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The gauge polyvalence of a new numerical code is tested, both in harmonic-coordinate simulations

(gauge-waves test bed) and in singularity-avoiding coordinates (simple black-hole simulations, either with

or without shift). The code is built upon an adjusted first-order flux-conservative version of the Z4

formalism and a recently proposed family of robust finite-difference high-resolution algorithms. An

outstanding result is the long-term evolution (up to 1000M) of a black hole in normal coordinates (zero

shift) without excision.
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I. INTRODUCTION

In a recent paper [1], Kiuchi and Shinkai have analyzed
numerically the behavior of many ‘‘adjusted’’ versions of
the BaumgarteShapiroShibataNakamura (BSSN) system.
This is a follow-up of a former proposal [2] for using the
energy-momentum constraints to modify numerical rela-
tivity evolution formalisms. An important point was to put
the constraint propagation system (subsidiary system) in a
strongly-hyperbolic form, so that constraint violations can
propagate out of the computational domain. As a further
step, there is also the possibility of introducing damping
terms, which would attract the numerical solution towards
the constrained subspace.

At the first sight, one could wonder why this idea is still
deserving some interest today, when the BSSN system is
being successfully used in binary-black-holes simulations.
Waveform templates are currently being extracted for dif-
ferent mass and spin configurations, with an accuracy level
that depends just on the computational resources (includ-
ing the use of mesh-refinement and/or higher-order finite-
difference algorithms). The same is true for neutron stars
simulations, where the BSSN formalism is currently used
for evolving the spacetime geometry [3–6]. But these
success scenarios have a weak point: the BSSN simulations
are based on the combination of the ‘‘1þ log’’ and
‘‘Gamma-driver’’ gauge conditions, as proposed in
Ref. [7] for the first long-term dynamical simulation of a
single black hole (BH) without excision.

Concerning BH simulations, we can understand that
dealing numerically with collapse singularities requires
the use of either excision, or time slicing prescriptions
with strong singularity-avoidance properties. In the
‘1þ log’ case, there is actually a ‘‘limit hypersurface",
so that the numerical evolution gets safely bounded away
from collapse singularities. But singularity-avoidance is a
property of the time coordinate, which should then be
independent of the space coordinates prescription. In the

spirit of general relativity, we should expect a gauge-
polyvalent numerical code to work as well in normal
coordinates (zero shift), even if some specific type of
time slicing condition (lapse choice) is required for BH
simulations. Moreover, this requirement should be ex-
tended to other dynamical choices of the space coordinates.
This means that a gauge-polyvalent numerical code should
also work with alternative shift prescriptions, provided that
the proposed choices preserve the regularity of the con-
gruence of time lines. And this should be independent of
the fact that a freezing of the dynamics is obtained or not as
a result. These considerations apply a fortriori to neutron
star simulations without any BH in the final stage, where
no singularity is expected to form.
The above proposed gauge-polyvalence requirements,

which are in keeping with the spirit of general relativity,
may seem too ambitious, allowing for the fact that they are
not fulfilled by current BH codes. But the need for im-
provement is even more manifest by looking at the results
of the gauge-waves test. This test consists in evolving
Minkowsky spacetime in nontrivial harmonic coordinates,
and was devised for cross-comparing the numerical codes
performance [8]. In Ref. [1], the authors assay different
adjustments in order to correct the poor performance of
‘‘plain’’ BSSN codes, which was previously reported in
Ref. [9]. They manage to get long-term evolutions for the
small amplitude case (A ¼ 0:01) with a standard second-
order-accurate numerical algorithm. The same result was
previously achieved by using a fourth-order accurate finite
differences scheme [10]. Even in this case, however, the
results for the medium amplitude case (A ¼ 0:1) are dis-
appointing. More details can be found in a more recent
cross-comparison paper [11], where actually a higher
benchmark (big amplitude, A ¼ 0:5, devised for testing
the nonlinear regime) is proposed.
One could argue that the gauge-waves test is not relevant

for real simulations, because periodic boundary conditions
do not allow constraint violations to propagate out of the
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computational domain [9]. In BH simulations, however,
constraint violations arising inside the horizon cannot get
out, unless all the characteristic speeds of the subsidiary
system are adjusted to be greater than light speed. As far as
this extreme adjustment is not implemented in the current
evolution formalisms, the gauge-waves test results can be
indeed relevant, at least for nonexcision BH codes. As a
result, in keeping with the view expressed in Ref. [1], we
are convinced that either an improvement of the current
BSSN adjustments or any alternative formulation would be
welcome, as far as it could contribute to widen the gauge-
polyvalence of numerical relativity codes.

In this paper we will consider an alternative numerical
code consisting in two main ingredients. The first one is the
Z4 strongly-hyperbolic formulation of the field equations
[12]. The original (second order) version needs no adjust-
ment for the energy and momentum constraints, as far as
constraint deviations propagate with light speed, although
some convenient damping terms have been also proposed
[13]. We present in Sec. II a first-order version, which has
been adjusted for the ordering constraints which arise in
the passage from the second-order to the first-order formal-
ism. Its flux-conservative implementation is described in
Appendix A. The second ingredient is the recently devel-
oped FDOC algorithm [14], which is a (unlimited) finite-
difference version of the Osher-Chakrabarthy finite-
volume algorithm [15], along the lines sketched in a pre-
vious paper [16]. Although this algorithm, detailed in
Appendix B, allows a much higher accuracy, we will
restrict ourselves here to the simple cases of third and
fifth-order accuracy, which have shown an outstanding
robustness, confirmed by standard tests from Com-
putational Fluid Dynamics, including multidimensional
shock interactions [14].

