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In this paper we show that the covariant dynamical equations of quantum vortices in type II super-

conductors may be brought into the same form as the classical equations written in 3-vector forms and can

then be interpreted by using the familiar language of physics. This result is attained by introducing the

physically measurable quantities by means of the corresponding standard relative quantities as defined by

Cattaneo and by using his operator of transverse derivation, partial or covariant, with respect to the x4

lines. The standard equations thus obtained have a tensorial character and are covariant under the sole

changes of coordinates leaving invariant the x4 lines, i.e. changes of coordinates internal to the physical

system of reference S associated with the coordinates (xi). Expressions of the electric and magnetic fields

induced inside a type II superconductor at rest in a curved space-time are obtained. The generation of

these fields is influenced not only by the presence of a gravitational field but also by the presence of

vortices. Comparison is made with the results predicted by the method of anholonomic frames.
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I. INTRODUCTION

In a previous paper [1] we have shown that the general-
ization of the covariant London equation

@½iUj� þ Q

mc
Fij ¼ 0 ði; j ¼ 1; 2; 3; 4Þ; (1.1)

to type II superconductors may be written in the following
form:

@½iUj� þ Q

mc
Fij ¼ Q

mc
sSij; (1.2)

where Fij (i; j ¼ 1, 2, 3, 4) and Uj are, respectively, the

electromagnetic field tensor and the 4-velocity (UjU
j ¼

�c2) of the superelectron of proper mass m and charge Q
(Q< 0). The antisymmetric tensor Sij embodies the prop-

erties of the system of vortices and is defined by

Sij ¼ 1
2s�ijklD

kl;(1.3a)

Dkl ¼ �ukðLÞwlðLÞ þ ulðLÞwkðLÞ;(1.3b)
where ukðLÞ and wlðLÞ are, respectively, the 4-velocity of
the vortex and the unit spacelike vector defining the direc-
tion of the vortex. The scalar s (s2 ¼ 1

2S
ijSij) is propor-

tional to the proper density of vortices. The permutation
tensor � is in contravariant and covariant forms given by

�ijkl ¼ ffiffiffiffiffiffiffi�g
p

"ijkl; �ijkl ¼ � 1ffiffiffiffiffiffiffi�g
p "ijkl; (1.4)

and by virtue of Eqs. (1.2) and (1.3) may also be exhibited
in the following form:

@½iUj� þ Q

mc
Fij ¼ �Qs

mc
�ijklu

kðLÞwlðLÞ: (1.5)

The physical interpretation of Eqs. (1.1) and (1.2) is not
immediate; it necessitates the knowledge of the relations
connecting the absolute tensorial quantities appearing in
these equations to the physically measurable quantities.
For instance, one must be able to relate the components
of the absolute tensor Fij to the physically measurable

electric and magnetic field 3-vector. A difficulty inherent
to the theory of general relativity is the lack of a unique
mathematical representation of the physically measurable
quantities in terms of the corresponding absolute quanti-
ties. In a recent note [2] the physical interpretation of
Eq. (1.1) in general relativity and a discussion of certain
electrodynamic effects derived from it were developed by
applying Cattaneo’s projection method [3–7]. This method
has a purely tensorial character; absolute tensorial equa-
tions are given a form similar to that of classical physics
with added terms representing the influence of the gravi-
tational field and are interpreted by using the familiar
language of physics. This result is attained by the system-
atic use of a differential operation that generalizes the usual
absolute differentiation and by the introduction of the
physically measurable quantities by means of suitably
defined ‘‘standart quantities,’’ relative to the chosen system
of reference S, which transform according to the classical
tensorial law on changes of coordinates internal to the
system of reference S.
The purpose of this paper is to extend Cattaneo’s ap-

