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Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum)

field theory to compute, up to certain integrals, the effective Lagrangian for its n-body problem.

Perturbation theory is performed about a background Minkowski space-time to O½ðv=cÞ4� beyond

Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame.

For the specific case of the 2-body problem, the major efforts underway to measure gravitational waves

produced by inspiraling compact astrophysical binaries require their gravitational interactions to be

computed beyond the currently known O½ðv=cÞ7�. We argue that such higher order post-Newtonian

calculations must be automated for these field theoretic methods to be applied successfully to achieve this

goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman

diagrams to an arbitrary order in v=c and take steps to develop the necessary software. The Feynman

diagrams contributing to the n-body effective action at O½ðv=cÞ6� beyond Newton are derived.

DOI: 10.1103/PhysRevD.79.044031 PACS numbers: 04.25.Nx

I. INTRODUCTION AND MOTIVATION

In this paper we are concerned with the problem of
describing the gravitational dynamics of arbitrary n � 2
compact nonrotating bodies moving in a background
Minkowski space-time. By assuming nonrelativistic mo-
tion, this problem can be approached in a perturbative
manner, by approximating these compact objects as point
masses and calculating the effective Lagrangian

Leff½f ~xa; ~va;
_~va; . . .g� for their coordinates f ~xa j a ¼ 1; 2;

. . . ; ng and their time derivatives f ~va;
_~va; . . .g, up to some

given order in the typical speed v of these n objects1:
Newtonian gravity starts at O½v0� and the Einstein-
Infeld-Hoffman Lagrangian [1], that describes the preces-
sion of the perihelion of elliptical orbits, is of O½v2�
(1 PN).2 The n-body problem at O½v4� was first tackled
by Ohta et al. [2]. Some computational and coordinate
issues encountered there were clarified by Damour and
Schäfer [3]. In the latter, some integrals could not be
evaluated. A portion of these were later performed by
Schäfer [4], so that currently, up to the n ¼ 3 case is
known. But to know the effective Lagrangian for arbitrary
n at this order, one needs to further calculate the integrals
for the n ¼ 4 case. As we will see later, once Leff is known
up to n ¼ 4, the arbitrary n-body Lagrangian will follow
from a limited form of superposition.

We will examine this problem using perturbative field
theory techniques introduced in [5]. The motivations are

twofold, both of them stemming from experimental probes
of gravitational physics: one requires the 2-body effective
Lagrangian to be computed higher than O½v7�, and the
other may need the n-body counterpart at O½v4�.
Gravitational wave detection.—The recent years have

seen an array of gravitational wave detectors such as GEO,
LIGO, TAMA, and VIRGO coming online. These experi-
ments seek to detect gravitational waves produced by
binary black holes and/or neutron stars as they spiral
towards each other. Within their frequency bandwidth,
these detectors are able to track the frequency evolution
of the gravitational waves from these binaries overO½104�
orbital cycles and hence make very accurate measure-
ments. To be able to do so, however, theoretical templates
need to be constructed so that the raw data can be inte-
grated against them to determine if there is a significant
correlation. Via a generalized Kepler’s third law relating
orbital frequency to the binary separation distance, these
templates are based on energy balance: the rate of energy
loss of these binaries is equal to the power in the gravita-
tional radiation emitted. Both the notion of energy and
expressions for the flux of gravitational radiation require
the knowledge of the dynamics of these binaries, which
in turn is encapsulated in their effective Lagrangian.
Because of the high accuracy to be attained, this ef-
fective Lagrangian needs to be computed up to 3 PN and
higher.3

3Blanchet [6] offers a review of the post-Newtonian frame-
work and its relation to gravitational wave experimental
observables.

1We use units where all speeds or velocities are measured in
multiples of the speed of light, i.e. c ¼ 1.

2The nomenclature is O½v2Q� $ Q PN.

PHYSICAL REVIEW D 79, 044031 (2009)

1550-7998=2009=79(4)=044031(39) 044031-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.044031


Currently, the dynamics of compact astrophysical bi-
naries is known up to 3.5 PN.4 (See Sec. 1.3 of Blanchet
[6] and the references therein.) To obtain the dynamics
at 4 PN and beyond is a challenging task. Because of
the need to regularize the divergences that arise from
approximating compact objects as point particles, one
may wish to engage field theoretic methods to handle
them. Such a pursuit was initiated in [5], where it was
shown how to carry out the field theory effective
Lagrangian calculation in a systematic manner by first
doing some dimensional analysis. One of the main
thrusts of this present work is to attempt to make as
methodical as possible such a route in post-Newtonian
calculations. In particular, we advocate using the computer
to automate the process, so that at the end only those
Feynman diagrams that truly require human intervention
are left for manual evaluation. Given the computational
effort required at 4 PN and beyond, we believe this is
necessary not only to save time and energy, but also to
reduce human errors. For example, at such a high PN order,
even the derivation of the necessary diagrams will itself be
nontrivial—the reader not convinced of this fact is encour-
aged to look at Appendix C containing the 3 PN dia-
grams—but an efficient implementation of the algorithm
that we will sketch in the main body of this work will allow
automatic generation of Feynman diagrams to arbitrary PN
order, modulo computing power.

Solar system gravity.—Closer to Earth, the Einstein-
Infeld-Hoffman Lagrangian, at O½v2� beyond Newton,
is routinely used to compute the solar system
ephemerides, and to analyze spacecraft trajectories and
space-based gravitational experiments. A range of experi-
ments, such as the new lunar ranging observatory
APOLLO, proposals to land laser ranging missions on
Mars and/or Mercury, and spacecraft laboratories—
GTDM, LATOR, BEACON, etc.—will begin to probe
the non-Euclidean nature of the solar system’s space-
time geometry beyond 1 PN by measuring the timing
and deflection of light propagation more precisely than
before. (See, for instance, Turyshev [7] for a recent
review.)

Within the point particle approximation, both the solar
system dynamics and its geometry can be gotten at simul-
taneously by computing from general relativity the effec-
tive n-body Lagrangian. Because general relativity is a
nonlinear field theory, knowledge of the 2-body
Lagrangian is not sufficient to deduce its n-body counter-
part, as superposition is not obeyed. That the n-body Leff

encodes not only dynamics f ~xa½t�g but also the geometry
g��½t; ~x� can be seen by adding a test particle to the n-body

system.5 Denoting the latter’s mass and coordinate vector
as M� and y� � ðt; ~yÞ�, respectively, in the limit as M�

tends to zero relative to the rest of the other masses in the
system, we know its exact action has to be6

�M�

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��

dy�

dt

dy�

dt

s
¼ �M�

Z
dt

�
1� 1

2

�
d~y

dt

�
2

þ 1

2
�g00½z� þ �g0i½z�dy

i

dt

þ 1

2
�gij½z�dy

i

dt

dyj

dt
þ � � �

�
;

�g�� � ��� þ �g��;

z � f ~xa; ~va;
_~va; . . .g; t; ~y;

a ¼ 1; 2; . . . ; n;

since it now moves along a geodesic on the space-time
metric generated by the rest of the n masses. Therefore, if
Lnþ1 is the (nþ 1)-body Lagrangian less the M�ð�1þ
ð1=2Þðd~y=dtÞ2Þ, the deviation of the space-time metric
from Minkowski �g�� can be read off the action of the

test particle using the prescription

�g00½t; ~x� ¼ �2
@

@M�

Lnþ1½ ~y ¼ ~x�j _~y¼€~y¼���¼M�¼0;

�g0i½t; ~x� ¼ � @

@M�

@Lnþ1

@ðdyi=dtÞ ½ ~y ¼ ~x�j _~y¼€~y¼���¼M�¼0;

�gij½t; ~x� ¼ � @

@M�

@2Lnþ1

@ðdyi=dtÞ@ðdyj=dtÞ
� ½ ~y ¼ ~x�j _~y¼€~y¼���¼M�¼0:

We see that understanding and testing the dynamics—
the equations that govern the time evolution of the f ~xag—is
intimately tied to understanding and testing the space-time
geometry g�� of the solar system.

The outline of the paper is as follows. In Sec. II, we set
up a Lagrangian description of the system of n compact
astrophysical objects by approximating them as n point
particles. Einstein’s equations can then be solved perturba-
tively as a Born series, whose graphical representations are
the Feynman diagrams containing no graviton loops; the
result of summing the diagrams yield the n-body effective
action we seek. (Our description will be brief because it
will merely be an overview of the methods developed in
[5].) We then sketch the algorithm that could be used to
generate the necessary Feynman diagrams contributing to
the effective action up to an arbitrary PN order. In Sec. III,
we calculate the individual diagrams that occur at the
Newtonian through 2 PN order and present the effective

4The half integer PN order Lagrangians, scaling as odd powers
of v relative to Newtonian gravity, describe dissipation—gravi-
tational waves produced by and interacting with the n compact
objects. In this present paper, we shall focus only on the con-
servative part of their dynamics up to 2 PN.

5This observation can be found, for example, in Damour and
Esposito-Farese [8].

6We work in Cartesian coordinates and employ the ��� ¼
diag½1;�1; . . . ;�1� sign convention. The Einstein summation
convention is adopted. Greek letters run from 0 to d� 1 while
English alphabets run from 1 to d� 1.
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action of the n-body system up to certain integrals (21),
(23), and (41). As a by-product, we reproduce the known
2 PN 2-body Lagrangian. In the appendixes, we discuss the
integrals encountered in the diagrams and the algorithm for
generating the N � 2 graviton Feynman rules on a com-
puter and also display the Feynman diagrams occurring at
the 3 PN order.

II. THE n-BODY SYSTEM

The assumption that we have a system of n compact
objects, with their typical size rs much smaller than their
typical separation distance r, i.e. rs � r, suggests that the
detailed structure of these objects ought not affect their
gravitational dynamics, at least to leading order. These n
objects could then be viewed as point particles. Because
the most general action for a point particle must be some
scalar functional of its d velocity u

�
a � dx

�
a =dsa and geo-

metric tensors7 (and possibly the electromagnetic tensor
F��, if large scale magnetic fields are present) integrated

over the world line of the said particle; part of the action is
already fixed to be of the form

Spp ¼ � Xn
a¼1

Ma

Z
dsað1þ cðaÞ4 R����R

����

þ cðaÞ6 R����R
�
�
�
	u

�
au

�
a u

	
au�a þ cðaÞFRF��F��R

����

þ � � �Þ; (1)

where dsa is the infinitesimal proper time of the ath point
particle and the ‘‘. . .’’ means one really has an infinite
number of terms to consider, since the only constraints at
this point are that each of them is a coordinate scalar and
that none of them can be removed by a redefinition of
either the metric g�� or the photon field A�.

However, as argued in [5], unless the n objects are very
large or have very large dipole and higher mass moments, it
is expected that the minimal terms f�Ma

R
dsag would

suffice up to 4 PN order (see also Sec. 1.2 of Blanchet
[6] for a discussion), and in what follows we will compute
with them only. (We will also ignore electromagnetic
interactions.) Here, the fMag lend themselves to a natural
interpretation as the masses of the astrophysical objects
and �Ma

R
dsa describes a structureless, mathematical

point particle. At the 5 PN order and beyond, one would
be compelled to include as many of the nonminimal terms
as is required to maintain the consistency of the field theory
up to a given level of accuracy. Physically, this means one
has to begin accounting for the fact that, even if one
neglects their rotation, astrophysical objects are not really
point particles and their individual mass distributions and
substructures do produce gravitational effects. To give the

coefficients fcðaÞX g of these nonminimal terms physical

meaning, one would have to compute (in principle) mea-
surable quantities both in the actual physical setup and with

the point particle terms in (1). The fcðaÞX g are then fixed by
requiring the results of the latter match the former: for
instance, if we have multiple nonrotating black holes
bound by their mutual gravity, then one could calculate
the partial wave amplitudes of gravitational waves scatter-
ing off the Schwarzschild metric and match the point
particle computation onto it by tuning the coefficients

fMa; c
ðaÞ
X g appropriately.

Up to 2 PN, the gravitational dynamics of the n-body
system, with x

�
a denoting the �th component of the coor-

dinate vector of the ath point particle, is therefore encoded
in the action S, where

S ¼ SGR þ Spp; (2)

SGR ¼ �2Md�2
pl

Z
Rd

ddx
ffiffiffiffiffiffi
jgj

q
R; (3)

Spp ¼ � X
1�a�n

Ma

Z
dta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��v

�
a v�

a

q
;

v�
a � dx

�
a

dta
½ta�;

Mpl � ð32
GNÞ�1=2:

(4)

Moreover, we expect the metric of space-time to depart
markedly from Minkowski only close to one of these n
compact objects, where it is irrelevant for the problem at
hand, and thus we can expand the metric about ���

8:

g�� ¼ ��� þ
h��

Mðd=2Þ�1
pl

:

The general relativistic effective Lagrangian

Leff½f ~xa; ~va;
_~va; . . .g� for n objects can now be computed

via the prescription usually associated with perturbative
quantum field theory, namely, as the sum of fully con-
nected diagrams:

exp

�
i
Z

dtLeff

�
¼

� Yd�1

���¼0

Z
Dh�� exp½iS þ iSgf�

�
cl

(5)

¼ exp

�X ðfully connected diagramsÞ
�
;

(6)

Sgf ¼
Z

ddx���

�
@�h�� � 1

2
@�h

��
@�h�� � 1

2
@�h

�
;

h � h��; (7)

or alternatively,

7The conventions for the Christoffel symbols ��
��, Riemann

tensor R���� � g��R
�
���, Ricci tensor R�� and Ricci scalarR

can be inferred from the formulas in Appendix A.

8The factor of M1�ðd=2Þ
pl ensures that the graviton kinetic term

does not contain Mpl. Also, for the rest of this paper, we will
raise and lower indices with ���.

n-BODY PROBLEM IN GENERAL RELATIVITY UP TO . . . PHYSICAL REVIEW D 79, 044031 (2009)

044031-3



exp

�
i
Z

dtLeff

�
¼ N exp

�
iSI

�
1

i

�

�J��

����������J¼0

� exp

�
� 1

2

Z
ddx

Z
ddyJ��x

�DF
��;��½x� y�J��y

�
; (8)

with DF
��;��½x� y� being the Feynman graviton Green’s

function and SI½ð1=iÞ�=�J��� indicates we are replacing
every graviton field in (2), less the graviton kinetic term,
with the corresponding functional derivative with respect
to J�� with the same indices. In particular, because the

graviton field is symmetric in its indices, we have

�J��½y�
�J��½x� ¼ 1

2
ð��

��
�
� þ ��

��
�
�Þ�d½x� y�:

The expression in (8) is the functional integral version of
the statement that, up to an (for current purposes) irrelevant
factor N , to compute the effective action, one needs to
expand exp½iSI� and, for each term in the series, consider
all possible Wick contractions between the graviton fields.
In the next subsection, we will use it as a guide to devise an
algorithm for generating the necessary Feynman diagrams
at a given PN order.

A gauge fixing term Sgf (7) has been added to make

invertible the graviton kinetic term in the Einstein-Hilbert
action (3), whose explicit form then reads

SGR½h2� þ Sgf½h2� ¼
Z

ddxð12@0h��@0h�� � 1
4@0h@0h

(9)

þ 1
2@

ih��@ih�� � 1
4@

ih@ihÞ: (10)

This choice corresponds to the linearized de Donder gauge

����ð1Þ
��� ¼ @�h�� � 1

2@�h
�
� ¼ 0.

The subscript ‘‘cl’’ (short for ‘‘classical’’) in (5) indi-
cates the Feynman diagrams with graviton loops are ex-
cluded. As already remarked, evaluating these classical
Feynman graphs amounts to solving Einstein’s equations
for h�� via an iterative Born series expansion.

