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We show that a coupling between chameleonlike scalar fields and photons induces linear and circular

polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include

those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine

the form of this polarization numerically and give analytic expressions in two useful limits. By comparing

the predicted signal with current observations we are able to improve the constraints on the chameleon-

photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if

observed, the distinctive form of the chameleon induced circular polarization would represent a smoking

gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike

scalar field from observations of starlight polarization in our galaxy.
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I. INTRODUCTION

Extensions of the standard model of particle physics,
such as string theory, introduce many new scalar fields
which are not seen in the standard model. Such scalar
fields are commonly invoked to explain the observed ac-
celeration of the Universe, as inflation [1] or dark energy
[2] fields, or to cause variations in fundamental constants
[3]. If new scalar fields do indeed exist in the Universe, it is
important to understand the properties of the theoretical
models that describe them, e.g. the interactions of the
scalar fields with themselves and with matter, which may
give rise to additional observable effects that could be
tested and constrained by experiments.

In this article we consider the effect of scalar field
theories with a self-interaction potential Vð�Þ and cou-
plings to matter and light on observations of the polariza-
tion of light from astrophysical sources. These scalar field
theories are described by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
4

R� 1

2
g��@��@��� Vð�Þ

� BFð�=M0Þ
4

F2

�
þX

SðiÞm Bið�=M0Þg��; c
ðiÞ
m Þ; (1)

where the SðiÞm are the matter actions for the matter fields

c ðiÞ
m , and the functions Bið�=M0Þ and BFð�=M0Þ deter-

mine the couplings of the scalar field, �, to the ith matter
species c i and to the photon field, respectively. A scalar
field with such couplings to matter fields might be expected
to give rise to fifth force effects or violations of the weak

equivalence principle. In this article we are specifically
interested in a scalar field �, which is light in relatively
low-density regions such as galaxies, galaxy clusters, and
the intergalactic medium. More precisely, in these regions
we require the mass m� of small perturbations about the

background value of the scalar field �b to satisfy m� &

10�11 eV=c2. Hence, any force mediated by� would have
a range of �� ¼ 1=m� * 20 km. Additionally, we require

that coupling between photons and � in these regions is
relatively strong:

g��� ¼ 1

M
¼ d lnBF=d�j�¼�b

* 10�11 GeV�1:

Therefore, even if the coupling to matter is much weaker
than the coupling to photons, since roughly 10�4 of the
mass of nuclei is due to electromagnetic interactions the
�-mediated force between individual nuclei in these back-
grounds will be at least 107 times the strength of gravity on
scales smaller than ��.

One might, at first glance, conclude that a scalar field
theory with these properties is already strongly ruled out by
laboratory constraints, e.g. [4–9], on the strength of fifth
forces. Specifically, measurements of the displacement of a
micro-machined silicon cantilever using a fiber interfer-
ometer, reported in [9], require that a Yukawa-type fifth
force with strength 107 times that of gravity has a range
�� < 5 �m with 95% confidence. This, however, does not

rule out the models we wish to consider as neither the
strength nor the range of the �-mediated force are neces-
sarily the same in the relatively high-density environment
of the laboratory as they are in the low-density background
of space.
In recent years, two classes of models have arisen that

allow a scalar field that is strongly interacting in low-
density environments and yet is currently undetected in
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laboratory tests: the chameleon model, [10,11], and the
Olive-Pospelov (OP) model [12]. Both models are de-
scribed in detail in the following section. The mechanism
by which these models avoid laboratory tests can be under-
stood by extremizing Eq. (1) with respect to � to give the
following field equation:

h� ¼ Veff;�ð�; Tm; F
2=4Þ; (2)

where

Veffð�;Ti; F
2Þ ¼ Vð�Þ þ BFð�Þ

4
F2 � lnBmð�Þ

2
Tm; (3)

and Tm ¼ g��T
��
m is the trace of the energy momentum

tensor for matter

T��
m ¼ 2ffiffiffiffiffiffiffi�g

p �Sm
�g��

:

For nonrelativistic matter Tm � ��m, where �m is the
energy density of the matter. Both the chameleon and OP
models play the scalar field potential Vð�Þ off against the
matter couplings BF and Bm to make the vacuum expecta-
tion value (VEV), and hence the properties of the field,
depend strongly on the local density of matter. For conve-
nience we shall refer to such a scalar field � as the
chameleon or chameleon field; however, our analysis ap-
plies equally well to both the chameleon and OP models. In
this analysis we posit a universal coupling to the different
matter species, i.e. Bið�=M0Þ ¼ Bmð�=M0Þ. Although it is
not required by either model, we make this assumption
because it simplifies the analysis while having little effect
on our conclusions. The best constraints onM0 come from
the requirement that corrections to particle physics are
small, which limits M0 * 104 GeV [13].

A coupling between matter fields and the chameleon
potentially causes violations of the weak equivalence prin-
ciple and other fifth force effects such as an effective
alteration to Newton’s inverse square law. A coupling
between photons and chameleons introduces additional
observable phenomena for the chameleon field. If such a
coupling has supergravitational strength, it can result in a
non-negligible conversion of photons to chameleons and
vice versa. The detectable effects associated with this
conversion are similar to those predicted for axionlike
particles (ALPs), which interact with light [13]. Mixing
requires the interaction between two photons and one
scalar particle, and so the effects of the mixing are most
likely to be seen when a photon or a scalar particle is
passing through an external electromagnetic field. The
chameleon-photon coupling induces both birefringence
and dichroism [13,14] in a coherent photon beam passing
through an external magnetic field. These effects could be
detected by laboratory searches, such as the polarization
experiments PVLAS, Q&A, and BMV [15–18], which are
sensitive to new hypothetical particles with a small mass
and coupling to photons. Such experiments can constrain

the coupling M in the chameleon model, indeed the other-
wise anomalous detection of birefringence with a 5.5 T
magnetic field by PVLAS [16], could, at least in principle,
be explained by the presence of a chameleon field [14]. For
the most widely studied class of potentials, the PVLAS
data was found to rule out M & 2� 106 GeV [14]. In the
OP model the mass of the scalar field in the laboratory is
too large to produce a detectable effect in these
experiments.
If chameleons exist and couple to photons, then they

could, as suggested in [19,20], be trapped and slowly
converted back into photons resulting in a long-lived cha-
meleonic afterglow. A number of experiments, most nota-
bly GammeV [21], are searching or aiming to search for
this afterglow effect. The GammeV chameleon search
recently announced its first results which, for models
withm� < 10�3 eV in the interior of the experiment, ruled

out 2:4� 105 GeV<M< 3:9� 106 GeV [22].
Ultimately GammeV may be sensitive to M & 108 GeV
[19], and an optimal sensitivity for afterglow searches of
M< 1010 GeV is feasible within the constraints of cur-
rently available technology [19]. Indeed for any of the
effects associated with the coupling to photons to be large
enough to be detected in the laboratory, either now or in the
foreseeable future, one must have M & 1010 GeV. Such
laboratory constraints do not, however, apply to the OP
models.
These laboratory experiments need to be performed in a

very good approximation to a vacuum otherwise the cha-
meleon becomes too heavy to have a noticeable effect. A
complementary approach to testing chameleon-photon
couplings is to look for the effects of the coupling in
observations of astronomical objects. The densities of
interstellar space are typically very low and so the effects
of the chameleon may be significant. Light from all astro-
nomical objects travels a significant distance through mag-
netic fields in galaxies, galaxy clusters, and possibly in the
intergalactic medium, before reaching the Earth. However,
astronomical magnetic fields are typically made up of large
numbers of randomly oriented magnetic domains—a very
different scenario to the well controlled constant magnetic
fields of laboratory experiments. In contrast to laboratory
tests, such astrophysical effects should be seen in the OP as
well as the chameleon models.
The coupling between photons and chameleons means

that photon number is not conserved; however, as the flux
of photons emitted by astronomical objects is difficult to
determine, measurements of flux cannot be used to bound
the parameters of the chameleon model. In the following
sections we show how the coupling between photons and
chameleons generates polarization in the light from astro-
nomical objects. Therefore, measurements of polarization
can be used to constrain the parameters of the chameleon
model because the intrinsic polarization of astronomical
objects is often very well constrained. Astronomers are
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interested in measuring polarization because it can provide
information both about the source of the radiation and
about any magnetic fields present between the source and
the Earth. Very precise astronomical polarization measure-
ments are therefore available, and can be used to constrain
the chameleon model.

This article is organized as follows: in Sec. II, we
introduce and provide further details of the two classes of
model to which our analysis applies, i.e. the chameleon and
OP models. The coupling of a chameleonlike-particle to
photons, is essentially the same as that which is assumed
for a scalar axionlike particle (ALP). There is a great deal
of literature concerning constraints (both local and astro-
physical) on ALPs. However, the density-dependent mass
of a chameleon field, allows chameleon theories to evade
the tightest of these constraints. In Sec. III, we review
previous constraints on ALPs, and consider to what extent
they do, or do not, apply to chameleonlike models. In
Sec. IV, we consider how the existence of a chameleonlike
field alters the polarization of light from astrophysical
objects as it passes through an astrophysical magnetic field,
and derive the form of the induced polarization. In Sec. V,
we discuss the observed and predicted properties of the
different types of large-scale astrophysical magnetic fields.
In Sec. VI, we apply the results of the previous sections,
and use astrophysical polarization observations to con-
strain the chameleon to photon coupling. We find that
such measurements place the tightest constraints yet on
this coupling. Applying the analysis to starlight polariza-
tion in our galaxy we find a tentative statistical detection of
a chameleonlike scalar field. Finally, we summarize our
results in Sec. VIII.

II. THE MODELS

A. Chameleon model

In the chameleon model the coupling functions Bm and
BF in Eq. (1) are well approximated by linear functions of
�, i.e. BF � 1þ�=M and Bm � 1þ 2�=M0; for reasons
of naturalness, if 1=M � 0, M�OðM0Þ is usually as-
sumed. The strength of the matter coupling is determined
by BF;� and Bm;�, hence in the chameleon model the

coupling strength does not depend explicitly on the VEV
of �. The model was originally proposed by Khoury and
Weltman [10] withM0 �OðMPlÞ, which results in a gravi-
tational strength coupling between matter and the chame-
leon field �. The ability of the chameleon with this
coupling to behave as dark energy was discussed in [23].
The coupling to photons, BF, was not expressly considered
in [10] although withM�M0 �MPl the most pronounced
new effect is a virtually undetectable density dependence
in the fine structure constant. With a gravitational strength
coupling to matter (and possibly also photons) the chame-
leon field could be detected by laboratory, satellite, solar
system and astrophysical tests (e.g. structure formation
[24]) of gravity. A potentially much wider phenomenology

was opened up, when Mota and Shaw [11] showed that
coupling between chameleon fields and matter could be
many orders of magnitude stronger than gravity, M0 �
MPl, and yet still be compatible with all existing experi-
mental data. The properties of such strongly coupled cha-
meleon fields can be probed using experiments designed to
measure the Casimir force [11,25]. In addition, with a
strong coupling and M�OðM0Þ, Brax et al. [13] noted
that interactions between chameleons fields and photons
would result in potentially detectable effects similar to
those predicted for ALPs, which interact with light.
It should be noted, that it is generally seen as ‘‘natural,’’

from the point of view of string theory, to have M � Mpl.

This relation also arises in fðRÞ modified gravity theories
(see e.g. Ref. [26] and references therein). It has also been
suggested, however, that the chameleon field arises from
the compactification of extra dimensions, [27]. In this case,
there is no particular reason why the true Planck scale (i.e.
that of the whole of spacetime including the extra-
dimensions) should be the same as the effective four-
dimensional Planck scale defined by Mpl. Indeed having

the true Planck scale much lower than Mpl has been sug-

gested as a means of solving the hierarchy problem (e.g.
the Arkani-Hamed, Dimopoulos, and Dvali scenario [28]).
In string theory too, there is no particular reason why the
string scale should be the same as the effective four-
dimensional Planck scale. It is also possible that the cha-
meleon might arise as a result of new physics with an
associated energy scale greater than the electroweak scale
but much less than Mpl. Therefore, in this article we con-

sider M as a free energy scale to be constrained by experi-
ment. This said, to date, no one has managed to find such a
chameleon theory (with either M�Mpl or otherwise) in

the low-energy limit of a more fundamental high energy
theory (e.g. supergravity).
The chameleon model evades the strong constraints

imposed by local tests of gravity [10,11] through nonlinear
sel-interactions of the field described by the potential
Vð�Þ, and hence the field may couple with supergravita-
tional strength. ‘‘Nonlinear’’ in this case means that V;� is

a strongly nonlinear function of �, and the mass of the

scalar fieldm� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V;��ð�Þ

q
therefore depends strongly on

the VEV of �. The VEV of � in a given background is
determined by the minimum of the effective potential, (3),
and therefore the position of the minimum depends on �m

and F2. Vð�Þ is chosen so thatm� is larger in high-density

regions than it is in low-density regions. It is then possible
to ensure that in a galaxy �� * 20 km, whereas in the

laboratory �� < 5 �m. Assuming that lnBF;� > 0 and

lnBm;� > 0, the chameleon mechanism requires

V;� < 0; V;�� > 0; V;��� < 0:

To provide some intuition for what we expect m� to be

in a low-density region such as a galaxy or galaxy cluster,
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we consider the most widely studied class of chameleon
models, where

Vð�Þ � const:þ�4þn

n�n ;

with �=� � 1, n >�1, and n�Oð1Þ. We note that this
includes potentials with the form V ¼ const:�
�4 lnð�=MÞ. � is constrained by experiments to be at
most a few orders of magnitude larger than the dark energy

scale �0 ¼ �1=4
de ¼ ð2:4� 0:3Þ � 10�3 eV [11,25]. When

the chameleon is posited as an explanation for dark energy,
it is therefore considered natural to take � � �0 [10,11].
The minimum of the effective potential occurs when � ¼
�b, where �V;�ð�bÞ ¼ �b=M0. The mass of the chame-

leon at this minimum is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V;��ð�bÞ

q
, so

m� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p �
�b

�3M0

�ðnþ2=2ðnþ1ÞÞ
:

Assuming M0 � M> 108 GeV (i.e. the region that is not
currently accessible to laboratory experiments), we have
m� < 10�12 eV for all �1< n & 5:6 in a background,

such as a galaxy or galaxy cluster, with �b �
10�24 g cm�3.

B. Olive-Pospelov model

The OP model [12] was proposed as a way to allow
particle masses and coupling ‘‘constants’’ to depend on the
local energy density of matter. The model could therefore
provide an explanation for the 6	 difference between the
value of the fine structure constant 
 ¼ e2=@c in the
laboratory and that extrapolated from the spectra of 128 -
quasi-stellar object absorption systems at redshifts 0:5<
z < 3 by Webb et al. [29]: �
=
 � ð
qso � 
labÞ=
lab ¼
�0:57� 0:10� 10�5. There is now a great deal of tension
between other potential theoretical explanations for this
data see e.g. Refs. [3,30], and the most recent local atomic
clock constraints on any local time variation of 
 [31–33].
In the OP model, 
 is locally time independent and hence
these constraints are avoided.

The OP model could also describe a density-dependent
electron-proton mass ratio � ¼ mp=me. Reinhold et al.

[34] reported a 4	 indication of a variation in �. They
analyzed the H2 wavelengths of the spectra of two absorb-
ers at z � 2:6 and z � 3:0 observed using the Very Large
Telescope, finding ��=� ¼ 24:4� 5:9� 10�6. It was
shown, however, in Ref. [35] that due to wavelength cali-
bration errors in the spectrograph on the Very Large
Telescope identified in Ref. [36], the result of Reinhold
et al. could no longer be trusted. The reanalysis performed
by King et al. [35], in which data from an additional object
at z � 2:8 was also included, found ��=� ¼ ð2:6�
3:0Þ � 10�6, which is consistent with no change. Very
recently Levshakov et al. [37] have reported evidence
for a spatial variation in � found by measuring ammonia

emission lines in the Milky Way: ��=� ¼ �ð4� 14Þ �
10�8.
All of these astronomical measurements of � and 
,

were made in regions where the average density of matter
�b is very low compared to the ambient density of matter in
a laboratory. The background density for all of these
measurements, �b, is similar to the average density of a
galaxy or galaxy cluster, i.e. �b � 10�24 g cm�3. These
measurements could therefore be an indication that some
or all of the ‘‘constants’’ of nature depend on the ambient
density of matter. The OP model realizes just such a
density-dependent variation in a manner that does not
conflict with local tests of gravity. In this model, the
coupling functions, Bm and BF, are chosen so that they
are close to their minimum (which occurs at �m):

BF ¼ 1þ �F

2

�
���m

M0

�
2
;

Bm ¼ 1þ �m

2

�
���m

M0

�
2
:

For reasons of naturalness, one would expect �F, �m �
Oð1Þ [12]. In contrast to the chameleon model, the OP
model does not require that the potential Vð�Þ contain
nonlinear self-interaction terms, and in the simplest model

Vð�Þ ¼ �4
0 þ

�4
1

2

�
�

M0

�
2
:

In a background with density �b, assuming jF2j � �b, as
is usually the case, and fixing the definition of M0 by
setting �m ¼ 1, the value of � at the minimum of the
effective potential �min is given by

�min

�m

¼ �b

�b þ�4
1

: (4)

In the laboratory environment �b � �4
1, and so �min �

�m. Additionally, the effective matter coupling is small
enough to evade experimental constraints. In low-density
regions, such as galaxies, �4

1 � �b, so �min � 0. The
change in 
 between the laboratory and a low-density
region such as a galaxy is given by

�




¼ 
low � 
lab


lab

� ��F

2

�
�m

M0

�
2
:

To explain the Webb et al. value [29] of �
=
, one would

require �m=M0 � 3��1=2
F � 10�3.

Olive and Pospelov [12] found that the current best

constraints on M0 are M0 * 15 TeV and M0�
�1=2
F *

3 TeV. We define mvac
� ¼ �2

1=M0 to be the mass of small

perturbations in � in a low-density region (i.e. �b � �4
1),

and let �vac
� ¼ 1=mvac

� specify the range of the �-mediated

force in such a region. It was found in [12] that
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�
�m

10�3M0

�
2
�

M0

1 TeV

�
2
�
1 km

�vac
�

�
4
& 103 � 104:

For there to be measurable differences between the particle
masses and coupling constants in the laboratory and in
regions with � � 10�24 g cm�3, one must require�

M0

1 TeV

��
1 km

�vac
�

�
* 3:3� 10�7:

In the low-density regions where � � 0 the effective
coupling to the photon field for small perturbations in � is

g��� ¼ 1=M ¼ d lnBF

d�

���������¼0
� ��F�m

M2
0

;

¼ �10�6 GeV

�
�1=2
F �m

10�3M0

��
1 TeV

��1=2
F M0

�
:

It is clear then that a field with the required properties
g��� * 10�11 GeV�1 and �vac

� * 2 km is perfectly com-

patible with current experimental constraints.
We note that in [12], the value suggested for�1, which is

compatible with all current constraints, is �1 �Oð1Þ eV.
Now,

m� ¼ 10�12 eV

�
�1

1 eV

�
2
�
1 TeV

M0

�
;

so forM0 * 15 TeV, we havem� & 7� 10�14 eV, which

corresponds roughly to �� * 2800 km.