The results for the gauge-waves test are presented in
Sec. III, where just a small amount of dissipation, without
any visible dispersion error, shows up after 1000 crossing
times, even for the high amplitude (A ¼ 0:5) case.
Simulations of a 3D BH in normal coordinates are pre-
sented in Sec. IV, where we consider many variants of the
‘‘Bona-Massó’’ singularity-avoidant prescription [17]. As
expected, the best results for a given resolution are ob-
tained for the choices with a limit hypersurface far away
from the singularity. For the f ¼ 2=� choice, the BH
evolves in normal coordinates at least up to 1000M in a
uniform grid with logarithmic space coordinates. This is
one order of magnitude greater than the normal-
coordinates BSSN result, as reported in [7].

Concerning the shift conditions, we have tested in
Sec. V many explicit first-order prescriptions in single
BH simulations. The idea is just to test the gauge-
polyvalence of the code, so no physically motivated con-
dition has been imposed, apart from the three-covariance
of the shift under arbitrary time-independent coordinate
transformations. Our results confirm that the proposed

code is not specially tuned for normal coordinates (zero
shift).

II. ADJUSTING THE FIRST-ORDER Z4
FORMALISM

The Z4 formalism is a covariant extension of the
Einstein field equations, defined as [12]

R�� þr�Z� þr�Z� ¼ 8�

�
T�� � 1

2
Tg��

�
: (1)

The four-vector Z� is an additional dynamical field, which

evolution equations can be obtained from (1). The solu-
tions of the original Einstein’s equations can be recovered
when Z� is a Killing vector. In the generic case, the Killing

equation has only the trivial solution Z� ¼ 0, so that true

Einstein’s solutions can be easily recognized.
The manifestly covariant form (1) can be translated into

the 3þ 1 language in the standard way. The covariant four-
vector Z� will be decomposed into its space components

Zi and the normal time component

� � n�Z
� ¼ �Z0; (2)

where n� is the unit normal to the t ¼ constant slices. The

3þ 1 decomposition of (1) is given then by [12]

ð@t �L�Þ�ij ¼ �2�Kij (3)

ð@t �L�ÞKij ¼ �ri�j þ �

�
Rij þriZj þrjZi � 2K2

ij

þ ðtrK � 2�ÞKij

� 8�

�
Sij � 1

2
ðtrS� �Þ�ij

��
(4)

ð@t �L�Þ� ¼ �

2
½Rþ 2rkZ

k þ ðtrK � 2�ÞtrK
� trðK2Þ � 2Zk�k=�� 16��� (5)

ð@t �L�ÞZi ¼ �½rjðKi
j � �i

j trKÞ þ @i�� 2Ki
jZj

���i=�� 8�Si�: (6)

The evolution system can be completed by providing
suitable evolution equations for the lapse and shift compo-
nents.

@t� ¼ ��2Q; @t�
i ¼ ��Qi: (7)

We will keep open at this point the choice of gauge con-
ditions, so that the gauge-derived quantities fQ;Qig can be
either a combination of the other dynamical fields or
independent quantities with their own evolution equation.
We are assuming, however, that both lapse and shift are
dynamical quantities, so that terms involving derivatives of
fQ;Qig actually belong to the principal part of the evolu-
tion system.
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A. First-order formulation: ordering constraints

In order to translate the evolution system (3)–(7) into a
fully first-order form, the space derivatives of the metric
components (including lapse and shift) must be introduced
as new independent quantities:

Ai � @i ln�; Bk
i � @k�

i; Dkij � 1

2
@k�ij: (8)

Note that, as far as the new quantities will be computed
now through their own evolution equations, the original
definitions (8) must be considered rather as constraints
(first-order constraints), namely

A k � Ak � @k ln� ¼ 0 (9)

B k
i � Bk

i � @k�
i ¼ 0 (10)

D kij � Dkij � 1

2
@k�ij ¼ 0: (11)

Note also that we can derive in this way the following set of
constraints, related with the ordering of second derivatives
(ordering constraints):

C ij � @iAj � @jAi ¼ @iAj � @jAi ¼ 0; (12)

C rs
i � @rBs

i � @sBr
i ¼ @rBs

i � @sBr
i ¼ 0; (13)

C rsij � @rDsij � @sDrij ¼ @rDsij � @sDrij ¼ 0: (14)

The evolution of the lapse and shift space derivatives
could be obtained easily, just by taking the time derivative
of the definitions (8) and exchanging the order of time and
space derivatives. But then the characteristic lines for the
transverse-derivative components in (8) would be the time
lines (zero characteristic speed). This can lead to a char-
acteristic degeneracy problem, because the characteristic
cones of the second-order system (4)–(6) are basically the
light cones [12], and the time lines can actually cross the
light cones, as it is the case in many black-hole simula-
tions. In order to avoid this degeneracy problem, we can
make use of the shift ordering constraint (13) for obtaining
the following evolution equations for the additional quan-
tities (8):

@tAk þ @l½��lAk þ �l
kð�Qþ �rArÞ� ¼ Bk

lAl � trBAk

(15)

@tBk
i þ @l½��lBk

i þ �l
kð�Qi þ �rBr

iÞ�
¼ Bk

lBl
i � trBBk

i (16)

@tDkij þ @l½��lDkij þ �l
kf�Kij � 1=2ðBij þ BjiÞg�

¼ Bk
lDlij � trBDkij: (17)

Note that the characteristic lines for the transverse-
derivative components are now the normal lines (instead
of the time lines), so that characteristic crossing is actually
avoided. This ordering adjustment is crucial for long-term
evolution in the dynamical shift case, as it has been yet
realized in the first-order version of the generalized-
harmonic formulation [18].