A. Physical scales in the n-body problem

It is possible to begin computing the diagrams in (6)
after only expanding (2) in powers of graviton fields,
performing a nonrelativistic expansion afterwards and
keeping the terms needed up to a given PN order.
However, we will now show that it is more efficient if
one also expands the action (2) in terms of the number of
time derivatives and powers of velocities fvag they contain,
before any diagrams are drawn and calculated, as this will
allow one to keep only the necessary terms in (2) such that

every Feynman diagram generated from them scales ex-
actly as v2Q, for a given PN order Q 2 Zþ.
To this end, we note that, because we are assuming that

the n objects are moving nonrelativistically, with their
typical speed v � 1, we already know that the lowest
order effective action must give us Newtonian gravity:

Seff ¼
Z

dt

� X
1�a�n

1

2
Ma ~v

2
a þ 1

2

X
1�a;b�n


Gðd=2Þ�1

N MaMb

Rd�3
ab

þ � � �
�
;

Rab � j ~xa � ~xbj;

with  being some (presently unimportant) dimensionless
number. This prompts us to associate with this lowest order
action Sc whenever this particular product of masses M,
separation distances r and time occur in the action:

S c 	
Z

dtMv2 	
Z

dtM2�d
pl M2r3�d: (11)

We may then obtain from (11)

S c 	Mvr;
Gðd=2Þ�1

N M

rd�3
	 v2; (12)

where the first relation holds because the only physical
length and time scales in the problem for a fixed coordinate
frame are the typical separation distance r and orbital
period r=v. Similarly, we relate all time and space deriva-
tives and integrals to appropriate powers of r and fre-
quency v=r:

Z
ddx	 rdv�1; (13)

d

dx0
	 �½x0 � x00� 	 v

r
; (14)

where the �½x0 � x00� relation will be needed shortly.
Next, we observe that the real part of the Feynman

graviton Green’s function obtained from inverting (9) and
(10) can be expressed as an infinite series in time deriva-
tives9:

9The momentum space representation in the following expres-
sions—which is related to its position space counterpart via
(B3)—will be useful when contracting graviton vertices coming
from the cubic and higher in h�� terms in the Einstein-Hilbert
action (3), because manipulation of spatial derivatives on h��

becomes algebraic manipulation of momentum dot products in
the numerator.
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Reh0jTfh��½x0; ~x�h��½x00; ~x0�gj0i

¼ � iP��;��

2

X1
m¼0

�½d�3�2m
2 �

41þm
ðd�1Þ=2�½1þm�
1

j ~x� ~x0jd�3�2m

�
�

d

dx00
d

dx0

�
m
�½x0 � x00�

¼ � iP��;��

2

X1
m¼0

Z dd�1p

ð2
Þd�1

ei ~p�ð ~x� ~x0Þ

½ ~p2�1þm

�
d

dx00
d

dx0

�
m

� �½x0 � x00�;
P��;�� � ������ þ ������ � 2

d� 2
������; (15)

where our notation alludes to the fact that the classical
Feynman graviton Green’s function is the noninteracting-
vacuum expectation value of the time ordered product of
two graviton fields.

That there are only an even number of time derivatives
reflects the relationship that the real part of the Feynman
Green’s function for a massless graviton is equal to half its
retarded plus half its advanced counterpart; see Poisson [9]
for a discussion. The introduction of an additional back-
ground field �h�� in [5] takes into account the imaginary

part ofDF
��;��½x� x0�, which describes the dissipative part

of the dynamics—the interaction of gravitational waves
produced by and interacting with the n point masses. In this
paper, we are focusing only on the conservative part of the
dynamics, and hence will ignore ImDF

��;��½x� x0�.
The zeroth order term in ReDF

��;��½x� x0� (15), with no
time derivatives, can be obtained by inverting (10), i.e. the
graviton kinetic term with only spatial derivatives.
Diagrams involving the higher order terms in (15), with
time derivatives, can be gotten by treating (9), the
graviton kinetic term with only time derivatives, as a
perturbation. For instance, the first correction to the
Newtonian gravitational potential due to the finite speed
of graviton propagation is proportional to

R
dtdtadtb�½t�

ta��½t� tb�ðd=dtaÞðd=dtbÞj ~xa½ta� � ~xb½tb�j5�d, which
could also be viewed as a contraction between two distinct

world line operators of the form �M1�ðd=2Þ
pl ðMa=2Þ�R

dtah00½xa�, from (4), with one insertion of (9).

Keeping in mind that each diagram is built out of con-
tracting graviton fields hh��½x�h��½x0�i ¼ DF

��;��½x� x0�
from distinct terms in (2), this implies every graviton field
in (2) should be assigned a scale that is the square root of
the lowest order nonrelativistic Green’s function contain-
ing no time derivatives. The j ~x� ~x0j3�d 	 r3�d depen-
dence implies that spatial derivatives on h�� ought to

scale with one less one power of r of the same. By recalling
(14), we then have

h��½x0; ~x� 	 r1�d=2v1=2; (16)

@ih��½x0; ~x� 	 r�d=2v1=2; (17)

@0h��½x0; ~x� 	 r�d=2v3=2: (18)

Putting the scaling relations from (11)–(14) and (16)–
(18) into the action (2), we then see that, upon expanding
(2) in powers of graviton fields, velocities ~va, and the
number of time derivatives on h��, each term in the action

now scales homogeneously with Sc and v:

Z
dtaO

ðaÞ
w ½n; �; ��� ~v2�

a 	 S1�ðn=2Þ
c v2n�2þ2�þ�� ;

Z
ddxOv½m; c � 	 S1�m=2

c v2m�4þc ;

(19)

where OðaÞ
w ½n;�; ��� denotes the world line term in (4)

associated with the ath particle containing exactly n gravi-
ton fields, less the ~v2�

a term from ���v
�
a v�

a, with a total of

�� spatial indices (for example, a term with hijv
ivjh0kv

k

has �� ¼ 3). Note that there is usually more than one term
for a given ��, so one has to sum over all possible terms.
Ov½m; c � denotes the term in (3) containing exactly m
graviton fields (m � 2), with precisely c time derivatives
(c ¼ 0, 1, or 2).
Given these results in (19), and given nðvÞ number of

graviton vertices from (3), nðwÞ number of world line

operators from (4), and N total number of graviton fields
(so that N=2 is really the number of Green’s functions in
the diagram) one can work out that every Feynman dia-
gram in the theory arising from products of these operators
must scale as

S
nðvÞþnðwÞ�ðN=2Þ
c v2ðnðwÞ�2þ��=2Þ; (20)

so that such a diagram contributes to the (nðwÞ � 2þ ��=2)
PN effective action; and nðvÞ þ nðwÞ � N

2 ¼ 1, as the non-

relativistic expansion, for the conservative part of the
dynamics, is a series of the schematic form Seff ¼ S0 þ
S2v

2 þ S4v
4 þ � � � , where each term of the effective ac-

tion has to contain the appropriate products of masses,
velocities and time integrals such that Sn 	 Sc, with the
vn factored out. Here, �� is a positive integer that is the
result of summing powers of speeds coming from time
derivatives, velocities contracted with graviton fields
(such as hijv

ivj), the number of graviton kinetic terms

with time derivatives (9) inserted, and the factors of ~v2
a

arising from the term ���v
�
a v�

a inside the proper time dsa.

We have used, in deriving the exponent of v, the constraint
that nðvÞ þ nðwÞ � N

2 ¼ 1. The fact that no diagram can

scale greater than the first power of Sc has been proven
in [5]. Observe that, with only the minimal �P

aMa

R
dsa

terms included, these scaling relations are independent of
the number of space-time dimensions.
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B. Algorithm

We are now in a position to describe an algorithm that
could, with an efficient implementation and sufficient
computing resources, generate the necessary Feynman
diagrams, for a given subset of world line terms in (1),
up to an arbitrary order in the nonrelativistic PN expansion.

For a desired scaling (20), corresponding to a specific
PN order, one can insert in (2) explicit factors of Sc and v
according to the results in (19), so that one may employ
MATHEMATICA

10 [10] to extract the relevant products of

operators, i.e. precontraction, in the Taylor series expan-
sion of the exponential in the path integral (8) using either
its SERIES or COEFFICIENT command. Observe that every
fully connected diagram DF constructed out of each term
in the Taylor series expansion of exp½iSI� in (8) is the first
nontrivial term of the series expansion of exp½DF�. Hence
the gravitational effective action is the sum of all fully
connected diagrams constructed from the terms in the
series expansion of exp½iSI�. Moreover, one does not
need to include in the code the explicit form of the graviton
fields, velocities, etc., but it suffices to have placeholders,
such as the ones used in (19), containing enough informa-
tion to reconstruct at the end the relevant types of graviton
fields considered (h00, h0i or hij), which point mass the

field(s) belongs to, factors of velocities, the number of time
derivatives in the m-graviton term(s), numerical constants
from Taylor expanding the exponential and the square root
in the infinitesimal proper time, and so on.

Next, the combinatorics of contraction can be handled
by MATHEMATICA, by assigning to every graviton field in a
given product a distinct number, so that such a product
corresponds to some list, say, f1; 2; . . . ; sg for a product of s
graviton fields. A permutation of f1; . . . ; sg is equivalent to
a Feynman diagram if and only if it leaves no numbers
fixed and the resulting permutation operation 
̂ can be
factored into products of disjoint 2-cycles, i.e. 
̂ ¼
ða1a2Þða3a4Þ . . . ðas�1asÞ, with fa1; a2; . . . ; as�1; asg being
a rearrangement of the original set f1; . . . ; sg. For instance,
the set f3; 4; 1; 2g means one would have to contract gravi-
ton field ‘‘1’’ with graviton field ‘‘3’’ and graviton field
‘‘2’’ with graviton field ‘‘4.’’ (The requirement that each
fully connected diagram scales as S1

c ensures there will be
no quantum corrections.) What remains is removing those
diagrams that are not fully connected. One method of
achieving this is to check if the permuted set
fa1; a2; . . . ; asg can be factorized into two or more disjoint
sets, where each of these individual sets contains only
terms that are contracted among themselves. The termR
dta

R
dtbhh00½xa�h00½xb�i

R
dtc

R
dtehh00½xc�h00½xe�i, for

example, can be represented as f2; 1; 4; 3g ¼

f2; 1gf4; 3g, i.e. factorizable; whereas
R
dta

R
dtb �R

dtchh00½xa�h00½xb�ihh00½xa�h00½xc�i is equivalent to

f3; 4; 1; 2g and not factorizable. Such a prescription can
be implemented with a suitable adaptation of the command
PERMUTATIONS.

Once the contractions are determined for a given product
of terms from expanding exp½iSI�, if the particular diagram
does not involve terms from the Einstein-Hilbert action, it
can be computed automatically because it would be built
out of products of the graviton Green’s function. The scalar
portion is j ~xa � ~xbj2sþ3�d, where s is the number of (9)
inserted, while there will also be factors of velocities

proportional to iP��;��v
�
a v�

av
�
bv

�
b from (15). When inser-

tions of (9) are present, one would have to take the appro-
priate time derivatives afterwards. [Some care needs to be
exercised in keeping track of the time � functions when
doing so—see (24) for an example.] For diagrams with
graviton vertices, although they may not be calculated
automatically, the required Wick contractions and permu-
tations of particle labels can be displayed so that the user
does not have to figure out the combinatorics manually, but
rather focus only on the tensor contractions of the graviton
Feynman rules, manipulation of the momentum dot prod-
ucts and the ensuing Feynman integrals. Furthermore,
some of the higher PN diagrams involving graviton verti-
ces will be products of lower PN graviton vertex diagrams
with other expressions that can also be automatically cal-
culated—such as factors of ~v2

a, the graviton Green’s func-
tion with or without insertions of (9) contracted into

velocities, hh��½xa�h��½xb�iv�
a v�

av
�
bv

�
b , etc. [see, for in-

stance, Figs. 8(a) and 8(c)]. This implies the evaluation of
such higher PN diagrams with vertices may most likely be
automated if a repository of these lower PN graviton vertex
diagrams is kept.
As an illustration of the utility of such an algorithmic

approach, we have generated in Appendix C the 3 PN
Feynman diagrams for the minimal point particle action
�P

aMa

R
dsa. We also maintain a web page [11], where

the MATHEMATICA code used in this paper can be found.

C. n-body diagrams and superposition

Now suppose one wants to calculate the Lagrangian for
n point particles up to the Qth post-Newtonian order. Then
the exponent of v in (28) tells us that the maximum number
of distinct particles that can appear in a given Feynman
diagram is

max½nðwÞ� ¼ Qþ 2

and so at a fixed post-Newtonian order Q, obtaining the
Feynman diagrams for the (Qþ 2)-body problem is suffi-
cient for obtaining the Lagrangian for the arbitrary n-body
problem. In particular, at the 2 PN order, we see that the
n-body problem is equivalent to the 4-body problem. For a

10We frame this discussion around MATHEMATICA, but this
algorithm can most likely be implemented with any software
with similar symbolic differentiation and combinatorial
capabilities.
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general Q PN order, the diagrams for n > Qþ 2 point
particles can be obtained by summing the diagrams for
the n ¼ Qþ 2 case over all the particles in the system,
since no additional distinct diagrams are needed. For n <
Qþ 2 point particles, the relevant diagrams can be gotten
from the n ¼ Qþ 2 diagrams by setting the massesMQþ2,

MQþ1; . . . ;Mnþ1 to zero. Even with the nonminimal terms

beyond the �P
aMa

R
dsa included, it is apparent that

superposition will continue to hold at any given PN order
once we have computed the effective Lagrangian for a
sufficient number of distinct point particles, since each
Feynman diagram can only contain a finite number of
world line operators.

III. RESULTS

We now present the diagram-by-diagram results for the
computation of the effective action up to 2 PN. Because the
calculation is long and saturated with technicalities, the
reader only interested in the final results may simply refer
to (21) for O½v0�, (23) for O½v2�, and (41)–(44) for the
O½v4� effective Lagrangians.

All Feynman diagram integrals are evaluated within the
framework of dimensional regularization, where the
number of space-time dimensions, d ¼ m� 2", is some
infinitesimal deviation from a positive integer: i.e.m 2 Zþ
and " ¼ 0þ. For some of the more difficult integrals
encountered at the 2 PN level, we will restrict our in-
terest to that of the physically relevant case when d ¼ 4�
2". Within dimensional regularization, integrals
such as

R
dd�1pð ~p2Þ��,

R
dd�1ppið ~p2Þ�� andR

dd�1ppipjð ~p2Þ�� are set to zero. This can be justified

formally by setting to zero the appropriate �, 	, or �
exponent of (B4)–(B7), since �½z� diverges as z ! 0.

Because it is easier to manipulate momentum dot prod-
ucts than derivatives, both the Feynman rules for the gravi-
ton vertices are derived and the tensor contractions of
graviton vertices are performed in Fourier space. (See
Appendix B for an algorithm that could generate the
N-graviton Feynman rule for N � 2.) We will thus present
the master integrals for each diagram first in momentum
space.

