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The Bekenstein-Hawking entropy of black holes in Einstein’s theory of gravity is equal to a quarter of

the horizon area in units of Newton’s constant. Wald has proposed that in general theories of gravity the

entropy of stationary black holes with bifurcate Killing horizons is a Noether charge which is in general

different from the Bekenstein-Hawking entropy. We show that the Noether charge entropy is equal to a

quarter of the horizon area in units of the effective gravitational coupling on the horizon defined by the

coefficient of the kinetic term of a specific metric perturbation polarization on the horizon. We present

several explicit examples of static spherically symmetric black holes.
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I. INTRODUCTION

The Bekenstein-Hawking entropy of black holes (BH’s)
in Einstein’s theory of gravity is equal to a quarter of the
horizon area in units of Newton’s constant [1,2]. Wald [3,4]
has studied BH’s in generalized theories of gravity and
proposed that the correct dynamical entropy of stationary
BH’s solutions with bifurcate Killing horizons is a Noether
charge entropy.

The Noether charge entropy is in general different from
the Bekenstein-Hawking entropy. First, the Noether charge
entropy is local: it can be defined in terms of quantities on
the horizon. Further, the Noether charge entropy was found
to be invariant under field redefinitions that do not change
the structure of space-time at infinity and on the horizon
[5]. In Einstein’s gravity there is only one dimensional
parameter GN and from it (and @ and the speed of light
c) it is possible to construct a single parameter with units of
length, the Planck length l2P ¼ @GN=c

3. In more general
theories additional parameters can appear and hence sev-
eral length scales can replace lP.

The validity of Wald’s proposal has been checked in
many examples in a string theory context where the direct
counting of microstates can be compared explicitly to the
Noether charge entropy [6]. To the best of our knowledge
all the explicit comparisons were done for static solutions
or those that are equivalent to static solutions. Unfor-
tunately, stationary solutions for which the corrections to

the Einstein-Hilbert action are significant are not known,
so an explicit comparison could not be done for nonstatic
solutions. An early review of the subject can be found in
[7], and a recent and much more extensive review can be
found in [8].
Our goal in this paper was to clarify the relationship

between the Noether Charge entropy and the Bekenstein-
Hawking entropy. Our motivation was to resolve the ap-
parent tension between the entanglement interpretation of
BH entropy and the Noether charge entropy [9], to under-
stand its geometrical dependence and to explain some
calculation of the entropy in string theory [10,11] in which
the entropy of charged BH’s with higher derivative correc-
tions was found to depend on the charges only through the
horizon area. Previously, it was observed in [12] that the
entropy of two dimensional charged BH’s is proportional
to the area of the horizon for any value of the charges and
the mass.
We have discovered that the Noether charge entropy is

equal to a quarter of the horizon area in units of the
effective gravitational coupling on the horizon rather than
in units of GN . The effective gravitational coupling on the
horizon is defined by the coefficient of the kinetic term of a
specific metric perturbation polarization on the horizon. In
Einstein’s gravity both definitions coincide, however in
general they do not. We discuss several explicit examples
of static spherically symmetric black holes.
The rest of the paper is organized as follows. In Sec. II

we review the Noether charge entropy, in Sec. III we recall
the definition of the effective gravitational coupling and
show that it is equal to the functional derivative of the
Lagrangian density with respect to the Riemann tensor. In
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Sec. IV we discuss our main result and show that the
Noether charge entropy is equal to a quarter of the horizon
area in units of the effective gravitational coupling on the
horizon. In Sec. V we identify the metric perturbation
polarizations chosen in the Wald formula as those associ-
ated with the perturbations of the area density on the
bifurcation surface. In Sec. VI we present several explicit
examples of entropy and gravitational coupling and verify
our results. Section VII contains a discussion of our results
and its significance and an outlook.

II. THE NOETHER CHARGE ENTROPY

A general theory of gravity whose action depends on the
metric g��, the curvature (through the Riemann tensor)

and matter fields � and their covariant derivatives

I ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p
LðR����; g��;r�R����; �;r�; . . .Þ;

(1)

may have stationary BH solutions with bifurcate killing
horizons. According to Wald [3,4], the Noether charge
entropy for such BH’s is

SW ¼ �2�
I
�

�
�L

�Rabcd

�ð0Þ
	̂ab	̂cd �	: (2)

The Noether charge entropy was first expressed in this
form in [5]. If derivatives of the Riemann tensor appear
inL then one is to perform an integration by parts first and
then take the derivative. The procedure is similar to finding
the Euler-Lagrange equations in a theory with higher de-
rivatives of the canonical variables.