proach to the discussion of certain aspects of the electro-
dynamics of type II superconductors in curved space-time.
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We shall see that the presence of vortices has an influence
on the generation of the electromagnetic field inside the
superconductor. Whereas the magnetic field is conditioned
by the presence of vortices, the generation of an electric
field, because of the phenomenon of unipolar induction, is
related to the motion of magnetic vortices. The estimations
of electric and magnetic fields in the superconducting
proton and quark cores of neutron stars will be considered.
The main source of electric field is the inhomogeneous
gravitational filed, whereas the magnetic field is generated
by the set of superconducting quantum vortices. The mag-
netic field generation takes place as a result of the collapse
of the supernova remnant into the neutron star and via the
‘‘entrainment’’ of superconducting protons by superfluid
neutrons [8]. In both cases they have different direction of
the dipole axis and the magnetic field is concentrated in the
proton or quark vortices. Section II gives the prerequisites
of Cattaneo’s method. The natural projection of a tensor is
defined by means of the space and time projectors �ij ¼
gij þ �i�j and ��i�j (�i unit tangent vector to the x4

line). The operation of covariant transverse derivation is
introduced and the definitions of kinematical and electro-
magnetic standard relative quantities are given. In Sec. III,
the standard London equations of type II superconductors
relative to the system of reference S associated with the
physically admissible coordinates (xi), with the x4 lines
along the world lines of the normal part, are obtained. The
expressions of the electric and magnetic fields induced,
inside a type II superconductor at rest, by the presence of a
gravitational field and of vortices are derived from the
standard London equations. Using Eqs. (3.15) and (3.16)
the order of magnitude of the electric and magnetic fields
are estimated. In Sec. IV comparision is made with the
results predicted by the method of anholonomic frame.
Section V contains concluding remarks.

II. MATHEMATICAL PRELIMINARIES:
STANDARD RELATIVE QUANTITIES

For purposes of reference we briefly recall (i) some basic
points concerning the operation of covariant transverse
derivation, and (ii) the definitions of kinematical and elec-
tromagnetic standard relative quantities introduced by
Cattaneo’s [3,7,9]. A more detailed review is given in
Ref. [2].

Let V4 be the space-time manifold with

ds2 ¼ gijdx
idxj ði; j ¼ 1; 2; 3; 4Þ (2.1)

the fundamental quadratic form with signature þ2, (xi) a
physically admissible system of coordinates i.e. the x4

lines being timelike lines with unit tangent vectors ~�
pointing into the future and satisfying

�� ¼ 0 ð� ¼ 1; 2; 3Þ; �4 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi�g44
p : (2.2)

The 13 ideal particles having the x4 lines as world lines
form the physical system of reference S associated with the
coordinates (xi). A physical significance will be ascribed to
quantities which are covariant under transformations of
coordinates leaving invariant the x4 lines. At every event
x 2 V4, the subspaces �x and �x of the tangent space Tx

respectively parallel and orthogonal to ~� define the time
and space associated with the event x, the tensors ��i�j

and �ij ¼ gij þ �i�j acting, respectively, as time-

projector and space-projector. Denoting by P� (P�) the
operations of projection on �x (�x) the natural projections

of a vector ~V 2 Tx are given by

P�ðViÞ ¼ ��i�kV
k; P�ðViÞ ¼ �ikV

k;

Vi ¼ P�ðViÞ þ P�ðViÞ:
(2.3)

Similarly the natural projections of a tensor Aij are ob-

tained by means of the space and time projectors in the
following way:

P��ðAijÞ ¼ �ir�jsA
rs; P��ðAijÞ ¼ ��ir�j�sA

rs;

P��ðAijÞ ¼ ��i�r�jsA
rs; P��ðAijÞ ¼ �i�j�r�sA

rs:

(2.4)

We are particularly interested in the natural projections of
an antisymmetric tensor Aij ¼ �Aji, for such a tensor the

natural decomposition may be written

Aij ¼ ~Aij þ ~Ai�j þ �i
~A0
j ð ~Aij ¼ � ~AjiÞ; (2.5)

where

~A ij ¼P��ðAijÞ; ~Ai ¼��ir�sA
rs; ~A0

j ¼��r�jsA
rs:

(2.6)

(The symbol � denotes the spatial character of the tensors

and vectors i.e. ~A4 ¼ 0, ~Ai4 ¼ 0.) The covariant transverse

derivation ~r� operates on a spatial vector ~v or on a spatial
tensor ~Tij and is defined by