Notation.—A few words about the notation used: the
time argument of the ath particle is ta, so that ~xa ¼ ~xa½ta�.
However, if the spatial coordinate vectors f ~xaja ¼
1; 2; . . . ; ng and their time derivatives occur within a single
time integral

R
dt, then it is implied that they all share the

same time argument t. ~Rab � ~xa � ~xb and its Euclidean

length is Rab � j ~xa � ~xbj ¼ ð��ijðxia � xibÞðxja � xjbÞÞ1=2.
The partial derivative @ai � @=@xia refers to the derivative
with respect to the ith component of the spatial coordinate
vector of the ath particle. The spatial velocity of the ath

particle is ~va ¼ ~va½ta� � d~xa=dta � _~xa, and its accelera-

tion is _~va ¼ _~va½ta� � d2 ~xa=dt
2
a � €~xa. Whenever we com-

pute in Fourier space, the relevant sign and 
 conventions

are encoded in the following definition: f½x� � ð2
Þ�d �R
ddp~f½p� exp½ip0x

0� exp½�i ~p � ~x�, where f is some arbi-

trary function, and x and p are its coordinate and momen-
tum space arguments, respectively.
Feynman diagrams.—A blob with some letter ‘‘a’’ at its

center represent a world line operator from (4) belonging to
the ath particle, with the indices of its various graviton
fields h�� 2 fh00; h0i; hijg indicated on the side. fa; b; c; eg
are distinct labels. A line represents the lowest order
graviton Green’s function with no time derivatives. The
� on a line represent an insertion of (9). A black dot with k
lines attached to it is the k-graviton piece of (3) with zero
time derivatives. The k-graviton piece of (3) with 1 or
2 time derivatives will be indicated with a 1 or 2, respec-
tively; see, for example, Figs. 6(a) and 7(a). The vk appear-
ing alongside the graviton indices of the ath world line
operator indicates which power of ~v2

a from expanding

�Ma

R
dx0að1� ~v2

a þ � � �Þ1=2 needs to be included. Every

Feynman diagram displayed serves dual purposes: it rep-
resents the class of diagrams that can be obtained from it by
permuting particle labels; but the result of the diagram
shown in the body of the text is always for the specific
choice of labels in the figure. [The exceptions are the
diagrams where two 3-graviton vertices are contracted:
Figs. 9(c), 9(d), 12(d), and 14(c). We will discuss the
notations there.]

A. 0 PN

At the lowest order, we have Newtonian gravity coming
from the single diagram in Fig. 1 and the usual kinetic
energy.

Lð0 PNÞ
eff ¼ X

1�a�n

1

2
Ma ~v

2
a þ 1

2

X
1�a;b�n

a�b

2ð5d=2Þ�8�½d�1
2 �


1=2ðd� 2Þ

� Gððd�2Þ=2Þ
N MaMb

Rd�3
ab

: (21)

B. 1 PN

At 1 PN order, we have 2- and 3-body diagrams. Since
the Lagrangian at this order has been computed numerous
times in the literature, we will merely present the results
and not discuss any of the calculation in detail.

FIG. 1. Newtonian gravity.
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1. 2-body diagrams

The 2-body diagrams are displayed in Fig. 2:

Fig: 2ðaÞ ¼ �i
Z

dt
�½d�3

2 �
8
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~va � ~vb;

Fig: 2ðbÞ ¼ i
Z

dt
�½d�3

2 �
16ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~v2
b;

Fig: 2ðcÞ ¼ i
Z

dt
ð5� dÞðd� 3Þ�½d�5

2 �
64ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�1

ab

� ðð3� dÞ ~va � ~Rab ~vb � ~Rba � ~va � ~vb
~R2
abÞ;

Fig: 2ðdÞ ¼ �i
Z

dt
ðd� 3Þ2�2½d�3

2 �
256ðd� 2Þ2
d�1

M2
aMb

M2ðd�2Þ
pl R2ðd�3Þ

ab

;

Fig: 2ðeÞ ¼ i
Z

dt
�2½d�1

2 �
128ðd� 2Þ2
d�1

MaM
2
b

M2ðd�2Þ
pl R2ðd�3Þ

ab

;

Fig: 2ðfÞ ¼ i
Z

dt
�½d�1

2 �
16ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~v2
a:

2. 3-body diagrams

The 3-body diagrams are found in Fig. 3:

Fig: 3ðaÞ ¼ �i
Z

dt
ðd� 3Þ2�2½d�3

2 �
128ðd� 2Þ2
d�1

MaMbMc

M2ðd�2Þ
Pl

� ðR3�d
ab R3�d

ac þ R3�d
bc R3�d

ac þ R3�d
ab R3�d

bc Þ;

Fig: 3ðbÞ ¼ i
Z

dt
�2½d�1

2 �
64ðd� 2Þ2
d�1

MaMbMc

M2ðd�2Þ
Pl

Rd�3
ab Rd�3

ac

:

For later use, we note that the master integral for the 3-
graviton diagram is

I000000½q; r; s� � � i

Mðd�2Þ=2
pl

�
d� 3

d� 2

�
2
�Y3
‘¼1

Z dd�1p‘

ð2
Þ‘
�

� ~p2
1 þ ~p2

2 þ ~p2
3

~p2
1 ~p

2
2 ~p

2
3

� exp½i ~p1 � ~xq½tq� þ i ~p2 � ~xr½tr�
þ i ~p3 � ~xs½ts��ð2
Þd�1

� �ðd�1Þ½ ~p1 þ ~p2 þ ~p3�: (22)

3. O½v2� effective Lagrangian
Summing the first-order relativistic correction to kinetic

energy from the ���v
�v� in the infinitesimal proper time

ds and the diagrams from Figs. 2 and 3 hands us the 1 PN
order, d � 4-dimensional n-body effective Lagrangian:

00 00

00

a b

c

a
00 00

c
00 00

b c

FIG. 3. 1 PN 3-body diagrams.

FIG. 2. 1 PN 2-body diagrams.
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Lð1 PNÞ
eff ¼ Xn

a¼1

1

8
Ma ~v

4
a þ 1

2

X
1�a;b�n

a�b

2ð5ðd�4Þ=2Þ�½d�3
2 �

ðd� 2Þ
1=2

Gðd=2Þ�1
N MaMb

Rd�3
ab

�
�
ðd� 3Þ2 ~Rab � ~va

~Rba � ~vb

R2
ab

þ ðd� 1Þð ~v2
a þ ~v2

bÞ � ð3d� 5Þ ~va � ~vb

�

� 1

2

X
1�a;b�n

a�b

25d�17�2½d�1
2 �

ðd� 2Þ2

Gd�2

N MaMbðMa þMbÞ
R2ðd�3Þ
ab

� 1

3!

X
1�a;b;c�n
a;b;c distinct

25d�16�2½d�1
2 �

ðd� 2Þ2
 Gd�2
N MaMbMcðR3�d

ab R3�d
ac

þ R3�d
ba R3�d

bc þ R3�d
ca R3�d

cb Þ; ~Rab � ~xa � ~xb; Rab � j ~Rabj: (23)

Setting d ¼ 4 recovers the known result in the literature,
for instance, Eq. (38c) of Damour and Schäfer [3]. The d �
4, 2-body version of (23) has been computed by Cardoso,
Dias, and Figueras [12].

C. 2 PN

At 2 PN, we have 2-, 3- and 4-body diagrams. We shall
classify the diagrams according to whether they involve
terms from the Einstein-Hilbert action, i.e. diagrams with

or without graviton vertices. Whenever there are time
derivatives acting on � functions, for example,
ðd=dtaÞ�½ta � t�, it is implied that integration by parts is
to be carried out. To save space, we will not display the
explicit result of differentiation.

1. 2-body diagrams

No graviton vertices.—The diagrams that do not involve
graviton vertices are

Fig: 4ðaÞ ¼ i
Z

dt
Z

dta
Z

dtb
ðd� 3Þ�½d�7

2 �
512
ðd�1Þ=2ðd� 2Þ

MaMb

Md�2
pl Rd�7

ab

�
d

dta

d

dtb

�
2
�½t� ta��½t� tb�;

Fig: 4ðbÞ ¼ i
Z

dt
�½d�3

2 �
16
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

�
ð ~va � ~vbÞ2 � ~v2

a ~v
2
b

d� 2

�
;

Fig: 4ðcÞ ¼ i
Z

dt
�½d�3

2 �
32
ðd�1Þ=2ðd� 2Þ

MaMb

Md�2
pl Rd�3

ab

~v2
a ~v

2
b;

Fig: 4ðdÞ ¼ �i
Z

dt
�½d�3

2 �
16
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~va � ~vb ~v
2
a;

Fig: 4ðeÞ ¼ i
Z

dt
�½d�3

2 �
32ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~v4
a;

Fig: 4ðfÞ ¼ i
Z

dt
3�½d�1

2 �
64ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~v4
a;

Fig: 4ðgÞ ¼ i
Z

dt
�½d�1

2 �
32ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�3

ab

~v2
a ~v

2
b;

Fig: 4ðhÞ ¼ i
Z

dt
Z

dta
Z

dtb
�½d�5

2 �
64ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�5

ab

~v2
a

d

dta

d

dtb
�½t� ta��½t� tb�;

Fig: 4ðiÞ ¼ �i
Z

dt
Z

dta
Z

dtb
�½d�5

2 �
32
ðd�1Þ=2

MaMb

Md�2
pl Rd�5

ab

~va � ~vb

d

dta

d

dtb
�½t� ta��½t� tb�;

Fig: 4ðjÞ ¼ i
Z

dt
Z

dta
Z

dtb
ðd� 3Þ�½d�5

2 �
128ðd� 2Þ
ðd�1Þ=2

MaMb

Md�2
pl Rd�5

ab

~v2
a

d

dta

d

dtb
�½t� ta��½t� tb�;
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Fig: 5ðaÞ ¼ i
Z

dt
ðd� 3Þ�½d�3

2 �2
256ðd� 2Þ2
d�1

MaM
2
b

M2ðd�2Þ
pl R2ðd�3Þ

ab

~v2
b;

Fig: 5ðbÞ ¼ �i
Z

dt
ðd� 3Þ�½d�3

2 �2
128ðd� 2Þ
d�1

MaM
2
b

M2ðd�2Þ
pl R2ðd�3Þ

ab

� ~va � ~vb;

Fig: 5ðcÞ ¼ i
Z

dt
ðd� 3Þ�½d�3

2 �2
256ðd� 2Þ2
d�1

MaM
2
b

M2ðd�2Þ
pl R2ðd�3Þ

ab

~v2
a;

Fig: 5ðdÞ ¼ i
Z

dt
3�½d�1

2 �2
256ðd� 2Þ2
d�1

M2
aMb

M2ðd�2Þ
pl R2ðd�3Þ

ab

~v2
b;

Fig: 5ðeÞ ¼ i
Z

dt
�½d�1

2 �2
128ðd� 2Þ2
d�1

M2
aMb

M2ðd�2Þ
pl R2ðd�3Þ

ab

~v2
a:

Figure 5(f) contains a first-order relativistic correction to
the graviton Green’s function. Integrating over the time �
function with no time derivatives acting on it, before
integrating by parts, the resulting integral becomes

Fig: 5ðfÞ ¼ iðd� 3Þ�½d�5
2 ��½d�1

2 �MaM
2
b

512ðd� 2Þ2M2ðd�2Þ
Pl


d�1

�
Z

dt
Z

dtb�½ta � tb�

�
�
dj ~xb½ta� � ~xa½ta�j3�d

dta

dj ~xb½tb� � ~xa½ta�j5�d

dtb

þ j ~xb½ta� � ~xa½ta�j3�d d
2j ~xb½tb� � ~xa½ta�j5�d

dtadtb

�
;

(24)

with a common time argument ta for both ~xa and ~xb in the
factor j . . . j3�d.

Fig: 5ðgÞ ¼ i
Z

dt
�½d�1

2 �3
1024ðd� 2Þ3
ð3=2Þðd�1Þ

M3
aMb

M3ðd�2Þ
pl R3ðd�3Þ

ab

;

Fig: 5ðhÞ ¼ i
Z

dt
�½d�1

2 �3
512ðd� 2Þ3
ð3=2Þðd�1Þ

M2
aM

2
b

M3ðd�2Þ
pl R3ðd�3Þ

ab

:

Graviton vertices.—The rest of the 2-body diagrams
contain terms from the Einstein-Hilbert action.

Note that the form of the Fourier space master integrals
associated with each class of diagrams usually comes
about after some manipulation of momentum dot products,
application of the identity 2 ~pa � ~pb ¼ 
ð ~pa 
 ~pbÞ2 �

~p2
a � ~p2

b and its analogs, and the use of momentum con-

servation
P

‘
r¼1 ~pr ¼ 0, ‘ ¼ 3 or 4.

Figures 6(a) and 6(b).—The 2- and 3-body version of
Figs. 6(a) and 6(b) requires the following master integral:

b
00 00

a

a b
ij ij

a b
00, v ij

2

a b
0i, v 0i

2

a b
ij, v 00

2

a
00, v

4
00

b

a b
00, v

2
00, v

2

b a
00 ij

b
0i 0i

aaa

a b
00, v 00

a
2

FIG. 4. 2 PN 2-body diagrams with no graviton vertices: 1 of 2.
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I0i0000½q; r; s� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
�½t� tq�

2ðd� 2ÞMðd�2Þ=2
pl

�Y3
‘¼1

Z dd�1p‘

ð2
Þd�1

�
~va � ½ð2ðd� 4Þ ~p2 þ ðd� 5Þ ~p3Þ�½t� ts�

� ðiðd=dtrÞ�½t� tr�Þ þ ððd� 5Þ ~p2 þ 2ðd� 4Þ ~p3Þ�½t� tr�ðiðd=dtsÞ�½t� ts�Þ�

� exp½ið ~p1 � ~xq½tq� þ ~p2 � ~xr½tr� þ ~p3 � ~xs½ts�Þ�
~p2
1 ~p

2
2 ~p

2
3

ð2
Þd�1�d�1½ ~p1 þ ~p2 þ ~p3�: (25)

a
00 00

cb b
00 ij

a
00 00

c
0i

b b
0i

a
00 00

c
00

b b
ij

b
00 00 00, 00

a
v

2

a

b
00, 00 00 00v

2

a a

a
00 00

cb b
00 00

00 00
a a

b

a

00
00

00

00

00,
b

00
00

a
00

00
00

ba

FIG. 5. 2 PN 2-body diagrams with no graviton vertices: 2 of 2.

b

a
0i 00

00

a
1

b

a
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a
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b
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b

FIG. 6. 2 PN 2-body diagrams with graviton vertices: 1 of 4.
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Notice that a pj
s (with s ¼ 1, 2 or 3) in the numerator can

be obtained by differentiating the appropriate exponential,
i.e. pj

s exp½i ~ps � ~xr� ¼ �ið@=@xjrÞ exp½i ~ps � ~xr�. Our ap-
proach to the Fourier integrals arising from this and the
rest of the diagrams with graviton vertices is to first sub-
stitute the momentum � function(s) with its (their) integral
representation(s),

ð2
Þd�1�d�1

�Xs
r¼1

~pr

�
¼

Z
dd�1z exp

�
�i~z � Xs

r¼1

~pr

�
;

(26)

and next use (B3) to reexpress the original momentum
integrals as position space ones, with the momentum dot
products in the numerator converted into derivatives on the
resulting integrand.