III. CONSTRAINTS ON AXIONLIKE PARTICLES

ALPs can either be scalar or pseudoscalar fields, which
couple to the electromagnetic field strength. If it were not
for the chameleon mechanism (i.e. the density-dependent
mass) present in the chameleon and OPmodels, they would
essentially describe a standard scalar ALP. There are tight
constraints on the coupling g��� of ALPs to photons. In the

previous section, we discussed constraints from local ex-
periments on chameleonlike particles; however, such par-
ticles are also constrained by searches for ALPs. For a
recent review of the astrophysical constraints on ALPs see
Ref. [38] and reference therein. In all cases, these con-
straints only apply when the ALP mass m� lies within a

certain range, e.g. mlow <m� <mhigh. The mass of a

chameleonlike particle is not, however, fixed and so apply-
ing these constraints to chameleon models is nontrivial. We
must take great care to identify the ambient density of the
region wherein the constraint on m� is required to derive

the bound on g���.

The strongest astrophysical constraints in Ref. [38]
come from axion production in the cores of stars. The
application of the constraints of solar axion production to
chameleonlike models has previously been studied in
Refs. [13,39]. The Sun may be a powerful source of ALP
flux, and the predicted effects of the loss of energy of the

Sun through ALP emission allows one to constrain the
coupling g���. It must be noted that all solar ALP con-

straints require that the ALPs actually escape the Sun. The
strongest solar ALP constraints come from limits on the
solar neutrino flux, and this gives

g��� & 5� 10�10 GeV�1:

Similar constraints result from the CERN Axion Solar
Telescope (CAST), which attempts to directly detect solar
axions. However, it was shown in Ref. [13] that solar
chameleonlike ALPs would generally bounce off, rather
than enter the CAST instrument, and so the CAST con-
straints cannot be applied to chameleon models. Similar
constraints are found from the lifetime of Helium burning
(HB) stars in globular clusters: g��� & 10�10 GeV�1.

Solar axion constraints are derived from production of
axions in the solar core by the Primakoff process. In this
region the temperature is T � 1:3 keV, and the typical
density is 150 g cm�3. In the Helium burning stars, T �
10 keV and � � 104 g cm�3. All of the constraints assume
thatm� � T. It was shown in Ref. [39] that all solar axion

production bounds are evaded if m� * 10 keV in the solar

core. Similarly, the Helium burning star constraints are
effectively evaded if m� * 30 keV in their cores. For

example, if one considers a chameleon potential like
�4ð�=�Þ, where � � 2:3� 10�3 eV, one finds that with
a matter coupling of 1010 GeV, we havem� � 1:5 MeV in

the core regions of the HB stars, and m� � 64 keV in the

solar core. With the different choice of potential
�4 expð�=�Þ, one finds m� � 30 keV in the cores of

Helium burning stars but m� � 3 keV in the Sun when

M ¼ 1010 GeV. Thus, the solar and HB star axion con-
straints on g��� ¼ 1=M would apply to the latter potential

with M � 1010 GeV but be evaded by the former. If we
tookM � 2� 109 GeV, then both potentials would evade
these constraints. Thus, in the chameleon model, whether
or not these astrophysical constraints are relevant depends
greatly on the properties of the potential, and in particular
how it determines the behavior of the theory at high
densities. In general, these properties cannot be inferred
from the low-density behavior of the theories. We are
concerned only with the low-density behavior in this work.
At high densities, the scalar field in the OP model

couples quadratically, rather than linearly (as an ALP
would) to the QED F2 term. In this way it avoids astro-
physical constraints related to axion production in high-
density regions.
Recently, in Ref. [40], it was shown that polarization

measurements of �-ray bursts could be used to constrain
axion production at the source of the burst. While later in
this article we will consider the potential constraints on
chameleonlike fields from �-ray burst polarization mea-
surements, we will be interested in constraining any polar-
ization that is induced by the chameleon as the light from
the �-ray burst passes through low-density magnetized
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regions of space (e.g. the interstellar and intergalactic
mediums). We will assume that axion production in the
immediate vicinity of the �-ray burst itself is negligible. In
Ref. [40], it is assumed that, in the vicinity of a �-ray burst,
there is a magnetic field of strength B� 109 G over a
distance of about LGRB � 109 cm. Given this, it is found
that

g��� & 5� 10�12 GeV�1

for 8� 10�5 eV<m� < 3:5� 10�4 eV. For larger val-

ues of m�

g��� & 2:2� 10�8

�
m�

1 eV

�
GeV�1:

It is noted that in the vicinity of the gamma-ray burst
(GRB), ne � 1010 cm�3, corresponding to �m �
2� 10�14 g. The effective ‘‘energy density’’ to which
the chameleon field couples is not just �m but �tot ¼ �m þ
B2=2� E2=2. Thus, for the GRB, �tot � B2=2 �
4:4� 10�5 g cm�3. Such a �tot places one in the high-
density region of the OP model, where the � only couples
to photons quadratically and hence no longer behaves as an
axion. In chameleon theories, if Vð�Þ ¼ �4fð�=�Þ,
where f0ð1Þ � f00ð1Þ �Oð1Þ and � � 2:3� 10�3 eV (as
is usually assumed), one finds that m� � 10�3 eV when

�tot � M�3 � 2:8� 10�8 g cm�3

�
M

1010 GeV

�
:

Thus, the strongest constraint on g��� from Ref. [40] does

not apply here. If we take V ¼ �4ð�=�Þ or V ¼
�4 expð�=�Þ then we predict m� � 0:8 eV or m� �
0:4 eV, respectively, for M � 1010 GeV; hence, M �
1010 GeV is allowed. Indeed, we find that the bound of
Ref. [40], would allow all such chameleon models with
M * 106 GeV.

It should also be noted, that axionlike chameleon pro-
duction from the magnetic fields of neutron stars would
also be greatly suppressed. For a neutron star B � 1012 G,
which corresponds to �tot � 44 g cm�3 and hence a very
heavy chameleon particle.

It is clear then that astrophysical ALP constraints com-
ing from relatively high-density regions do not apply to the
OP model, and the extent to which they apply to a chame-
leon theory depends greatly on the precise choice of po-
tential. For at least one popular choice of potential
(V ¼ �4ð�=�Þ) one of the constraints noted above ap-
plies. Furthermore, because the chameleon field is very
heavy in high-density regions, we expect any initial cha-
meleon flux from stars or objects to be greatly suppressed
relative to that which one would expect for a standard ALP.

There has also been a great deal of work on conversion
of photons to very light ALPs in relatively low-density
backgrounds (e.g. the interstellar medium). See, for ex-
ample, Refs. [41–48], and for a recent review see Ref. [49].
In relatively low-density regions, chameleonlike particles

behave essentially like standard axionlike particles.
Therefore, much of the analysis presented in the aforemen-
tioned works is directly applicable. Only where a initial
axion flux from, for example, a star or quasar has been
assumed will the analysis differ. Many of these studies
have focused on photon-axion conversion in the interga-
lactic medium. Magnetic fields with strength B� 10�9 G
are generally seen as plausible in the intergalactic medium.
It is suspected that such fields would be coherent over
scales of about a megaparsec or so. We discuss this further
in Sec. V. For reasonable values of the electron number
density ne in the intergalactic medium, it is commonly
found that g��� & 10�10 GeVð1 nG=BIGMÞ or so [49].

Carlson and Garretson [44] specifically considered the
effects of photon to ALP conversion induced by the mag-
netic field of our own Galaxy. This discussion is directly
relevant to our work. In their work they were only able to
constrain g��� < 10�5 GeV; however, they suggested a

method that would allow couplings down to 10�9 GeV to
be probed. In our work we use a different method to
constrain g��� down to 10�9 GeV. Reference [44] is

also interesting because it is noted that small-scale fluctua-
tions in the electron density can lead to an enhancement of
the photon to ALP conversion rate (see also Ref. [47]). In
their work, the enhancement effect was estimated to be
very large for visible light. We discuss this further in
Appendix A, and note that the size of the enhancement
effect found in Ref. [44] was in part due to, what is now, an
old model for the electron-density fluctuations. Using the
more recent NE2001 model [50], we show in Appendix A
that the enhancement effect is expected to be no larger than
Oð1Þ in the local interstellar medium. Because of the
complexities and additional uncertainties associated with
the structure of electron-density fluctuations, particularly
at parsec scales, which determine the magnitude of any
enhancement, we have neglected the potential enhance-
ment effect of Ref. [44] from our analysis. As we note in
Appendix A, however, we do not expect this to greatly alter
our conclusions. Similarly, the analysis of Ref. [46] is
applicable to chameleonlike fields; however, our analysis
goes beyond what was presented there.
We also comment on Ref. [45]. Here, a supercluster

magnetic field with strength 1 �G coherent over a scale
of 10 Mpc was assumed. Additionally, an enhancement
effect similar to that derived in Ref. [44] was employed. It
must be noted that the magnitude of any enhancement
effect depends greatly on both the magnitude and the
spatial scale of the spectrum of electron-density fluctua-
tions. The former is fairly well known for electrons in our
Galaxy, whereas the latter is less well known. In the con-
text of electrons in a supercluster neither is well known.
Additionally, evidence for a field strength of B � 1 �G
coherent over 10 Mpc was tentative at best at the time of
Ref. [45], and a more recent analysis [51] suggests that if
such a field does exist it is either weaker, B� 0:1 �G, or
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only coherent over much smaller scales�100 kpc. Even if
such a field does exist, it is also not clear precisely what
distance along the line of sight the field extends. As such,
the constraint g��� & 10�13 GeV�1 quoted in Ref. [45]

relies on many assumptions, with at best only tentative
observational support. Removing any one of these assump-
tions, would allow for much larger couplings. In this work,
we are primarily concerned with constraints on photon to
chameleon conversion in astrophysical regions where there
is strong evidence for magnetic fields, and the properties of
such magnetic fields are relatively well known. We also
note in Appendix A that making the reasonable assumption

hð�neÞ2i1=2=hnei �Oð1Þ or smaller (where the h	i indicate
a spatial average), any enhancement of the photon-
chameleon conversion rate due to electron fluctuations is
expected to be subleading order at optical (and higher)
frequencies for cluster- and supercluster-scale magnetic
fields.

IV. CHAMELEON FIELD OPTICS

In this section we consider how the presence of a cha-
meleon field alters the properties of light propagating
through one, or many, magnetic regions. Varying the action
Eq. (1) with respect to both � and A� gives Eq. (2) and

r�½BFð�=M0ÞF��
 ¼ J�; (5)

where J� is the background electromagnetic 4-current
r�J

� ¼ 0. We consider propagation of light in an astro-

physical background, which contains a magnetic field of
strength B. The background value of � is denoted by
�0ðtÞ. We write the perturbation in the photon field as a�
and the perturbation in the chameleon field as ��. Ignoring
terms that are Oð��a�Þ and assuming that the proper

frequency of the photons ! is large compared to the
Hubble parameter H, we find that

� €aþr2a ¼ r��� B

M
; (6)

� €��þr2�� ¼ B 	 ðr � aÞ
M

þ ðV;�ð�0 þ ��Þ
� V;�ð�0ÞÞ; (7)

where 1=M ¼ ðlnBFÞ;�ð�0Þ and
h�0 ¼ Veff;�ð�m; �b; F

2
0=4 ¼ B2=4Þ;

and here �b is the background density of matter.
We assume that �� is small enough that we may make

the approximation

V;�ð�0 þ ��Þ � V;�ð�0Þ ¼ m2
���;

where m2
� ¼ V;��ð�0Þ is the chameleon mass. If the pho-

tons are moving through a plasma with electron number
density ne, they will behave as if they had an effective mass

squared !2
pl, where !2

pl ¼ 4�
ne=me is the plasma fre-

quency; 
 is the fine structure constant and me is the
electron mass.

A. A single magnetic domain

We define �? and �k to be the components of the photon

field perpendicular and parallel to the magnetic fieldB, and
take the photon field to be propagating in the z direction.
From Eq. (6) we have

� €�k þ @2�k
@z2

¼ !2
p�k;

� €�? þ @2�?
@z2

¼ !2
p�? þ @�

@z

B

M
;

� €�þ @2�

@z2
¼ m2�� B

M

@

@z
�?:

For such a system, it is well known that the probability of a
photon, with frequency !, converting to a chameleon
particle (or vice versa) while travelling a distance L
through a region with a homogeneous magnetic field is

P�$� ¼ A2; (8)

where

A ¼ sin2 sin

�
�

cos2

�
; (9)

� ¼ m2
effL

4!
; (10)

tan2 ¼ 2B!

Mm2
eff

; (11)

and m2
eff ¼ m2

� �!2
pl � B2=M2. Generally

jB2=M2m2
eff j � 1 and so the last term in m2

eff is dropped.

Following [14,19,52], we find that, up to an overall phase
factor, �?, �k, and � ¼ i� are transformed by passing

through a homogeneous magnetic domain in the following
way:

�k ! �k; (12)

�? ! ei
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
�? þ ie�i’A�Þ; (13)

� ! e�i�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
�þ iei’A�?Þ; (14)

where 
 ¼ ’�� and � ¼ ’þ � and

tan’ ¼ cos2 tan

�
�

cos2

�
: (15)

Since we must, in realistic situations, allow the light to be
partially polarized (or even unpolarized), it is insufficient
to consider simply the evolution of the photon, �? and �k,
and chameleon � ¼ i� amplitudes. We must instead rep-
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resent the properties of the photon field by its Stokes
vector. We therefore make the following definitions:

I� ¼ hj�?j2i þ hj�kj2i; Q¼ hj�?j2i � hj�kj2i;
Uþ iV ¼ 2h ��?�ki; J þ iK ¼ 2ei’h ��k�i;

Lþ iM ¼ 2ei’h ��?�i: (16)

The Stokes vector for the photon field is S ¼
ðI�; Q;U; VÞT , where V describes the amount of circular

polarization (CP), and Q and U describe the amount of
linear polarization. We also define the reduced Stokes
vector Sred ¼ ðQ=I�;U=I�; V=I�ÞT . The fraction of light

that is polarized is

p ¼ Ip
I�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2 þ V2

p
I�

;

and the fractional circular polarization is

mc ¼ V

I�
:

We also define q ¼ jmcj. The fractional linear polarization
is ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 �m2

c

p
.

We normalize the photon and chameleon fluxes so that
I� þ I� ¼ 1 (this quantity is conserved), where I� ¼ j�j2.
We also define X ¼ 3I� � 2. With these definitions we find

that on passing through a single homogeneous magnetic
domain the components of the Stokes vector transform as

X !
�
1� 3

2
A2

�
X � 3

2
A2Qþ 3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
ðL sin2’

�M cos2’Þ; (17)

Q !
�
1� 1

2
A2

�
Q� 1

2
A2X þ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
ðL sin2’

�M cos2’Þ; (18)

Uþ iV !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
e�i
ðUþ iVÞ � Aei�ðK þ iJÞ: (19)

Additionally, the J, K, L, and M amplitudes transform as

K þ iJ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
ei�ðK þ iJÞ þ Ae�i
ðUþ iVÞ; (20)

L ! L cos2’þM sin2’; (21)

M! ð1� 2A2ÞðMcos2’�Lsin2’ÞþA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A2

p
ðQþXÞ:

(22)

From these equations it is clear that the presence of a light
scalar field coupling to photons can result in the production
of polarization. This is because, when a chameleon (or
another axionlike particle) is converted back into a photon,
that photon is polarized perpendicular to the magnetic
field. If we consider the simple case where initially there

is no chameleon flux so that I� ¼ 1 ) X ¼ 1 and K ¼
J ¼ L ¼ M ¼ 0, and we set Q ¼ Q0, U ¼ U0, and V ¼
V0 initially then, using A2 ¼ P�$�, it is clear that upon

exiting the magnetic domain

X ¼ 1� 3

2
P�$�ð1þQ0Þ;

Q ¼
�
1� 1

2
P�$�

�
Q0 � 1

2
P�$�;

Uþ iV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P�$�

q
e�i
ðU0 þ iV0Þ:

If the initial total and circular polarization fractions are p0

and q0, their final values are

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ C0

1þ C0

s
; (23)

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þD0

1þ C0

s
; (24)

where C0 ¼ ðA4ð1þQ0Þ2=4� A2Q0Þ=ð1� A2Þ andD0 ¼
ðU2

0 � V2
0 Þsin2
�U0V0 sin2
. It is therefore possible for

both linearly and circularly polarized light to be produced.
In a single magnetic domain, the production of the former
is due to the conversion of photons into chameleons and
then back into photons, and the latter is due to the bire-
fringence of the medium, which is induced by the presence
of the chameleon field. If initially p ¼ p0 ¼ 0, then after
passing through a single domain

p ¼ P2
�$�

2� P2
�$�

:

We also note that if there is no initial chameleon flux or
polarization, q0 ¼ D0 ¼ 0, no CP can be produced in a
single magnetic domain. As we shall see below, the same is
not true if there are multiple magnetic domains.

B. Multiple magnetic domains

In many realistic astrophysical settings, including the
ones we will be primarily concerned with in subsequent
sections, light passes through many magnetic domains on
its way from a source to an observer. In each domain, the
angle n, which describes the inclination of the back-
ground magnetic field to the direction of propagation, is
essentially random. Solving the full system of evolution
equations for a large number of magnetic domains involves
diagonalizing an 8-by-8 matrix as well as evaluating mul-
tiple sums involving the random angle n �U½0; 2�Þ, and
we have been unable to find a general analytic solution;
however, it is straightforward to solve the system numeri-
cally. This said, approximate analytical solutions exist in a
number of interesting and important limits. A full presen-
tation of the equations that must be solved in this setup, and
their analytic solutions in these limits is provided in
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Appendix B. We present the results of that analysis below.
We define N to be the number of magnetic domains
through which the light has passed, and in all cases assume
that there is no initial chameleon flux.

For fixed m2
eff and magnetic domain length L, we define

a critical frequency !crit such that �ð!critÞ ¼ �=2, and
hence!crit ¼ m2

effL=2�. When! � !crit, P�$� is almost

independent of frequency; however, when ! � !crit,
P�$� / !2. We also define �crit ¼ 2�=!crit to be the

critical wavelength and �osc ¼ �crit=N.