~r �
i ~vj ¼ �h

i �
k
jrh~vk;

~r�
i
~Tjk ¼ �h

i �
k
j�

r
lrh

~Tkr: (2.7)

Such a derivative can be written in the same form as an
usual covariant derivative in a Riemannian three-

dimensional space with Christoffel symbols ~��k
ij con-

structed by means of the tensor ��� ¼ g�� þ ���� in-

stead of g�� and the systematic substitution of the ordinary

partial derivative @� by the transverse partial derivative
[3,6,7]

~@ i ¼ @i � ��

�4

@4: (2.8)

The definition of the absolute transverse differentiation is
then given by

~d �~vj ¼ dxi ~r�
i ~vj ¼ dxið~@i~vj � ~��k

ij ~vkÞ: (2.9)

(The symbols �, � recalling, respectively, that the metric
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tensor �ij must be used instead of gij and the transverse

derivation ~@� instead of the partial derivative @�).
For a moving test particle of constant proper mass m, 4-

velocity ui ¼ dxi

d� , and 4-momentum Pi ¼ mui, the follow-

ing standard relative quantities are considered:
(a) Standard spatial metric tensor ��� ¼ g�� þ ����

and standard relative time

dT ¼ � 1

c
�idx

i: (2.10)

(b) Standard relative velocity V and its space projection
~v, called the standard relative 3-velocity, defined,
respectively, by

V ¼ dxi

dT
ei; ~v ¼ dx�

dT
~e� ¼ �i

k

dxk

dT
ei ¼ ~viei:

(2.11)

The components of ~v and V are thus related by

~v i ¼ �i
kV

k

�
Vk ¼ dxk

dT

�
: (2.11a)

The components of the natural basis vectors ~e� of �
relative to the natural frame (ei) of V4 are given by

ð~e�Þi ¼ �ikðe�Þk ¼ �i�;

ð~e�Þi ¼ gihð~e�Þh ¼ �i
� þ �i��:

(2.12)

The two frames being related by the formula

~e � ¼ e� þ �4��e4: (2.13)

The spatial norm of ~v and its covariant components
are

~v 2 ¼ ���~v
�~v�; ~v� ¼ ���~v

�: (2.14)

(c) Standard relative massM whose definition is similar
to that of the relative mass in special relativity

M ¼ m
dT

d�
¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~v2

c2

q : (2.15)

(d) Standard relative 3-momentum

~p � ¼ P� ¼ M~v�: (2.16)

Let us note that the corresponding covariant components
~p� ¼ ��� ~p

� differ from the components P� of the 4-

momentum since P� ¼ g�iP
i ¼ ���P

� þMc��.

The standard relative quantities associated with the elec-
tromagnetic field tensor Fij are derived from the natural

decomposition (2.5) [7,9]. Writing

P��ðFijÞ ¼ ~Hij ¼ �ir�jsF
rs;

P��ðFijÞ ¼ ��ir�j�sF
rs ¼ � ~Ei�j;

P��ðFijÞ ¼ ��i�r�jsF
rs ¼ �i

~Ej;

(2.17)

the familiar language of physics is introduced by calling
the vector ~Ei ( ~E4 ¼ 0) the electric field relative to the
system of reference S and the antisymmetric tensor ~Hij

( ~H4j ¼ 0) the magnetic field tensor; the magnetic field

vector being ascribed to the dual of ~Hij in �x

~h � ¼ 1
2 ~�

��	 ~H�	 (2.18)

where

~���	 ¼ ffiffiffiffi
�

p
"��	; ~���	 ¼ 1ffiffiffiffi

�
p "��	; (2.19)

"��	 ¼ "��	 being the usual permutation symbol and �

the determinant of ���.

Remark 1.—The tensor ~���	 can be regarded as a tensor

of Tx, ~�ijl ¼ ��
i �

�
j �

	
l ~���	, is related to the tensor�ijlm ¼ffiffiffiffiffiffiffi�g

p
"ijlm by the following relation:

~� ijl ¼ �ijlm�
m: (2.20)

All the above standard relative quantities, as well as the
notion of transverse derivation, are invariant under changes
of coordinates internal to the given physical system of
reference S.