In this regard, the 2-distinct-particles case usually re-
quires more care than the 3- and 4-distinct-particles cases.
We shall illustrate this with Fig. 6(a), where ~xq ¼ ~xr � ~xa
and ~xs � ~xb. The time derivatives occurring in Fig. 6(a) are

d

dta
¼ vj

a½ta� @

@xja½ta�
;

d

dtb
¼ vj

a½tb� @

@xja½tb�
;

d

dtc
¼ vj

b½tc�
@

@xjb½tc�
;

with each partial derivative acting only on the appropriate
j ~xa � ~zj or j ~xb � ~zj with the same time argument as the
velocity vector contracted into it.
When d ¼ 4� 2", we therefore have

Fig: 6ðaÞ ¼ M2
aMb

4Mð3=2Þðd�2Þ
pll

I0i0000½a; a; b� ¼d¼4
lim
�!0

i
Z

dt
Z

dta
Z

dtb
Z

dtc
M2

aMb

16M4
pl

�½t� ta��½t� tb��½t� tc�
�
�½ð1=2Þ � ��
4
ð3�2�Þ=2

�
2

�
Z

d3�2�zvi
a½ta�ðvj

a½tb�j ~xa½tb� � ~zj�1þ2�ð@aj j ~xa½tb� � ~zj�1þ2�Þð@bi j ~xb½tc� � ~zj�1þ2�Þ
þ vj

b½tc�j ~xa½ta� � ~zj�1þ2�ð@bj j ~xb½tc� � ~zj�1þ2�Þð@ai j ~xa½tb� � ~zj�1þ2�ÞÞ:

After differentiation, these integrals can then be eval-
uated using (B7). This leads us to

Fig: 6ðaÞ ¼d¼4
i
Z

dt
M2

aMb

512M4
pl


2R4
ab

ð�2ð ~Rab � ~vaÞ2

� 2 ~Rab � ~vb
~Rab � ~va þ ð ~v2

a þ ~va � ~vbÞR2
abÞ:

A similar analysis for Fig. 6(b), making use of (B4) and
(B6), gives

Fig: 6ðbÞ ¼ MaM
2
b

8Mð3=2Þðd�2Þ
pl

I0i0000½a; b; b�

¼d¼4
i
Z

dt
MaM

2
b

1024M4
pl


2R4
ab

� ð ~Rba � ~va
~Rba � ~vb � ~va � ~vbR

2
abÞ:

Before proceeding further, it is useful to introduce the
following master integral that would occur in several 2-, 3-

and 4-body Feynman integrals:

I3½a;b;c� ¼
�Y3
s¼1

Z dd�1ps

ð2
Þd�1

�
ð2
Þd�1�ðd�1Þ½ ~p1 þ ~p2 þ ~p3�

� exp½ið ~p1 � ~xa þ ~p2 � ~xbþ ~p3 � ~xcÞ�
~p2
1 ~p

2
2 ~p

2
3

¼
�
�½d�3

2 �
4
d�1=2

�
3

�
Z dd�1z

j~z� ~xajd�3j~z� ~xbjd�3j~z� ~xcjd�3
; (27)

where we have provided both its Fourier and position space
representations. In Appendix B, we obtain I3½a; b; c� in
closed form when d ¼ 4� 2", up to O½"0� (B14).
Figures 6(c) and 6(d).—We now turn to Figs. 6(c) and

6(d). Its associated master integral is

Iij0000½q; r; s� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
�½t� tq��½t� tr��½t� ts�

Mðd�2Þ=2
pl

�Y3
‘¼1

Z dd�1p‘

ð2
Þd�1

�

�
�

~v2
q

ðd� 2Þ2
~p2
1 � ðd� 3Þð ~p2

2 þ ~p2
3Þ

~p2
1 ~p

2
2 ~p

2
3

þ d� 3

2ðd� 2Þ
ð ~p1 � ~vqÞ2 þ ð ~p2 � ~vqÞ2 þ ð ~p3 � ~vqÞ2

~p2
1 ~p

2
2 ~p

2
3

�

� exp½ið ~p1 � ~xq½tq� þ ~p2 � ~xr½tr� þ ~p3 � ~xs½ts�Þ�ð2
Þd�1�d�1½ ~p1 þ ~p2 þ ~p3�: (28)
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The term proportional to ~v2
q may be integrated in arbi-

trary d dimensions by integrating over the momentum that
is absent in the denominator (after cancellation), followed
by an application of (B3), because it reduces to a product of
the form

Q
sð2
Þ1�d

R
dd�1ps exp½i ~ps � ~Rsu�= ~p2

s . This type
of Fourier integral will occur frequently.

The second term containing momenta dotted into veloc-
ities has the position space representation

� i
d� 3

2ðd� 2ÞMðd�2Þ=2
pl

Z
dt

�
�½d�3

2 �
4
ðd�1Þ=2

�
3

�
Z

dd�1zvi
qv

j
qðð@pi @pj R3�d

pz ÞR3�d
qz R3�d

rz

þR3�d
pz ð@qi @qjR3�d

qz ÞR3�d
rz þR3�d

pz R3�d
qz ð@ri@rjR3�d

rz ÞÞ: (29)

There is a subtlety when taking double spatial deriva-
tives on a single factor of the Euclidean distance raised to
the 3� d power occurring within the Feynman integrals,
such as @ai @

a
jR

3�d
az . Strictly speaking, because R3�d

az is the

Green’s function of the spatial Laplacian operator �ij@ai @
a
j ,

one needs to employ the formula

@

@xi
@

@xj
�½d�3

2 �
4
ðd�1Þ=2j ~xjd�3

¼ �½d�1
2 �

2
ðd�1Þ=2

�
ðd� 1Þ xixj

j ~xjdþ1
� �ij

j ~xjd�1

�
� �ij

d� 1
�d�1½ ~x�;

where there is a �-function term in addition to those
following from straightforward differentiation so that one
would obtain the correct result upon taking the trace of
both sides. Insofar as the Feynman integrals are concerned,
however, it appears the �-function term may be dropped as
long as proper regularization is used. For instance, if we try
to compute the integral

Z
dD�1zR

�	
bz @

a
i @

a
jR

3�d
az

by first carrying out the differentiation (without including
the �-function term), we would obtain two terms, one with

a Ri
azR

j
az in the integrand and the other with �ij. If we

simply set D ¼ d and employ Eqs. (B4) and (B6), each of
the two terms will be ill-defined. However, displacingD ¼
dþ  in (B4) and (B6), and performing a Laurent expan-
sion in  afterwards would yield a finite result that is not
traceless and is furthermore consistent with first doing the

scalar integral (B4) with �1 ¼ 	 and �2 ¼ d� 3 and then
carrying out the double derivatives at the end.
If one is interested only in the higher PN 2-body prob-

lem, the existence of such subtleties may be reason to stay
within Fourier space as far as possible for the evaluation of
Feynman integrals. For the 2-body case of the integrals
(29) and analogous ones below, to avoid this subtlety for
the terms where there are 2 factors of R3�d

az (or 2 factors of
R3�d
bz ) and the derivatives are acting on the R3�d

bz (or R3�d
az ),

we shall first do the integral using I3, before differentiation.
Along this line, we further remark that

Z
dd�1zR2ð3�dÞ

az @bi @
b
jR

3�d
bz

can be integrated and then differentiated, whereas

Z
dd�1zR3�d

az R3�d
bz @bi @

b
jR

3�d
bz

has to be differentiated first. One cannot begin with 3 dis-
tinct coordinate vectors f ~xa; ~xb; ~xcg in this integral, engage
I3, and then set ~xc ¼ ~xb: the last step involves terms like
limc!bR

i
bc=Rbc and limc!bR

�2
bc and hence is ill-defined.

We now employ (B3), derivatives on I3, (B4) and (B6) to
deduce

Fig: 6ðcÞ ¼ M2
aMb

8Mð3=2Þðd�2Þ
pl

Iij0000½a; a; b�

¼d¼4
i
Z

dt
M2

aMb

1024M4
pl


2R4
ab

� ð�3ð ~Rab � ~vaÞ2 � 4ð ~Rba � ~vbÞ2 þ ~v2
a � R2

abÞ;
and

Fig: 6ðdÞ ¼ MaM
2
b

16Mð3=2Þðd�2Þ
pl

Iij0000½a;b;b�

¼d¼4
i
Z

dt
MaM

2
b

2048M4
pl


2R4
ab

�ð�4ð ~Rab � ~vaÞ2 � 3ð ~Rba � ~vaÞ2 þ 5 ~v2
a �R2

abÞ:
Figure 7(a).—It turns out that Fig. 7(a) and its 3-body

counterpart are zero in d ¼ 4 space-time dimensions.
Because it is not apparent, we display the results here for
the 3-body case. In terms of the master integral in (27), we
have

Fig: 11ðcÞ ¼ �i
Z

dt
Z

dta
Z

dtb
Z

dtc
ðd� 4Þðd� 1ÞMaMbMc

16ðd� 2Þ2M2ðd�2Þ
pl

I3½a; b; c�
�
�
�
d

dta

�
2 �

�
d

dtb

�
2 �

�
d

dtc

�
2
�

� �½ta � t��½tb � t��½tc � t�: (30)

To be sure, when the number of distinct particles changes from 3 to 2, the integrals occurring in Fig. 7(a) would be
different from that in (30)—which really is the result for Fig. 11(c)—but because it remains finite, Fig. 7(a) still vanishes
due to the coefficient (d� 4).
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Figure 7(b).—Figure 7(b) corresponds to the first relativistic correction to each of the lowest order graviton Green’s
functions in the 1 PN 3-graviton diagram [Fig. 2(d)]. Its associated master integral is

I000000�½q; r; s� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
ðd� 3Þ2

ðd� 2Þ2Mðd�2Þ=2
pl

�Y3
‘¼1

Z dd�1p‘

ð2
Þd�1

��
~p2
1 þ ~p2

2 þ ~p2
3

~p4
1 ~p

2
2 ~p

2
3

�½t� tr��½t� ts�

�
�
d2

dt2q
�½t� tq�

�
þ ~p2

1 þ ~p2
2 þ ~p2

3

~p2
1 ~p

4
2 ~p

2
3

�½t� tq��½t� ts�
�
d2

dt2r
�½t� tr�

�

þ ~p2
1 þ ~p2

2 þ ~p2
3

~p2
1 ~p

2
2 ~p

4
3

�½t� tq��½t� tr�
�
d2

dt2s
�½t� ts�

��
exp½ið ~p1 � ~xq½tq� þ ~p2 � ~xr½tr� þ ~p3 � ~xs½ts�Þ�

� ð2
Þd�1�d�1½ ~p1 þ ~p2 þ ~p3�: (31)

For the case of 2 distinct particles, I000000�½a; a; b� becomes

I000000�½a; a; b� ¼d¼4 i

128
3Mpl

Z
dt

Z
d3�2"zR�1þ2"

az R�1þ2"
bz ð _vi

a@
a
i þ vi

av
j
a@ai @

a
j ÞR�1þ2"

az

þ i

2Mpl

Z
dt

Z
dta

Z
dtb

Z
dtc�½t� ta��½t� tb��½t� tc�

ZZ d3�2"p1d
3�2"p2

ð2
Þ2ð3�2"Þ

�
�
ei ~p2�ð ~xa½tb�� ~xb½tc�Þ

~p2
2

i _~va½ta� � ~p1 � ~va½ta� � ~p1 ~va½ta� � ~p1

~p4
1

ei ~p1�ð ~xa½ta�� ~xa½tb�Þ
�

�
Z

dt
i

64
2MplRab

ð _vi
a@

a
i þ vi

av
j
a@ai @

a
j ÞRab þ

Z
dt

i

4Mpl

ð _vi
b@

b
i þ vi

bv
j
b@

b
i @

b
j ÞI3½a; a; b�:

The first position space integral can be evaluated using (B4)–(B6). The Fourier integral after it vanishes upon integrating
over the time � functions because the exponential becomes unity. We thus have

Fig: 7ðbÞ ¼ M2
aMb

16Mð3=2Þðd�2Þ
pl

I000000�½a; a; b�

¼d¼4
i
Z

dt
M2

aMb

2048M4
pl


2R4
ab

ð5ð ~Rba � ~vaÞ2 þ 4ð ~Rba � ~vbÞ2 � 4ð ~Rab � _~va þ 2 ~Rba � _~vb þ 3 ~v2
a þ 2 ~v2

bÞR2
abÞ:

Figures 7(c) and 7(d).—The master integral associated with Figs. 7(c) and 7(d) is

I0i0j00½q; r; s� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
�½t� tq��½t� tr��½t� ts�

4ðd� 2ÞMðd�2Þ=2
pl

�Y3
‘¼1

Z dd�1p‘

ð2
Þd�1

�

�
�
~vq � ~vr

ðd� 4Þð ~p2
1 þ ~p2

2Þ þ ðd� 2Þ ~p2
3

~p2
1 ~p

2
2 ~p

2
3

þ 2ðd� 4Þ ~p2 � ~vq ~p1 � ~vr

~p2
1 ~p

2
2 ~p

2
3

þ 2ðd� 3Þ

� ~p3 � ~vq ~p1 � ~vr þ ~p2 � ~vq ~p3 � ~vr

~p2
1 ~p

2
2 ~p

2
3

�

� exp½ið ~p1 � ~xq½tq� þ ~p2 � ~xr½tr� þ ~p3 � ~xs½ts�Þ�ð2
Þd�1�d�1½ ~p1 þ ~p2 þ ~p3�: (32)

A similar approach to the one taken for (25) and (28), together with the integrals (B6) and (B7), then yields

Fig : 7ðcÞ ¼ M2
aMb

2Mð3=2Þðd�2Þ
pl

I0i0j00½a; b; a� ¼d¼4�i
Z

dt
M2

aMb

512M4
pl


2R4
ab

ð ~va � ~vbR
2
ab þ ~Rab � ~va

~Rab � ~vb � 4 ~Rba � ~va
~Rba � ~vbÞ;

as well as

Fig : 7ðdÞ ¼ M2
aMb

4Mð3=2Þðd�2Þ
pl

I0i0j00½a; a; b� ¼d¼4
i
Z

dt
M2

aMb

128M4
pl


2R4
ab

ð ~Rab � ~vaÞ2:
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Figures 8(a) and 8(b).—Figures 8(a) and 8(b) are, up to numerical constants, products of ~v2
a with the 1 PN 3-graviton

diagram [Fig. 2(d)], namely,

Fig : 8ðaÞ ¼ M2
aMb

16Mð3=2Þðd�2Þ
pl

Z
dt ~v2

aI000000½a; b; a� ¼ �i
Z

dt
ðd� 3Þ2�½d�3

2 �2M2
aMb

256ðd� 2Þ2M2d�4
pl 
d�1R2ðd�3Þ

ab

~v2
a;

b

a
00, v 00

00

a
2

a

b
00 00

00, v

b

2

b

a
00 00

a

00
00

00
a

a

a
00 00

b

00
00

00
b

FIG. 8. 2 PN 2-body diagrams with graviton vertices: 3 of 4.
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FIG. 7. 2 PN 2-body diagrams with graviton vertices: 2 of 4.
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and

Fig : 8ðbÞ ¼ M2
aMb

32Mð3=2Þðd�2Þ
pl

Z
dt ~v2

bI000000½a; a; b� ¼ �i
Z

dt
ðd� 3Þ2�½d�3

2 �2M2
aMb

512ðd� 2Þ2M2ðd�2Þ
pl 
d�1R2ðd�3Þ

ab

~v2
b:

Figures 8(c) and 8(d).—Figures 8(c) and 8(d) are, up to constant factors, the product of the lowest order graviton Green’s
function hh00h00i with the 1 PN 3-graviton diagram [Fig. 2(d)], namely,

Fig : 8ðcÞ ¼
Z

dt
�½d�1

2 �M3
aMb

128ðd� 2ÞMð5=2Þðd�2Þ
pl 
ððd�1Þ=2ÞRd�3

ab

I000000½a; a; b� ¼ �i
Z

dt
�½d�1

2 �3M3
aMb

512ðd� 2Þ3M3ðd�2Þ
pl 
ð3=2Þðd�1ÞR3ðd�3Þ

ab

;

Fig : 8ðdÞ ¼
Z

dt
�½d�1

2 �M2
aM

2
b

64ðd� 2ÞMð5=2Þðd�2Þ
pl 
ððd�1Þ=2ÞRd�3

ab

I000000½a; b; b� ¼ �i
Z

dt
�½d�1

2 �3M2
aM

2
b

256ðd� 2Þ3M3ðd�2Þ
pl 
ð3=2Þðd�1ÞR3ðd�3Þ

ab

:

Figures 9(a) and 9(b).—The associated master integral for Fig. 9(a) is

I00000000½q; r; s; u� ¼ �i
Z

dt
Z

dtq
Z

dtr
Z

dts
Z

dtu�½t� tq��½t� tr��½t� ts��½t� tu� ðd� 3Þðdð7d� 51Þ þ 86Þ
4ðd� 2Þ3Md�2

pl

�
�Y4
‘¼1

R
dd�1p‘

ð2
Þd�1

�
~p2
1 þ ~p2

2 þ ~p2
3 þ ~p2

4

~p2
1 ~p

2
2 ~p

2
3 ~p

2
4

exp½ið ~p1 � ~xq þ ~p2 � ~xr þ ~p3 � ~xs þ ~p4 � ~xuÞ�ð2
Þd�1

� �d�1½ ~p1 þ ~p2 þ ~p3 þ ~p4�: (33)