1. Weak mixing limit

In a great many realistic situations we haveN
 � 1 and
NP�$� � 1 and, as we shall show, the frequency depen-

dence of the production of linearly and circularly polarized
light in this limit is qualitatively similar to that seen in
general. In this limit we must have either �= cos2 and
� tan2 � 1, or tan2 and �tan22 � 1, and so


 � tan22

2
½2�� sin2�
:

In Appendix B we find that when an initially unpolarized
light beam, with frequency !, from a single source passes
through N � 1 domains (and requiring N
 � 1 and
NP�$� � 1), the final polarization fraction, p0, and final

fractional CP, q, are essentially random variables and are
described by the following distributions:

p ¼ NP�$�

2
½	2þðX2

1 þ X2
2Þ þ 	2�ðX2

3 þ X2
4Þ
;

mc ¼ NP�$�	þ	�ðX1X3 � X2X4Þ;
where at fixed � ¼ m2

effL=4!, the Xi are approximately

independent identically distributed Nð0; 1Þ random varia-
bles and

	2� ¼ 1

4

�
1� cosð2ðN � 1Þ�Þ sin2N�

N sin2�

�
:

When � � �crit=N ¼ �osc, the Xi are roughly independent
of �, but when � � �osc, there is a strong �, and hence
wavelength dependence. The above expressions describe
the total and circular polarization fractions for a mono-
chromatic light beam from a single source. If one has
observations of many objects all at the same frequency
the average value of p, denoted �p, and root mean square
average of mc, denoted �q, are more useful quantities for
comparing with observations. For the distributions above

�p ¼ 1
2NP�$�; (25)

�q � ffiffiffi
2

p
	þ	�NP�$�; (26)

where N is now the average number of magnetic regions.
When N� � 1, 	þ	� ¼ 1=4 and when N� � 1,

	þ	� ¼ N�=
ffiffiffi
3

p
.

When some initial polarization is present (p ¼ p0 and
q ¼ q0 say, so that the initial linear polarization is ml0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 � q20

q
), we find a different behavior: When

NP�$�ð1� p2
0Þ=2p0 � 1 (but keeping NP�$� � 1) the

average final polarization fractions, �p and �q are still given,
to OðN
2; NP�$�Þ, by Eqs. (25) and (26), respectively.

When NP�$�ð1� p2
0Þ=2p0 � 1, we find instead that to

OðN
2; NP�$�Þ
�p ¼ p0; (27)

and

�q2 ¼ q20ð1� 
2NÞ þ 
2Nm2
l0

2
þ 2N2P2

�$�N
2	2þ	2�

þ N2P2
�$�	

2
2m

2
l0; (28)

where this expression is only accurate to leading order in
�q� q0.
We shall see that for realistic astrophysical magnetic

fields the critical wavelength �crit generally corresponds
to UV or x-ray light. As such, most polarimetry measure-
ments of astrophysical objects will have been made at
wavelengths � �osc ¼ �crit=N. For such wavelengths,
the analytical solutions found in Appendix B show that
the reduced Stokes parameters, Q=I�, U=I�, and V=I�,

exhibit a strong and oscillatory frequency dependence.
This behavior is very important when one wishes to
make comparisons with observations. Polarimeters always
have some finite wavelength (� ¼ 2�=!) resolution, ��.
This is usually referred to as the spectral resolution. Thus, a
measurement of the reduced Stokes parameters at some
wavelength �0, will actually measure an average of their
values in the window � 2 ð�0 � ��=2; �0 þ ��=2Þ. If one
averages the reduced Stokes parameters over wavelength
bins much larger than �osc much of the information about a
chameleonic contribution will be lost. Specifically, if we
assume ��=� � 1 and �� � �osc then, to
OðN
2; NP�$�Þ, p ¼ p̂, and mc ¼ m̂c, where

p̂ð�v;!Þ ¼ �p0; (29)

m̂ cð�v;!Þ ¼ mc0

�
1� 
2N

4
ðY2

1 þ Y2
2Þ
�
� 


ffiffiffiffi
N

p
ffiffiffi
2

p ml0Y1;

(30)

where for N � 1, Y1, and Y2 are independent identically
distributed Nð0; 1Þ random variables. Thus, in this case,
constraints on the parameters of the scalar field theory
could only be derived by measuring both the total polar-
ization fraction and the CP fraction. When � � �osc, if the
spectral resolution is too poor or the data is placed into too
widewavelength bins, the measured polarization fraction p̂
carries little or no information about the properties of �.
For optimal sensitivity to chameleonic effects, the spectral
resolution of the polarimeter and the size of the wavelength
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bins must satisfy �� & �osc. We discuss in Sec. IVC below
how when the spectral resolution is sufficiently good, the
strong wavelength dependence at wavelengths � * �osc

can be exploited to extract strong constraints on chame-
leonlike theories from observations of a single object.

2. Maximal mixing regime

When N � 1, if the chameleon to photon coupling is
strong enough and N� � 1, i.e. if � � �osc, maximal
mixing will occur. In this limit the equations that must be
solved simplify greatly. Further details of the calculations
are given in Appendix B. The strong mixing limit is
appropriate when NP�$� � 1, N� � 1, and N � 1.

When N� � 1 there is little production of circular polar-
ization, and so the main effect is the production of linear
polarization. Additionally, since at high frequencies we
expect q0 � p0 for astrophysical objects we set the initial
circular polarization fraction to zero, and the final CP
fraction, q, remains � p. We find that the final (linear)
polarization fraction p ¼ ml, in this limit, does not explic-
itly depend on P�$� or any other properties of the chame-

leon field and that it is given by the following distribution:

p ¼ FðX2; cos2c ;p0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð1� p2

0ÞX2

½ð1þ X2Þ � p0ð1� X2Þ cos2c 
2
s

; (31)

where c and X are independent uniform random variables:
c �U½0; �Þ and X �U½0; 1Þ. We note that when N� �
1, fp does not depend on frequency. If we average over

observations of many sources (each with N� � 1 and
NP�$� � 1) then we would measure the average polar-

ization fraction �p. In the simplest case where p0 ¼ 0 we
have

p ¼ 1� X2

1þ X2
;

and so

�p ¼
Z 1

0
dX

1� X2

1þ X2
¼ �

2
� 1 � 0:57:

More generally

�pðp0Þ ¼ 1

�

Z �

0
dc

Z 1

0
dXFðX2; cos2c ;p0Þ:

�pðp0Þ is a monotonically increasing function of p0 and
increases from 0.57 to 1 as p0 goes from 0 to 1. It is clear
that in the strong mixing limit, the presence of a chame-
leonlike field coupling to the photon can induce a signifi-
cant amount of linear polarization. We find that the
following formula

�pfixðp0Þ ¼ �p0

48

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

0

q
ð1� 2p2

0Þ þ
�
�

2
� 2

�
ð1� p2

0Þ
þ 1 (32)

fits �pðp0Þ extremely well. We plot �pfix against the exact
value of �p in Fig. 1. The solid line is the exact value and the
dashed line shows �pfix. Also shown on this plot is the line
�p ¼ p0. For p0 & 90%, the average polarization after
maximal chameleon mixing is larger than the intrinsic
polarization p0, whereas for p0 * 90% it is slightly less.
If one were to measure �p < 57% for a large number of
astrophysical objects then at least one of the following
must be true: NP�$� � 1 or � * �osc. When � � �osc,

the chameleon induced polarization is largely independent
of frequency, and so the spectral resolution of the polar-
imeter is not as important as it is in the weak-mixing
regime. The probability of measuring the total linear po-
larization of a random object to be less than some pm, when
� � �osc and mixing is maximal (NP�$� � 1), is shown

in Fig. 2; we have assumed no knowledge of the initial
intrinsic polarization and hence marginalized over a uni-
form prior for it.

3. General behavior

When, as is often the case, one excepts little or no
intrinsic circular polarization of the light beam, i.e. mc0 ¼
0, we are able to combine the results presented in the
previous two subsections to provide a fitting formula for
the general form of the mean value of p after the light beam
has passed through N � 1 magnetic domains. We find
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FIG. 1 (color online). Dependence of the mean linear polar-
ization, �p, in the maximal mixing limit on the intrinsic polar-
ization (p0). The solid line is the exact value of �p, whereas the
dashed line is the value calculated from the fitting formula Eq.
(32). The thin dotted line shows �p ¼ p0 as would be the case
when chameleon-photon mixing is weak or nonexistent. We can
see that for p0 & 90% maximal chameleon-photon mixing in-
creases the average linear polarization, whereas for p0 * 90% it
slightly decreases it.
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�pðNÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ ð �pfixðp0Þ � p2

0Þ
�
1�

�
1� b2P2

�$�

4

�
N2�s

;

where

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

0

q
�pfixð0Þ :

In the maximal mixing limit �p ¼ �pfixðp0Þ. In the weak
mixing limit, when NP�$� � 1, we have

�pðNÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ

b2ð �pfixðp0Þ � p2
0ÞN2P2

�$�

4

s
:

So if p2
0 is small, we have �pðNÞ � NP�$�=2, as required.

If instead p0 is larger, �pðNÞ ¼ p0 þOðN2P2
�$�Þ. This

provides a very good fit to the simulated data in all cases.

C. Optical signatures of chameleon fields

We presented above the results of a mathematical analy-
sis of how the presence of a light scalar field coupling to
matter would alter the polarization properties of light
passing through a magnetic field, the details of which can
be found in Appendix B. By combining the results of this
analysis with numerical simulations, we now detail the
main physical signatures that a chameleon field would
imprint on the polarization properties of light from astro-
physical sources. Abovewe found that there were two main
effects:

(i) the production of polarization,
(ii) the production of circular polarization.

Each of these effects depends on frequency in a character-
istic manner that is well illustrated by considering the weak

mixing limit of Sec. IVB1 above with no initial polariza-
tion (p0 ¼ 0). In this limit N � 1 but NP�$� � 1 for all

� and N
2 � 1. This requires BL=2M � 1; Pmax ¼
lim�!0P�$� � ðBL=2MÞ2 � 1 is the maximum value

of P�$�.

We consider the weak mixing limit, assuming that the
polarimeter has wavelength resolution& �osc ¼ �crit=N ¼
4�2=jm2

effjLpath, where m2
eff ¼ m2

� �!pl and Lpath is the

total path length of the light through the magnetic field. In
this limit, when there is no initial polarization, both the
induced degree of polarization p, and circular polarization
q ¼ jmcj are proportional to NP�$�. Figure 3 shows

possible simulated forms for the rescaled total polarization
degree p=NPmax, linear polarization ml=NPmax, and CP
q=NPmax for two different hypothetical objects, where for
example N � 100 in both cases. We can clearly see from
this that production of linear polarization is greatest for
� & �crit and CP polarization production is peaked in the
region �osc & � & �crit. As expected, we can also see that
both the induced linear and circular polarization degrees
are highly frequency dependent for � * �osc.
Assuming �� & �osc, averaging p, and q over many

sources each at roughly the same distance, and hence
with roughly the same N, gives �p and �q. The forms of �p,
and �q are shown in Fig. 4. We see that both quantities grow
strongly when � � �crit and that �q is peaked between �osc

and �crit. The form of the averaged CP degree �q is very
distinctive. The height of the peak, as well as the maximum
value of �p are determined by NðBL=2MÞ2, whereas the
position of the peak and its width are fixed by �osc and �crit.
If such a peak should be resolved, one would in principle
be able to determine both NðBL=2MÞ2, meff and the co-
herence length L of the magnetic field regions.
Measurements of circular polarization for �osc & � &
�crit could therefore provide a powerful tool with which
to constrain chameleon theories; we discuss this further in
Sec. VII. Qualitatively similar behavior is seen for the
chameleonic induced polarizations in the more general
case, where NPmax can take any value and the intrinsic
(i.e. nonchameleonic) polarization is not restricted to van-
ish. When NPmax � 1 is allowed, the chameleonic pro-
duction of linear polarization is peaked for � & �max,
where

�max

�crit

¼ max

�
1;

BL

�
ffiffiffiffi
N

p
M

�
: (33)

CP production is in general peaked between �osc and �max.
In practice, however, as we shall discuss further in

Sec. VI below, it is rare for current polarimeters to have
�� � �osc; although measurements do exist with ���
Oð�oscÞ. As well as requiring �� & �osc, to measure �p, �ml,
and �q one must also have measurements of many sources
where the light from each source is expected to have passed
through roughly the same number of magnetic regions,
each with roughly the same properties, as the light from
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FIG. 2 (color online). Probability of measuring the linear
polarization degree (p) less than some pm for a random object
if chameleon-photon mixing is maximal.
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any other source. This requirement introduces a fair
amount of uncertainty and will ultimately limit one’s abil-
ity to accurately constrain the averaged quantities. Another
problem is that even when the intrinsic polarization is
small (p0 � 1), if NP� � 1, the form of �p and �q are

highly dependent on p0. Unless one can measure or accu-
rately predict the intrinsic polarization, this again limits
ones ability to accurately constrain chameleon theories.

Many astrophysical polarization measurements are
made at wavelengths � � �osc, where the chameleon in-
duced contribution to the Stokes parameters exhibits a
highly oscillatory wavelength dependence. When p0 � 1

and provided ���Oð�oscÞ or smaller, we can exploit this
property to extract strong constraints about the properties
of any chameleon-photon interaction from observations of
a single object without any detailed prior knowledge of p0.
We do this by defining a smoothing scale ��smooth, which is
picked to be � �osc but smaller than the wavelength scale
over which the intrinsic polarizations p0, ml0, and q0 are
expected to vary strongly. By removing the smoothing
signal from the measured signal we should recover a
superposition of any induced chameleonic signal and the
noise. Assuming that the noise is either random or that it
does not have a wavelength structure that mimics that of
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FIG. 3 (color online). Dependence of the total polarization degree p, the linear polarization degree ml, and the circular polarization
degree q on wavelength for two hypothetical objects with N ¼ 100 and NPmax � 1. Here, �crit ¼ 4�2=jm2

eff jL, where L is the

coherence length of the magnetic field regions. The total path length of the light through the magnetic field is given by Lpath ¼ NL. We

define �osc ¼ �crit=N. We have assumed that initially p ¼ 0 and that there is no initial chameleon flux.
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the induced chameleon signal we can extract constraints on
M. Further details of how M can be constrained in this
manner are given in Appendix C. Using this method, it is
possible to extract strong constraints onM using data from
only a single source.

V. LARGE-SCALE ASTROPHYSICAL MAGNETIC
FIELDS

The largest scale magnetic fields that are known to exist
are those associated with galaxies and galaxy clusters. In
both cases the mean field strength has been measured to be
roughly a few micro Gauss. It is also thought likely that a
weak, B< 10�9 G, magnetic field permeates the interga-
lactic medium (IGM). We discuss the observed properties
of first two fields as well as the hypothesized properties of
the latter below. The electron density ne determines the
plasma frequency !pl, which plays a critical role in deter-

mining the effective chameleon mass m2
eff , and hence also

critical frequency !crit, above which polarization produc-
tion is peaked. Therefore, we also quote the observed or
estimated values of ne for each of the three regions.

A. Galactic magnetic fields

Galactic magnetic fields, particularly those of our own
galaxy, could produce detectable polarization effects if
chameleonlike fields interact strongly enough with pho-
tons. Galactic magnetic fields have been observed to be a

superposition of a regular magnetic field Breg, and a ran-

dom magnetic field Brand (see [53] and references therein).
The regular component of the magnetic field has a coher-
ence length Lreg � few kpc, i.e. about the scale of the

Galaxy [53]. The component of the regular part of the
magnetic field along the line of sight to distant objects
such as pulsars and extragalactic radio sources has been
measured using Faraday rotation. These measurements are
performed using electromagnetic waves whose frequency
is well below !crit. The interpretation of such measure-
ments would therefore be largely unaltered by the presence
of a chameleon field or similar light scalar field. The
average regular magnetic field in our own galaxy is locally
(within about 2 kpc of the Sun): Breg ¼ 1:8� 0:4 �G

[54,55], rising to about 4:4� 0:9 �G in the more central
Norma arm [56]. The magnetic field is aligned with the
disk of the Galaxy, and is coherent out to a galactic radius
of about 5 kpc, field reversals then occur at R ¼ 5 kpc,
6 kpc, and 7.5 kpc [53,57].
The random magnetic field Brand is often slightly larger

than the regular magnetic field. The largest scale of the
turbulent field was determined from pulsar rotation mea-
sures as Lrand ¼ 55 pc by Rand and Kulkarni [58], with a
turbulent field strength about 5 �G. A similar study by
Ohno and Shibata [59] found Lrand ¼ 10 100 pc with a
random field strength of 46 �G. Lrand has also been esti-
mated by the depolarization of light by turbulent fields at
centimeter radio wavelengths, and by Faraday dispersion at
decimeter radio wavelengths [57]. Both methods give re-
sults consistent with Lrand � 20 pc.
Recently, Sun et al. [57] combined radio telescope and

Wilkinson Microwave Anisotropy Probe measurements of
diffuse polarized radio emission from the Milky Way with
Faraday rotation measurements to obtain an overall model
of the Milky Way’s magnetic field. They found that on
average Breg ¼ 2 �G with field reversals occurring over

kiloparsec scales, and Brand ¼ 3 �G with Lrand ¼ 20 pc.
The average electron density was taken by Sun et al. to be
ne ¼ 0:03 cm�3. Generally light observed from objects
within our own Galaxy will have passed through N �
Oð1Þ regions of the regular magnetic field, but N � 1
different coherent regions of the random magnetic field.
Taking L ¼ Lrand ¼ 20 pc and B ¼ 3 �G for the random
magnetic field and ne ¼ 0:03 cm�3 we have

�jBjL
2M

�
rand

¼ 0:92� 10�2

�
1010 GeV

M

�
; (34)

and !pl ¼ 6:4� 10�12 eV, so

!ðrandÞ
crit ¼ jm2

effjL
2�

¼ 20:4 eV

�jm2
effj

!2
pl

�
: (35)

When m� � 6:4� 10�12 eV and hence jm2
effj ¼ !2

pl,

�ðrandÞ
crit ¼ 2�=!crit ¼ 608 �A. For an object in our Galaxy
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have assumed that p ¼ 0 and that there is no initial chameleon
flux.
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at a distance d we take N � d=20 pc. Therefore if, as is
typical, d� 1 kpc, we have N � 50.

Taking B ¼ 2 �G for the regular magnetic field and
L ¼ 2 kpc we have

�jBjL
2M

�
reg

¼ 0:612

�
1010 GeV

M

�
; (36)

and

!
ðregÞ
crit ¼ jm2

effjL
2�

¼ 2:04 keV

�jm2
effj

!2
pl

�
; (37)

so when jm2
effj ¼ !2

pl, �
ðregÞ
crit ¼ 2�=!crit ¼ 6:08 �A. We

note that jm2
effj � !2

pl for m� & 1:3� 10�11 eV.