III. STANDARD RELATIVE DYNAMICAL
EQUATIONS FOR TYPE II SUPERCONDUCTORS

Let us consider a universe with metric form (2.1). In this
universe we have a type II superconductor with world lines
of the normal part along the x4 lines i.e. at rest with respect
to the physical system of reference S associated with the
coordinates (xi). Consequently the 4-velocity uiðnÞ and the
4-vector wiðLÞ, defining the direction of the vortex, satisfy
respectively,

u�ðnÞ ¼ 0; g44ðu4ðnÞÞ2 ¼ �c2; (3.1a)

�iwiðLÞ ¼ �4w4ðLÞ ¼ 0 or w4ðLÞ ¼ 0: (3.1b)

The tensorial index i of wi is thus purely spatial. The
standard dynamical equations relative to the physical sys-
tem of reference S will be derived by considering the
natural projections P��, P��, and P�� of the absolute
tensorial equation (1.2), the projection P�� playing no
role because of the antisymmetry of the tensors. Before
performing the above projections, it is convenient to in-
troduce the natural decompositions of Ui, Fij, and Sij.

With reference to (2.3) and (2.11) we have
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~u i ¼ P�ðUiÞ ¼ �ir

dxr

dT

dT

d�
¼ �~vi;

�i ¼ P�ðUiÞ ¼ ��i�r

dxr

dT

dT

d�
¼ c��i;

� ¼ dT

d�
¼

�
1� ~v2

c2

��1=2
;

(3.2)

so that, using the natural decomposition of the skew-
symmetric tensors Sij and Fij as given, respectively, by

(2.5) and (2.17), Eq. (1.2) may be exhibited in the form

r½i~uj� þ r½i�j� þ Q

mc
ð ~Hij � ~Ei�j þ ~Ej�iÞ

¼ Q

mc
ð~Sij þ ~Si�j þ �i

~S0jÞ: (3.3)

Let us now project the various terms of Eq. (3.3) on � and
�. The expressions of the natural projections P��, P��,
and P�� of the covariant derivatives 5i~uj (5i �j) are

obtained from the definition of the covariant derivative of
a 4-vector,riAj ¼ @iAj � �k

ijAk, by applying the time and

space projectors ��i�j and �ij and may be expressed in

terms of the transverse covariant and partial derivation
operators (2.7) and (2.8) and of the following tensors
characterizing the properties of the system of reference S
[5,7].

(a) The space vortex tensor

~� ij ¼ P��ð�ijÞ ¼ �4

�
~@i
�j

�4

� ~@j
�i

�4

�
;

~�i4 ¼ � ~�4i ¼ 0; �ij ¼ @i�j � @j�i:

(3.4)

(b) The Born tensor ~Kij ¼ P��ðKijÞ ¼ �4@4�ij ( ~K4i ¼
~Ki4 ¼ 0, Kij ¼ ri�j þrj�i).

(c) The curvature vector of the x4 line Ci ¼ �rrr�i.

Remark 2.—The vanishing of Ci, or of ~�ij, or of ~Kij,

characterizes, respectively, the geodesic frames, the spa-
tially irrotational frames, and the rigid frames in the sense
of Born. The calculations of the natural projections P��,
P��, and P�� of the covariant derivative of a purely spatial
4-vector ~uið~u4 ¼ 0Þ [a purely temporal 4-vector �ið�� ¼
0Þ] are exposed in Refs. [6,7]; the corresponding expres-
sions are given in the appendix. From these expressions,
the projections P��, P�� þ P�� of the alternated deriva-
tives r½i~uj� (r½i�j�) are found to be as follows:

P��ðr½i~uj�Þ ¼ ~r�
½i~uj� ¼ ðfrot ~uÞij;

ðP�� þP��Þðr½i~uj�Þ ¼ ��i
�@4~uj þ�j

�@4~ui ð �@4 ¼ �4@4Þ;
P��ðr½i�j�Þ ¼ c� ~�ij;