Employing (B3) hands us

Fig : 9ðaÞ ¼ M3
aMb

96M2ðd�2Þ
pl

I00000000½a; a; a; b� ¼ �i
Z

dt
ðd� 3Þðdð7d� 51Þ þ 86Þ�3½d�3

2 �3M3
aMb

24 576ðd� 2Þ3M3ðd�2Þ
pl 
ð3=2Þðd�1ÞR3ðd�3Þ

ab

and

Fig : 9ðbÞ ¼ M2
aM

2
b

64M2ðd�2Þ
pl

I00000000½a; a; b; b� ¼ 0:

Figures 9(c) and 9(d).—The evaluation of Figs. 9(c) and 9(d) involving the contraction of two 3-graviton vertices
requires the most effort. Its associated master integrals in momentum space after substantial algebraic manipulation reads:

I0000�0000½q; r; s; u� ¼ II0000�0000½q; r; s; u� þ III0000�0000½q; r; s; u� þ IIII0000�0000½q; r; s; u�; (34)

II0000�0000½q; r; s; u� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
Z

dtu
�½t� tq��½t� tr��½t� ts��½t� tu�

8ðd� 2Þ3Md�2
pl

�Y4
‘¼1

Z dd�1p‘

ð2
Þd�1

�
1

~p2
1 ~p

2
2 ~p

2
3 ~p

2
4

�
�
ðd� 3Þ2ð5d� 18Þð ~p2

1 þ ~p2
2 þ ~p2

3 þ ~p2
4Þ þ ð3d3 � 40d2 þ 151d� 174Þð ~p1 þ ~p2Þ2

� ðd� 3Þ2
ð ~p1 þ ~p2Þ2

ð4ðd� 2Þð ~p2
1 ~p

2
2 þ ~p2

3 ~p
2
4Þ � ð7d� 22Þð ~p2

1 þ ~p2
2Þð ~p2

3 þ ~p2
4ÞÞ

�

� exp½i ~p1 � ~xq½tq� þ i ~p2 � ~xr½tr� þ i ~p3 � ~xs½ts� þ i ~p4 � ~xu½tu��ð2
Þd�1�d�1

�X4
w¼1

~pw

�

þ 5 other permutations of f ~xq; ~xr; ~xs; ~xug; (35)
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III0000�0000½q; r; s; u� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
Z

dtu
ðd� 3Þ2�½t� tq��½t� tr��½t� ts��½t� tu�

4ðd� 2Þ2Md�2
pl

�Y4
‘¼1

Z dd�1p‘

ð2
Þd�1

�

� ~p4
1 þ ~p4

2 þ ~p4
3 þ ~p4

4

~p2
1 ~p

2
2 ~p

2
3 ~p

2
4ð ~p1 þ ~p2Þ2

exp½i ~p1 � ~xq½tq� þ i ~p2 � ~xr½tr� þ i ~p3 � ~xs½ts� þ i ~p4 � ~xu½tu��ð2
Þd�1

� �d�1

�X4
w¼1

~pw

�
þ 5 other permutations of f ~xq; ~xr; ~xs; ~xug; (36)

IIII0000�0000½q; r; s; u� � i
Z

dt
Z

dtq
Z

dtr
Z

dts
Z

dtu
ðd� 3Þ2�½t� tq��½t� tr��½t� ts��½t� tu�

2ðd� 2Þ2Md�2
pl

�Y4
‘¼1

Z dd�1p‘

ð2
Þd�1

�

� ~p1 � ~p3 ~p2 � ~p4 þ ~p1 � ~p4 ~p2 � ~p3

~p2
1 ~p

2
2 ~p

2
3 ~p

2
4ð ~p1 þ ~p2Þ2

exp½i ~p1 � ~xq½tq� þ i ~p2 � ~xr½tr� þ i ~p3 � ~xs½ts� þ i ~p4 � ~xu½tu��

� ð2
Þd�1�d�1

�X4
w¼1

~pw

�
þ 5 other permutations of f ~xq; ~xr; ~xs; ~xug: (37)

When contracting the two 3-graviton Feynman rules in
momentum space leading to (34)–(37), one makes a par-
ticular choice for the labels on the point particles’ coor-
dinate vectors. If the two particle labels on the 3-graviton
vertex on the left-hand side are fa; bg and the two on the
right-hand side are fc; eg, so that such a choice can be
denoted as either ðab j ceÞ, ðba j ceÞ, ðab j ecÞ or
ðba j ecÞ—there is a symmetry obeyed by the labels on
either side—then the 6 permutations to be summed over in
the definitions of II0000�0000, I

II
0000�0000 and IIII0000�0000 are

2� ðab j ceÞ, 2� ðac j beÞ and 2� ðae j bcÞ. The par-
ticular permutation displayed in Fig. 9(c) is ðaa j baÞ. It
also represents the sum of the 6 permutations, with each of
the 6 terms giving the same result. In our notation, the sum
is 6� ðaa j abÞ. As for the two diagrams in Fig. 9(d), they
represent the sum of the 6 permutations: 4� ðab j abÞ and
2� ðaa j bbÞ.

Turning to the integrals themselves, II0000�0000½q; r; s; u�
can be calculated in d dimensions with (B3). For the term
containing ð ~p1 þ ~p2Þ2 in the numerator, one would first

sum over the 6 permutations of the coordinate vectors f ~xqg;
this is equivalent to holding fixed the f ~xq; ~xr; ~xs; ~xug and
permuting the names of the integration variables
f ~p1; . . . ; ~p4g. Upon doing so, one would find the relevant
part of the integrand can be replaced as follows: ð ~p1 þ
~p2Þ2=ð ~p2

1 ~p
2
2 ~p

2
3 ~p

2
4Þ ! 2ð ~p2

1 þ ~p2
2 þ ~p2

3 þ ~p2
4Þ=ð ~p2

1 ~p
2
2 ~p

2
3 ~p

2
4Þ.

After suitable redefinitions of the momentum variables of
the form ~p0

a � ~pa þ ~pb, the ð ~p2
1 ~p

2
2 þ ~p2

3 ~p
2
4Þ=ð ~p1 þ ~p2Þ2

portion of II0000�0000½q; r; s; u� is, after integration,

proportional to �d�1½ ~xq � ~xr� or �d�1½~0�, i.e. zero within

dimension regularization; while the ð ~p2
1 þ ~p2

2Þ�
ð ~p2

3 þ ~p2
4Þ=ð ~p1 þ ~p2Þ2 integrand again takes the (B3)

form exp½iP3
r ~pr � ~Rru�=½

Q
3
s ~p2

s�.
III0000�0000½q; r; s; u� can be dealt with by first integrating,

for each of its four terms, over the momentum appearing in
the numerator. We demonstrate this with the first term,
dropping all numerical constants and suppressing the
time arguments:

�Y4
‘¼1

Z dd�1p‘

ð2
Þd�1

�
~p4
1

~p2
1 ~p

2
2 ~p

2
3 ~p

2
4ð ~p1 þ ~p2Þ2

exp½ið ~p1 � ~xq þ ~p2 � ~xr þ ~p3 � ~xs þ ~p4 � ~xuÞ�ð2
Þd�1�d�1½ ~p1 þ ~p2 þ ~p3 þ ~p4�

¼
�Y4
‘¼2

Z dd�1p‘

ð2
Þd�1

��
1

~p2
2 ~p

2
3 ~p

2
4

ei ~p2�ð ~xr� ~xqÞþi ~p3�ð ~xs� ~xqÞþi ~p4�ð ~xu� ~xqÞ þ 2�ij

pi
2

~p2
2

ei ~p2�ð ~xr� ~xqÞ ðpj
3 þ pj

4Þ
~p2
3 ~p

2
4ð ~p3 þ ~p4Þ2

ei ~p3�ð ~xs� ~xqÞþi ~p4�ð ~xu� ~xqÞ
�
;

(38)

where we have dropped the term proportional to
R
dd�1p2 exp½i ~p2 � ð ~xr½tr� � ~xq½tq�Þ�, which is zero even if ~xr ¼ ~xq,

within dimensional regularization. The first piece in the second equality containing only squares of momenta in the
denominator can be done with (B3). For the second piece, the ~p2 integral is a ð1=iÞ@ri on (B3); it is zero if ~xr ¼ ~xq. The ~p3

and ~p4 integrals translate to an appropriate derivative on I3½a; a; b� or I3½a; b; b� if ~xs ¼ ~xu and ~xs � ~xq.
11 If ~xs ¼ ~xq and

~xu � ~xq (or vice versa), the ~p3 ( ~p4) integrals take the form of (B5), and the remaining ~p4 ( ~p3) integral is then a derivative
on (B3). The ~p3 and ~p4 integrals return zero if ~xs ¼ ~xu ¼ ~xq.

11The ~p3 and ~p4 integrals with the numerator pi
3 þ pi

4 removed are I3½q; s; u� because one can recover the form (27) if one introduces
an additional variable ~q � ~p3 þ ~p4 and a corresponding integral and momentum-conserving � function.
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What remains is IIII0000�0000½q; r; s; u�. First replace the
ð ~p1 þ ~p2Þ2 in the denominator with ~q and introduce a
ð2
Þ1�d

R
dd�1q�ðd�1Þ½ ~q� ~p1 � ~p2�. Applying (26) on

both the � functions then tells us that, in its position space
representation—again ignoring the constant factors—
IIII0000�0000½q; r; s; u� becomes

Z
dd�1y

Z
dd�1z�ij�mnðð@qi R3�d

qy Þð@rmR3�d
ry ÞðR3�d

yz Þ
� ð@sjR3�d

sz Þð@unR3�d
uz Þ þ ð@qi R3�d

qy Þð@rmR3�d
ry ÞðR3�d

yz Þ
� ð@snR3�d

sz Þð@ujR3�d
uz ÞÞ:

For the 2-body problem, we would either have one of the
~y or ~z integrations involve only one of the coordinate
vectors ~xa or ~xb, i.e. ðaa j abÞ and ðaa j bbÞ ¼ ðbb j aaÞ,
or have two distinct coordinate vectors occurring in each of
them, i.e. ðab j abÞ. For the former, one may simply use

(B4), (B6), and (B7), together with the cosine rule ~Raz �
~Rbz ¼ �ð1=2ÞR2

ab þ ð1=2ÞR2
az þ ð1=2ÞR2

bz. For the latter

ðab j abÞ case when d ¼ 4� 2", one can first integrate
over ~y using I3 and carry out the differentiation, and by
applying the cosine rule the (Raz þ Rbz þ Rab) appearing
in the denominator right after differentiation of I3 will be
removed. The integrals that remain are tractable via (B4).
Summing up the contributions from the 6 permutations

for each of Figs. 9(c) and 9(d) now gives

Fig: 9ðcÞ ¼ M3
aMb

192M2ðd�2Þ
pl

I0000�0000½a; a; a; b�

¼d¼4�i
Z

dt
M3

aMb

16384M6
pl


3R3
ab

;

and

Fig: 9ðdÞ ¼ M2
aM

2
b

128M2ðd�2Þ
pl

I0000�0000½a; a; b; b�

¼d¼4
i
Z

dt
M2

aM
2
b

16384M6
pl


3R3
ab

:

2. 3-body diagrams

No graviton vertices.—The 3-body diagrams that do not
have graviton vertices are

a

a

b

a

00 00

00 00

a

a

b

b

00 00

00 00

a

a a

b00 00

00 00

b

a a

b00 00

00 00

a

a b

b00 00

00 00

FIG. 9. 2 PN 2-body diagrams with graviton vertices: 4 of 4.
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Fig: 10ðaÞ ¼ i
Z

dt
ðd� 3Þ�½d�3

2 �2
256ðd� 2Þ2
d�1

MaMbMc

M2ðd�2Þ
pl Rd�3

ac Rd�3
bc

~v2
a;

Fig: 10ðbÞ ¼�i
Z

dt
ðd� 3Þ�½d�3

2 �2
128ðd� 2Þ
d�1

MaMbMc

M2ðd�2Þ
pl Rd�3

ac Rd�3
bc

� ~va � ~vc;

Fig: 10ðcÞ ¼ i
Z

dt
ðd� 3Þ�½d�3

2 �2
128ðd� 2Þ2
d�1

MaMbMc

M2ðd�2Þ
pl Rd�3

ac Rd�3
bc

~v2
c;

Fig: 10ðdÞ ¼ i
Z

dt
3�½d�1

2 �2
128ðd� 2Þ2
d�1

MaMbMc

M2ðd�2Þ
pl Rd�3

ac Rd�3
bc

~v2
c;

Fig: 10ðeÞ ¼ i
Z

dt
�½d�1

2 �2
128ðd� 2Þ2
d�1

MaMbMc

M2ðd�2Þ
pl Rd�3

ac Rd�3
bc

~v2
b:

As with its 2-body counterpart, Fig. 10(f) requires some
caution when taking the time derivatives. As an example,
the integral in the a��� c� b diagram, without the
constant factors, is

Z
dta

Z
dtc�½ta � tc�

�
dj ~xc½tc� � ~xb½tc�j3�d

dtc

� dj ~xa½ta� � ~xc½tc�j5�d

dta
þ j ~xc½tc�

� ~xb½tc�j3�d d
2j ~xa½ta� � ~xc½tc�j5�d

dtadtc

�
:

Figure 10(f) is the sum of a��� c� b and b���
c� a, but since differentiation and piecing together the
relevant constants are straightforward, we will not display
the result.

Fig: 10ðgÞ ¼ i
Z

dt
3�½d�1

2 �3
1024ðd� 2Þ3
ð3=2Þðd�1Þ

� M2
aMbMc

M3ðd�2Þ
pl R2ðd�3Þ

ac Rd�3
bc

;

Fig: 10ðhÞ ¼ i
Z

dt
�½d�1

2 �3
512ðd� 2Þ3
ð3=2Þðd�1Þ

� M2
aMbMc

M3ðd�2Þ
pl Rd�3

ac Rd�3
bc Rd�3

ab

;

Fig: 10ðiÞ ¼ i
Z

dt
�½d�1

2 �2
512ðd� 2Þ3
ð3=2Þðd�1Þ

� M2
aMbMc

M3ðd�2Þ
pl Rd�3

ab R2ðd�3Þ
ac

:

Graviton vertices.—The rest of the 3-body diagrams
contain graviton vertices.
Figure 11(a).—Figure 11(a) requires I0i0000 from (25).