The integral in Eq. (2) is on the D� 2 dimensional
spacelike bifurcation surface �. The hatted variable 	̂ab
is the binormal vector to the bifurcation surface. It is
antisymmetric under the exchange a $ b and normalized
as 	̂ab	̂ab ¼ �2. This normalization sets the computation
of the entropy in units such that the BH temperature is 1

2�

(see [3] for details). The variable �	 is the induced volume
form on the bifurcation surface. The superscript (0) indi-

cates that the partial derivative ð �L
�Rabcd

Þð0Þ is evaluated on the
solution of the equations of motion. The variation of the
Lagrangian with respect to Rabcd is performed as if Rabcd

and the metric g�� are independent and it includes con-

tributions from the covariant derivatives acting on matter
fields. The covariant derivatives have to be expressed as
symmetric and antisymmetric combinations and then they
have to be expressed in terms of the Riemann tensor. (See
Sec. 2 of [4] for a detailed explanation.)

Since our examples will be of static BH’s we write all
the expressions explicitly for this case. For static spheri-
cally symmetric BH solutions in D ¼ dþ 1 space-time
dimensions that possess a bifurcate Killing horizon the
metric can be brought to a canonical form,

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ qðrÞd�2

d�1: (3)

The function fðrÞ vanishes at the event horizon r ¼ rH, the
bifurcation surface is at r ¼ rH, t ¼ const and d�2

d�1 is

the spherical volume element.
For these BH’s the relevant Killing vector is @t and 	̂tr ¼

1. The 	̂’s vanish for a; b � t; r. The explicit expression for
the Noether charge entropy is

SW ¼ �2�
I
r¼rH;t¼const

�
�L

�Rabcd

�ð0Þ
	̂ab	̂cd½qðrÞ�ðd�1=2Þ

� d�2
d�1

¼ �8�
I
r¼rH;t¼const

�
�L
�Rrtrt

�ð0Þ½qðrÞ�ðd�1=2Þd�2
d�1: (4)

The factor of 4 come from the antisymmetry properties of
the Riemann tensor and the binormal vectors. The super-
script (0) emphasizes that the functional derivative is eval-
uated on the solution.
A few examples will be useful. First, let us see how the

Noether charge entropy reproduces the Bekenstein-
Hawking area entropy for the Einstein-Hilbert (EH) action
LEH ¼ 1

16�GN
R,

SW ¼ �8�
I
r¼rH;t¼const

1

16�GN

��
�R

�Rrtrt

�ð0Þ�
�½qðrÞ�ðd�1=2Þd�2

d�1

¼ � 1

4GN

I
r¼rH;t¼const

ð �gtt �grr � �gtr �gtrÞ

� ½qðrÞ�ðd�1=2Þd�2
d�1

¼ AH

4GN

: (5)

We have denoted the background metric solution by �g��

and used the fact that it is of the form (3) for which
�gtt �grr ¼ �1 and �gtr ¼ 0. The area of the horizon AH is

given by AH ¼ H
r¼rH;t¼const½qðrÞ�ðd�1=2Þd�2

d�1.

As a second example let us consider dilaton-gravity

L ¼ e�2�

16�GN
R and assume that the solution is spherically

symmetric � ¼ �ðrÞ. Then

SW ¼ �8�
I
r¼rH;t¼const

1

16�GN

��
�R

�Rrtrt

�ð0Þ�
�½qðrÞ�ðd�1=2Þd�2

d�1

¼ � 1

4GN

I
r¼rH;t¼const

e�2�ðrÞð �gtt �grr � �gtr �gtrÞ

� ½qðrÞ�ðd�1=2Þd�2
d�1

¼ AH

4e2�ðrHÞGN

: (6)