B. Damping terms adjustments

A further adjustment could be the introduction of some
constraint-violation damping terms. For the energy-
momentum constraints, these terms can be added to the
evolution Eqs. (4)–(6), as described in Ref. [13].
For the ordering constraints, we can also introduce

simple constraint-violation damping terms when required.
For instance, Eq. (15) could be modified as follows:

@tAi þ @l½��lAi þ �l
ið�Qþ �rArÞ�

¼ Bi
lAl � trBAi � 	Ai; (18)

with the damping parameter in the range 0 � 	 � 1=�t.
The same pattern could be applied to Eqs. (16) and (17).
In order to justify this, let us analyze the resulting

evolution equations for the first-order constraints (9).
Allowing for (15), we would get

@tAk � �rð@rAk � @kArÞ ¼ Bk
rAr �Br

rAk: (19)

The hyperbolicity of the subsidiary evolution Eq. (19) can
be analyzed by looking at the normal and transverse com-
ponents of the principal part along any space direction ~n,
namely

@tAn � �?ð@nA?Þ ¼ 0 (20)

@tA? � �nð@nA?Þ ¼ 0; (21)

with eigenvalues ð0;��nÞ, which is just weakly hyperbolic
in the fully degenerate case, that is for any space direction
orthogonal to the shift vector. Note that this is just the
subsidiary system governing constraint violations, not the
evolution system itself. This means that the main concern
here is accuracy, rather than stability. But the resulting
(linear) secular growth of first-order constraint violations
may become unacceptable in long-term simulations.
These considerations explain the importance of adding

constraint-damping terms, so that (15) is replaced by (18).
The damping term �	Ak will appear as a result in the
subsidiary system also. The linearly growing constraint-
violation modes arising from the degenerate coupling in
(20) will be kept then under control by these (exponential)
damping terms. The same argument applies mutatis mu-
tandis to the remaining first-order constraints Bk

i, Dkij.

C. Secondary ordering ambiguities

The shift ordering constraints (13) can also be used for
modifying the first-order version of the evolution Eq. (6) in
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the following way

ð@t �L�ÞZi ¼ �½rjðKi
j � �i

j trKÞ þ @i�� 2Ki
jZj

��Ai � 8�Si� ��ð@jBi
j � @i trBÞ:

(22)

Also, the ordering constraints (14) can be used for selecting
a specific first-order form for the three-dimensional Ricci
tensor appearing in (4) [19]. This can be any combination
of the standard Ricci decomposition

Rij ¼ @k�
k
ij � @i�

k
kj þ �r

rk�
k
ij � �k

ri�
r
kj (23)

with the De Donder decomposition

Rij ¼ �@kD
k
ij þ @ði�jÞk

k � 2Dr
rkDkij þ 4Drs

iDrsj

� �irs�j
rs � �rij�

rk
k; (24)

which is most commonly used in numerical relativity
codes. Following Ref. [19], we will introduce an ordering
parameter 
, so that 
 ¼ 1 corresponds to the Ricci de-
composition (23) and 
 ¼ �1 to the De Donder one (24).

The choices of � and 
 do not affect the characteristic
speeds of the evolution system (see Appendix A for de-
tails), nor the structure of the subsidiary system. In this
sense, these are rather secondary ordering ambiguities and
we will keep these parameters free for the moment,
although there are some prescriptions that can be theoreti-
cally motivated:

(i) The choice � ¼ 1=2, 
 ¼ �1 allows to recover at
the first-order level the equivalence between the
generalized-harmonic formulation and (the second-
order version of) the Z4 formalism, given by [13]

Z� ¼ 1

2
��

��g
�� (25)

(see Appendix A for more details). This can be
important, because the harmonic system is known
to be symmetric hyperbolic.

(ii) The choice � ¼ 1 is the only one that ensures the
strong hyperbolicity of the Z3 system, obtained
from the Z4 one by setting 
 ¼ 0. This can be
relevant if we are trying to keep energy-constraint
violations close to zero. Allowing for the quasi-
equivalence between the Z3 and the BSSN systems
[19], this adjustment will affect as well to the first-
order version of the BSSN system (NOR system
[20]) in simulations using dynamical shift condi-
tions. The same comment applies to the old ‘‘Bona-
Massó’’ system [21].

(iii) The choice 
 ¼ 0 ensures that the first-order ver-
sion contains only symmetric combinations of sec-
ond derivatives of the space metric. This is a
standard symmetrization procedure for obtaining
a first-order version of a generic second-order
equation.

In the numerical simulations in this paper, we have taken
� ¼ 1, 
 ¼ �1, although we have also tested other com-
binations, which also lead to long-term stability.

III. GAUGE WAVES TEST

We will begin with a test devised for harmonic coordi-
nates. Let us consider the following line element:

ds2 ¼ Hðx� tÞð�dt2 þ dx2Þ þ dy2 þ dz2; (26)

whereH is an arbitrary function of its argument. One could
naively interpret this as the propagation of an arbitrary
wave profile with unit speed. But it is a pure gauge effect,
because (26) is nothing but the Minkowsky metric, written
in some nontrivial harmonic coordinates system.
As proposed in Refs. [8,11], we will consider the ‘‘gauge

waves’’ line element (26), with the following profile:

H ¼ 1� A sinð2�ðx� tÞÞ; (27)

so that the resulting metric is periodic and we can identify
for instance the points �0:5 and 0.5 on the x axis. This
allows to set up periodic boundary conditions in numerical
simulations, so that the initial profile keeps turning around
along the x direction. One can in this way test the long-
term effect of these gauge perturbations. The results show
that the linear regime (small amplitude, A ¼ 0:01) poses
no serious challenge to most numerical relativity codes
(but see Ref. [1] for the BSSN case). Following the recent
suggestion in Ref. [11], we will then focus in the medium
and big amplitude cases (A ¼ 0:1 and A ¼ 0:5, respec-
tively), in order to test the non-linear regime. Concerning
grid spacing, although �x ¼ 0:01 would be enough for
passing the test in the medium amplitude case, the big
amplitude one requires more resolution, so we have taken
�x ¼ 0:005 in both cases.
The results of the numerical simulations are displayed in