For the 3-body case, one sees that I0i0000 can be expressed
in terms of time and space derivatives on I3. Specifically,

I0i0000½a; b; c� ¼ i

2ðd� 2ÞMðd�2Þ=2
pl

Z
dt

Z
dta

Z
dtb

Z
dtc�½t� ta��½t� tb��½t� tc�

�
�
fð2ðd� 4Þvi

a@
b
i þ ðd� 5Þvi

a@
c
i ÞI3½a; b; c�g

d

dtb
�½tb � t��½tc � t� þ fð2ðd� 4Þvi

a@
c
i þ ðd� 5Þvi

a@
b
i Þ

� I3½a; b; c�g d

dtc
�½tc � t��½tb � t�

�
;

which means

Fig : 11ðaÞ ¼ MaMbMc

4Mð3=2Þðd�2Þ
pl

I0i0000½a; b; c�:

Figure 11(b).—As discussed for Fig. 7(a), we have a
vanishing diagram when d ¼ 4 for

Fig : 11ðbÞ ¼d¼4
0:

Figure 11(c).—The master integral for Fig. 11(c) is
Iij0000 in (28), whose 3-body expression in terms of I3 is

Iij0000½a; b; c� ¼ i
Z

dt

�
�½d�3

2 �2
16
d�1ðd� 2Þ2Mðd�2Þ=2

pl

� ~v2
aðR3�d

ab R3�d
ac

� ðd� 3ÞðR3�d
ba R3�d

bc þ R3�d
ca R3�d

cb ÞÞ
� d� 3

2ðd� 2ÞMðd�2Þ=2
pl

� vi
av

j
að@ai @aj þ @bi @

b
j þ @ci @

c
jÞI3½a; b; c�

�
;

so that

Fig : 11ðcÞ ¼ MaMbMc

8Mð3=2Þðd�2Þ
pl

I0ij0000½a;b;c�:
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FIG. 10. 2 PN 3-body diagrams with no graviton vertices.
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b

a
0i 00

00

c
1

00 00

00

a b

c

2

a

b
00 00

ij

c

0i 00

0i

a c

b

c

a
00 00

00, v

b

2

FIG. 11. 2 PN 3-body diagrams with graviton vertices: 1 of 2.
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a c
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FIG. 12. 2 PN 3-body diagrams with graviton vertices: 2 of 2.
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Figure 11(d).—The 3-body master integral for Fig. 11(d) is I0i0j00 from (32), which reads

I0i0j00½a; b; c� ¼ i
Z

dt

�
�½d�3

2 �2 ~va � ~vb

64
d�1ðd� 2ÞMðd�2Þ=2
pl

ððd� 4ÞðR3�d
ab R3�d

ac þ R3�d
ba R3�d

bc þ ðd� 2ÞðR3�d
ca R3�d

cb Þ

� 1

2ðd� 2ÞMðd�2Þ=2
pl

vi
av

j
bððd� 4Þ@bi @aj þ ðd� 3Þð@ci @aj þ @bi @

c
jÞI3½a; b; c�

�
;

leading us to

Fig : 11ðdÞ ¼ MaMbMc

2Mð3=2Þðd�2Þ
pl

I0i0j00½a;b;c�:

Figure 11(e).—Figure 11(e) involves products of ~v2 with the 1 PN 3-graviton master integral I000000:

Fig : 11ðeÞ ¼
Z

dt
MaMbMc

16Mð3=2Þðd�1Þ
pl

~v2
cI000000½a; b; c�

¼ �i
Z

dt
ðd� 3Þ2�½d�3

2 �2MaMbMc

256
d�1ðd� 2Þ2M2ðd�2Þ
pl

~v2
cðR3�d

ab R3�d
ac þ R3�d

bc R3�d
ac þ R3�d

ab R3�d
bc Þ:

Figure 12(a).—The 3-body master integral for Fig. 12(a) is I000000� from (31):

I000000�½a; b; c� ¼ ~I�½a; b; c� þ ~I�½b; a; c� þ ~I�½c; b; a�;
~I�½a; b; c� � iðd� 3Þ2

ðd� 2Þ2Mðd�2Þ=2
pl

Z
dt

Z
dta

Z
dtb

Z
dtc

�
I3½a; b; c� þ

�½d�3
2 ��½d�5

2 �
64
d�1

ðR5�d
ba R3�d

bc þ R5�d
ca R3�d

cb Þ
�
d2

dt2a

� �½t� ta��½t� tb��½t� tc�:
In terms of I000000�½a; b; c�,

Fig : 12ðaÞ ¼ MaMbMc

8Mð3=2Þðd�2Þ
pl

I000000�½a; b; c�:

Figure 12(b).—For the class of diagrams represented by Fig. 12(b), the 9 permutations include both types of diagrams
where the 2 world line sources attached to the 3-graviton vertex not contracted with an additional world line can either
belong to the same particle (6 of them) or 2 distinct particles (3 of them). [Figure 12(b) itself belongs to the latter.] We
observe, as we did in the 2-body case, that these diagrams are products of the lowest order hh00h00i with the 1 PN 3-
graviton master integral I000000 in (22):

Fig: 12ðbÞ ¼ �½d�1
2 �M2

aMbMc

64ðd� 2Þ
ðd�1Þ=2Mð5=2Þðd�2Þ
pl

Z
dtðR3�d

ac I000000½a; b; a� þ R3�d
ab I000000½a; c; a�Þ

¼ �i
Z

dt
ðd� 3Þ2�½d�3

2 �2�½d�1
2 �M2

aMbMc

1024M3ðd�2Þ
pl 
ð3=2Þðd�1Þðd� 2Þ3 ðR3�d

ac R2ð3�dÞ
ab þ R2ð3�dÞ

ac R3�d
ab Þ: (39)

For the other 6 permutations where the 2 world line sources attached to the 3-graviton vertex not contracted with an
additional world line belong to the same particle, the analog to the above 2 terms in (39) have different numerical factors in
front of them.

Figure 12(c).—Figure 12(c) is a straightforward application of I00000000 in (33) and (B3):

Fig : 12ðcÞ ¼
Z

dt
M2

aMbMc

32M2ðd�2Þ
pl

I00000000½a; a; b; c�

¼ �i
Z

dt
ðd� 3Þðdð7d� 51Þ þ 86Þ�3½d�3

2 �
8192
ð3=2Þðd�1Þðd� 2Þ3

M2
aMbMc

M3ðd�2Þ
pl

ðR3�d
bc R2ð3�dÞ

ab þ R2ð3�dÞ
ac R3�d

bc Þ:
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Figure 12(d).—Referring to the discussion under the 2-
body counterpart of Fig. 12(d), if a is the repeated label for
a given 3-body diagram, then the 6 permutations of particle
labels are 2� ðaa j bcÞ, 2� ðab j acÞ, and 2� ðac j abÞ.

The master integrals for Fig. 12(d) can be found in (34)–
(37). II0000�0000 is the linear combination of products of

(B3). As we did in the 2-body case, III0000�0000 can be done

using (B3), its derivatives, and derivatives on I3. When a is
the repeated particle label, III0000�0000 is

III0000�0000½a; a; b; c�

¼d¼4 i

256M2
pl


3

Z
dt

�
R2
ab � R2

ac

2R2
acR

3
bc

� R2
ab þ R2

ac � R2
bc

2R3
abR

2
ac

� R2
ab þ R2

ac � R2
bc

2R2
abR

3
ac

þ Rab � Rbc

R3
acRbc

þ Rac � Rbc

R3
abRbc

þ R2
ac � R2

ab

2R2
abR

3
bc

�
: (40)

Wewill leave IIII0000�0000 ½q; q; r; s� for possible future work.
In terms of the II0000�0000 in (34)–(37), we have

Fig : 12ðdÞ ¼ M2
aMbMc

64M2ðd�2Þ
pl

I0000�0000½a; a; b; c�:

3. 4-body diagrams

No graviton vertices.—The vertexless diagrams are

Fig : 13ðaÞ ¼ i
Z

dt
3�½d�1

2 �3
512ðd� 2Þ3
3=2ðd�1Þ

� MaMbMcMe

M3ðd�2Þ
pl Rd�3

ae Rd�3
be Rd�3

ce

:

For the class of diagrams in Fig. 13(b), there are 12 ways
to choose 2 out of the fa; b; c; eg for the middle two labels,
but there is a reflection symmetry, and hence there are
6 distinct permutations of the particle labels:

Fig : 13ðbÞ ¼ i
Z

dt
�½d�1

2 �3
512ðd� 2Þ3
ð3=2Þðd�1Þ

MaMbMcMe

M3ðd�2Þ
pl

�ðR3�d
ae R3�d

bc R3�d
ce þ R3�d

ac R3�d
be R3�d

ce Þ:

Graviton vertices.—The rest of the 4-body diagrams
have graviton vertices.
Figure 14(a).—The class of diagrams in Fig. 14(a), like

those of its 2- and 3-body counterparts, involves products
of the lowest order hh00h00iwith the 1 PN 3-graviton vertex
integral I000000. Also, there are 4 distinct permutations,
with the world line operator with 2 graviton fields associ-
ated with either a, b, c, or e:

00 00

00

a b

e

c

00
00

00

00,
c

00
00

00
b + (a     b)

00
00

ea

FIG. 13. 2 PN 4-body diagrams with no graviton vertices.
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FIG. 14. 2 PN 4-body diagrams with graviton vertices.
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Fig: 14ðaÞ ¼
Z

dt
�½d�1

2 �MaMbMcMe

64ðd� 2ÞMð5ðd�2ÞÞ=2
pl 
ðd�1Þ=2 ðR3�d

ae I000000½b; c; e� þ R3�d
ce I000000½a; b; e� þ R3�d

be I000000½a; c; e�Þ

¼ �i
Z

dt
ðd� 3Þ2�½d�1

2 ��½d�3
2 �2MaMbMcMe

1024
ð3=2Þðd�1ÞM3ðd�2Þ
pl ðd� 2Þ3 ððR3�d

bc R3�d
be þ R3�d

ce R3�d
be þ R3�d

bc R3�d
ce ÞR3�d

ae

þ ðR3�d
ab R3�d

ae þ R3�d
be R3�d

ae þ R3�d
ab R3�d

be ÞR3�d
ce þ ðR3�d

ac R3�d
ae þ R3�d

ce R3�d
ae þ R3�d

ac R3�d
ce ÞR3�d

be Þ:

Figure 14(b).—Another straightforward application of I00000000 in (33) and (B3) provides us with

Fig: 14ðbÞ ¼
Z

dt
MaMbMcMe

16M2ðd�2Þ
pl

I00000000½a; b; c; e�

¼ �i
Z

dt
ðd� 3Þðdð7d� 51Þ þ 86Þ�½d�3

2 �3
4096
ð3=2Þðd�1Þðd� 2Þ3

MaMbMcMe

M3ðd�2Þ
pl

� ðR3�d
ab R3�d

ac R3�d
ae þ R3�d

be R3�d
ce R3�d

ae þ R3�d
ab R3�d

bc R3�d
be þ R3�d

ac R3�d
bc R3�d

ce Þ:

Figure 14(c).—Referring to the discussion under the 2-
body counterpart of Fig. 14(c), the 6 permutations of
particle labels are 2� ðab j ceÞ, 2� ðac j beÞ, and 2�
ðae j bcÞ.

The master integrals for Fig. 14(c) can be found in (34)–
(37). II0000�0000 is the linear combination of products of

(B3). As we did in the 2-body case, III0000�0000 can be done

using (B3), its derivatives, and derivatives on I3. We have
given the explicit expression for III0000�0000 in the 3-body

case (40), but the 4-body one is too lengthy to display.
IIII0000�0000½q; r; s; u� is left for possible future work.
In terms of the I0000�0000 in (34)–(37), we have

Fig : 14ðcÞ ¼ MaMbMcMe

32M2ðd�2Þ
pl

I0000�0000½a; b; c; e�:

4. O½v4� effective Lagrangian
Adding all the relevant diagrams, their permutations and

the second-order relativistic correction to kinetic energy
from the ���v

�v� in the infinitesimal proper time ds now

gives us the effective Lagrangian describing the gravita-
tional dynamics of n point masses at O½v4� relative to
Newtonian gravity in 3þ 1 dimensions:

Lð2 PNÞ
eff ¼d¼4

L2-body
4 þ L3-body

4 þ L4-body
4 ; (41)

L
2-body
4 � 1

2

X
1�a;b�n

a�b

�
Ma

16
~v6
a þMb

16
~v6
b þ

GNMaMb

Rab

�
~Rab � ~va

�
7

4
~va � _~vb � 3

2
~vb � _~vb

�
þ ~Rba � ~vb

�
7

4
~vb � _~va � 3

2
~va � _~va

�

� 1

8

� ~Rab � ~va

Rab

�
2ð ~Rba � _~vb þ ~v2

bÞ �
1

8

� ~Rba � ~vb

Rab

�
2ð ~Rab � _~va þ ~v2

aÞ þ 3

4
ð ~v2

a þ ~v2
b � 2 ~va � ~vbÞ

~Rab � ~va

Rab

~Rba � ~vb

Rab

þ 3

8

ð ~Rab � ~vaÞ2ð ~Rba � ~vbÞ2
R4
ab

þ 1

8
ð ~Rba � _~vb ~v

2
a þ ~Rab � _~va ~v

2
bÞ þ

1

8
~Rab � _~va

~Rba � _~vb þ 15

8
_~va � _~vbR

2
ab þ

7

8
ð ~v4

a þ ~v4
bÞ

þ 1

4
ð ~va � ~vbÞ2 þ 3

8
~v2
a ~v

2
b �

5

4
ð ~v2

a þ ~v2
bÞ ~va � ~vb

�
þG2

NMaMb

R2
ab

�
� 3

2

Mað ~Rba � ~vbÞ2 þMbð ~Rab � ~vaÞ2
R2
ab

� 2ðMa þMbÞ
~Rab � ~va

~Rba � ~vb

R2
ab

� ð2Ma þMbÞ ~Rab � _~va � ð2Mb þMaÞ ~Rba � _~vb þ ~v2
a

�
2Ma þ 11

4
Mb

�

þ ~v2
b

�
2Mb þ 11

4
Ma

�
� 9

2
~va � ~vbðMa þMbÞ

�
�G3

NMaMb

R3
ab

�
MaMb þ 3

2
ðM2

a þM2
bÞ
��
; (42)
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L3-body
4 � 1

3!

X
1�a;b;c�n
a;b;c distinct

�
G2

NMaMbMc

�
1

RabRac

�
9

2
~v2
a þ 8 ~vb � ~vc

�
þ 1

RabRbc

�
9

2
~v2
b þ 8 ~va � ~vc

�
þ 1

RacRbc

�
9

2
~v2
c þ 8 ~va � ~vb

�

� 8

ðRab þ Rac þ RbcÞ2
� ~Rba � ~vb

~Rca � ~vc

RabRac

þ ~Rab � ~va
~Rcb � ~vc

RabRbc

þ ~Rac � ~va
~Rbc � ~vb

RacRbc

�

þ 4

Rab þ Rac þ Rbc

�
~v2
a

Rbc

þ ~v2
b

Rac

þ ~v2
c

Rab

�

þ
�

1

2RabR
3
ac

ð ~Rac � ~va
~Rba � ~vb þ ~Rac � ~va

~Rca � ~vc þ ~Rba � ~vb
~Rca � ~vc þ 2ð ~Rca � ~vcÞ2Þ

� 1

RabRac

�
~Rba � _~vb þ 7

2
~va � ~vb þ 5

2
~v2
b

�

þ 1

ðRab þ Rac þ RbcÞ2
�
1

R2
ab

ð4 ~Rab � ~vc
~Rba � ~vb þ 8 ~Rab � ~va

~Rab � ~vc � 2ð ~Rab � ~vaÞ2 � 2ð ~Rab � ~vcÞ2Þ

þ 1

RabRac

ð4 ~Rac � ~vb
~Rba � ~vb � 8 ~Rac � ~vb

~Rba � ~vc þ 12 ~Rac � ~va
~Rba � ~vc � 12 ~Rac � ~va

~Rba � ~vbÞ
�

þ 1

Rab þ Rac þ Rbc

�
1

R3
ab

ð8 ~Rab � ~va
~Rab � ~vc þ 4 ~Rab � ~vc

~Rba � ~vb � 2ð ~Rab � ~vcÞ2 � 2ð ~Rab � ~vaÞ2Þ

þ 1

Rab

ð2 ~v2
a � 4 ~va � ~vc � 2 ~Rab � _~vaÞ

�
þ 5 other permutations of fa; b; cg

��

þG3
NMaMbMc

��ðMa þMcÞR2
ab

R2
acR

3
bc

þ 2MbRab

RacR
3
bc

� 3Ma

R3
ab

� 1

RabR
2
ac

�
Ma þ 3

2
Mc

�

þ 5 other permutations of fa; b; cg
�
þ 1

16
2
ðMaI22½a; a; b; c� þMbI22½b; b; a; c� þMcI22½c; c; a; b�Þ

� 2

�
Ma

R3
bc

þ Mb

R3
ac

þ Mc

R3
ab

���
; (43)

L
4-body
4 � 1

4!

