 1

2
’T þ 12’00

T�
2�2

�
: (12)

Suppose now that we would like to require Eq. (12) to be
the same as some Friedmann equation with a modified
source. The latter could be written without loss of general-
ity as

H2 ¼ 1
3��þ�ð�Þ (13)

where � is some algebraic function, and the requirement
would be that ’ should satisfy the differential equation

�ð2’0
T��þ 1

2’T þ 12’00
T�

2�2Þ ¼ �3�ð�Þ (14)

for a given�. We are interested in Eq. (1) here, so we take
� ¼ ���2=ð3�cÞ. Then, since RT ¼ �2�� and the prime
denotes differentiation with respect to R, Eq. (14) is essen-
tially the ordinary differential equation (ODE)

1

2
’ðxÞ � x

d’ðxÞ
dx

þ 3x2
d2’ðxÞ
dx2

¼ Ax2; (15)

where A ¼ ð4���cÞ�1. Clearly, bx2 where b is a constant
is a specific solution of this equation, whereas it is easy to
show that the homogeneous ODE has no solutions that are
analytic functions of x, due to its specific structure (this is
true for any � and, therefore, � is really what determines
the solution) [14]. We, therefore, conclude that the general
analytic solution is ’ðRÞ ¼ ð18���cÞ�1R2 or

fðRÞ ¼ Rþ ��3l2p

9
ffiffiffi
3

p R2 þ . . . : (16)

Clearly, the same procedure could have been followed for
another function �.
We have, therefore, found a metric fðRÞ action which,

when treated as an effective action, leads to the desired
Friedmann equations. It is important to note that the
Lagrangian f we found is really an infinite series, as the
dots indicate. Within the effective field theory framework
we are allowed to remain agnostic on the rest of the terms
and our calculation indicates that they should be subdo-
minant to the R2 correction in the curvatures under
consideration.
On the other hand, it is well known that the gravitational

Lagrangian

L ¼ Rþ aR2 þ bR��R��; (17)

leads to the same field equations with the Lagrangian L ¼
Rþ cR2 for conformally flat metrics and for c ¼ aþ b=3
[15]. Adding a term proportional to the Kretschmann scalar
R����R���� on the other hand, is equivalent to a change in

the coefficients a and b, due to the Gauss–Bonnet theorem.
Therefore, the family of Lagrangians of the form of

Eq. (17) with aþ b=3 ¼ ��3l2p=ð9
ffiffiffi
3

p Þ (plus other subdo-
minant terms) will lead to the desired effective Friedmann
equation. The same result could have been obtained if one
followed the procedure we followed here for an analytic
function fðR;R��R��; R

����R����Þ instead of simply

fðRÞ. One could also start immediately with the
Lagrangian (17), show that it indeed leads to the desired
result, and then argue one-dimensional grounds that it is
the only (analytic) one. We chose the ‘‘derivational’’ ap-
proach simply for demonstrative purposes. The fact that
the effective action corresponding to Eq. (1) is unique in
the framework of metric fðRÞ gravity, whereas there is a
whole family when it comes to more general actions, is
merely because, due to the high degree of symmetry as-
sumed in their derivation, Friedmann equations do not
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carry enough information to uniquely pinpoint a theory
unless the latter is chosen from a restricted class.

To summarize, we have shown that a covariant effective
action, or at least a family of covariant effective actions,
which lead to the effective Friedmann equation as pre-
dicted from the massless scalar field model of LQC can
be found in the framework of metric higher order theories
of gravity. However, this requires the technique of order
reduction, i.e. it requires that the theory be treated as an
effective field theory and that the extra degrees of freedom
be considered spurious. The need for such an approach
might be revealing some characteristics, for instance non-
locality, which can be either intrinsic to the fundamental
theory or induced properties in the effective description
due to some approximation.

Besides possibly revealing some generic characteristic
of LQC, deriving a covariant action has certain other
advantages. For instance it allows the study of the phe-
nomenology of the theory which goes beyond the effective
Friedmann equation (but should be described by the effec-
tive action). In the specific action we find the corrections
with respect to GR are Planck suppressed. Combining this
with the fact that within our scheme the extra degrees of
freedom are not to be considered, the low energy phenome-
nology should be indistinguishable from that of GR at the
relevant length scales. However, there might still be dif-
ferences, especially in the early universe [3], which having
full covariant field equation and an action might help
reveal. A typical example would be cosmological
perturbations.

Clearly, the effective action derived here corresponds to
the simplified model of a scalar field and is, therefore, valid
in the range of validity of the approximation used to derive
the effective Hamiltonian for this model. However, the
procedure described here can be used to derive effective
actions for more general effective Friedmann equations
(e.g. for a self interacting scalar [16]). Of course, it remains

the objective of future investigations to determine whether
the features of the effective covariant description found
here will persist if other matter fields and more general
spacetimes are considered in LQC.
A specific issue that deserves to be studied further is the

following: In [17] an anisotropic model was considered
and effective Friedmann equations were derived that con-
tained matter independent corrections which would persist
in vacuum (see e.g. Appendix C of [17]). The effective field
theory technique used here cannot lead to any matter
independent deviation from GR [see Eq. (6)]. The same
is true for the proposal of [8] based on Palatini fðRÞ gravity
for a different reason: the latter reduces to GR plus a
cosmological constant in vacuum. Since in anisotropic
models one uses a deparameterization where the scalar
field is taken as the time variable, the presence of matter
is essential and there are technical differences between
vacuum and nonvacuum models. However, our previous
observation excludes the presence of matter independent
corrections even when matter is present. The absence of
extra degrees of freedom from the effective Friedmann
equation seems to exclude the possibility of finding a
remedy to this problem by considering theories of gravity
with extra dynamical fields. This seems to leave no avail-
able option for obtaining a covariant description for aniso-
tropic models in LQC, unless one can obtain a different set
of effective equations by reconsidering the approach and
the assumptions used in [17] or is possibly willing to
sacrifice background independence by allowing for non-
dynamical fields to be present in the effective action. This
issue will be address in future work.
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