ðP�� þP��Þðr½i�j�Þ ¼ �j

�
~@iðc�Þ � c�

�
@4

�
�i

�4

�

� ~@i log
ffiffiffiffiffiffiffiffiffiffiffi�g44

p ��
��i

�
~@jðc�Þ

� c�

�
@4

�
�j

�4

�
� ~@j log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p ��

:

(3.5)

Using (3.5), the projections P��, P��, and P�� of Eq. (3.3)
are, respectively, given by

ðfrot ~uÞij þ c� ~�ij þ Q

mc
~Hij ¼ Q

mc
~Sij; (3.6)

�j

�
�@4~ui þ ~@iðc�Þ � c�

�
@4

�
�i

�4

�
� ~@i log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p �

� Q

mc
~Ei � Q

mc
~Si

�

¼ �i

�
�@4~uj þ ~@jðc�Þ � c�

�
@4

�
�j

�4

�
� ~@j log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p �

� Q

mc
~Ej � Q

mc
~S0j
�
: (3.7)

Remark 3.—Let us note that in Eqs. (3.6) and (3.7) the Latin
indices can take only the values 1, 2, 3. For i ¼ 4 (j ¼ 4)
these equations reduce to the identity 0 ¼ 0.
On multiplying Eq. (3.7) by �i we thus get�
�@4~u� þ ~@�ðc�Þ � c�

�
@4

�
��

�4

�
� ~@� log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p �

� Q

mc
~E�

�
¼ Q

mc
~S�: (3.8)

Substitution of (1.3) in the definition of ~Si as given in (2.6),
~Si ¼ ��ir�sS

rs, yields the following expression for ~S� in
terms of the vectors uðLÞ and wðLÞ characterizing the
vortex:

~S � ¼ �S~����u
�ðLÞw�ðLÞ ¼ �S�ðLÞ~����~v

�ðLÞw�ðLÞ;
(3.9)

where ~v�ðLÞ is the standard relative 3-velocity of the

vortex (~v� ¼ ��
r Vr ¼ V�, U� ¼ dx�

dT
dT
d� ¼ V��).

We now bring Eq. (3.6) into a form permitting an inter-
pretation similar to that given in classical electrodynamics
of superconductors. For this purpose we multiply Eq. (3.6)
by 1

2 ~�
��	 and introduce the dual vectors of the skew-

symmetric tensors ~H�	, ðfrot ~uÞ�	, and ~S�	, the duality

correspondence operating in �x. As mentioned in Sec. II,

Eq. (2.18), the dual of ~H�	 defines the components ~h� of
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the magnetic field vector relative to the physical system of

reference S. Following Cattaneo the dual of ðfrot ~uÞ�	 is

written in the form

ðfrot ~uÞ� ¼ 1
2 ~�

��	ðfrot ~uÞ�	 (3.10)

and called by him the curl of the vector ~uj. The dual vector

of ~S�	 is denoted by ~�~S� and its expression in terms of

uðLÞ and wðLÞ is
~�~S� � 1

2 ~�
��� ~S�	 ¼ �sð�4u4ðLÞÞw�ðLÞ: (3.11)

With reference to the definition (2.10) of standard time,
~�~S� in terms of the standard relative velocity ~v can be
written as

~�~S� ¼ S�ðLÞw�ðLÞ
�
1þ �	

~v	ðLÞ
c

�
(3.12)

so that Eq. (3.6) may be exhibited in the form

ðfrot ~uÞ� þ 2�!� þ Q

mc
~h� ¼ Q

mc
S�ðLÞw�ðLÞ

�
�
1þ �	

~v	ðLÞ
c

�
(3.13)

where

!� ¼ 1
4c~�

��	 ~��	 (3.14)

is the local angular velocity of the system of reference S.
Equations (3.8) and (3.13) may be regarded as an alternate
formulation of the absolute tensor equation (1.2) written in
terms of the standard electric and magnetic field vectors