X
1�a;b;c;e�n
a;b;c;e distinct

G3
NMaMbMcMe

�
I22½a; b; c; e�

8
2
� 3

�
1

RabRacRae

þ 1

RbaRbcRbe

þ 1

RcaRcbRce

þ 1

ReaRebRec

�

þ
�

1

Rab þ Rac þ Rbc

�
Rbc

RabRacRae

þ 2R2
ae

RabR
3
be

� 2Rab

R3
ae

�
þ 23 other permutations of fa; b; c; eg

��
; (44)

I22½q; r; s; u� � lim
"!0þ

after integration

Z
d3�2"y

Z
d3�2"z�ij�mnðð@qi R�1þ2"

qy Þð@rmR�1þ2"
ry ÞðR�1þ2"

yz Þð@sjR�1þ2"
sz Þð@unR�1þ2"

uz Þ

þ ð@qi R�1þ2"
qy Þð@rmR�1þ2"

ry ÞðR�1þ2"
yz Þð@snR�1þ2"

sz Þð@ujR�1þ2"
uz ÞÞ þ 5 permutations of f ~xq; ~xr; ~xs; ~xug;

Rqz � j ~xq � ~zj: (45)

The permutations in the definitions of L
3-body
4 and

L
4-body
4 means one would have to take the terms in the

given square brackets ½. . .�, consider the resulting expres-
sions obtained from permuting the particle labels as stated,
and sum them all up at the end. For I22½q; r; s; u�, if
ðqr j suÞ represents the term with ~xq and ~xr occurring in
the ~y integration and the ~xs and ~xu in the ~z integration, then
the 6 permutations in the definition of I22 are 2� ðqr j suÞ,
2� ðqs j ruÞ and 2� ðqu j rsÞ.

Relation to LADM.—As a (partial) check of these results,
we shall construct here a coordinate transformation that

would bring the 2-body portion of Lð2 PNÞ
eff into the 2-body,

acceleration-independent, Lagrangian LADM in the litera-
ture; for example, Eq. (178) of Blanchet [6]. (This con-
struction can be found in Damour and Schäfer [3,13].)
First, we note that defining

xia½t� � zia½t� þ �zia½t�;
where �zia is assumed to be small relative to zia (an as-
sumption to be justified shortly), would modify the form of
the Lagrangian L½fxa; ~va; . . .g� up to first order in �z in the
following manner:
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L½f ~xa; ~va;
_~va; . . .g� ¼ L½f~za; _~za; €~za; . . .g� þ �L

�z
�z

þ total derivative;

�L

�z
�z � X

1�a�n

X1
s¼0

�
ds

dts
@L

@ðds ~za=dtsÞ
�
� �~za:

In particular, varying the Newtonian Lagrangian L0 PN

gives us

X
a

�L0 PN

�~xa
� �~xa ¼ �X

a�b

Ma

�
€~xa þGNMb

R3
ab

~Rab

�
� �~xa:

(46)

Before proceeding with any coordinate transformation,
however, one needs to first rewrite the terms quadratic in

accelerations,
P

i;j;a;b €x
i
a €x

j
b
~Lij � Lð2 PNÞ

eff , as

X
1�i;j�3

X
1�a;b�n

€xia €x
j
b
~Lij

¼ X
i;j;a;b

��
€xia þGNMb

R3
ab

Ri
ab

��
€xjb þ

GNMa

R3
ba

Rj
ba

�
~Lij

� €xia
GNMa

R3
ba

Rj
ba
~Lij �GNMb

R3
ba

Ri
ab €x

j
b
~Lij

�GNMb

R3
ba

Ri
ab

GNMa

R3
ba

Rj
ba
~Lij

�
: (47)

Because the term in the first line on the right-hand
side of (47) contains the ‘‘square’’ of the Newtonian equa-

tions of motion, namely, ð1=MaÞð�L0 PN=�z
i
aÞð1=MbÞ�

ð�L0 PN=�z
j
bÞ, and because ð1=MÞð�L0 PN=�zþ

�L1 PN=�zþ � � �Þ ¼ 0, we see that this first term on the
right-hand side of (47) scales as ½ð1=MÞ�L0 PN=�z�2 	
½ð1=MÞ�L1 PN=�z�2 	 ½v4=r�2 and therefore can be dis-
carded at the 2 PN order.

Removal of accelerations.—The reason for linearizing
the acceleration-dependent terms in L2 PN, keeping only
the second and third lines on the right-hand side of (47) is
this. Denoting this linearized form of L2PN as L‘

2PN and

referring to the �Ma
€~xa � �~xa piece in (46), we see that the

remaining acceleration dependent terms in L‘
2 PN can now

be removed by defining

�~zðIÞa � 1

Ma

@L‘
2 PN

@€~xa

�������� ~xa¼~za

: (48)

Further transformations.—One can perform further co-
ordinate transformations without reintroducing
acceleration-dependent terms. The key is to make the

�Ma
€~xa � �~xa piece in (46) part of a total time derivative.

Observe that, by having some arbitrary functional F de-
pend only on positions and velocities,12 we have the iden-
tity

X
a

€~xa � @F
@ _~xa

½f ~xa; _~xag� ¼ dF

dt
½f ~xa; _~xag�

�X
a

_~xa � @F@~xa ½f ~xa;
_~xag�:

Therefore, by putting

�~zðIIÞa � 1

Ma

@F

@ _~za
½f~zb; _~zbg�;

we can replace�P
aMa

€~za � �~zðIIÞa ¼ �P
a
€~za � @F=@ _~za withP

a
_~za � @F=@~za.
At this point, let us note that the alterations to the form of

the Lagrangian due to �z (48) occurs solely at the 2 PN
order: �~z	 rv4. Hence �z is indeed small relative to ~za,
and it is only necessary to consider �L0 PN=�z and not
�L1 PN=�z, �L2 PN=�z, nor any corrections that are qua-
dratic or higher polynomials of �z.
Altogether, the 2-body Lagrangian after linearizing the

accelerations and after the transformation ~xa �
~zþ �~zðIÞa þ �~zðIIÞa , less total derivative terms, now reads

L½f ~xa; ~va;
_~va; . . .g�

¼ L0 PN½f~za; _~zag� þ L1 PN½f~za; _~zag�
þ L‘

2PN½f~za; _~za; €~zag�

� X
a�b

�
€~xa þGNMb

R3
ab

~Rab

�
� @L

‘
2 PN

@€~xa

�������� ~xa¼~za

(49)

þ X
a�b

�
_~xa � @F@~xa �

GNMb

R3
ab

~Rab � @F
@ _~xa

��������� ~xa¼~za

: (50)

It remains to construct F½f ~xa; _~xag�. From ð1=MÞ�
ð@F=@ _xÞ ¼ �z	 rv4, we must have F	Mrv5. From
(50), we also must have F / MaMb=M

2
pl 	GNMaMb 	

Mrv2, since all terms in Lð2 PNÞ
eff need to contain at least one

power of the mass of each of the 2 point particles and at
least one power of GN is required because all the terms

(less the M ~v6=16) in Lð2 PNÞ
eff are at least linear in GN. To

supply the additional v3 needed, we have to consider all
possible products of the dimensionless scalars built out of
terms occurring at 2 PN order, namely, f ~v2

a; ~v
2
b; ~va �

~vb; GNMa=Rab; GNMb=Rabg for the v2 terms and f ~va �
~Rab=Rab; ~vb � ~Rba=Rabg for the v1 terms. The most general
F is thus

12We also exclude the possibility that F depend on time
explicitly, since our post-Newtonian Lagrangian does not.
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F½f ~xs; _~xs j s ¼ 1; 2; . . . ; ng� ¼ 1

2

X
a�b

�
G2

NMaMbðc1Ma þ c2MbÞ
R2
ab

~va � ~Rab þGNMaMb

Rab

~va � ~Rabðc3 ~v2
a þ c4 ~v

2
b þ c5 ~va � ~vb

þ c6

�
~va � ~Rab

Rab

�
2 þ c7

�
~vb � ~Rba

Rab

�
2 þ c8

�
~va � ~Rab

Rab

��
~vb � ~Rba

Rab

��
þ ða $ bÞ

�
; (51)

where the fci j i ¼ 1; 2; . . . ; 8g are arbitrary real numbers,
and (a $ b) means one would have to take the terms
occurring before it and swap all the particle labels a $ b.

Computing (49) and (50) with such a F reveals that one
would recover the LADM in Blanchet [6] from (42) for

c1 ¼ 0; c2 ¼ �3
4; c3 ¼ 0; c4 ¼ 1

2;

c5 ¼ 0; c6 ¼ 0; c7 ¼ �c8;

where c8 can be an arbitrary real number.

IV. SUMMARYAND DISCUSSION

In this paper we have, following [5], used a point mass
approximation for the n-body in general relativity, allow-
ing us to obtain a Lagrangian description at the cost of
introducing an infinite number of terms in the action.
Because we are seeking the 2 PN effective Lagrangian,
however, only the minimal terms f�Ma

R
dsag are neces-

sary. By examining the physical scales in the problem, we
have described how to organize our action (8) and outlined
an algorithm that would allow us in principle to generate
all the necessary Feynman diagrams up to an arbitrary PN
order for a given set of point particle actions (minimal or
not); as well as automate the computation process so that as
few of the Feynman diagrams as possible are left for
human evaluation. This way, the post-Newtonian program
can be pursued in an efficient and systematic manner
within the framework of perturbative field theory, and the
necessary software may be developed to tackle the effec-
tive 2-body Lagrangian calculation at 4 PN and beyond. In
the bulk of this work, we obtained in closed form the
conservative portion of the effective Lagrangian

Leff½f ~xa; ~va;
_~vag� up to 1 PN for the general case of n point

masses in d � 4 space-time dimensions and up to 2 PN for
2 point masses in (3þ 1) dimensions.

It is apparent that the primary bottleneck of higher post-
Newtonian calculations is one of calculus. For the n-body
problem, it is the analytic evaluation of integrals such as I22
(45) and the I1...N (B8) for N � 4. At the same time, it is
possible that choosing a different gauge from the one used
in (13) and/or a different parametrization of h�� may help

reduce the number of diagrams and the amount of work
needed in manipulating the momentum dot products from
the tensor contraction of graviton vertices in Fourier space.
The reduction of diagrams at 2 PN was recently demon-
strated in the 2-body case computed by Gilmore and Ross
[14]. They used the full de Donder gauge13 Sgf ¼

R
ddx

ffiffiffi
g

p
g��g��g�	�����	�� and the Kaluza-Klein pa-

rametrization for h��, first introduced to the PN problem

by Kol and Smolkin [15].14 Some other possible choices
include the ADM variables normally associated with the
(3þ 1) decomposition of the space-time metric. Yet an-
other possibility is to employ the gravitational Lagrangian
constructed by Bern and Grant [16] using quantum chro-
modynamics gluon amplitudes, up to the 5-graviton inter-
action; this is sufficient, however, only to 3 PN.
We end with a cautionary remark against taking super-

position too literally within the post-Newtonian frame-
work. By using the 1 PN Lagrangian (23) in 3 spatial

dimensions, and taking the continuum limit, the force ~F
experienced by a stationary point mass Mx located at ~r
away from the center of a static, spherical, hollow shell of
surface mass density � and coordinate radius R can be
shown to be15

~F � Mx

d2 ~r

dt2

¼ �M2
x


RG2
N�

1þ 12
RGN�

@

@~r

�
1

j~rj ln
��������
j~rj þ R

j~rj � R

��������
�
;

which evidently diverges as the point mass approaches the
surface of the shell. Because the force would vanish if
gravity were purely Newtonian, such a result for a first-
order calculation most likely indicates the breakdown of
perturbation theory in this regime, since the post-
Newtonian Lagrangian was derived with an implicit as-
sumption that the point masses involved were well sepa-
rated, i.e. rs � r.
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APPENDIX A: THE N-GRAVITON FEYNMAN
RULE

Here we outline an algorithm that can be implemented
on symbolic and tensor manipulation software such as
MATHEMATICA [10] and the package FEYNCALC [18], to

generate the Feynman rule for theN � 2 graviton vertex in
Minkowski space.

Given a product of two function(al)s f½h�g½h� the term
that contains exactly n powers of h is a discrete convolu-
tion

ðf � g j nÞ½h� ¼ Xn
m¼0

ðf j mÞ½h�ðg j n�mÞ½h�;

where ðA j mÞ½h� denotes the term in A that contains ex-
actlym powers of h. Here we also assume that both f and g
can be developed as power series expansions starting from
the zeroth power in h.
With this observation, the term in the Einstein-Hilbert

Lagrangian containing exactly n powers of the graviton
field is given by

� 2Md�2
pl

Xn
m¼0

Z
ddxð

ffiffiffiffiffiffi
jgj

q
j mÞðR j n�mÞ; (A1)

where16

g�� � ��� þ h��;

ð
ffiffiffiffiffiffi
jgj

q
j nÞ ¼ 1

n!

dn

d�n

���������¼0
exp

�
1

2

Xn
s¼1

�ð�Þsþ1�s

s
Trð��1hÞs

��
;

Trð��1hÞs ¼ h�s
�1
h�1

�2
. . . h�s�1

�s
; ðR j nÞ ¼ Xn

m¼0

ðg j mÞ��ðR j n�mÞ����;

ðg j nÞ�� ¼
���� if n ¼ 0;

ð�Þnh��1
h�1

�2
. . . h�n�1� if n> 0;

ð� j nÞ��� ¼ 1

2
ðg j n� 1Þ��ð@�h�� þ @�h�� � @�h��Þ

ðR j nÞ���� ¼ @�ð� j nÞ��� � ð� $ �Þ þ Xn
m¼0

ð� j mÞ���ð� j n�mÞ��� � ð� $ �Þ:

(A2)

Note that the action for general relativity contains a total
d-derivative term �2Md�2

pl

R
ddx���ð@���

�� � @��
�
��Þ,

which needs to be discarded when deriving the Feynman
rules. Furthermore, these Feynman rules will also be modi-
fied accordingly when a gauge fixing term is added.

Because the graviton field is symmetric in its indices, to
obtain the N graviton vertex with external indices
f�1; �1g; . . . ; f�N;�Ng given the action (A1) containing
exactly N powers of the graviton field, we first choose
one particular set of contractions between the graviton
fields in (A1) with the N external ones. We then replace
each field h�� in (A1) with the identity tensor I�‘�‘

��

carrying the indices f�‘; �‘g that correspond to those on
the ‘th external field hext�‘�‘

it is being contracted with. The

identity tensor reads

I �‘�‘
�� � 1

2ð��‘
��

�‘
� þ ��‘

��
�‘

�Þ:
In momentum (k� ) space, if we define the direction of

momentum to be always flowing into the N graviton ver-
tex, we would also replace partial derivatives occurring in
(A1) using the prescription

@�h�� ! ik�‘
I�‘�‘

��;

where �‘ is the �th component of the d vector k of the ‘th
external graviton h�‘�‘

that is contracted with h��.
17

The complete Feynman rule for the N graviton vertex
would be found by summing up the results from the above
procedure for all the N! possible permutations of the

16We are absorbing the M1�ðd=2Þ
pl into the h�� to save clutter.

The full N graviton rule would therefore be multiplied by a

factor ofMNð1�ðd=2ÞÞ
pl ; for instance, the 2-graviton ‘‘vertex’’ would

contain no Mpl.