In the weak-mixing regime, i.e. when the chameleon
induced polarization is small, we find that the total induced
polarization is a sum of that which would be separately
induced by the random and regular magnetic fields.

For the dark energy inspired chameleon model discussed

in Sec. II A, we have m� &
ffiffiffi
2

p
!pl in the Galaxy, and

hence jm2
eff j � !2

pl, for allM0 > 3:9� 106 GeVwhen n &

3:3.

B. Intracluster magnetic fields

In galaxy clusters electron densities of ne � 10�3 cm�3

are typical, as are magnetic field strengths of a few �G,
rising to tens of �G at the center of cooling core clusters.
These magnetic fields are coherent over length scales of
about L � 10–100 kpc [60]. Galaxy clusters typically ex-
tend over a length scale of Lclust � 1 Mpc. A light beam
traversing a galaxy cluster would therefore pass through
roughly N ¼ Lclust=L � 100–1000 magnetic regions.

In a study of data from 53 radio sources located in and
behind Abell clusters and a control sample of 99 sources
Kim et al. [61] found the mean core electron density of a
cluster to be ne ¼ 3:5� 2:7� 10�3 cm�3, where the ra-
dius of the core is rcore ¼ 0:65� 0:41h�1 Mpc, and found
cluster magnetic field strengths of Oð1Þ �G with coher-
ence length �10 kpc. A study of 18 radio sources close in
angular position to the Coma cluster by Kim et al. [62]
found the following result for the strength of magnetic
fields in the intracluster medium (ICM)

hjBjiICM ¼ 2:5h1=275

�
L

10 kpc

��1=2
; (38)

where h75 is defined in terms of the Hubble parameter
today: H0 ¼ 75h75 km s�1 Mpc�1. A subsequent study,
again of the Coma cluster, by Feretti et al. [63] found
tangled magnetic fields with length scales of about 1 kpc,

so BICM � 7:9h1=275 . A study of 16 low redshift (z < 0:1)
‘‘normal’’ galaxy clusters by Clarke, Kronberg, and
Böhringer [64] found that the ICM of these clusters was
permeated by a slightly larger magnetic field

hjBjiICM ¼ ð5� 10Þh1=275

�
L

10 kpc

��1=2
:

Based on the studies of Kim et al. [61,62], we take the
following representative values for the parameters which
describe magnetic fields in the ICM:

L ¼ 1 kpc; B ¼ 7:9h1=275 ;

ne ¼ 3:5� 10�3 cm�3:

We define Lpath to be the path length a given light beam

traverses through a cluster, and take as a representative
value Lclust ¼ 1 Mpc. The number of magnetic regions, N,
is given by N ¼ Lpath=L, and hence we take

N ¼ 1000:

With these values we have !pl ¼ 2:2� 10�12 eV and�jBjL
2M

�
ICM

¼ 1:2

�
1010 GeV

M

�
; (39)

and

!ðICMÞ
crit ¼ jm2

eff jL
2�

¼ 120 eV

�jm2
effj

!2
pl

�
: (40)

When jm2
eff j ¼ !2

pl, �
ðICMÞ
crit ¼ 2�=!crit ¼ 104 �A. We note

that jm2
eff j � !2

pl when m� & 4:4� 10�12 eV.

In galaxy clusters, we have m� &
ffiffiffi
2

p
!pl for the chame-

leon model introduced in Sec. II A for all M0 > 3:9�
106 GeV when n & 3:5.

C. Intergalactic magnetic fields

Although a number of different mechanisms have been
suggested that would produce large scale magnetic fields in
the IGM, at the present time very little is known about
whether such fields actually exist, let alone their typical
strengths. A coherent magnetic field on the current horizon
scale would produce an anisotropic expansion. cosmic
microwave background (CMB) and Faraday rotation con-
straints on such a scenario limit B & 10�9 G [65,66].
Faraday rotation also constrains smaller scale magnetic
fields. For a 50 Mpc coherence length one has B & 6�
10�9 G, and B & 10�8 G for Mpc scale coherence lengths
[66]. The CMB has also been shown to constrain fields
with a coherence length between 400 Mpc and 0.6 Mpc to
be<3� 10�8 G [67]. Motivated by the need to explain the
origin of galactic magnetic fields it is thought that IGM
magnetic fields with coherence lengths of a few Mpc are
likely (see [68] and references therein). Most of the pro-
posed theoretical mechanisms for generating such fields
would, however, only produce them with strengths well
below the current observational upper bounds [68]. These
seed fields are then amplified by some dynamo mechanism
during galaxy formation to the ��G galactic magnetic
fields observed.
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Typical electron densities in the IGM are ne � 2:5�
10�7 cm�3 giving !pl ¼ 1:8� 10�14 eV and so

BL

2M
¼ 0:153

�
1010 GeV

M

��
B

10�9 G

��
L

1 Mpc

�
; (41)

and

!crit ¼ 3:4 eV

�jm2
eff j

!2
pl

��
L

1 Mpc

�
;

hence for jm2
effj ¼ !2

pl and L ¼ 1 Mpc, we have �crit �
3647 �A. For the dark energy chameleon potentials dis-
cussed in Sec. II A, the mass of the chameleon due to the

density of the IGM is <
ffiffiffi
2

p
!pl, i.e. jm2

effj � !2
pl for n &

4:5 if M0 * 3:9� 106 GeV and the chameleon couples
only to baryons. If the chameleon couples to dark matter
with equal strength then the same is true but only for n &
3:5.

VI. CURRENT POLARIZATION CONSTRAINTS
ON CHAMELEONLIKE MODELS

In this section we review a number of astronomical
polarization observations and deduce how they constrain
the properties of any chameleonlike field.

We noted in Sec. IVB 1 that at wavelengths � & �osc �
�crit=N, any chameleon induced polarization signal is a
highly oscillatory function of wavelength, with oscillation
length � �osc. This is particularly important as many as-
trophysical polarization measurements are made at optical
frequencies for which � < �osc, and either the Stokes
parameters are put into wavelength bins with width �
�osc, or the spectral resolution of the polarimeter is so
poor that it effectively averages over a range of wave-
lengths, which is � �osc. In either situation, any signal
of chameleon mixing will be washed out, and no con-
straints on the chameleon model are possible. If there is
no initial polarization the polarization fraction depends on
� via P�$� and 	2�, these are all highly oscillatory func-

tions of � except when � < �osc. We note that in some
cases the spectral resolution of the polarimeter is good
enough to resolve any chameleon induced polarization,
but the published data only quotes the Stokes parameters
in bins much wider than ��. In these cases, the published
data cannot bound chameleonlike theories but constraints
should follow from a reanalysis of the raw data. By way of
an example, we have performed such a reanalysis for
observations of three stars in our Galaxy, however in
general such a reanalysis is beyond the scope of this article,
and is intended to form the basis of a future work.

A. Starlight polarization

Polarization is not usually produced by the thermal
emission of stars. In [69] a statistical analysis of the largest
available compilation of galactic starlight data [70] was
performed. The data is statistically significant for sources

out to distances of 6 kpc, and the average polarization of
light from stars at such distances is 2%.
This data, provided in the polarization catalogue [70], is

in very wide wavelength bins that generally cover the
whole range of optical frequencies, i.e. the bin width is

�� � 2000–8000 �A. For comparison, the oscillation
length, �osc ¼ �crit=N, in the Galaxy for such stars is

�osc � 2–12 �A for both the random and regular compo-
nents of the magnetic field. Thus, �� � �osc and the data
provided in [70] as well as the subsequent analysis of [69]
does not provide useful constraints on chameleonlike
theories.
Existing starlight polarization measurements can, how-

ever, constrain chameleonlike theories. UV polarization of
starlight was measured for 121 objects by the Wisconsin
Ultraviolet Photo-Polarimeter Experiment (WUPPE),
which flew on the ASTRO-1 and ASTRO-2 NASA space
shuttle missions, and had a nominal spectral resolution of
6 Å [71]. The data from these observations is available
from the Multimission Archive at STScI (MAST) [72]. A
full reanalysis of the data for all 121 objects is beyond the
scope of this work; however, we have derived preliminary
confidence limits on BL=2M in the Galaxy using data from
three objects: HD2905, HD37903, and HD34078. These
objects were picked as they all lie at distances between
500 pc and 1000 pc, which is not so close that a chame-
leonic signal would be too small to detect, and not so far
away that numerical calculations involved in extracting the
confidence limits on BL=2M are too time consuming.
Other than that, the choice of objects is entirely arbitrary.
A detailed account of the method and resulting confidence
limits derived from the polarization measurements of these
objects is given in Appendix C. Intriguingly, we found that
the data from all three objects preferred a nonzero value of
BL=2M at a prima facie statistically significant level. This
analysis shows that there is some structure in the polariza-
tion data, which is consistent with the signal that we predict
would be induced by a chameleon field. It would be
premature, however, to claim this as an actual detection
before a similar analysis has been conducted for more
objects, and before a thorough analysis of all systematics
that could be sources this signal has been undertaken. The
most conservative, in the sense that they are the widest and
are expected to be the most robust, confidence intervals
were found using the bootstrap-t method (see Appendix C
for further details). At 95% confidence we found, taking

L � 20 pc and �crit ¼ 608 �A:�jBjL
2M

�
rand

¼ ð4:68þ1:44�1:70Þ � 10�2 ðHD2905Þ; (42)

�jBjL
2M

�
rand

¼ ð7:59þ1:63
�1:42Þ � 10�2 ðHD37903Þ; (43)

�jBjL
2M

�
rand

¼ ð8:58þ2:15
�1:85Þ � 10�2ðHD34078Þ: (44)
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If we assume that the same value of jBjL=2M is appropri-
ate for each object, by combining the polarization data for
all three stars we find that the estimate of BL=2M is
approximately normally distributed with mean 6:27�
10�2 and variance 	2; 	 ¼ 0:58� 10�2. Hence, we find
the following approximate confidences:�jBjL

2M

�
rand

¼ ð6:27� 1:14Þ � 10�2 ð95%Þ; (45)

�jBjL
2M

�
rand

¼ ð6:27� 1:91Þ � 10�2ð99:9%Þ: (46)

From this preliminary analysis, it therefore appears as if
the polarization data of the three objects considered is
consistent with a value of BL=2M, which deviates from
0 by more than 10	.

Although this analysis is only preliminary, it does appear
as if there is a reasonably significant, and robust, statistical
preference toward the existence of a chameleonlike field in
the starlight polarization data of the three objects we have
considered here. This is a highly surprising result, and as
such it would be premature to claim it as a detection. While
it is well beyond the scope of this particular article, a
thorough analysis of possible backgrounds and sources of
systematic error that could mimic the signal from a cha-
meleon field would have to be undertaken before any such
claim could be made with true confidence. In particular,
since all the data analyzed comes from a single experiment
(WUPPE) it possible that the ‘‘detection’’ of a nonzero
value for BL=2M is actually due to effects intrinsic to the
instrument. In order to quantify the magnitude of such
instrumental effects it would be necessary to study similar
data from other polarimeters. We have only considered
three of the well over 100 objects measured by WUPPE.
When more objects have been analyzed it should be pos-
sible to better estimate the effect of systematic error in the
determination of BL=2M by considering the spread in the
values of BL=2M determined for each object. What we can
say with confidence is that there is some structure in the
polarization of three objects considered, which is not con-
sistent with either random error or that predicted to be
induced by interstellar dust. Furthermore this structure
exhibits nontrivial oscillatory frequency correlations,
which at least in part, mimic that predicted by the chame-
leon model. At the present time we cannot rule out possible
systematic effects having a relative magnitude ofOð1Þ. The
presence of such effects would raise both the extracted
upper and lower bounds on BL=2M. While this means that
any nonzero lower bound on BL=2M can only be seen as
tentative at best, the upper bounds on BL=2M should be
robust. We therefore believe it to be better to see the data as
providing the following 95% and 99.9% confidence upper
bounds on BL=2M:�

BL

2M

�
rand

< 7:2� 10�2 ð95%Þ; (47)

�
BL

2M

�
rand

< 8:1� 10�2 ð99:9%Þ: (48)

We also consider observations of the UV polarization of
two stars made with the Faint Object Spectrograph (FOS)
of the Hubble Space Telescope (HST) and reported in
Ref. [73]. In this case, we have only undertaken a prelimi-
nary analysis of the data, postponing a full reanalysis to a

later work. Observations were made for 1279 �A< �<

3300 �A, and the HST FOS has a nominal spectral resolu-
tion of 2–4 Å in this range. The data published in Ref. [73]
was binned to give 10 data points in each frequency region
they considered, although the precise width of the bins is
not stated. The shortest wavelength region was 1279–
1603 Å. Assuming that each of the 10 bins in this region
had equal width, the bin width is 32.4 Å. The two stars,
HD7252 and HD161056, are, respectively, 824 pc and
295 pc from the Earth. This gives an oscillation wave-
length, �osc ¼ �crit=N, no smaller than 15 Å and 41 Å for
the random and regular components of the galactic mag-
netic field, respectively, when m� < 9� 10�12 eV. A sig-

nificant amount of a chameleonic signal should therefore
survive the rebinning process in the 1279–1603 Å wave-
length grating; this may not be the case for the lower
frequency gratings. In the 1279–1603 Å grating, the polar-
ization angle of HD7252 was found to be independent of
frequency with a standard deviation of about 5 degrees. It is
noted in Ref. [73], however, that the systematic uncertainty
in the polarization angle could be 10 degrees or so. This
corresponds to the component of the reduced Stokes vec-
tor, P? say, that is perpendicular to the mean polarization
detection in the region 1279–1603 Å satisfying jP?j<
0:2%. Assuming m� < 9� 10�12 eV in the Galaxy and

that Lrand �Oð20 pcÞ (the precise value of Lrand does not

greatly alter the resulting constraint) so that �crit ¼ 608 �A,
and using the method outlined Appendix B 2, we find the
following 95% and 99% confidence limits:�

BL

2M

�
gal

< 8:9� 10�2 ð95%Þ;
�
BL

2M

�
gal

< 12:7� 10�2 ð99:9%Þ:

These constraints are consistent with, but weaker than,
those found from the WUPPE data.

B. The Crab nebula

The polarization of x-ray light from the Crab nebular
was reported in [74]. The measured linear polarization
fraction was p ¼ 18� 4% at a frequency of ! ¼
5:2 keV and p ¼ 16� 2% at a frequency of 2.6 keV.
This confirmed the hypothesis of synchrotron x-ray emis-
sion. The Crab nebula is at a distance of 2 kpc from
the Solar System so photons from the Crab nebular
pass through Oð1Þ regular magnetic domains and Oð100Þ
random magnetic domains to reach the Earth. When
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jm2
eff j � !2

pl ¼ 6:4� 10�12 eV, we have �osc � 6 �A;

N!crit � 2 keV. Thus, both measurements are in the ! *
N!crit region, where p is almost independent of frequency.

The spectral resolution of these measurements is �� &

0:7 �A � �crit=N.
The linear polarization fraction p is given by a proba-

bility distribution even if we are in the maximal mixing
regime and so the amount of information one can extract
from a single measurement is limited. We found that the
average polarization fraction for a set of objects in the
maximal mixing limit is � 0:57. However, if p0 � 0:16
initially, one would still expect to measure p & 0:16–0:18
for a given object about 17% of the time. Even the possi-
bility of maximal mixing at x-ray frequencies cannot there-
fore be ruled out by the Crab nebula data.

C. Type Ia supernovae

In [75,76] supernova polarimetry data published before
1996 was studied. The degree of polarization of light from
type Ia supernovae was less than 0.2–0.3%. In [77] high-
quality spectro-polarimetry data was reported for SNIa
2001e1. It was found that the maximum linear polarization
of the light from the supernovae was p � 0:2–0:3%. The
supernova was observed at frequencies ! �
1:4 eV–3:8 eV and the spectral resolution of the polar-

imeter was �� � 12:7 �A. The Stokes parameters were

later rebinned into �� ¼ 15 �A bins. The supernova lies at
a redshift of z � 5� 10�3 corresponding to a distance of
roughly 20 Mpc.

If, as light travels from the supernova to the Earth,
mixing with chameleons occurs mostly in the intergalactic
medium (as opposed to in galaxies or clusters) then the
PVLAS bound rules out maximal mixing. The critical
frequency for weak mixing in the intergalactic medium is

!ðIGMÞ
crit � 3:4 ðLIGM=MpcÞ eV, where L is the coherence

length of the IGM magnetic field. Since NLIGM ¼ 20 Mpc

we have N!IGM
crit ¼ 68 eV; �osc ¼ 182 �A. Hence, SNIa

2001e1 was observed at frequencies ! � N!IGM
crit . Any

chameleon induced polarization fraction would therefore
be a highly oscillatory function of the frequency. For this
chameleon signal to survive the binning process and be
detected one must ensure that the polarimeter’s spectral

resolution and width of the wavelength bins satisfy �� <

182 �A. In this case, �� ¼ 15 �A and so the data can indeed
be used to constrain chameleonlike theories. At the wave-
lengths observed, the chameleonic signal would look like
random noise that grows with frequency. A full analysis of
the raw data reported in [77] is beyond the scope of this
work. However, a preliminary analysis of the scatter in the
component of the Stokes vector perpendicular to the mean
direction of polarization P? in the frequency range 4181–
8631 Å provides strong constraints. At five different
epochs, it was found that P? was consistent with zero to
within about �0:3%. We take jP?j< 0:3% and extract

approximate upper confidence limits on the chameleon to
photon coupling using the method detailed in Appendix B
2. When m� < 2:5� 10�14 eV in the IGM, and LIGM �
Oð1 MpcÞ, we find the following 95% and 99.9% confi-
dence limits�jBjL

2M

�
IGM

< 5:2� 10�2 ð95%Þ;
�jBjL
2M

�
IGM

< 7:2� 10�2 ð99:9%Þ:

If the intergalactic magnetic field is sufficiently small
(i.e. B & 10�11 G) mixing between light from the super-
nova and chameleons will occur mostly in galaxies and
galaxy clusters. SNIa 2001e1 is located in the nearly edge-
on spiral galaxy NGC 1448; however, the line of sight does
not intersect with either the core or the disk of the host
galaxy [77]. Additionally, at only 20 Mpc away, light from
SNIa 2001e1 does not pass through any significant intra-
cluster magnetic fields. Our Solar System currently lies
close to the midpoint of the galactic plane, and models of
the galactic magnetic field and electron density suggest
that it has a scale height above the midpoint galactic plane
of about a kiloparsec. At the very least then, light from
SNIa2001 will have passed through roughly 1 kpc of the
random galactic magnetic field. For the random galactic

magnetic field we have �rand
crit =N � 12 �A, where N � 50

when jm2
effj � !2

pl � 6:4� 10�12 eV. Therefore, ���
�rand
crit =N � 12 �A, and a chameleon signal could be de-

tected. Since ��� �rand
crit =N, the chameleon induced polar-

ization would look like random noise. Again a preliminary
analysis of the data of [77], gives the following 95% and

99% confidence limit, where we have assumed m� <ffiffiffi
2

p
!pl � 9� 10�12 eV in the Galaxy and that the coher-

ence length of the random component of the Galaxy mag-

netic field is Oð20 pcÞ so that �crit � 608 �A�jBjL
2M

�
rand

< 0:14 ð95%Þ;
�jBjL
2M

�
rand

< 0:18ð99:9%Þ:

D. High redshift quasars

The optical and UV polarization of some high redshift
quasars have been measured [78,79] often using the HST
FOS. Below frequencies !� 1 eV the quasars have a
polarization of about 1% but there is an interesting rise
in the polarization above frequencies ! � 2:5 eV. At
electron-volt frequencies mixing between photons and
chameleons is expected to be highly frequency dependent.
The HST FOS has a nominal spectral resolution of 2–4 Å,
which is in principle good enough to resolve the expected
chameleon signal if m� � 6:4� 10�12 eV in galaxies or

galaxy clusters. The data in [78,79] is then rebinned with

bin widths of �� ¼ 32–270 �A. Extracting the most strin-
gent constraints on chameleon theories would require a full
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reanalysis of original data. This is beyond the scope of this
article. However, by analysing the data of Impey et al. [78]
for object PG 1222þ 228 at z � 2 as rebinned and pre-
sented in Ref. [79], we can extract useful constraints.
Specifically, we focus on the spread of the Stokes parame-
ter that is perpendicular to the mean polarization angle.
The light from this quasi-stellar object will have travelled
at least � 1 kpc. We assume that the coherence length of
the random component of our Galaxy’s magnetic field Lrand

isOð20 kpcÞ. Making the conservative assumption that the
total path length through our Galaxy’s magnetic field is

1 kpc, when m� <
ffiffiffi
2

p
!pl � 9� 10�12 eV in the Galaxy,

we find the following 95% and 99% confidence limits:�jBjL
2M

�
rand

< 0:6 ð95%Þ;
�jBjL
2M

�
rand

< 1:1 ð99:9%Þ:

We expect that a full reanalysis of the original data would
raise this limit greatly as currently the bounds are consid-
erably weakened by the relatively large size of the wave-
length bins (compared to �osc).