Fig. 1 for the H function (the �xx metric component). The
left panel shows the medium amplitude case A ¼ 0:1. Only
a small amount of numerical dissipation is barely visible
after 1000 round trips: the third-order-accurate finite-
difference method gets rid of the dominant dispersion
error. For comparison, let us recall that the corresponding
BSSN simulation crashes before 100 round trips [10]. The
right panel shows the same thing for the large amplitude
case A ¼ 0:5, well inside the nonlinear regime. We see
some amplitude damping, together with a slight decrease
of the mean value of the lapse.
Our results are at the same quality level than the ones

reported in Ref. [11] for the flux-conservative generalized-
harmonic code Abigail (see also the ‘‘apples with apples’’
webpage [22]), which is remarkable for a test running in
strictly harmonic coordinates. We can also compare with
the simulations reported in Ref. [23] for (a specific variant
of) the KST evolution system [24]. Although the gauge-
wave parametrization is not the standard one, both their
‘‘big amplitude’’ case and their finest resolution are similar
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to ours. We see a clear phase shift, due to cumulative
dispersion errors, after about 500 crossing times. We see
also a growing amplitude mode, which can be moderated
with resolution (for the finest one, it just compensates
numerical dissipation). This can be related with the spu-
rious linear mode that has been reported for harmonic
systems which are not written in flux-conservative form
[8].

We can conclude that there are two specific ingredients
in our code that contribute to the gauge-wave results in an
essential way: the flux-conservative form of the equations
(see Appendix A), which gets rid of the spurious growing
amplitude modes, and the third-order accuracy of the
numerical algorithm, which reduces the dispersion error
below the visual detection level in Fig. 1, even after 1000
crossing times.

IV. SINGLE BLACK HOLE TEST: NORMAL
COORDINATES

We will try next to test a Schwarzschild black-hole
evolution in normal coordinates (zero shift). Harmonic
codes are not devised for this gauge choice, so we will
compare with BSSN results instead. Concerning the time
coordinate condition, our choice will be limited by the
singularity-avoidance requirement, as far as we are not
going to excise the black-hole interior. Allowing for these
considerations, we will determine the gauge evolution
Eqs. (7) as follows

Q ¼ fðtrK �m�Þ; Qi ¼ 0 ð�i ¼ 0Þ; (28)

where the second gauge parameter m is a feature of the Z4

formalism. We will choose here by defaultm ¼ 2, because
the evolution equation for the combination trK � 2�, as
derived from (4) and (5), actually corresponds with the
BSSN evolution equation for trK (see Ref. [19] for the
relationship between BSSN and Z4 formalisms).
Concerning the first gauge parameter, we will consider

first the 1þ log choice f ¼ 2=� [25], which is the one
used in current binary BH simulations in the BSSN formal-
ism. The name comes from the resulting form of the lapse,
after integrating the evolution Eqs. (3) and (7) with the
prescription (28) for true Einstein’s solutions (� ¼ 0):

� ¼ �0 þ lnð�=�0Þ; (29)

where
ffiffiffiffi
�

p
is the space volume element. It follows from

(29) that the coordinate time evolution stops at some limit
hypersurface, before even getting close to the collapse
singularity. This happens when

ffiffiffiffiffiffiffiffiffiffiffi
�=�0

q
¼ expð��0=2Þ; (30)

that is well before the vanishing of the space volume
element: the initial lapse value is usually close to 1, so
that the final volume element is still about a 60% of the
initial one. This can explain the robustness of the 1þ log
choice in current black-hole simulations.
We will consider as usual initial data on a time-

symmetric time slice (Kij ¼ 0) with the intrinsic metric

given in isotropic coordinates:

�ij ¼
�
1þ m

2r

�
4
�ij: (31)
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FIG. 1. Gauge waves simulation with periodic boundary conditions and sinusoidal initial data for the �xx metric component. The
resolution is �x ¼ 0:005 in both cases. The left panel corresponds to the medium amplitude case A ¼ 0:1. After 1000 round trips, the
evolved profile (cross marks) nearly overlaps the initial one (continuous line), which corresponds also with the exact solution. The right
panel corresponds to the same simulation for the big amplitude case A ¼ 0:5. We see the combination of a slight decrease in the mean
value plus some amplitude damping.
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This is the usual ‘‘puncture’’ metric, with the apparent
horizon at r ¼ m=2: the interior region is isometric to the
exterior one, so that the r ¼ 0 singularity is actually the
image of space infinity. We prefer, however, to deal with
nonsingular initial data. We will then replace the constant
mass profile in interior region r <M=2 by a suitable
profile mðrÞ, so that the interior metric corresponds to a
scalar field matter content. Of course, the scalar field itself
must be evolved consistently there (see Appendix C for
details). A previous implementation of the same idea, with
dust interior metrics, can be found in Ref. [26].

We have performed a numerical simulation for the f ¼
2=� case with a uniform grid with resolution h ¼ 0:1M,
extending up to r ¼ 20M (no mesh-refinement). We have
used the third and fifth-order FDOC algorithms, as de-
scribed in Appendix B, with the optimal dissipation pa-
rameters for each case. The results for the lapse profile are
shown in Fig. 2 at t ¼ 20M an t ¼ 40M. We see in both
cases that the higher-order algorithm leads to steeper pro-
files and a slower propagation of the collapse front. Note
that the differences in the front propagation speed keep
growing in time, although the third-order plot at t ¼ 40M
is clearly affected by the vicinity of the outer boundary.
This fact does not affect the code stability, as far as we can
proceed with the simulations beyond t ¼ 50M, when the
collapse front gets out of the computational domain (be-
yond t ¼ 60M in the higher-order simulations). Note that
the corresponding BSSN simulations (f ¼ 2=� in normal
coordinates) are reported to crash at about t ¼ 40M [7].