( ~E� and ~h�) relative to the physical system of reference S.
They have the same form as the corresponding classical
dynamical equations written in 3-vector forms with added
terms representing the influence of the gravitational field.
The above equations may thus be used to derive certain
electrodynamic and gravitational effects. As an illustrative
example let us derive the expressions of the electric and
magnetic fields inside a type II superconductor at rest in the
presence of a gravitational field. Since there is no current
inside a superconductor, setting the standard velocity ~v
(~u ¼ �~v) of the superelectron equal to zero in Eqs. (3.8)
and (3.13), one obtains immediately

~E� ¼ mc

Q

�
@4

�
��

�4

�
� ~@� log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p �

� S�ðLÞ~����~v
�ðLÞw�ðLÞ; (3.15)

~h � ¼ �2
cm

Q
!� þ S�ðLÞw�ðLÞ

�
1þ ��

~v�ðLÞ
c

�
:

(3.16)

By comparison with electromagnetism log
ffiffiffiffiffiffiffiffiffiffiffi�g44

p
and ��

�4

may thus be regarded as the analogues of scalar and vector
potentials [7]. In the case of a spatially irrotational frame

~�ij ¼ 0 (the x4 lines forming a normal congruence), so

that the only surviving term in (3.16) is the contribution of
the vortices. Let us also note that, for a stationary gravita-
tional field, the transverse partial derivative ~@� log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p

is equal to the ordinary partial derivative @� log
ffiffiffiffiffiffiffiffiffiffiffi�g44

p
[see

(2.8)] hence ~E� reads

~E� ¼ �mc

Q
@� log

ffiffiffiffiffiffiffiffiffiffiffi�g44
p � S�ðLÞ~����~v

�ðLÞw�ðLÞ:
(3.17)

According to formula (3.15) the electric field is gener-
ated by inhomogeneous gravitational field and in a neutron

star can be defined as E� mc2

Q

Rg

R2 , where R and Rg are,

respectively, the ordinary and gravitational radii of the star.
This estimation will give E� 103 Volt=cm. Moving vor-
tices will also generate the additional filed, but this term
will be much smaller, because vðLÞ=c� 10�17. This term
is of the order of 0:3 Volt=cm.
According to formula (3.16) the main input in the

strength of the magnetic field is given by the second
term, which is proportional to the density of quantum
vortices. The first term of formula (3.16) is very small. If
the magnetic filed is generated by collapse its mean induc-
tion B will be of the order of 1012 G. In the case of
generation by the entrainment effect it will be of the order
of 1014 G and will be concentrated in the central part of
neutron vortices [8]. These estimations are valid for had-
ronic and quark cores, because both of them are type II
superconductors. The difference between these two cases
is the value of the superconducting gap from which the
critical value of the magnetic field depends.
If the core of neutron star is not a type II but rather a

type I superconductor, the estimation for electric field is the
same. The magnetic filed generated in the process of
collapse must be very inhomogeneous and partially strong
to create normal domains through which it can penetrate.
In the case of generation of the magnetic field by entrain-
ment effect it will pass through normal cylindrical do-
mains, which are located in the central part of the
neutron vortex. The induction vector B has the same order
of magnitude as in the case of the type II superconductor
[10].

IV. COMPARISON WITH THE METHOD OF
ANHOLONOMIC FRAMES

It is not without interest to compare the above results to
those predicted by another method. In Ref. [11] the elec-
tromagnetic field generated inside a type II superconductor
in a stationary gravitational field was investigated by
adopting the tetrad approach. In contradistinction to the
method of projections, equations describing a physical
phenomenon are written in terms of scalars under arbitrary
transformations of coordinates and physical significance is
ascribed only to invariant components of tensors on an
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orthonormal tetrad ek (k ¼ 0, 1, 2, 3) with e0 timelike and

future-pointing and e� (� ¼ 1, 2, 3) spacelike. Let us also

note that the definition of a system of reference as a
continuous distribution of hypothetical observers with 4-
velocity e0 with each of whom is associated a frame of