If there is a sufficiently strong intergalactic magnetic
field then this would also produce chameleon-photon mix-
ing. We make the conservative assumption that IGM mag-
netic fields only go out as far as z ¼ 1, so that the
propagation distance through the IGM magnetic field is
about 2.5 Gpc. Assuming the IGM magnetic field is coher-
ent over roughly megaparsec scales, we find the following

confidence limits whenm� <
ffiffiffi
2

p
!pl � 2:5� 10�14 eV in

the IGM: �jBjL
2M

�
IGM

< 1:4� 10�2 ð95%Þ;
�jBjL
2M

�
IGM

< 2:1� 10�2 ð99:9%Þ:

These constraints are particularly strong because the qua-
sar is so far away, and as such the light from it travels
through many different coherent regions, �Oð2500Þ, of
any IGM magnetic field. This counter balances the loss of
information due to the relatively large width of the wave-
length bins. A full reanalysis of the raw data would likely
raise these bounds on M.

E. Gamma ray bursts

Measurements of linearly polarized gamma rays have
been made for four GRBs and these are summarized in
Table I. The last observation has been challenged [83].
GRBs are the only objects we consider that are believed to

be highly polarized initially. Theory predicts the emission
of highly linearly polarized light with 0:6<ml < 0:8 due
to synchrotron emission. This hypothesis was confirmed by
observations of polarization in the GRB afterglow [84].
Mixing at gamma ray frequencies is maximal in all

galaxies and clusters regions if M � 109 GeV: maximal
in galaxies ifM & few� 109 GeV and in the ICM ifM &
4� 1011 GeV. If B ¼ 10�9 G in the IGM, then maximal
mixing would occur if M & 5� 1010 GeV; however, if
m� � 2:2� 10�12 eV in the IGM then this scenario is

strongly ruled out by the bounds obtained above. If the
mixing is maximal the mean observed linear polarization at
high frequencies should be �p � 0:57; consistent with cur-
rent GRB observations. It is not possible to make a more
precise prediction than this without knowing more accu-
rately the initial polarization of the GRB. A better under-
standing of the central engine of the GRB and better
polarimetry for GRBs would allow strong constraints to
be placed on the chameleon model. If future observations
constrain �p < 0:57 maximal mixing in the chameleon
model would be ruled out, and strong constraints on M
would follow. If �p > 0:8 is observed such a high degree of
polarization cannot be explained by the synchrotron
mechanism and a chameleonic explanation would be
favored.
If M is very large the mixing between chameleons and

light from GRBs would be weak. Then it becomes difficult
to put bounds on the chameleon model both because of the
limitations of polarimeters and, if there is no intergalactic
magnetic field, the difficulty of estimating how many
magnetic domains have been traversed.

F. CMB Polarization

The upcoming Planck satellite will measure the polar-
ization of the CMB to a high degree of accuracy. However,
it is extremely hard to estimate how many magnetic do-
mains radiation from the CMBwould have passed through,
particularly as if there is an intergalactic magnetic field it is
not known whether this field is primordial. Neglecting the
intergalactic magnetic field it might be possible to use
galaxy and cluster surveys to estimate how many magnetic
domains the radiation had passed through. However, be-
cause the frequency of CMB radiation is so low mixing
with the chameleons will be weak and highly oscillatory
and the amplitude of these oscillations is damped as !2. A
weak and highly oscillatory chameleon signal would be
very hard to detect.

G. Summarized constraints

The tightest constraints on the chameleon to matter
coupling come from the WUPPE starlight polarization
data, in the context of photon to chameleon conversion in
the galaxy, and from HST FOS measurements of the po-
larization of high redshift quasars in the context of con-
version in the intergalactic medium. Our preliminary

TABLE I. GRB polarization measurements.

GRB930131 [80] 0:35< p< 1 3 keV<!< 100 keV
GRB960924 [80] 0:5< p< 1 3 keV<!< 100 keV
GRB041219a [81] 0:56< p< 1 100 keV<!< 350 keV
GRB021206 [82] 0:6< p< 1 0:15 MeV<!< 2 MeV
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analysis of starlight polarization data appears to provide a
nonzero lower bound on 1=M; however, for the purposes of
this discussion we only consider the upper bounds on 1=M
here. For the IGM we took the coherence length L to be
1 Mpc and for the Galaxy we assumed, L ¼ 20 pc; how-
ever, the precise values of these quantities do not greatly
effect the upper bounds on BL=2M. Taking these typical
values for L and B � 3 �G for the strength of the random
component of the galactic magnetic field, we find at 95%
confidence

M> 1:3� 109 GeV; (49)

M> 1:1� 1011 GeV

�
BIGM

10�9 G

�
: (50)

At 99.9% confidence we find similarly

M> 1:1� 109 GeV; (51)

M> 7:3� 1010 GeV

�
BIGM

10�9 G

�
: (52)

In both cases the upper constraint applies if m� & 1:3�
10�11 eV in the Galaxy and the lower one if m� & 2:5�
10�14 eV in the IGM. Since BIGM is currently unmeasured,
the strongest constraint on M comes from the starlight
polarization measurements, the interpretation of which
relies only on knowledge of the galactic magnetic field.
If BIGM * 10�11 G, however, then the constraints coming
from high redshift quasars currently provide the tightest
lower bounds on M. In terms of chameleon theories, these
constraints represent an improvement of almost 2.5 order
of magnitude on the previous best lower bounds on M
coming from laboratory tests, specifically M> 3:9�
106 GeV at 99.9% confidence from the GammeV experi-
ment [21].

GammeV and other similar laboratory tests do not con-
strain the OP model. Provided m� & 1:3� 10�11 eV in

the Galaxy, and it was shown in Sec. II B that this is
expected to be the case, the starlight polarization constraint
on the OP model translates to

��1=2
F M0 > 1:6� 103 TeV

�������� �


10�6


��������1=2

; (53)

at 99.9% confidence where �
=
 is the fractional differ-
ence between 
 in the laboratory and 
 in a background
such as the Galaxy. For comparison, the previous best

constraints were M0 > 15 TeV and ��1=2
F M0 > 3 TeV. If

j�
=
j �Oð10�6Þ as suggested by the analysis of Webb
et al. [29], then this represents an improvement of 2 to 3
orders of magnitude. We note that if a subsequent analysis
were to confirm the lower bound on 1=M found from
starlight polarization measurements, then both these mea-
surements and the Webb et al. value of �
=
 could be
explained by an OP model with

��1=2
F M0 � 3–8� 103 TeV

and �1 � ðOð10�2Þ �Oð102ÞÞ eV; �m � ð10–20Þ TeV.

VII. CIRCULAR POLARIZATION: A SMOKING
GUN?

The total polarization due to chameleon-photon mixing
grows as the square of the frequency of the light until it
reaches a critical frequency at which the mixing becomes
maximal. It has not been possible to detect this frequency
pattern in current linear polarization data. Objects whose
initial polarization is well constrained have not been ob-
served over a wide enough frequency range or to the
required accuracy to see any such signal. Certain GRBs
have been observed over a very large range of frequencies
as they evolve, but because their initial linear polarization
is not known accurately, and generally does not satisfy
p0 � 1, it is difficult to search for a chameleon signal in
this data.
The production of circular polarization by chameleon-

photon mixing has a much more interesting signature. One
does not usually expect significant amounts of intrinsic
circular polarization (CP) for astrophysical objects. We
noted above in Sec. IVC that chameleonic CP production
is peaked over a potentially large range of wavelengths
(when N � 1), i.e. �osc ¼ �crit=N < �< �max, where

�max ¼ �crit max

�
1;

ffiffiffiffi
N

p
BL

�M

�
:

Importantly, in this band, the chameleon induced circular
polarization is the same order of magnitude as the chame-
leon produced linear polarization, and both exhibit a highly
oscillatory frequency dependence in this region. Outside of
this wavelength band, the chameleon contribution to the
circular polarization is much smaller than to the linear
polarization. If mixing is maximal, q�Oð1Þ is expected.
Neither the magnitude, the shape, nor the oscillatory fre-
quency dependence of the chameleon induced circular
polarization peak is likely to caused by any other process.
The observation of this peak could be considered a smok-
ing gun for chameleon-photon mixing, and if such a struc-
ture could be ruled out then strong constraints on
chameleonlike theories would follow. In particular, if
Oð1Þ, highly frequency dependent values of q are not
seen in the region �osc ¼ �crit=N < � < �crit, maximal
mixing could be ruled out, immediately limiting M *
1010–1011 GeV. Strong constraints would result if the CP
of a distant object whose light was known to pass through
the magnetic field of a galaxy cluster could be constrained
in the region �osc < �< �crit. To ensure the maximal
sensitivity to chameleonic effects, however, the spectral
resolution would have to be � �osc or smaller, which for a

cluster would require �� & 0:1 �A. Assuming light travels
roughly 1 kpc through the Galaxy, 1 Mpc through a galaxy
cluster and about 2.5 Gpc through the IGM the typical

DETECTING CHAMELEONS: THE ASTRONOMICAL . . . PHYSICAL REVIEW D 79, 044028 (2009)

044028-19



expected values of �osc and �crit are shown below in
Table II. We have assumed m� � 6:4� 10�12 eV in the

Galaxy, � 2:2� 10�12 eV in the ICM and �
1:8� 10�14 eV in the IGM.

Figure 5 shows simulated data for two objects (e.g.
GRBs), with 50% initial linear polarization and no intrinsic
circular polarization, whose light has passed through about
1 Mpc of the magnetic field of a galaxy cluster. The

wavelength � in this plot should be interpreted as �m=ð1þ
zclustÞ, where �m is the measured wavelength and zclust is
the redshift of the cluster. We have assumed, as is generally
the case, that m� � 2:2� 10�12 eV. We also have taken

M ¼ 1010 GeV, which corresponds to strong mixing for

� & �max; in this case, �crit � 104 �A. We can see that
chameleonic production of polarization begins for � &

�max and here �max � 24�crit � 2500 �A (i.e. in the middle
UV part of the spectrum). Very similar behavior is seen for
different choices of the intrinsic polarization. Between �osc

and �max both the linear polarization ml and the circular
polarization mc are, as expected, highly frequency depen-
dent and as we expect from the strong mixing scenario
when �osc < �< �max the magnitude of both mc and ml

oscillates between 0% and 100%. For � < �osc, ml=100%

TABLE II. Position of CP peak.

Environment �osc �crit

Galaxy 12 Å 608 Å

ICM 0.1 Å 104 Å

IGM 1.5 Å 3600 Å
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FIG. 5 (color online). Simulated data for two objects whose light has passed through roughly 1 Mpc of the magnetic field of a typical
galaxy cluster. We have assumed m� � 2:2� 10�12 eV and M ¼ 1010 GeV, which corresponds to strong mixing for wavelengths of

�max � 24�crit. We have assumed that both objects have little or no intrinsic circular polarization, and are 50% linearly polarized prior
to chameleon mixing. Qualitatively similar behavior is seen for different values of the intrinsic linear polarization ml0, and, in
particular, the behavior CP fraction does not depend greatly on ml0.
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settles to some, essentially random value between 0% and
100%, and mc ! 0. If there is little or no intrinsic circular
polarization, the behavior ofmc does not depend greatly on
the value of the intrinsic linear polarization. If such mea-
surements could be made it should be straightforward to
either detect or rule out values of M for which strong
mixing in clusters is expected to occur; M & 1011 GeV.
All light that reaches us from distant objects will have
passed through at least a part (�Oð1Þ kpc) of our own
Galaxy’s magnetic field. In Fig. 6, we show sample circular
polarization data for two objects (with little or no intrinsic
circular polarization) whose light has passed through 1 kpc
of our own Galaxy’s magnetic field (corresponding to
about 50 regions of the random field, and one of the regular
field). Most of the CP production is due to the random
field. We takeM ¼ 1010 GeV andm� � 6:4� 10�12 eV.

In this case, we are in the weak mixing limit, and �max ¼
�crit ¼ 608 �A. We can see that in the region �osc < �<
�crit, potentially detectable levels ofCP (between 0.1% and
0.5%) are typical.

If m� < 9� 10–12 eV, measurements of CP between

��Oð1Þ �A and ��Oð1000Þ �A for astrophysical objects
should allow one to detect or rule out theories with M &
1010 GeV.

Thus far, circular polarization has been measured for a
number of different astronomical sources; for certain stars
observed in the near infrared in [85,86], for zodiacal light
in [87], for the Orion molecular cloud in [88], for some
relativistic jet sources at radio wavelengths in [89].

However, for all of these observations mixing between
photons and chameleons is weak, and the frequency reso-
lution of the observations is not good enough to detect a
chameleon signal. Additionally, all such observations have
been made at wavelengths outside the expected �osc �
�max position of any chameleonic CP peak.

VIII. SUMMARY

Theories of physics beyond the standard model typically
predict the existence of new scalar fields. If these scalar
fields do exist it is important to understand both their self-
interactions and their interactions with the other fields
present in the model in order to test and constrain the
theory. In this article we have studied the results of a
coupling between scalar fields and photons on observations
of astrophysical objects. Specifically, we have studied the
scalar fields of the chameleon and Olive-Pospelov models,
which are strongly interacting in low-density environments
yet currently undetected in the laboratory. For simplicity
we refer to both types of scalar field as chameleons.
If the chameleon field couples to photons then in the

presence of a background magnetic field the chameleon
mixes with the component of the photon polarized orthog-
onally to the direction of the magnetic field. We have
studied the effect of this mixing on light beams passing
through a large number of randomly oriented homogene-
ous magnetic domains, in order to predict the effects of
chameleon-photon mixing on observations of light from
astrophysical objects. Typically, both linear and circular
polarization are induced in the light beam by mixing in
such an environment.
We found analytic solutions to the equations describing

the mixing in two important limits. In the weak mixing
limit the polarization fractions induced by chameleon-
photon mixing are highly wavelength dependent. If the
light is not polarized at the source the averaged values of
the total and circular polarization scale as NP�$�, that is,

as the product of the number of domains traversed and the
probability of mixing in any one domain. This limit is
generally appropriate when one is considering the chame-
leon induced polarizations at wavelengths longer than
roughly 1000 Å. In the maximal mixing limit, which
applies when the chameleon-photon coupling is strong
and the wavelength is sufficiently short, little or no circular
polarization is produced by the mixing, but the production
of linear polarization is at its strongest. The distribution of
the total polarization fraction after mixing in a large num-
ber of domains is independent of the parameters of the
chameleon model, and instead depends only on the initial
polarization of the light. The average value of the total
polarization fraction is always greater than ð�=2Þ � 1 �
0:57 in the maximal mixing limit.
Numerical simulations confirm the analytic analysis. In

particular, they clearly demonstrate the existence of two
wavelength scales �osc ¼ �crit=N ¼ 4�2=jm2

effjLpath, and
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FIG. 6 (color online). Simulated data for two objects whose
light has passed through roughly 1 kpc of our galaxies magnetic
field. We have assumed m� � 6:4� 10�12 eV and M ¼
1010 GeV. We have assumed that both objects have little or no
intrinsic circular polarization. Potentially detectable levels of CP
are seen between �osc � 12 �A and �crit � 608 �A.
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�max ¼ �crit maxð1; BL
�
ffiffiffi
N

p
M
Þ, which determine the shape of

the polarization signal. Here, B and L are the strength and
domain size of the magnetic field. g��� ¼ M�1 is the

coupling between two photons and the scalar field. The
linear polarization is greatest for � & �max, and the circu-
lar polarization is peaked for �osc & � & �max. Both po-
larization fractions are highly frequency dependent for
� * �osc. This highly oscillatory behavior means that ob-
servations of polarization at these wavelengths must be
performed with a sufficiently good spectral resolution if
any chameleon induced signal is to be resolved.

We have considered a wide variety of astrophysical
observations and have used these to constrain the parame-
ters of the chameleon model. From observations of star-
light polarization in our Galaxy we show that at the 99%
confidence level M> 1:1� 109 GeV, which is an im-
provement of over 2 orders of magnitude on the previous
best constraints on M. The equivalent constraint on the
Olive-Pospelov model is given in (53). Both constraints
could, however, be evaded if the potential of the scalar field
Vð�Þ is chosen so that the field is sufficiently heavy in
regions with the density of our Galaxy: m� � 10�11 eV.