We have added for comparison an extra plot in Fig. 2,
with the results at t ¼ 20M of a third-order simulation with
double resolution (h ¼ 0:05M), obtained in a smaller com-
putational domain (extending up to 10M). Both the posi-
tion and the slope of the collapse front coincide with those
of the fifth-order algorithm with h ¼ 0:1M. In this case,
switching to the higher-order algorithm amounts to dou-
bling accuracy. Note, however, that higher-order algo-
rithms are known to be less robust [14]. Moreover, as the
profiles steepen, the risk of under-resolution at the collapse
front increases. We have found that a fifth-order algorithm
is a convenient trade-off for our h ¼ 0:1M resolution in
isotropic coordinates.
We have also explored other slicing prescriptions with

limit surfaces closer to the singularity, as described in
Table I. Note that in these cases the collapse front gets
steeper than the one shown in Fig. 2 for the standard f ¼
2=� case with the same resolution. This poses an extra
challenge to numerical algorithms, so we have switched to
the third-order-accurate one for the sake of robustness. In
all cases, the simulations reached t ¼ 50M without prob-
lem, meaning that the collapse front has get out of the
computational domain. It follows that the standard pre-
scription f ¼ 2=�, although it leads actually to smoother
profiles, is not crucial for code stability.
The results shown in Fig. 2 compare with the ones in

Ref. [27], obtained with (a second-order version of) the old
Bona-Massó formalism. We see the same kind of steep
profiles, produced by the well-known slice-stretching
mechanism [28]. This poses a challenge to standard nu-
merical methods: in Ref. [27] Finite-Volume methods
where used, including slope limiters. Our FDOC algorithm
(see Ref. [14] for details) can also be interpreted as an
efficient Finite-Differences (unlimited) version of the
Osher-Chakrabarthy Finite-Volume algorithm [15]. Note
however that in Ref. [27], like in the BSSN case, a con-
formal decomposition of the space metric was considered,
and an spurious (numerical) trace mode arise in the trace-
free part of the extrinsic curvature. An additional mecha-
nism for resetting this trace to zero was actually required
for stability. In our (first-order) Z4 simulations, both the
plain space metric and extrinsic curvature can be used
directly instead, without requiring any such trace-cleaning
mechanisms.
Let us take one further step. Note that the lifetime of our

isotropic coordinates simulations (with no shift) is clearly
limited by the vicinity of the boundary (at r ¼ 20M). At

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

t=20M

t=40M

3rd h=0.1M
3rd h=0.05M

5th h=0.1M

FIG. 2. Plots of the lapse profiles at t ¼ 20M and t ¼ 40M.
The results for the third-order accurate algorithm (continuous
lines) are compared with those for the fifth-order algorithm
(dotted lines) for the same resolution (h ¼ 0:1M). We have
also included for comparison one extra line, corresponding to
the third-order results with h ¼ 0:05M, computed in a reduced
mesh. Increasing resolution leads to a slope steepening and a
slower propagation of the collapse front. In this sense, as we can
see for t ¼ 20M, switching to the fifth-order algorithm while
keeping h ¼ 0:1M amounts to doubling the resolution for the
third-order algorithm.

TABLE I. Different prescriptions for the gauge parameter f,
with the corresponding values of the residual volume element at
the limit surface (normal coordinates), assuming a unit value of
the initial lapse.

f 2=� 1þ 1=� 1=2þ 1=� 1=�ffiffiffiffiffiffiffiffiffiffiffi
�=�0

p
61% 50% 44% 37%
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this point, we can appeal to space coordinates freedom,
switching to some logarithmic coordinates, as defined by

R ¼ L sinhðr=LÞ; (32)

where R is the new radial coordinate and L some length
scale factor. This configuration suggests using the third-
order algorithm because of its higher robustness. We have
performed a long-term numerical simulation for the f ¼
2=� case, with L ¼ 1:5M, so that R ¼ 20M in these
logarithmic coordinates corresponds to about r ¼
463:000M in the original isotropic coordinates. In this
way, as shown in Fig. 3, the collapse front is safely away
from the boundary, even at very late times. We stopped our
code at t ¼ 1000M, without any sign of instability. This
provides a new benchmark for Numerical Relativity codes:
a long-term simulation of a single black-hole, without
excision, in normal coordinates (zero shift). Moreover, it
shows that a nontrivial shift prescription is not a requisite
for code stability in BH simulations.

V. SINGLE BLACK HOLE TEST: FIRST-ORDER
SHIFT CONDITIONS

Looking at the results of the previous section, one can
wonder wether our code is just tuned for normal coordi-
nates. This is why we will consider here again BH simu-
lations, but this time with some nontrivial shift
prescriptions. The idea is just to test some simple cases
in order to show the gauge-polyvalence of the code. For the
sake of simplicity, we will consider here just first-order
shift prescriptions, meaning that the source terms ðQ;QiÞ
in the gauge evolutions (7) are algebraic combinations of

the remaining dynamical fields. To be more specific, we
shall keep considering slicing conditions defined by

Q ¼ ��k=�Ak þ fðtrK �m�Þ; (33)

together with dynamical shift prescriptions, defined by
different choices of Qi.
First-order shift prescriptions have been yet considered

at the theoretical level [29]. We will introduce here an
additional requirement, which follows when realizing
that, allowing for the 3þ 1 decomposition of the line
element

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (34)

the shift behaves as a vector under (time independent)
transformations of the space coordinates. We will impose
then that its evolution equation, and then Qi, is also three-
covariant.
This three-covariance requirement could seem a trivial

one. But note that the harmonic shift conditions, derived
from

hxi ¼ 0; (35)

are not three-covariant (the box here stands for the wave
operator acting on scalars). In the 3þ 1 language, (35) can
be translated as