reference differs from that employed by Cattaneo, in par-
ticular, one does not require that this continuous distribu-
tion of observers be at rest with respect to the chosen
coordinate system. The tensorial equation (1.2) with re-
spect to the natural basis vectors, ei ¼ @=@xi, was trans-
formed with respect to an orthonormal tetrad ek adopted to

the stationary character of the Universe, i.e. e0 pointing

along the timelike Killing vector [this choice is equivalent
to identify e0 with the 4-velocity uðnÞ of the normal part],

with the appearance of correction terms containing the

object of anholonomity [11,12] C
c
ba ¼ ejbe

i
a@½je

c

i�. The

nonvanishing components of this mathematical object de-
termine the contribution of the gravitational field to the
electromagnetic field generated inside the superconductor.
The physical electric and magnetic field intensities as
measured by an observer with 4-velocity e0 ¼ UðnÞ, in-
troduced by means of the invariants

E� ¼ F0� ¼ �F0�; H� ¼ 1
2"���F��

ðFi j ¼ elie
m
j FlmÞ

(4.1)

are given by

E� ¼ mc

Q

1



@�
 � "��	u

�ðLÞw	ðLÞ; (4.2)

"���H� ¼ mc

Q

:r½�’�� þ S"��mnu

mðLÞwnðLÞ; (4.3)

where @� is the Pfaffian derivative and 
 ¼ ffiffiffiffiffiffiffi
g00

p
. _r� is the

covariant Pfaffian derivation operator related to the metric
��� ¼ g�� � g0�g0�

g00
, the anholonomic component ’i ¼

eli’l. A formal resemblance with the corresponding ex-

pressions of the standard electric and magnetic field vec-
tors is detected when in Eqs. (3.15) and (3.16) the g’s
are assumed independent of the time coordinate [see
Eq. (3.17)]. In both sets of equations the field intensities
involve, respectively, the partial derivatives and alternated
derivatives of the metric tensor.

V. CONCLUSION

Adopting Cattaneo’s projection method we have pre-
sented an alternate formulation of the tensorial dynamical
equations of vortices in type II superconductors. These
equations have a form similar to the classical equations
of motion in where the various forces acting on matter are
explicitly exhibited. In Cattaneo’s approach the metric
tensor components enters in the definition of various stan-
dard relative quantities and in the operation of transverse
derivation.
Assuming that there is no current inside superconduc-

tors, we have derived from the standard relative equations
of motion the expressions of the physically measurable
magnetic and electric field vectors. These fields are in-
duced by the presence of inhomogeneous gravitational
field and quantum vortices. Whereas the generation of
the electric field is related to the motion of magnetic
vortices (unipolar induction), the magnetic field is condi-
tioned only by their presence and the rotation of the
physical system of reference.
The results we have obtained may be used to investigate

various aspects of the electrodynamics of rotating neutron
stars i.e. pulsars. Since the nucleus of a neutron star con-
sists of a proton-electron plasma, the electric field gener-
ated by the proton vortices will induce a change in the
charge distribution of plasma. Problems related to this
questions will be studied.

APPENDIX: NATURAL PROJECTIONS OF THE
COVARIANT DERIVATIVE OFA 4-VECTOR

1. Natural projections of ri�j (�j ¼ c��j 2 �x)

Projection-��: P��ðri�jÞ ¼ 1
2 c�ð ~Kij þ ~�ijÞ.

Projection-��: P��ðri�jÞ ¼ c�j
~@i�.

Projection-��: P��ðri�jÞ ¼ �c�iCj.

Projection-��: P��ðri�jÞ ¼ �c�r@r�:�i�j.

2. Natural projection of ri ~uj ( ~uj 2 �x)

Projection-��: P��ðri~ujÞ ¼ ~r�
i ~uj.

Projection-��: P��ðri~ujÞ ¼ 1
2 ð ~Kir þ ~�irÞ~ur�j.

Projection-��: P��ðri~ujÞ ¼ �ið��4@4~uj þ 1
2 �

½ ~Kjh þ ~�jh�~uhÞ.
Projection-��: P��ðri~ujÞ ¼ �Cr~u

r�i�j.
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