Constraints from objects outside the Galaxy are limited by
our lack of knowledge about a possible intergalactic mag-
netic field, BIGM. If, however, BIGM � 10�9 G and is co-
herent over roughly Mpc scales, then the lower bounds on
M and the OP model coupling scale are raised by roughly 2
orders of magnitude.

The circular polarization signal predicted from
chameleon-photon mixing in a large number of randomly
oriented magnetic domains was shown to be very distinc-
tive. Its frequency dependence is unlikely to have been
caused by any other physical process, particularly as as-
trophysical objects do not normally produce significant
amounts of circular polarization. To date, no observations
of astrophysical circular polarization have yet been made
with sufficient accuracy to allow us to search for a chame-
leon signal. Nonetheless, we have shown how future ob-
servations of circular polarization in the wavelength range

Oð1Þ �Oð1000Þ �A would be a smoking gun for
chameleon-photon coupling.

We have also reported a seemingly strong statistical
preference in observations of starlight polarization in our
Galaxy for the presence of a chameleonlike field. Precisely,
at the 99% confidence level, we find�jBjL

2M

�
rand

¼ ð6:27� 1:91Þ � 10�2; (54)

where B and L are the strength and domain size of the
random component of the galactic magnetic field.
Formally, the central value deviates from zero (the value
for a theory without a chameleon) by more than 10	. It
must be stressed, however, that this is only a preliminary
analysis and we have only performed it for three out of a
possible 121 objects. Before a detection could be claimed

with any confidence, a full study of the possible back-
grounds and systematics for these observations that could
bias one toward larger values of 1=M would have to be
undertaken. Based on initial numerical simulations of data,
it does, however, seem unlikely that polarization due to
interstellar dust would produce such a strong signal.
In summary: astrophysical polarization measurements

currently provide the strongest constraints on any coupling
between photons and the scalar field, for many chameleon
and chameleonlike theories such as the Olive-Pospelov
model, improving on previous constraints by more than 2
orders of magnitude. Furthermore, future measurements of
linear and, in particular, circular polarization at short wave-

lengths (i.e.& 2000 �A) could provide one of the best tools
in the continuing search for such scalar fields.
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APPENDIX A: FLUCTUATING ELECTRON
DENSITY

In Ref. [44] it was shown that fluctuations in the electron
density ne, and hence the plasma frequency!pl, could lead

to a significant enhancement of the photon to a ALP
conversion rate when m� � !pl and j�j � !2

plL=4! �
1. In this appendix we reproduce this analysis and show
that conclusions about the magnitude of such an enhance-
ment effect are modified in the light of more recent models
of the electron density in our Galaxy (specifically the
NE2001 model) than those used in Ref. [44]. We also
extend the analysis to allow for fluctuations in the magnetic
field B.
We write !2

plðzÞ ¼ �!2
plð1þ �nðzÞÞ, where �nðzÞ ¼

�neðzÞ=ne. We also have B ¼ jB?j ¼ �Bð1þ �bðzÞÞ. We
are concerned with the limit m2

� � !2
pl. Now in a single

region of magnetic field the equations describing the evo-
lution of the photon and the chameleon are

� €�k þ �k;zz ¼ !2
plðzÞ�k;

� €�? þ �?;zz ¼ !2
plðzÞ�? þ�;z

B

M
;

� €�þ�;zz ¼ � B

M
�?;z:

We assume that ! � !pl and �0
n=�n � !. We write the

solution for �k, thus,

�k ¼ �0e
i!ðz�tÞ�iaðzÞ;

where we assume !pl � !, and so ja;zj � !. We simi-

larly write
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�?ðzÞ ¼ ~�ðzÞei!ðz�tÞ�iaðzÞ; �ðzÞ ¼ ~�ðzÞei!ðz�tÞ�iaðzÞ:

We then have

~� ;z � B

M
~�; ~�;z � � B

M
~�þ i!2

pl

2!
~�;

We define m2
eff ¼ m2

� � �!2
plð1þ ��nÞ � � �!2

plð1þ ��nÞ,
where

z ��nðzÞ ¼
Z z

0
�nðz0Þdz0:

We then let x ¼ m2
effz=4!, so z ¼ L implies x ¼ � and

remember that

tan2 ¼ 2 �B!

M �m2
eff

;

where �m2
eff � � �!2

pl. Thus,

u ;x � ~�
~�

� �
¼ iMðxÞ ~�

~�

� �
; (A1)

where

MðxÞ ¼ 0 �iDðxÞ tan2
iDðxÞ tan2 �2

� �
¼ ð	3 � IÞ þ 	2DðxÞ tan2; (A2)

where

DðxÞ ¼ 1þ ~�ðxÞ � 1þ �bðzÞ
1þ �nðzÞ :

In the above the 	i are the Pauli matrices. We write

MðxÞ ¼ M0 þ 	2
~�ðxÞ tan2, where M0 ¼ ð	3 � IÞ þ

	2 tan2, and so

eiM0x ¼ e�ix

�
cos

�
x

cos2

�
þ ið	3 cos2þ 	2 sin2Þ

� sin

�
x

cos2

��
;

¼ e�ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2ðxÞp

ei’ðxÞ AðxÞ
�AðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
e�i’ðxÞ

0
@

1
A;

where

AðxÞ ¼ sin2 sin

�
x

cos2

�
;

tan’ðxÞ ¼ cos2 tan

�
x

cos2

�
:

We note that

e�iM0x	2e
iM0x ¼ ðcos2n1 þ sin2n2Þ 	 	; (A3)

where

n 1ðxÞ ¼
� sinð 2x

cos2Þ
cos2 cosð 2x

cos2Þ
� sin2 cosð 2x

cos2Þ

0
B@

1
CA; n2ðxÞ ¼

0
sin2
cos2

0
@

1
A:

We then define v ¼ e�iCðxÞe�iM0xu, where

CðxÞ ¼ ðn2 	 	Þ tan2
Z x

0

~�ðx0Þdx0 � �
ðxÞxðn2 	 	Þ
cos2

:

We then have

v ;x ¼ i sin2 ~�ðxÞðnðxÞ 	 	Þv; (A4)

where

n ¼
� sinð2ð1þ �
Þx

cos2 Þ
cos2 cosð2ð1þ �
Þx

cos2 Þ
� sin2 cosð2ð1þ �
Þx

cos2 Þ:

0
BB@

1
CCA

When it is acceptable to do so we may solve Eq. (A4)
perturbatively, a sufficient condition is

k�sin2 ~�ðxÞk � 1;

as n2ðxÞ ¼ 1. This may be satisfied if either 2 � 1, � �
1, or k ~�k � 1. To subleading order we have

v � NðxÞv0
� ½Iþ i sin2ðcðx; Þ 	 	Þ � 1

2sin
22ðc2 þ id 	 	Þ
v0;

(A5)

where

c ðx; Þ ¼
Z x

0
ds~�ðsÞnðs;Þ; (A6)

d ðx; Þ ¼
Z x

0
ds~�ðsÞðnðs;Þ � cðs; ÞÞ: (A7)

We evaluate NðxÞ in the weak-mixing limit 2 � 1. To do
this we expand the diagonal terms in NðxÞ to order ð2Þ2
and the off-diagonal ones to order 2. We find

N � 1� 22ðkgk2 þ i�Þ 2g
�2g 1� 22ðkgk2 � i�Þ

� �
;

(A8)

where

� ¼ 2ReðgÞ þ h; g ¼
Z x

0
ds~�ðsÞeið2ð1þ �
ðsÞÞs= cos2Þ;

h ¼ d3ðxÞ:
Now at the end of a magnetic domain with length L, z ¼ L,
and u ¼ uðLÞ we have

uðLÞ � e�i�

�
cos

�ð1þ �
ðLÞÞ�
cos2

�
Iþ i sin

�ð1þ �
ðLÞÞ�
cos2

�

� ð	3 cos2þ 	2 sin2Þ
�
NðLÞuð0Þ; (A9)
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where uð0Þ is the initial value of u. In the weak mixing-
limit, it follows that the probability of converting a photon
to a chameleon is

P�$� � 42k sin
�ð1þ �
ð�ÞÞ�

cos2

�
� gðx ¼ �Þk2: (A10)

The second term inside the k 	 k2 represents the enhance-
ment term from electron-density fluctuations. It is straight-
forward to check that if 2 � 1 we expect g=� & Oð1Þ if,
as expected, k ~�k2 & Oð1Þ. Therefore, when � � 1, i.e. at
high frequencies, we do not expect the new term to produce
a large enhancement. This was also noted by Carlson and
Garretson in Ref. [44]. We therefore focus on the limit
� � 1. In this limit sin2ðð1þ 
Þ�= cos2Þ � 1=2 on av-
erage. We denote the relative magnitude of the enhance-
ment in photon to chameleon conversion by E and

E ¼ 2kgk2:
When E � 1, the enhancement is negligible, and when
E � 1 the enhancement is strong and represents a signifi-
cant effect. In the weak-mixing limit in which we work
k
k � 1, and so

E � 2

�����Z �

0
dx ~�ðxÞeix

�����2¼ 2
Z �

0

Z �

0
dxdy ~�ðxÞ~�ðyÞeiðx�yÞ:

(A11)

We define the Fourier transform ~�kðkÞ of ~�ðxÞ, thus,
~�ðxÞ ¼ ~�ð�z=LÞ ¼

Z
d3k ~�kðkÞeikzLx=�;

where kz is the component of k in the ẑ direction. The
power spectrum PðkÞ is given by the expectation of
~�kðkÞ~�

kðqÞ, thus,
h~�kðkÞ~�

kðqÞi ¼ PðkÞ�ð3Þðk� qÞ:
Thus,

hEi ¼ 2�2
Z

d3kPðkÞsinc2
�
kzLþ �

2

�
; (A12)

where sincðxÞ ¼ sinx=x. Electron-density and magnitude
field fluctuations are often modeled by a power spectrum
with inner scale l0 and outer scale L0, and a power law
behavior between these two scales, i.e.

PðkÞ ¼ C2

½L�2
0 þ k2

=2 e

�ðk2l2
0
=2Þ: (A13)

When, as is the case for visible light �l0=L0 � 1, the role
of l0 in the estimate for E is negligible, and we may
approximate by setting l0 ¼ 0. We then find that

E � 2

������Z �

0
ds�̂ðsÞeis

�����2
	
� 8�2�2C2�
�2

0

ð
� 2ÞL ; (A14)

where ��2
0 ¼ L�2

0 þ�2L�2. It can be similarly checked

that with this form of PðkÞ

h~�2i � �3=2C2L
�3
0

�ð
2 � 3
2Þ

�ð
2Þ
; (A15)

and so

E � 3q


�
L0�

2

L

�
h~�2i

�
1

1þ�2L2
0=L

2

�ð
�2=2Þ
; (A16)

where

q
 ¼ 8�1=2�ð
2Þ
3ð
� 2Þ�ð
2 � 3

2Þ
:

For 
 ¼ 11=3, which corresponds to a Kolmogorov power
spectrum, q
 � 0:9958.

We remember that ~� ¼ ð�bðzÞ � �nðzÞÞ=ð1þ �nðzÞÞ,
where �b is the magnetic field fluctuation and �n is the
electron-density fluctuation. The power spectrums of both
fluctuations are generally taken to be described by a
Kolomogorov power spectrum with some inner and outer
scale. We note that if, as is often assumed, the inner and
outer scales of the magnetic and electron-density fluctua-
tions are the same, and if the two fluctuations are uncorre-

lated when �n � 1, ~� will also have a Kolmogorov-type
power spectrum. We also note that correlations between �b

and �n could potentially greatly decrease the power in ~�.

Specifically, if �b � �n then ~� � �b, �n. The structure of
electron-density fluctuations in our Galaxy is much better
understood than the structure of magnetic field fluctua-
tions. For simplicity, and to make an order of magnitude
estimate of E we take �b ¼ 0 and assume �n � 1 so that
~� � ��n. The power spectra of �n and ~� are then equiva-
lent. For electron-density fluctuations, estimates of the
inner scale l0 place it around 107 � 109m. It can be
checked that for ! * 10�7 eV and L � 50, pc, �l0=L �
1 as assumed above.
In the NE2001 model [50] for galactic electron-density

fluctuations, the fluctuation parameter, Fn, is defined, thus,

Fn � h�2
ni
�
1 pc

L0

�
2=3

and the electron-density fluctuations have a Kolmogorov
spectrum with 
 ¼ 11=3. We also estimated previously
that

� � 16

�
2 eV

!

�
;

and so

E � 15:4Fn

�
L0

1 pc

�
5=3

��5=6; (A17)

where

� ¼ L2
0�

�2
0 � 1þ 0:1

�
L0

1 pc

�
2
�
2 eV

!

�
2
:

The fluctuation parameter varies widely across the Galaxy.
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On average in the disk Fn � 0:2; however, in the local
interstellar medium (out to about a kpc from the Sun) Fn �
0:01� 0:1. The stellar objects we analyzed in Sec. VIA
are located in the local ISM where Fn is smaller; however,
even if we take the slightly larger value of Fn � 0:2
appropriate for the disk on average, we find that for visible
light !� 2 eV

E� 3

�
L0

1 pc

�
5=3

��5=6:

Carlson and Garretson [44] took the outer scale of
turbulence to be L0 � 10� 100 pc, which results in E
becoming independent of L0 and E � 19–20. However,
more recent estimates [90] suggest a much smaller value
for L0 than previously expected, specifically an L0 that is
no more than a few parsecs. In HII regions (clouds of gas
and plasma in which star formation is taking place) L0 �
0:01 pc and the pulsar measurements [91] give L0 �
0:03 pc. The precise value of E therefore depends fairly
strongly on the value of outer scale for the Kolomogorov
spectrum L0, which is uncertain. This is because the en-
hancement term is predominately sourced by electron fluc-
tuations on scales of l� L=� � 4!=km2

effk. For visible
light, l�Oð1Þ pc. The structure of galactic electron-
density fluctuations is not, however, well understood on
such scales and almost all measurements of such fluctua-
tions relate to lower scales. This means it is difficult to
make an accurate estimate of the enhancement factor.
However, given L0 & few pc, !� 2 eV, we estimate
0:03 & I & 10 based on the different estimates for L0. A
correlation between electron and magnetic fluctuations
could significantly lower this estimate. Hence, we have
estimated E to be Oð1Þ or smaller in the visible part of the
electromagnetic spectrum. Importantly, even if the conver-
sion rate is enhanced, the oscillatory nature of the chame-
leon induced polarization remains. Thus, a slightly
enhanced conversion probability is not expected to signifi-
cantly alter the form of the signal for which we have
searched. Given the great ambiguity in the precise magni-
tude of the enhancement term and because we estimate it to
be no greater than a factor of about 10, we have chosen to
neglect it in our analysis.

We now consider the magnitude of any enhancement
effect due to electron-density fluctuations in galaxy super-
clusters, such as that considered by Jain et al. in Ref. [45].
Since very little is known about electron-density fluctua-
tions in galaxy clusters and superclusters, Jain et al.
assumed a simple scaling relation where all unknown
dimensionful quantities scale with ne. They did not how-
ever include the role of an outer scale of fluctuations, L0,
instead assuming that PðkÞ was everywhere a power law.
The outer scale of fluctuations is important as it is required
for the total magnitude of fluctuations h�2

ni to be finite. We
assume the same scaling for dimensionful quantities as that
used by Jain et al. We therefore assume that the length

scale L0 / �n�1=3
e , but that h�2

ni is approximately the same
in a galaxy cluster as it is in the Galaxy.
If L0 ¼ 1 pc in the Galaxy where ne � 0:03 cm�3 then

in the galaxy supercluster considered by Jain et al., where
ne � 10�6 cm�3, one would expect L0 � 31 pc. In the
same region !2

pl � 3:7� 10�14 eV and an appropriate

value for L, the length of the magnitude domain, is sug-
gested in Ref. [51] to be 100 kpc. This gives

� � 2:7

�
2 eV

!

�
: (A18)

Thus, using Eq. (A16) for 
 ¼ 11=3 and assuming h~�2i &
1, we find that for a galaxy supercluster the enhancement
factor for visible light is estimated to be

E & Oð10�2Þ
�

L0

31 pc

�
;

and so any enhancement due to electron-density fluctua-
tions in this region is estimated to be subleading order. Jain
et al. found the opposite result but ignored the role of the
outer scale, L0, which limits the overall magnitude of
fluctuations.

APPENDIX B: CHAMELEON OPTICS FOR
MULTIPLE MAGNETIC DOMAINS

In many realistic astrophysical settings, light beams pass
through many magnetized domains, and in each domain
the angle of the magnetic field relative to the direction of
propagation is essentially random. In this appendix we
present, in detail, the equations that describe this multiple
domain problem and their solutions in a number of impor-
tant limits. In Sec. IVA, we presented the equations that
describe how the chameleon and photon fields evolve as
they pass through a single magnetic domain. In that section
we split the photon field into components polarized parallel
and perpendicular to the direction of the magnetic field,
and used this as a basis to define the Stokes vector
ðI�; Q;U; VÞT for the photon field as well as four associated
amplitudes J, K, L, and M, which describe correlations
between the chameleon field and components of the photon
fields [see Eq. (16) for the definition of these quantities]. To
deal with the multiple domain case we must first fix a basis
for the photon field that is independent of the direction of
B. Doing this we take the two components of the photon
field to be �1 and �2, and redefine

I� ¼ hj�1j2i þ hj�2j2i; Q ¼ hj�2j2i � hj�1j2i;
Uþ iV ¼ 2h ��2�1i; J þ iK ¼ 2ei’h ��1�i;

Lþ iM ¼ 2ei’h ��2�i;
and as in Sec. IVA we define X ¼ 3I� � 2. I� and V are

independent of the choice of basis. We define n so that in
the nth magnetic domain
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�k ¼ cosn�1 � sinn�2; �? ¼ cosn�2 þ sinn�1;

and define

Q0 ¼Qcos2nþUsin2n; U0 ¼�Qsin2nþUcos2n;

J0 ¼Jcosn�Lsinn; L0 ¼J sinnþLcosn;

K0 ¼Kcosn�Msinn; M0
n¼KsinnþMcosn:

The evolution of the primed quantities as well as X and V
in the nth region are then described by Eqs. (17)–(22) with
Q being replaced by Q0, U by U0, and so on.

Solving the full system of equations for N � 1 domains
involves diagonalizing an 8-by-8 matrix as well as evalu-
ating multiple sums involving the random angles n for
n ¼ 0 to N � 1, and we have been unable to find an
analytic general solution. It is straightforward to solve
the system numerically, but analytical solutions are often
more useful for understanding the behavior. Fortunately, it
is possible to make a great deal of analytical progress in the
weak-mixing limit where N
�1 and NP�$��1, where

N is the number of magnetic domains, as well as in the
strong mixing limit where N� � 1 and NP�$��1.