@tð ffiffiffiffi
�

p
=��iÞ � @kð ffiffiffiffi

�
p

=��k�iÞ þ @kð� ffiffiffiffi
�

p
�ikÞ ¼ 0;

(36)

where the noncovariance comes from the space-derivatives
terms.
Concerning the advection term, a three-covariant alter-

native would be provided either by the Lie-derivative term

L �ð ffiffiffiffi
�

p
�i=�Þ ¼ L�ð ffiffiffiffi

�
p

=�Þ�i; (37)

or by the three-covariant derivative term

�krkð�i=�Þ ¼ 1=�½�kBk
i � �i�kAk þ �i

jk�
j�k�: (38)

We have tested both cases in our numerical simulations.
Concerning the last term in (36), we can take any

combination of Ai, Zi and the vectors obtained form the
space metric derivatives after subtracting their initial val-
ues, namely:

Di �Dijt¼0; Ei � Eijt¼0: (39)

This is because the additional terms arising in the trans-
formation of the noncovariant quantities ðDi; EiÞ depend
only on the space coordinates transformation, which is
assumed to be time-independent. Note that, for the confor-
mal contracted-Gamma combination

�i ¼ 2Ei � 2

3
Di; (40)

the subtracted terms actually vanish in simulations starting
from the isotropic initial metric (31). Of course, the same
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FIG. 3. Plot of the lapse function for a single BH at t ¼ 1000M
in normal coordinates. Only one of every ten points is shown
along each direction. The third-order accurate algorithm has
been used with � ¼ 1=12 and a space resolution h ¼ 0:1M.
The profile is steep, but smooth: no sign of instability appears.
Small riddles, barely visible on the top of the collapse front,
signal some lack of resolution because of the logarithmic char-
acter of the grid. The dynamical zone is safely away from the
boundaries.
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remark applies to the BSSN Gamma quantity, namely [19]

~� i ¼ �i þ 2Zi: (41)

We have considered the following combinations:

S1: @t�
i ¼ �2

2
Ai � �Q�i (42)

S2: @t�
i ¼ �2

2
Ai þ �kBk

i þ �i
jk�

j�k � �Q�i (43)

S3: @t�
i ¼ �2

4
~�i þ �kBk

i þ �i
jk�

j�k � �Q�i; (44)

where S1 corresponds to the Lie-derivative term (37) and
the remaining two choices to the covariant advection term
(38), with different combinations of the first-order vector
fields.

We have obtained stable evolution in all cases, with the
simulations lasting up to the point when the collapse front
crosses the outer boundary (about t ¼ 50M). We can see in
Fig. 4 the lapse and shift profiles in the S1 and the S3 cases
(S2 is very similar to S1). The shift profiles are modulated
by the lapse ones, so that the shift goes to zero in the
collapsed regions. This is a consequence of the term
��Q�i in the shift evolution equation, devised for getting
finite values of the combination �i=�. In the noncollapsed
region, S1 leads to a higher shift profile, which spreads out
with time, whereas S3 leads to a lower profile, which starts
diminishing after the initial growing. Allowing for (44),

this indicates that the conformal gamma quantity ~�i is
driven to zero. The lapse slopes are also slightly softened
in the S3 case.
These results confirm that the code stability is not linked

to any particular shift prescription, as we can combine
different source terms in the shift evolution equation,
leading to different lapse and shift profiles.

VI. CONCLUSIONS AND OUTLOOK

We have shown in this paper how a first-order flux-
conservative version of the Z4 formalism can be adjusted
for dealing with the ordering constraints, and then imple-
mented in a numerical code by means of a robust, cost-
efficient, finite-difference formula. The resulting scheme
has been tested in a demanding harmonic-coordinates sce-
nario: the gauge-waves test bed. The code performance
compares well with the best harmonic-code results for this
test [11], even in the highly nonlinear regime (50% ampli-
tude case). This is in contrast with the well-known prob-
lems of BSSN-based codes with the gauge-waves test [1,8].
The code has also been tested in nonexcision BH evo-

lutions, where singularity-avoidance is a requirement. Our
results confirm the robustness of the code for many differ-
ent choices of dynamical lapse and shift prescriptions. In
the normal coordinates case (zero shift), our results set up a
new benchmark, by evolving the BH up to 1000M without
any sign of instability. This improves the reported BSSN
result by one order of magnitude (Harmonic codes are not
devised for normal coordinates). More important, this
shows that a specific shift choice is not crucial for code
stability, even in nonexcision BH simulations. This is con-
firmed by our shift simulations, where different covariant

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

r/M

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

r/M

t=20M t=40M t=20M t=40M

FIG. 4. Plot of the lapse and shift profiles at t ¼ 20M (continuous lines) and t ¼ 40M (dotted lines). The plots are shown along the
main diagonal of the computational domain, in order to keep the outer boundary out of the dynamical zone. In the S1 case (left panel),
after the initial growing, the maximum shift value keeps constant. In the S3 case (right panel), it clearly diminishes with time.
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evolution equations for the shift lead also to stable numeri-
cal evolution.

In spite of the encouraging performance in these basic
tests, we still are on the way towards a gauge-polyvalent
code, as pointed out by the title of this paper. More tech-
nical developments on the numerical part are required:
mesh refinement, improved boundary treatment, etc. On
the theoretical side, as far as the shift prescription is no
longer determined by numerical stability, we can explore
shift choices from the physical point of view, adapting our
space coordinates system to the features of every particular
problem. We are currently working in these directions.
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APPENDIX A: FLUX-CONSERVATIVE
EVOLUTION EQUATIONS

We will write the first-order evolution system in a
balance-law form. For a generic quantity u, this leads to

@tuþ @kF
kðuÞ ¼ SðuÞ; (A1)

where the flux FkðuÞ and source terms SðuÞ can depend on
the full set of dynamical fields in an algebraic way. In
the case of the space-derivatives fields, their evolution
Eqs. (15)–(17) are yet in the balance-law form (A1).
Note however that any damping terms of the form de-
scribed in (18) will contribute both to the flux and the
source terms in a simple way.