17The sign in front of the momentum vector, i.e. �ik�‘
. . . vs

þik�‘
. . . , is actually immaterial because every term in the

Einstein-Hilbert action contains two derivatives; what is impor-
tant is to maintain a consistent sign convention for the arguments
of the exponentials, either exp½ip0x0 � i ~p � ~x� or exp½�ip0x0 þ
i ~p � ~x�, in the Fourier transforms.
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external indices. An example featuring the 3-graviton
Feynman rule can be found in Appendix B of [5].

APPENDIX B: INTEGRALS

In this section we review the techniques involved in
performing the Feynman integrals encountered in the
n-body problem at 2 PN.18

The starting point is the observation (usually attributed
to Schwinger) that one may employ the integral represen-
tation of the Gamma function, �½z�=bz ¼ R1

0 tz�1e�btdt,
for Re½b�> 0, to first give us the formula for combining
multiple denominators

1

A�1

1 . . .A
�N

N

¼
�YN
s¼1

1

�½�s�
Z 1

0
d�s�

�s�1
s

�

� �½PN
r¼1 �r��½1�PN

r¼1 �r�
ðPN

r¼1 �rArÞ�1þ���þ�N
; (B1)

and second, together with the Gaussian integralR
exp½�x2�dx ¼ 
1=2, to further yield

Z d�z

ð~z2 þ �Þ� ¼ 
�=2�½�� �
2�

�½�����ð�=2Þ ; (B2)

and

R d�p
ð2
Þ�

ei ~p� ~x
½ ~p2�� ¼ �½�2���

4�
�=2�½��j ~xj��2� for ~x � ~0;

¼ 0 for ~x ¼ ~0;
(B3)

where the second equality is to be understood within the
framework of dimensional regularization.
An important corollary of (B1) and (B2) is

Z d�z

½~z2��1½ð~z� ~xÞ2��2
¼ 
�=2�½�2 � �1��½�2 � �2��½�1 þ �2 � �

2�
�½�1��½�2��½�� �1 � �2�½ ~x2��1þ�2�ð�=2Þ : (B4)

By considering single and double spatial derivatives of (B4), we may also obtain the formulas:

Z
d�z

ðx� zÞi
j~zj	1 j ~x� ~zj	2

¼ 
�=2�½��	1

2 ��½��	2þ2
2 ��½	1þ	2��

2 �
�½	1

2 ��½	2

2 ��½�� 	1þ	2�2
2 �

xi

j ~xj	1þ	2��
; (B5)

Z
d�z

ðx� zÞiðx� zÞj
j~zj�1 j ~x� ~zj�2 ¼ 
�=2�½���1

2 ��½�1þ�2�2��
2 ��½���2þ2

2 �
2�½�12 ��½�22 ��½�� �1þ�2�2

2 �ð2ð�þ 1Þ � ð�1 þ �2ÞÞ

�
�
ð�� �2 þ 2Þð�1 þ �2 � 2� �Þ xixj

j ~xj�1þ�2��
þ �ij �� �1

j ~xj�1þ�2�2��

�
; (B6)

Z
d�z

ðxa � zÞiðxb � zÞj
j~z� ~xaj	a j~z� ~xbj	b

¼ 
�=2�½��	aþ2
2 ��½��	bþ2

2 ��½	a�2þ	b��
2 �

2�½	a

2 ��½	b

2 ��½�� 	aþ	b�4
2 �

�
�

�ij

j ~xb � ~xaj	aþ	b�2��
� ð	a þ 	b � �� 2Þ ðxa � xbÞiðxa � xbÞj

j ~xb � ~xaj	aþ	b��

�
: (B7)

The last formula (B7) has been derived from (B4) by redefining ~x � ~xa � ~xb and shifting integration variables before
performing the appropriate derivatives.

N-point integrals.—We next review the evaluation of the ‘‘N-point’’ integrals first carried out by Boos and Davydychev
[20,21]:

I1...N �
Z
R�

d�zQ
N
s¼1 jð ~xs � ~zÞ2j	s

: (B8)

These integrals can be viewed as the higher N generalizations of the N ¼ 2 case in (B4).

18A comprehensive textbook on evaluating Feynman integrals is Smirnov [19].
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Applying (B1) transforms it into

I1...N ¼
Z
R�

d�z

�YN
s¼1

1

�½	s�
Z 1

0
d�s�

	s�1
s

�

� �½	1 þ � � � þ 	N��½1�
P

N
r¼1 �r�

ð~z2 þP
N
r;s¼1ð�r�s ~x

2
s � �r�s ~xr � ~xsÞÞ	1þ���þ	N

;

where the constraint
P

r�r ¼ 1 as well as a shift in the
variable ~z have been employed. Writing

XN
r;s¼1

ð�r�s ~x
2
s � �r�s ~xr � ~xsÞ ¼ 1

2

XN
r;s¼1

�rR
2
rs�s;

Rrs � j ~xr � ~xsj;
and recalling (B2) then allow us to deduce

I1...N ¼ 
�=2
�½Pr 	r � �

2�Q
r �½	r�

�YN
s¼1

Z 1

0
d�s�

	s�1
s

�

� �½1�P
r �r�

½12
P

p

P
q �p�qR

2
pq�

P
r
	r�ð�=2Þ : (B9)

By viewing �pRpq�q as components of a N � N sym-

metric matrix with zeros on the diagonal, one notes that
there are NðN � 1Þ=2 distinct terms in the sum in the

denominator of (B9). To make further progress, one needs
to iterate (L� 2) times the Mellin-Barnes (MB) integral
representation

1

ðX þ YÞ� ¼ 1

�½��
1

2
i

Z i1

�i1
ds�½sþ ���½�s� Ys

Xsþ� ;

to obtain the (L� 1)-fold MB representation for the sum
of L terms in a denominator raised to some power:

1

½PL
a¼1 ua��

¼ 1

�½��u�L
1

ð2
iÞL�1

�
�YL�1

a¼1

Z i1

�i1
dsa�½�sa�

�
ua
uL

�
sa
�

� �½s1 þ s2 þ � � � þ sL�1 þ ��: (B10)

In these integrals, the contour for the ith variable si is
chosen such that the poles of the Gamma functions of the
form �½. . .� si� lie to the right and those of the Gamma
functions of the form �½. . .þ si� lie to the left.
Using (B10) on (B9), followed by (B1) with A1 ¼ A2 ¼

� � � ¼ ANðN�1Þ=2 ¼ 1 and some careful algebraic reason-

ing, one arrives at the final form of the MB representation
for the N-point integral:

Z
R�

d�zQN
s¼1 jð~z� ~xsÞ2j	s

¼ 
�=2½R2
i0j0 �ð�=2Þ�

P
r
	r

�½��P
r 	r�

Q
N
r¼1 �½	r�

1

ð2
iÞðN=2ÞðN�1Þ�1

� YðN=2ÞðN�1Þ�1

fi;jg2upper �of N�N matrix
fi;jg�fi0 ;j0 g

�Z i1

�i1
dsij�½�sij�

�R2
ij

R2
i0j0

�
sij
�
�

� XðN=2ÞðN�1Þ�1

fk;lg2upper �
fk;lg�fi0 ;j0g

skl þ
XN
r¼1

	r � �

2

�

� Y
1�s�N
s�i0 ;s�j0

�

�
	s þ

X
fj;kg2sth row and sth column upper �

sjk

�

� �

�
�

2
� XN

r¼1

	r þ 	i0 �
X

fk;lg2upper �
k�i0 ;l�i0

skl

�
�

�
�

2
� XN

r¼1

	r þ 	j0 �
X

fk;lg2upper �
k�j0 ;l�j0

skl

�
: (B11)

Here, fi0; j0g is some fixed pair of numbers chosen from the ‘‘upper triangular’’ portion of the N � N matrix of number
pairs corresponding to their coordinates on the matrix; namely, the first row on the ‘‘upper �’’ reads, from left to right,
f1; 2g; f1; 3g; . . . ; f1; Ng, the second reads f2; 3g; f2; 4g; . . . ; f2; Ng, and so on until the (N � 1)th row, which has only one
element, fN � 1; Ng.

N ¼ 3.—The MB integrals for the N ¼ 3 case have been explicitly evaluated by Boos and Davydychev [20]. One has
from (B11)

I123 ¼ 
�=2½R2
23�ð�=2Þ�

P
r
	r

�½��P
r 	r�

Q
r �½	r�

1

ð2
iÞ2
Z i1

�i1
du

Z i1

�i1
dv�½�u��½�v�

�
R2
12

R2
23

�
u
�
R2
13

R2
23

�
v

� �

�
uþ vþX

r

	r � �

2

�
�½	1 þ uþ v��

�
�

2
� 	1 � 	3 � v

�
�

�
�

2
� 	1 � 	2 � u

�
: (B12)
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Assuming there exists a series representation of the
integral I123 in powers of R12 and R13, we close the u
and v contours on the right, turning each integral into an
infinite sum over its residues by noting that �½�z� has
singularities on the complex z plane only in the form of
simple poles at zero and the positive integers. [Whether
one should close the contour to the left or to the right really
depends on the numerical range of R12 and R13 considered.
For instance, the MB representation ð1þ zÞ�� ¼
ð2
i�½��Þ�1

Rþi1
�i1 du�½uþ ���½�u�zu can be converted

into a power series in 1=z or z, for � > 0, by closing the
contour to the left or right, depending on whether jzj> 1 or
jzj< 1. Here we will simply assume, for each choice (left
or right), there is some region of R12,R13 2 R in which it is
valid.] The residues of �½�z� at these locations are

Res �½�z�jz¼m ¼ ð�Þm
m!

; m ¼ 0;þ1;þ2; . . . :

Because there are 2 Gamma functions of the form
�½. . .� u� and 2 of the form �½� � � � v�, this converts
the twofold MB integrals into a twofold infinite sum of
4 terms. One can proceed to change summation variables
and manipulate the Gamma functions in the summands
using the definitions for the Gauss hypergeometric func-
tion and the Pochhammer symbol

2F1½a; b; c; z� ¼
X1
u¼0

ðaÞuðbÞu
u!ðcÞu zu;

ðaÞu � aðaþ 1Þ . . . ðaþ ðu� 1ÞÞ ¼ �½aþ u�
�½a� ;

and the relation

�½��m� ¼ ð�Þm�½��
ð1� �Þm ; m 2 Z; � 2 C;

to further reduce the two-fold sum into a single sum:

Iabc½	a; 	b; 	c� �
Z d�z

½ð~z� ~xaÞ2�	a½ð~z� ~xbÞ2�	b½ð~z� ~xcÞ2�	c

¼ 
�=2

�½��P
r 	r�

Q
r �½	r�

X1
‘¼0

�
½R2

bc�ð�=2Þ�
P

r
	r
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R2
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R2
bc

�
‘
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�
�
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2
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�X
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2
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� �½	a�
ðPr 	r � �
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ð1� �
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�
�‘;

�

2
� 	a � 	b � ‘; 1� �

2
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R2
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R2
ab

�

þ ½R2
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�
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�
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�

2
� 	a � 	c

�
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�
�

2
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�
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�
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2
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2
þ 	a þ 	c;

R2
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R2
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�
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1
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�
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�

2
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�
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2
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R2
ac
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�

þ ½R2
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��
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�

� �

�
�

2
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�
�

�
��X
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� ð�2 � 	aÞ‘ð��P
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2 � 	a � 	bÞ‘

� 2F1

�
�‘;��

2
þ 	a þ 	b � ‘; 1þ �

2
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R2
ac

R2
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��
: (B13)

As described in Boos and Davydychev [20], this sum has a closed form expression in terms of the Appell hyper-
geometric function F4 of two variables, which has a perturbative definition of the form

F4½�;�;�; �; x; y� ¼
X1
m¼0

X1
n¼0

ð�Þmþnð�Þmþn

ð�Þmð�Þn
xm

m!

yn

n!
:

Through the relation

n-BODY PROBLEM IN GENERAL RELATIVITY UP TO . . . PHYSICAL REVIEW D 79, 044031 (2009)

044031-31



X1
j¼0

xj

j!

ð�Þjð�Þj
ð�Þj 2F1½�j; 1� �� j;�; y� ¼ F4½�;�;�; �; x; xy�;

we now have

Iabc½	a; 	b; 	c� �
Z d�z

½ð~z� ~xaÞ2�	a½ð~z� ~xbÞ2�	b½ð~z� ~xcÞ2�	c
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2
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;
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��
:

However, F4 is not defined in MATHEMATICA [10],
whereas the sum in (B13) can easily be entered. In par-
ticular, at 2 PN, the n-body problem requires the knowl-
edge of

I3½a; b; c� ¼
�

�½d�3
2 �

4
ðd�1Þ=2

�
3
I123

�
	1 ¼ 	2 ¼ 	3 ¼ d� 3

2

�
:

Applying, in 3� 2" spatial dimensions, the Laurent
expansion for the Gamma function about negative integers
or zero,

�½�mþ "� ¼ ð�Þm
m!

�
1

"
� �E þ

Xm
r¼1

1

r
þO½"�

�
;

m ¼ 0; 1; 2; . . . ;

to the summand in (B13), before employing the
MATHEMATICA command FULLSIMPLIFY on the sum-

mation (B13), yields the final form for I3½a; b; c�:

I3½a; b; c� ¼ 1

64
2

�
� 1

"
þ 2� 2�E � 2 ln½
�

� 4 lnjRab þ Rac þ Rbcj þO½"�
�
; (B14)

where �E ¼ 0:577 21 . . . is the Euler-Mascheroni constant
and the hyperbolic function identity tanh�1½z� ¼ ð1=2Þ�
ðlnj1þ zj � lnj1� zjÞ was used. An alternate derivation
of this result can be found in Blanchet, Damour, and
Esposito-Farese [22].
A direct computation would show that this result is

consistent with the Poisson equation obeyed by the N ¼
3 integral in 3 spatial dimensions:

�ij@ai @
a
j I123½	a ¼ 	b ¼ 	c ¼ 1=2� ¼ �4
ðRabRacÞ�1:

APPENDIX C: 3 PN DIAGRAMS

In this section, we collect the fully distinct Feynman
diagrams necessary for the computation of the effective
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Lagrangian for n nonrotating, structureless point masses as
described by the minimal action in (2) at the 3 PN order.
Fully distinct here means that, to obtain the full 3 PN
Lagrangian one would have to, whenever applicable:

(i) Consider all possible permutations of the particle
labels of the diagrams displayed.

(ii) For the n ¼ 3, 4 and 5 diagrams, consider all pos-
sible ways of setting some of the particle labels
equal to each other, so that from the n ¼ 3 diagrams
one would obtain their n ¼ 2 counterparts; from the

n ¼ 4 their n ¼ 2 and 3 counterparts; and from the
n ¼ 5 their n ¼ 2, 3 and 4 counterparts.

The 2-body diagrams are in Fig. 15. The 3-body dia-
grams with graviton vertices are Figs. 16 and 17, and those
with no graviton vertices are Fig. 18. The 4-body diagrams
with graviton vertices are Figs. 19–21, and those without
graviton vertices are Figs. 22 and 23. Finally the 5-body
diagrams with graviton vertices can be found in Fig. 24,
whereas those with none can be found in Fig. 25.
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FIG. 16. 3 PN 3-body diagrams containing 3 graviton vertices, 1 of 2.
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FIG. 19. 3 PN 4-body diagrams with graviton vertices, 1 of 3.
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FIG. 20. 3 PN 4-body diagrams with graviton vertices, 2 of 3.
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FIG. 21. 3 PN 4-body diagrams with graviton vertices, 3 of 3.
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FIG. 22. 3 PN 4-body diagrams with no graviton vertices, 1 of 2.
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FIG. 23. 3 PN 4-body diagrams with no graviton vertices, 2 of 2.
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FIG. 24. 3 PN 5-body diagrams with graviton vertices.
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FIG. 25. 3 PN 5-body diagrams with no graviton vertices.
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