1. Weak mixing limit

When N
 � 1 and NP�$� we must have either

�= cos2, � tan2� � 1 or tan2, �tan22 � 1. In these
limits ’ � �, � � 2� and


 ¼ ’�� � tan22

4
½2�� sin2�
: (B1)

We assume that there is no initial chameleon flux, so that
initially X ¼ X0 ¼ 1 and J ¼ K ¼ L ¼ M ¼ 0. Without
loss of generality we pick our coordinate basis so thatQ ¼
0 initially and U ¼ U0 and V ¼ V0. By requiring that
NP�$� � 1 and N
 � 1, we are assuming the perturba-

tions �X, �Q, �U, and �V are small compared to the
quantities X, Q, U, and V, and that J, K, L, and M are �
1. We define J ¼ Aj and make similar definitions for k, m,
and n. We compute the perturbed quantities toOðNA2Þ and
OðN
2Þ. We define �Xn to be the value of �X after having
passed through the nth region, and make similar definitions
for the other quantities. Expanding to first order in the
perturbations we find the following simplified recurrence
relations:

�Xnþ1 ¼ �Xn � 3A2

2
� 3A2

2
�U0 sin2n

þ 3A2ðln cosn þ jn sinnÞ sin2�
� 3A2ðmn cosn þ kn sinnÞ cos2�; (B2)

�Qnþ1 ¼ �Qn � A2

2
cos2n

þ A2ðln cosn � jn sinnÞ sin2�
� A2ðmn cosn � kn sinnÞ cos2�;

� 
Vn sin2n þ 
2

4
sin4nU0; (B3)

�Unþ1 ¼ �Un � A2

2
sin2n � A2

2
U0

þ A2ðln sinn þ jn cosnÞ sin2�
� A2ðmn sinn þ kn cosnÞ cos2�

þ 
Vn cos2n � 
2

2
U0cos

22n; (B4)

�Vnþ1 ¼ �Vn � A2

2
V0 þ A2ðln sinn � jn cosnÞ cos2�

þ A2ðmn sinn � kn cosnÞ sin2�
� 1

2

2V0 � 
Un cos2n;þ
Qn sin2n; (B5)

and

knþ1 þ ijnþ1 ¼ e2i�ðkn þ ijnÞ þ Yn; (B6)

mnþ1 þ ilnþ1 ¼ e2i�ðmn þ ilnÞ þ Zn;

Yn ¼ ðU0 þ iV0Þ cosn þ sinn;

Zn ¼ ðU0 � iV0Þ sinn þ cosn: (B7)

Equations (B6) and (B7) are solved, thus,

kn þ ijn ¼
Xn�1

r¼0

e2i�ðn�1�rÞYr;

mn þ iln ¼ Xn�1

r¼0

e2i�ðn�1�rÞZr:

(B8)

AssumingN � 1, we then arrive at following solutions for
the perturbations to the components of the Stokes vector to
OðNA2; N
2Þ:

�XN ¼ � 3NA2N

2
� 3NA2#ðc�Þ

N ð2�Þ

� 3NA2U0#
ðsþÞ
N ð2�Þ � 3NA2V0%

ðs�Þ
N ð2�Þ; (B9)

�QN ¼ �NA2#ðcþÞ
N ð2�Þ � NA2U0#

ðs�Þ
N ð2�Þ

� NA2V0%
ðsþÞ
N ð2�Þ � ffiffiffiffi

N
p


V0�
s
N

þ N
2U0�
sc
N ; x; (B10)
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�UN ¼ �ð2NA2 þ N
2Þ
4

U0 � NA2#ðsþÞ
N ð2�Þ

� NA2U0#
ðc�Þ
N ð2�Þ þ NA2V0%

ðcþÞ
N ð2�Þ

þ ffiffiffiffi
N

p

V0�

c
N � N
2U0�

cc
N ; (B11)

�VN ¼ �ðNA2 þ N
2Þ
2

V0 � NA2%ðs�Þ
N ð2�Þ

� NA2U0%
ðcþÞ
N ð2�Þ � NA2 �V0#

ðc�Þ
N ð2�Þ

� ffiffiffiffi
N

p

U0�

c
N � N
2V0ð�cc

N þ�ss
N Þ; (B12)

where

#c�
N ð2�Þ ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

cosð2�ðn� rÞÞ cosðr � nÞ;

#s�
N ð2�Þ ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

cosð2�ðn� rÞÞ sinðr � nÞ;

%c�
N ð2�Þ ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

sinð2�ðn� rÞÞ cosðr � nÞ;

%s�
N ð2�Þ ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

sinð2�ðn� rÞÞ sinðr � nÞ;

and

�cc
N ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

cos2n cos2r;

�sc
N ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

sin2n cos2r;

�ss
N ¼ 1

N

XN�1

n¼0

Xn�1

r¼0

sin2n sin2r;

�c
N ¼ 1ffiffiffiffi

N
p XN�1

n¼0

cos2n;

�s
N ¼ 1ffiffiffiffi

N
p XN�1

n¼0

sin2n:

(B13)

Each of these nine quantities vanishes when averaged over
all possible values of n. When fðn; pÞ ¼ fðp; nÞ we have

1

N

XN�1

n¼0

Xn�1

p¼0

fðn; pÞ ¼ 1

2N

XN�1

n¼0

XN�1

p¼0

fðn; pÞ

� 1

2N

XN�1

n¼0

fðn; nÞ; (B14)

and so

#c�
N ¼ 1

2ðX2
cc � X2

cs þ X2
sc � X2

ss � 1
2 � 1

2Þ; (B15)

#sþ
N ¼ XccXcs þ XscXss; (B16)

%s�
N ¼ XscXcs � XssXcc; (B17)

where

Xcc ¼ 1ffiffiffiffi
N

p XN�1

n¼0

cos2n�cosn;

Xcs ¼ 1ffiffiffiffi
N

p XN�1

n¼0

cos2n�sinn;

Xsc ¼ 1ffiffiffiffi
N

p XN�1

n¼0

sin2n�cosn

Xss ¼ 1ffiffiffiffi
N

p XN�1

n¼0

sin2n�sinn:

In the large N limit (and at fixed �) each of these four
quantities are independent, normally distributed random
variables Xcc, Xcs � Nð0; 	2þÞ and Xsc, Xss � Nð0; 	2�Þ,
where

	2� ¼ 1

4

�
1� cosð2ðN � 1Þ�Þ sin2N�

N sin2�

�
: (B18)

Additionally, #s�
N , %sþ

N , %c�
N are, for fixed � and in the

large N limit, well approximated by independent normally
distributed random variables, with #s�

N � Nð0; 	2
1Þ and the

rest are nð0; 	2
2Þ where for N � 1

	2
1 ¼

1

8

�
1þ sin22N�

N2sin22�

�
	2

2 ¼
1

8

�
1� sin22N�

N2sin22�

�
:

We choose a basis so that initially U0 � 0 and define

ml0 ¼ U0, mc0 ¼ V0, q0 ¼ jmc0j and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

0 þ V2
0

q
.

Keeping terms to order OðNP�$�p0Þ and OðN2P2
�$�Þ,

we find that

p2ðNÞ ¼ p2
0 þ 2NP�$�ð1� p2

0Þ½ml0#
sþ
N þmc0%

s�
N 


þ N2P2
�$�ð1� p2

0Þ2
�
1

2
þ #c�

N

�
2
; (B19)

where we have used Eqs. (B15)–(B17) to provide the
identity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðcþÞ2
N þ #ðsþÞ2

N þ %ðs�Þ2
N

q
¼ 1

2
ðX2

cc þ X2
cs þ X2

sc þ X2
ssÞ

¼ #c�
N þ 1

2
: (B20)

If p0 �Oð1Þ, the last term in this expression is the same
order as terms that have been omitted so it too should be
dropped. Similarly, for the fractional circular polarization
we have to OðNP�$�Þ and OðN
2Þ
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mcðNÞ ¼ mc0 � N
2

2
mc0½�c2

N þ �s2
N 
 �

ffiffiffiffi
N

p

ml0�

c
N

� NP�$�ð1�m2
c0Þ%s�

N ð2�Þ
þ NP�$�ml0mc0#

sþ
N ð2�Þ

� NP�$�ml0%
cþ
N ð2�Þ: (B21)

If there is no initial polarization (p0 ¼ 0), or more
generally if NP�$�ð1� p2

0Þ=p0 � 1, the final polariza-

tion fraction is given by

pðNÞ ¼ NP�$�½12 þ #c�
N ð2�Þ
: (B22)

We may therefore write

pðNÞ ¼ 1
2NP�$�ð	2þðX2

1 þ X2
2Þ þ 	2�ðX2

3 þ X2
4ÞÞ;

where the Xi are independent identically distributed
Nð0; 1Þ random variables. When p0 ¼ 0 the circular polar-
ization simplifies

mcðNÞ ¼ NP�$�	þ	�ðX1X3 � X2X4Þ:
Where p0 � 0 and NP�$�ð1� p2

0Þ=p0 � 1 we have to

OðNP�$�ð1� p2
0Þ=p0Þ

pðNÞ ¼ p0 þ
NP�$�ð1� p2

0Þml0

p0

ð	2þX1X2 þ 	2�X3X4Þ

þ NP�$�ð1� p2
0Þmc0

p0

	þ	�ðX1X3 � X2X4Þ:

The circular polarization is given by Eq. (B21) in this case.

2. Strong mixing limit

We now consider the strong mixing limit. This is the
limit in which N� � 1 so that P�$� takes it largest value,

and the mixing between the chameleon and photons is
strong, NP�$� � 1. In this limit 
, �, �, ’ � 1, and

so Eq. (17)–(22) simplify to

X !
�
1� 3

2
A2

�
X� 3

2
A2Q� 3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
M;

Q !
�
1� 1

2
A2

�
Q� 1

2
A2X � A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
M;

U !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
U� AK;

M ! ð1� 2A2ÞMþ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
ðQþ XÞ:

K !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
K þ AU;

(B23)

and

V !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A2

p
V�AJ; J!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A2

p
JþAV; L! L:

The differently oriented magnetic fields in each domain
mix Q with U, M with K and J with L. It is clear then that
the evolution of V, J, and L are completely decoupled from
that of X, Q, U, M, and K. We are concerned with the

limiting value of total polarization fraction, p.
Additionally since we expect the initial circular polariza-
tion fraction to be small, q0 ¼ jmc0j � p0, we set V ¼ 0.
We also require that initially the chameleon flux is zero
(M ¼ K ¼ L ¼ J ¼ 0 initially). It is clear then from the
above equations that V remains zero. From simulations we
see that in the strong mixing limit the final mean polariza-
tion fraction takes a specific value, which depends on p0.
Remarkably, we can calculate both the limiting value and
the final distribution of p analytically without actually
explicitly solving the above equations.
We assume that initially the photon is in a state with

polarization fraction p0 ¼ ð1� aÞ=ð1þ aÞ. Without loss
of generality we pick coordinates so that U ¼ 0 initially
and write the initial Stokes vector of the photon state, thus:,

S0 ¼
I�
Q
U
V

0
BBB@

1
CCCA ¼

ð1þ aÞ
ð1� aÞ

0
0

0
BBB@

1
CCCA: (B24)

We can always consider such a partially polarized photon
state to be a linear superposition of two fully polarized
photon states ( labeled ðþÞ and ð�Þ), i.e.

S0 ¼ Sþð0Þ þ aS�ð0Þ;
where (dropping the V component as it vanishes)

S�ð0Þ ¼
1
�1
0

0
@

1
A: (B25)

Since both Sþð0Þ and S�ð0Þ represent fully polarized pho-
ton states, they can also be described in terms of a vector
whose components are the photon and chameleon ampli-
tudes c1 ¼ �1, c2 ¼ �2, and c� ¼ � ¼ i�. We define this

vector to be vþ for Sþ and v� for S�, so that

vþ ¼
c�
c1
c2

0
@

1
A ¼

0
1
0

0
@

1
A; (B26)

v� ¼
c�
c1
c2

0
@

1
A ¼

0
0
1

0
@

1
A: (B27)

We also define vtot ¼ vþ þ v� and note that this too is a
fully polarized state.
The evolution of a fully polarized state through a single

magnetic domain is given by Eqs. (12) and (13). We note
that these equations conserve the total flux I� þ I� ¼ A2

0,

where I� ¼ jc1j2 þ jc2j2 and I� ¼ jc�j2. For v�, the total
flux is 1 and for vtot it is 2.
After having passed through many randomly orientated

magnetic domains, ifNP�$� � 1, the mixing between the

chameleon and photon fields, and between different com-
ponents of the photon field, will be strong. This means that
on average the initial flux should be evenly distributed
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among each of c1, c2, and c�, and so

c�

c1

c2

0
BB@

1
CCA N ¼ A0

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
cosffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

sin

0
@

1
A;

where each of c�, c1, c2 are uniformly distributed random

variables on A0½�1; 1Þ. This implies that x�U½�1; 1Þ and
�U½0; 2�Þ.

Now vþ, v�, and vtot are all fully polarized states. If,
after having passed through many regions, vþ ! vþð1Þ
and v� ! v�ð1Þ, where

vþð1Þ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

cosffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin

0
@

1
A:

v�ð1Þ ¼
yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
sin�

0
B@

1
CA;

then since the field equations are linear vtot ! vtotð1Þ ¼
vþð1Þ þ v�ð1Þ. Now in the limit of strong mixing, the c�
components of vþð1Þ, v�ð1Þ, and vtotð1Þ must all be
uniformly distributed random variables on ½�A0; A0Þ.
This imposes a very strong condition on the distributions

of x and y; in fact, one must have x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
cosc and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
sinc , where c and X are independent uni-

form random variables c �U½0; 2�Þ and X �U½0; 1Þ.
We also know the total flux vtot. Initially the total flux is

A2
0 ¼ 2, and finally it is A2

f ¼ ðxþ yÞ2 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
cosþffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

cos�Þ2 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sinþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

sin�Þ2.
Equating these two gives the consistency condition

cosð��Þ ¼ � xyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ;

so defining Iþ� ¼ 1� x2 and I�� ¼ 1� y2 we have

cos 2ð��Þ ¼ ð1� Iþ� Þð1� I�� Þ
Iþ� I��

: (B28)

Now the Stokes vectors associated with v�ð1Þ are

Sþð1Þ ¼
Iþ�

Iþ� cos2
Iþ� sin2

0

0
BBB@

1
CCCA; (B29)

S�ð1Þ ¼
I��

I�� cos2�
Iþ� sin2�

0

0
BBB@

1
CCCA; (B30)

so the final Stokes vector of a state with initial Stokes
vector S0 ¼ Sþð0Þ þ aS�ð0Þ is Sf ¼ Sþð1Þ þ aS�ð1Þ

Sf ¼
Iþ� þ aI��

Iþ� cos2þ aI�� cos2�
Iþ� sin2þ aI�� sin2�

0
B@

1
CA: (B31)

Thus, the final polarization fraction, p1 is

p21 ¼ ðIþ� � aI�� Þ2 þ 4aIþ� I�� cos2ð��Þ
ðIþ� þ aI�� Þ2

; (B32)

which after some simplification becomes

p1 ¼ FðX2; cos2c ;p0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð1� p2

0ÞX2

½ð1þ X2Þ � p0ð1� X2Þ cos2c 
2
s

; (B33)

where X �U½0; 1Þ and c �U½0; 2�Þ. In the simplest case
where there is no initial polarization p0 ¼ 0, we have

p1 ¼ 1� X2

1þ X2
;

which has mean value

�p1 ¼
Z 1

0
dX

1� X2

1þ X2
¼ �

2
� 1 � 0:57: (B34)

More generally

�p1ðp0Þ ¼ 1

2�

Z 2�

0
d


Z 1

0
dXFðX2; cos2
;p0Þ:

�p1ðp0Þ is a monotonically increasing function of p0 and
increases from �=2� 1 to 1 as p0 goes from 0 to 1.

APPENDIX C: ESTIMATING BL=2M AND
CONFIDENCE INTERVALS

In this appendix we provide details of how estimates and
confidence intervals for the properties of any chameleon-
like field can be extracted from measurements of the
Stokes’ parameters I�, U, and Q of a single object. We

suppose that, in the absence of any chameleon field, the
polarization angle of a given object is roughly independent
of wavelength in some interesting part of the spectrum (e.g.
for UV to visible light). Since chameleonic effects die off
as 1=�2, where � is the wavelength of light, we can roughly
check this assumption by ensuring that the polarization
angle is roughly wavelength independent for the larger
wavelengths that are measured. We found in Sec. IVabove
that the chameleon induced contributions to the expected
Stokes’ vectors oscillate fairly strongly with wavelength up
until some critical oscillation wavelength �osc. In all cases,

we expect �osc & O ð �AÞ. In addition to �osc, there is an-
other critical wavelength �crit. Below �crit, the mean mag-
nitude of the chameleonic polarization signal is roughly
independent of wavelength, whereas for � * �crit � �osc,
the chameleon signal behaves as 1=�2.
We suppose that we have Np measurements of the

reduced Stokes’ parameter Q=I� and U=I� for a given
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object; we denote these measurements as qi and ui, re-
spectively. We also require, for this analysis, that � > �osc

for all the measurements, and that any intrinsic (i.e. cha-
meleonic) polarization be small, i.e. � 100%. We define
�� to be the spectral resolution of the measurements. In the
weak mixing limit, to leading order, we have that the
chameleonic contributions to Q=I� and U=I� are given by

qcham ¼ �P0

sin2�

�2

XN�1

n¼1

Xn
r¼0

cosð2�ðn� rÞÞ

� sinð��ðn� rÞÞ
��ðn� rÞ cosðn þ rÞ; (C1)

ucham ¼ �P0

sin2�

�2

XN�1

n¼1

Xn
r¼0

cosð2�ðn� rÞÞ

� sinð��ðn� rÞÞ
��ðn� rÞ sinðn þ rÞ; (C2)

where P0 ¼ ðBL=2MÞ2; L is the coherence length of the
magnetic field and B is its strength.N is the total number of
magnetic regions passed through, and M parametrizes the
strength of the chameleon to photon coupling. � ¼
��=2�crit, where �crit ¼ 4�2jm2

effjL; m2
eff ¼ m2

� �!2
pl;

�� ¼ ���=2�crit. The n define the angle of the magnetic
field in the nth region relative to the direction of the light
beam. Without any other prior information, we assume that
these angles are essentially random. Now the total Stokes’
parameters are q ¼ q0 þ qcham and u ¼ u0 þ ucham. We
assume that the nonchameleonic polarizations u0 and q0
depend on wavelength, but that, compared to the chame-
leonic contribution, they vary slowly. This will generally
be the case, for instance, if both u0, q0 have a wavelength
dependence similar to the Serkowski polarization law [92]
expected for polarization due to interstellar dust, i.e.
u0p0 / expð�Kln2ð�max=�ÞÞ, for some K and �max, which
we do not require to be the same for both u0 and q0.