The metric evolution Eq. (3) will be written in the form

@t�ij ¼ 2�kDkij þ Bij þ Bji � 2�Kij; (A2)

so that it is free of any flux terms. The remaining (non-
trivial) evolution Eqs. (4)–(6) require a more detailed
development. We will expand first the flux terms in the
following way:

@tKij þ @k½��kKij þ ��k
ij� ¼ SðKijÞ (A3)

@tZi þ @k½��kZi þ �f�Kk
i þ �k

iðtrK ��Þg
þ�ðBi

k � �i
k trBÞ� ¼ SðZiÞ (A4)

@t�þ @k½��k�þ �ðDk � Ek � ZkÞ� ¼ Sð�Þ (A5)

where we have used the shortcuts Di � Dik
k and Ei �

Dk
ki, and

�k
ij ¼ Dk

ij �
1

2
ð1þ 
ÞðDij

k þDji
kÞ

þ 1

2
�k

i½Aj þDj � ð1� 
ÞEj � 2Zj�

þ 1

2
�k

j½Ai þDi � ð1� 
ÞEi � 2Zi�: (A6)

The source terms SðuÞ do not belong to the principal part
and will be displayed later. Let us focus for the moment in
the hyperbolicity analysis, by selecting a specific space
direction ~n, so that the corresponding characteristic matrix
is

An ¼ @Fn

@u
; (A7)

where the symbol n replacing an index stands for the
projection along the selected direction ~n. We can get by
inspection the following (partial) set of eigenfields, inde-
pendently of the gauge choice:
(i) Transverse derivatives:

A?; B?
i; D?ij; (A8)

propagating along the normal lines (characteristic
speed ��n). The symbol ? replacing an index
means the projection orthogonal to ~n.

(ii) Light-cone eigenfields, given by the pairs

Fn½Dn??� � Fn½K??� (A9)

� Fn½Z?� � Fn½Kn?� (A10)

Fn½Dn � En � Zn� � Fn½�� (A11)

with characteristic speed ��n � �, respectively.
Note that the eigenvector expressions given above, in

terms of the fluxes, are valid for any choice of the ordering
parameters � and 
. Only the detailed expression of the
eigenvectors, obtained from the flux definitions, is affected
by these parameter choices. For instance

Fn½Dn � En � Zn� ¼ ��n½Dn � En � Zn�
þ �
þ ð�� 1ÞtrðB??Þ: (A12)

Any value � � 1 implies that the characteristic matrix of
the Z3 system, obtained by removing the variable 
 from
our Z4 evolution system [19], cannot be fully diagonalized
in the dynamical shift case. Of course, the hyperbolicity
analysis cannot be completed until we get suitable coor-
dinate conditions, amounting to some prescription for the
lapse and shift sources Q and Qi, respectively. But the
subset of eigenvectors given here is gauge independent:
nondiagonal blocs cannot be fixed a posteriori by the
coordinates choice.
The detailed expressions for the eigenvectors can be

relevant when trying to compare with related formulations.
For instance, a straightforward calculation shows that the
eigenvectors (A9)–(A11) can be matched to the corre-
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sponding ones in the harmonic formalism if and only if


 ¼ �1; � ¼ 1=2: (A13)

This shows that different requirements can point to differ-
ent choices of these ordering parameters. We prefer then

to leave this choice open for future applications.
Concerning the simulations in this paper, we have taken

 ¼ �1, � ¼ 1.
Finally, we give for completeness the source terms,

namely:

SðKijÞ ¼ �Kij trBþ KikBj
k þ KjkBi

k þ �

�
1

2
ð1þ 
Þ

�
�Ak�

k
ij þ

1

2
ðAiDj þ AjDiÞ

�

þ 1

2
ð1� 
Þ

�
AkD

k
ij �

1

2
fAjð2Ei �DiÞ þ Aið2Ej �DjÞg þ 2ðDir

mDr
mj þDjr

mDr
miÞ � 2EkðDij

k þDji
kÞ
�

þ ðDk þ Ak � 2ZkÞ�k
ij � �k

mj�
m
ki � ðAiZj þ AjZiÞ � 2Kk

iKkj þ ðtrK � 2�ÞKij

�

� 8��

�
Sij � 1

2
ðtrS� �Þ�ij

�
(A14)

SðZiÞ ¼ �Zi trBþ ZkBi
k þ �½AiðtrK � 2�Þ � AkK

k
i � Kk

r�
r
ki þ Kk

iðDk � 2ZkÞ� � 8��Si (A15)

Sð�Þ ¼ �� trBþ �

2
½2AkðDk � Ek � 2ZkÞ þDk

rs�k
rs �DkðDk � 2ZkÞ � Kk

rK
r
k þ trKðtrK � 2�Þ� � 8���: (A16)

APPENDIX B: FINITE-DIFFERENCES
IMPLEMENTATION

We follow the well-known method-of-lines (MoL in
[30]) in order to deal separately with the space and the
time discretization. Concerning the time discretization, we
use the following third-order-accurate Runge-Kutta algo-
rithm

u� ¼ un þ �t rhsðunÞ
u�� ¼ 3

4
un þ 1

4
½u� þ�t rhsðu�Þ�

unþ1 ¼ 1

3
un þ 2

3
½u�� þ �t rhsðu��Þ�;

(B1)

which is strong-stability-preserving (SSP in [31]), where
we have used as a shorthand

rhs ðuÞ � �@kF
kðuÞ þ SðuÞ: (B2)

The flux derivatives appearing in (B2) will be discretized
by using the finite-difference formula proposed in Ref. [14]
(FDOC algorithm). For instance the derivative of FxðuÞ
will be represented as

@xF
x
j ¼ C2mFx

j þ ð�1Þm�ð�xÞ2mDmþDm�1� ð�j�1=2D�ujÞ;
(B3)

where C2m is the 2mth-order-accurate central difference
operator and D� are the standard finite-difference opera-
tors. We have also noted

�j�1=2 ¼ maxð�j; �j�1Þ; (B4)

where �j stands here for the local characteristic radius (the

highest characteristic speed, typically the gauge speed).

Note that the second term in the finite-difference for-
mula (B3) is actually a dissipation operator of order 2m
acting on (�u), so it could be regarded at the first sight as a
mere generalization of the standard Kreiss-Oliger artificial
viscosity operators [32]. This is not the case: the for-
mula (B3) can be instead derived in a finite-volume frame-
work, when combining the local-Lax-Friedrichs flux for-
mula [33] with the (unlimited) Osher-Chakrabarthy flux
interpolation [15] (see Ref. [14] for details, including the
optimal values of the � parameter).
Note that, contrary to the standard Kreiss-Oliger ap-

proach, the dissipation term is such that the accuracy of
the first (centered derivatives) term in (B3) is reduced by
one order: the resulting FDOC algorithm accuracy is al-
ways of an odd order. This is important for code robust-
ness. The algorithms (B3) can be shown to keep
monotonicity even for remarkably high compression fac-
tors (defined as the ratio between two neighbor slopes
along a given direction) [14], which is what is actually
required in view of the steep profiles shown for instance in
Fig. 2.
The space accuracy of the scheme (B3) is 2m� 1, with

an stencil of 2mþ 1 points. We have used in this paper
both the third-order and fifth-order accurate methods, for
which the optimal values of the dissipation parameter are
� ¼ 1=12, � ¼ 2=75, respectively [14]. In the fifth-order
case, we have a seven-point stencil and the dissipation term
corresponds to a sixth derivative, as in the advanced finite-
difference schemes used in Ref. [34]. The robustness of the
proposed algorithms, with compression factors of 5 and 3,
respectively, makes them very convenient for steep-
gradient scenarios, such us the ones arising in black-hole
simulations, where slice-stretching threatens the stability
of more standard finite-difference algorithms [28].
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No sophisticated numerical tools (mesh refinement,
algorithm-switching for the advection terms, etc.) have
been incorporated to our code at this point, when we are
facing just test simulations. Concerning the boundary treat-
ment, we simply choose at the points next to the boundary
the most accurate centered algorithm compatible with the
available stencil there. When it comes to the last point, we
can either copy the neighbor value or propagate it out with
the maximum propagation speed (by means of a 1D ad-
vection equation). The idea is to keep the numerical code
as simple as possible in order to test here just the basic
algorithm in a clean way.

APPENDIX C: SCALAR FIELD STUFFING

Let us consider the stress-energy tensor

Tab ¼ �a�b � 1=2ðgcd�c�dÞgab; (C1)

where we have noted�a ¼ @a�, corresponding to a scalar
field matter content. The 3þ 1 decomposition of (C1) is
given by

� ¼ 1=2ð�n
2 þ �kl�k�lÞ; Si ¼ �n�i;

Sij ¼ �i�j þ 1=2ð�n
2 � �kl�k�lÞ�ij;

(C2)

where �n stands for the normal time derivative:

ð@t � �k@kÞ� ¼ ���n: (C3)

The quantities (C2) appear as source terms in the field
Eqs. (4)–(6).

The stress-energy conservation amounts to the evolution
equation for the scalar field, which is just the scalar wave
equation. In the 3þ 1 language, it translates into the flux-
conservative form:

@t½ ffiffiffiffi
�

p
�n� þ @k½ ffiffiffiffi

�
p ð��k�n þ ��kj�jÞ� ¼ 0: (C4)

A fully first-order system may be obtained by considering
the space derivatives �i as independent dynamical fields,
as we did for the metric space derivatives.

Concerning the initial data, we must solve the energy-
momentum constraints. They can be obtained by setting

both� and Zi to zero in (5) and (6). In the time-symmetric
case (Kij ¼ 0), this amounts to

R ¼ 16��; Si ¼ �n�i ¼ 0: (C5)

The momentum constraint will be satisfied by taking �
(and then �i) to be zero everywhere on the initial time
slice. Concerning the energy constraint, we will consider
the line element (31) with m ¼ mðrÞ. We assume a con-
stant mass valuem ¼ M for the black-hole exterior, so that
the energy constraint in (C5) will be satisfied with � ¼ 0
there.
In the interior region, the energy constraint will translate

instead into the equation

m00 ¼ �2�rð�nÞ2
�
1þ m

2r

�
5
; (C6)

which can be interpreted as providing the initial �n value
for any convex (m00 � 0) mass profile. Of course, some
regularity conditions both at the center and at the matching
point r0 must be assumed. Allowing for (C6), we have
taken

m ¼ m00 ¼ 0 ðr ¼ 0Þ
m ¼ M; m0 ¼ m00 ¼ 0 ðr ¼ r0Þ:

Note that, allowing for (C6), these matching conditions
ensure just the continuity of �n, not its smoothness. This
can cause some numerical error, as we are currently evolv-
ing �n through the differential Eq. (C4). If this is a prob-
lem, we can demand the vanishing of additional derivatives
of the mass function mðrÞ, both at the origin and at the
matching point (this is actually the case in our shift simu-
lations). This is not required in the standard case (f ¼ 2=�,
normal coordinates), where we have used a simple profile,
with the matching point at the apparent horizon (r0 ¼
M=2), given by

mðrÞ ¼ 4r� 4=M½r2 þ ðM=2�Þ2sin2ð2�r=MÞ�: (C7)
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