Typically, �max � 6000 �A and K � 1:15. We can then
remove much of any intrinsic signal by simply smoothing
the data over a scale on which u0 and q0 are expected to be
fairly flat, to give qs and us, and then subtracting this
smoothed data from the original data. We define q̂ ¼ q�
qs and û ¼ u� us.

We define ŷi for yi, with standard error 	i, made at
wavelengths �i as follows:

(i) We define some smoothing wavelength scale �smooth

and for each i define the Ji ¼ fj:2j�i � �jÞj<
�smoothg.

(ii) Ni is the number of elements in Ji.
(iii) Si ¼

P
j2Ji

1=	2
j .

(iv) We define ŷi ¼ yi � S�1
i

P
j2Ji

yj=	
2
j .

(v) Assuming that the yi are independent and distributed
Nð�i; 	

2
i Þ for some�i, we find the �yi have standard

error 	̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2

i � 1=Si

q
.

We now have q̂i and ûi from which the vast majority of
any intrinsic signal should have been removed. We assume
that any remaining intrinsic signal is sufficiently small
compared with the noise as to be negligible. We check
the accuracy of this smoothing process by simulations

below. We define zðqÞi ¼ q̂i=	̂i and zðuÞi ¼ ûi=	̂i.

The chameleonic contributions to zðqÞi and zðuÞi are pre-

dicted be ��ðqÞ
i and ��ðuÞ

i , respectively, where

�ðqÞ
i ¼ � XN�1

k¼1

hikXk; (C3)

�ðuÞ
i ¼ � XN�1

k¼1

hikYk; (C4)

where � ¼ P0=2, hik ¼ Ĥik=	̂i, Ĥik ¼ Hik �Hs
ik and

Hik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � kÞp

sin2�i

�2
i

cosð2k�iÞ sinðk��Þk��
; (C5)

with�i ¼ ��i=2�crit and �� ¼ ���=2�crit. We have also
defined

Xk ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � k

p XN�k�1

r¼0

cosð�ðkÞ
r Þ; (C6)

Yk ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � k

p XN�k�1

r¼0

sinð�ðkÞ
r Þ; (C7)

where�ðkÞ
r ¼ rþk þ r. When N � k � 1, Xk and Yk are

well approximated as independent identically distributed
Nð0; 1Þ random variables. Since we assume that N � 1
and the largest values of Hik occur for N � k � 1, we
approximate the Xk and Yk as being independent and drawn
from a Nð0; 1Þ distribution. The likelihood of finding Xk ¼
�Xk is therefore / expð� �X2

k=2Þ.
Thus, the probability density function with measure-

ments zðqÞi given � is (up to an overall Xk and � indepen-
dent number C0)

f�;Xk
ðzðqÞi Þ ¼ C0e

�ð1=2ÞP
i

ðzðqÞi ���ðqÞ
i Þ2�ð1=2ÞP

k

X2
k

:

Defining the symmetric matrix Q, thus, Qlk ¼ P
ihilhik,

M� ¼ 1þ �2Q, and vk ¼ P
ihikz

ðqÞ
i we have

f�;Xk
ðzðqÞi Þ ¼ C0e

�ð1=2ÞP
i

zðqi 2
e��vTX�ð1=2ÞXTM�X:

Since the first term is independent of both � and X we can
incorporate it into a redefinition of the � and Xk indepen-

dent number C0, i.e. C0 ! C1 ¼ C0 expð�
P

iz
ðqÞ;2
i =2Þ. By

defining X̂k ¼ ffiffiffiffiffiffiffiffi
M�

p ðX þ �M�1
� vÞ, we have the new

probability density ~f in terms of �, zi, and X̂k
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~fð�Þ ¼ D0

eð�
2=2ÞvTM�1

�
vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detM�

p ;

where D0 is independent of �. The � dependent term is

now also independent of the X̂k. We therefore define the
likelihood of � given the qi data, i.e. the vk, to be

Lqð�Þ ¼ Lqð0Þ e
ð�2=2ÞvTM�1

� vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM�

p ; (C8)

where Lð0Þ is the value of L when � ¼ 0. We define
lqð�Þ ¼ logLqð�Þ=Lqð0Þ

lqð�Þ ¼ �2

2
vTM�1

� v� 1

2
logdetM�: (C9)

Now if the zi ¼ yi=	i are just random noise with mean 0
and variance �2 then v ¼ vn and

E ð�2vT
nM

�1
� vnÞ ¼ �2

X
ijkl

EðzizjÞhikhjlM�1
�kl;

¼ �2�2
X
kl

QklM
�1
�kl

¼ �2 trM�1
� ðM� � IÞ ¼ ��2 trP ð�Þ;

(C10)

where P ð�Þ ¼ M�1
� � I. Thus, if there is only random

noise we define EðlÞ ¼ lnoiseq ð�Þ and we have

lnoiseq ð�Þ ¼ 1
2ðtr logðIþ P ð�ÞÞ � �2 trP ð�ÞÞ; (C11)

� 1
2ð1� �2Þ trP ð�Þ; (C12)

with equality when � ¼ 0 and hence P ð�Þ ¼ 0; generally,
trP ð�Þ � 0 with equality when � ¼ 0. Thus, if � ¼ 1,
which we should expect if the error estimates for the yi are
accurate we have lnoiseq ð�Þ< 0 for �> 0. A more conser-

vative approach would therefore be to use the data to check
whether the scatter in the data points is as one would expect
given the quoted errors, and if it is not extend the errors
bars. We outline the method we use to do this in Sec. C 1
below. Essentially, the highest frequency modes of any
chameleonic signal, i.e. those with k � N � 1, also pro-
duce the smallest contribution to the overall signal; all
other modes are approximately constant over wavelength
scales of about �crit=ðN � 1Þ. Thus, provided there are
enough data points, we can use the variance of the data
points on scales & �crit=ðN � 1Þ to estimate their error.

We make a similar set of definitions for the ûi data, for
which luð�Þ is the log likelihood, and define the total log
likelihood to be lð�Þ ¼ luð�Þ þ lqð�Þ. We define the maxi-

mum likelihood estimate of �, �̂, to be the value of �,
which maximizes lð�Þ. There are now a number of ap-
proaches we may take to estimate the confidence intervals.
The simplest approach is to assume that the values of � are
normally distributed with some variance 	2

�. We then

estimate 	2
� as

	2
� ¼ � 1

l;��ð�̂Þ
: (C13)

A 95% confidence interval for � is then estimated to be

� ¼ �̂� 1:96	�. Since the quantity we are actually in-

terested in is x � jBjL=2M ¼ ffiffiffiffiffiffiffi
2�

p
, we display all con-

fidence limits as constraints on the value of x. We refer to
this as the normal approximation and label it (NA). The

second approach is to assume that rð�; �̂Þ ¼ 2ðlð�̂Þ �
lð�ÞÞ � �2

1, which should hold as the number of observa-
tions tends to infinity; the approximate 95% confidence

interval for � is all � for which rð�; �̂Þ< 3:84. We trans-
form this into an approximate confidence interval for x by

taking x̂ ¼
ffiffiffiffiffiffiffi
2�̂

q
. We refer to this as the �2 approximation,

labeled (�2). A more robust approach to estimating con-
fidence intervals is to bootstrap the ûi and q̂i data. Wemake
B bootstrap data sets constructed by resampling with re-
placement Np data points for both ûi and the q̂i from the

original data. For each bootstrap data set we construct the

�̂ and 	2
� in the same way as was done in the normal

approximation, defining them to be �̂ and 	2
�. Now there

are a number of different bootstrap methods for estimating
confidence intervals. We use the bootstrap-tmethod, which
generally has better convergence than the usual bootstrap

method. We assume that the distribution of t ¼
ð�̂� �Þ=	� is well approximated by the distribution of

the bootstrap parameter t ¼ ð�̂ � �̂Þ=	�. The lower

limit, �


of the bootstrap-t 100ð1–2
Þ% confidence inter-

val for � is therefore given by


 ¼ P

�
�� �̂

	�

<
�



� �̂

	�

�
¼ Pðt >�tÞ

¼ 1� Pðt <�t
Þ;

where t
 ¼ �


��̂

	�
. We estimate Pðt <�t
Þ by Pðt <

�t
Þ ¼ GBootð�t
Þ, where

Pðt < sÞ � GBootð�Þ ¼ #ðt < sÞ
B

:

Thus, we have

�
 ¼ �̂� 	�G
�1
Bootð1� 
Þ:

Similarly the upper limit is

��
 ¼ �̂� 	�G
�1
Bootð
Þ:

We define the central estimate of � to be �m ¼
�̂� 	�G

�1
Bootð1=2Þ. If �̂ is an unbiased estimator for �

then G�1
Bootð1=2Þ ¼ 0 and we have �m ¼ �̂. We label this

approximation (Bt). In all cases given below we have used
B ¼ 5� 104 bootstrap resamplings. When the error bars
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are rescaled as described above and in Sec. C 1, we con-
struct confidence intervals in both the normal approxima-
tion, and using the �2 technique; we label these approaches
(NA-	) and (�� 	), respectively.

Using starlight polarization data for three objects from
the WUPPE spectrograph with a spectral resolution of
16 Å and a spacing between data points of 2 Å, we are

able to find useful constraints. In all cases we take �crit ¼
608 �A. A more thorough analysis would attempt to also fix
�crit, given some reasonable priors about the electron den-
sity ne, the chameleon mass m�, and the coherence length.

In all cases we take �smooth ¼ 100 �A. We find that for

75 �A & �smooth & 200 �A our results do not depend greatly
on �smooth. For the first star, HD2905 (d ¼ 880 pc), we
have the following approximate 95% confidence limits for
x ¼ BL=2M:

x ¼ ð6:36þ0:92
�1:07Þ � 10�2 ðNAÞ;

x ¼ ð6:36þ1:06
�0:91Þ � 10�2 ð�2Þ;

x ¼ ð4:68þ1:44
�1:70Þ � 10�2 ðBtÞ;

x ¼ ð4:11þ0:66
�0:78Þ � 10�2 ðNA� 	Þ;

x ¼ ð4:11þ0:77
�0:66Þ � 10�2 ð�2 � 	Þ:

(C14)

Even when the error bars are extended as described above,
we have that rðx̂Þ ¼ 2lðx̂Þ ¼ 91:9; indicating that the maxi-
mum likelihood estimate for x deviates from 0 by more
than 9:5	 in the �2 � 	 approximation. We note that for

HD2905, �crit � 610 �A is a local maximum of the like-
lihood the maximum likelihood estimate (MLE) for x.

The last three techniques are all in rough agreement. We
see the same behavior in the analysis of simulated data that
we have undertaken; these simulations also show that the
last three techniques are most accurate, and are robust to
the actual errors being larger than the quoted ones. From
these simulations we also find that by approximating the Xk

and Yk as independent identically distributed Nð0; 1Þ ran-
dom variables, we reduce the likelihood of the MLE for x,
but do not greatly alter the value of the MLE.

For two other objects (again assuming �crit ¼ 608 �A),
we find similar results. For HD39703, at d ¼ 880 pc, we
find

x ¼ ð8:69þ1:36
�1:62Þ � 10�2 ðNAÞ;

x ¼ ð8:69þ1:58
�1:39Þ � 10�2 ð�2Þ;

x ¼ ð7:59þ1:63
�1:47Þ � 10�2 ðBtÞ;

x ¼ ð8:11þ1:50
�1:84Þ � 10�2 ðNA� 	Þ;

x ¼ ð8:11þ1:70
�1:58Þ � 10�2 ð�2 � 	Þ:

(C15)

When the error bars are extended as described above we
have rðx̂Þ ¼ 2lðx̂Þ ¼ 74:9. This implies that, in the �2 � 	
approximation, x ¼ 0 is more than 8:6	 from the maxi-
mum likelihood estimate of x. For HD34078 (d ¼ 610 pc)

we have

x ¼ ð9:95þ1:73
�2:11Þ � 10�2 ðNAÞ;

x ¼ ð9:95þ2:09
�1:75Þ � 10�2 ð�2Þ;

x ¼ ð8:58þ2:15
�1:85Þ � 10�2 ðBtÞ;

x ¼ ð9:41þ1:93
�2:45Þ � 10�2 ðNA� 	Þ;

x ¼ ð9:41þ2:25
�2:03Þ � 10�2 ð�2 � 	Þ:

(C16)

In this case, rðx̂Þ ¼ 2lðx̂Þ ¼ 84:9 when the error bars are
extended. This again implies that the maximum likelihood
estimate for x deviates from 0 by more than 9	 in the �2 �
	 approximation. As expected from simulations, the last
three techniques are all in rough agreement.
If we assume that the same value of BL=2M should be

appropriate for all three objects (which may not necessarily
be the case), then combining all three data sets we find the
following 95% confidence intervals:

x ¼ ð7:95þ0:81
�0:91Þ � 10�2 ðNAÞ;

x ¼ ð7:95þ0:88
�0:83Þ � 10�2 ð�2Þ;

x ¼ ð6:25þ1:16
�1:23Þ � 10�2 ðBtÞ;

x ¼ ð6:03þ0:76
�0:87Þ � 10�2 ðNA� 	Þ;

x ¼ ð6:03þ0:85
�0:76Þ � 10�2 ð�2 � 	Þ:

(C17)

The log likelihood of the MLE of x when the errors have
been rescaled is r ¼ 2 loglðx̂Þ ¼ 214; indicating a more
than 14:6	 deviation from 0 in the �2 approximation. As
with all three objects separately, we see that there is rough
agreement between the last three approaches, although, as
was the case for the three objects separately, the error bars
are widest in the bootstrap-t approximation.
Combining all the data in the standard approach (assum-

ing the same value of x ¼ BL=2M is appropriate for all),
and using the bootstrap-t method, we find the following
99.9% confidence intervals:

BL

2M
¼ ð6:252:00�2:19Þ � 10�2; ð99:9%Þ: (C18)

Using the bootstrap-t method, inasmuch as the resolution
of the bootstrap distribution allows, we find that, defining
	x ¼ 	�=x, the distribution of S0ðx̂ � x̂Þ=	x þ S1 is

approximately Nð0; 1Þ for some S0 and S1. If we assume
that the distribution of ðx̂ � x̂Þ=	x is a good approxima-
tion to that of ðx̂� xÞ=	x, we have

x ¼ BL

2M
¼ ð6:27� 0:58Þ � 10�2; (C19)

where this time the quoted error bars are 1	. This corre-
sponds to a more than 10:7	 deviation from 0, and pro-
vides the following 95% and 99.9% approximate
confidence intervals:
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BL

2M
¼ ð6:27� 1:14Þ � 10�2; ð95%Þ; (C20)

BL

2M
¼ ð6:27� 1:91Þ � 10�2; ð99:9%Þ: (C21)

Using our estimated values for B and L we have at
99.9% confidence

M ¼ ð1:47þ0:64
�0:35Þ � 109 GeV; ð99:9%Þ: (C22)

Although this analysis is only preliminary, it does appear
as if there is a reasonably significant, and robust, statistical
preference toward the existence of a chameleonlike field in
the starlight polarization data of the three objects we have
considered here. A fuller analysis would have to take into
account more, even all, comparable starlight polarization
measurements. Additionally, one would also wish to fit for
�crit.

1. Extending the estimated errors

In this subsection we provide further details of how we
extend the errors bars on the data to better mask the
observed small scale scatter. We expect any chameleon
induced fluctuations of the polarization on wavelength
scales smaller than �crit=ðN � 1Þ to be small compared
with that on larger scales between �crit=ðN � 1Þ and �crit.

In all cases, we estimate �crit=ðN � 1Þ * 16 �A. For each
smoothed data point ð�i; ûi; q̂iÞ, we use the data points

labeled j with 2j�i � �jj< 16 �A to estimate the random

(or nonchameleonic) scatter in the data. The estimated
standard errors in the smoothed data points are 	̂i. We
define, as we did above, Ji ¼ fj:2j�i � �jj< �smoothg,
where this time �smooth ¼ 16 �A.

We assume that the data points in Ji have mean � and

standard error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	̂2

j þ �	2
q

, where �	2 is to be found (�

and 	̂will be different for the q̂i and the ûi). For data points
xj, with estimated standard error 	̂j, where j 2 Ji, we

estimate � by �� its maximum likelihood estimator

��ð�	2Þ ¼
P
j2Ji

xj
	̂2
jþ�	2P

j2Ji

1
	̂2
jþ�	2

: (C23)

Similarly, for each i, we estimate �	2 by its MLE � �	2
i ,

which satisfies

X
j2Ji

ðxj � ��Þ2
ð	̂2

j þ �	2Þ2 ¼
X
j2Ji

1

	̂2
j þ �	2

: (C24)

If no solutions to this equation exist, then we take � �	2
i ¼

0. Finally, we smooth the � �	2
i over a 100 Å smoothing

scale, giving �	̂2
i . We take the final enhanced error to be

~	i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	̂2

i þ �	̂2
i

q
. Although this procedure is rather

ad hoc, by enhancing the error bars, we err on the side of
caution and reduce the probability that under-estimated
error bars result in a spurious detection of � � 0.
We present estimated confidence intervals where the

error bars have been extended using the normal approxi-
mation and the �2 approximation; we label these two
approaches (NA-	) and (�2 � 	), respectively.

2. Estimating upper bounds on BL=2M

It is also possible to find upper confidence limits on
BL=2M, simply from the observation that the component
of polarization perpendicular to the mean polarization
angle is smaller than some upper bound, i.e. jP?ð�Þj<
pmax. Suppose the observations of P? are qi, and that we
have the maximum value of the q2i < p2

max. If a chameleon
field is present, and assuming that the polarization angle of
any intrinsic polarization is roughly constant, we predict
q2i ¼ �2ðPkXkhkiÞ2. If the intrinsic polarization angle is
not constant then we will generally be biased in favor of
larger values �, and so this approach can also be trusted to
provide upper bounds on BL=2M. Using numerical simu-
lations we can estimate the distribution of w ¼
maxðPkXkhkiÞ2 and for 0<
< 1 calculate w
 the proba-
bility that

Pðw<w
Þ ¼ 
 ¼ Pð�2w<�2w
Þ:
By defining q2max ¼ maxq2i we then have

Pð�2 < q2max=w
Þ ¼ 1� 
:

Thus, q2max=w
 ¼ p2
max=w
 ¼ ��2


 is a estimate of the
100ð1� 
Þ% upper confidence limit on �2. Generally
this is an overestimate of the true upper confidence limit,
and so �< ��
 with at least 100ð1� 
Þ% confidence.
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