Clearly in the case of dilaton-gravity the parameter GN
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does not determine by itself the strength of the gravita-
tional coupling or of the gravitational force, rather they

should be determined by the combination e2�ðrÞGN which
can depend on r. Now consider evaluating the Noether
charge entropy in the Einstein frame. The Einstein-frame

metric is ĝ�� ¼ e�ð4=d�1Þ�g��, and in the Einstein frame

the Lagrangian density is L ¼ 1
16�GN

R̂þ � � � . Then

SW ¼ �8�
I
r¼rH;t¼const

1

16�GN

��
�R̂

�R̂rtrt

�ð0Þ�

�½q̂ðrÞ�ðd�1=2Þd�2
d�1

¼ � 1

4GN

I
r¼rH;t¼const

ð �̂gtt �h �̂grr � �̂gtr �̂gtrÞ

� ½q̂ðrÞ�ðd�1=2Þd�2
d�1

¼ ÂH

4GN

: (7)

Since q̂ðrÞ ¼ e�ð4=d�1Þ�ðrÞqðrÞ, then, as anticipated, the
entropies evaluated in both frames are equal:

ÂH

4GN

¼ AH

4e2�ðrHÞGN

:

III. THE EFFECTIVE GRAVITATIONAL
COUPLING AND THEMETRIC PERTURBATIONS’

KINETIC TERMS

Here we discuss the gravitational coupling and the ki-
netic terms of metric perturbations for a general back-
ground and not necessarily for a BH background. We
first recall the definition of the gravitational coupling in
Einstein’s theory. One expands the metric about a fixed
background solution �g��,

g�� ¼ �g�� þ h��: (8)

The inverse metric is

g�� ¼ �g�� � h�� (9)

and the indices of h�� are raised and lowered with the

background metric. The action can be expanded in powers
of h��. The equations of motion imply that the linear term

in this expansion vanishes.
The expansion of the Einstein-Hilbert Lagrangian LEH

in h�� to second order [13] is

1

16�G

ffiffiffiffiffiffiffi�g
p

R ¼ 1

16�G

ffiffiffiffiffiffiffi� �g
p ð �RþLð2Þ

EHÞ; (10)

with

Lð2Þ
EH ¼ 1

4
�r
h��

�r
h�� � 1

4
�r
h

�r
hþ 1

2
�r
h

�r�h

�

� 1

2
�r
h��

�r�h�
 þ �R

�
1

4
h2 � 1

4
h��h

��

�

þ �R��

�
h
�h�
 � 1

2
hh��

�
; (11)

where h ¼ h��. For a background metric that solves the
vacuum Einstein equations the last two terms vanish.
We nowwish to look at the kinetic terms (terms with two

derivatives) of the metric perturbations in the expansion

1

4
ð �r


�r
h��
�r
h�� � 2 �r
h��

�r�h�
 � �r
h
�r
h

þ 2 �r
h
�r�h


�Þ:
We can determine the gravitational coupling �2 ¼ 32�GN

from the kinetic terms,

1

64�G
ð �r
h��

�r
h�� � 2 �r
h��
�r�h�


� �r
h
�r
hþ 2 �r
h

�r�h

�Þ

¼ 1

2

1

�2
ð �r
h��

�r
h�� � 2 �r
h��
�r�h�


� �r
h
�r
hþ 2 �r
h

�r�h

�Þ: (12)

The coefficients matrix of the kinetic terms is not di-
agonal in the metric perturbations so to identify correctly
the gravitational couplings it needs to be diagonalized. The
eigenvectors Hi

�� are given by linear combinations of the

original metric perturbations h��. To verify that � in

Eq. (12) is truly the gravitational coupling one expands
g��¼ �g��þ�H��. Then the kinetic term for the metric

perturbations H�� becomes canonical and each factor of

H�� in the interaction terms is accompanied by a factor of

�. The most general coefficients matrix of the kinetic terms
is a six index object. However, as can be seen from
Eq. (12), due to symmetries it is actually a four index
object. When the background space-time is symmetric
under rotations, the different helicities of the metric per-
turbations can be further separated into independent ten-
sors, vectors and scalars and the coefficient matrix of the
kinetic terms can be diagonalized. Some of the metric
perturbations are gauge degrees of freedom that can be
removed by an appropriate choice of coordinates.
Obviously, some degrees of freedom of the metric pertur-
bations are physical either by their own sake or by mixing
with matter degrees of freedom.
The gravitational coupling in a general theory of gravity

can be determined in a similar way. We take a general
action

I ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p
LðR����; g��;r�R����; �;r�; . . .Þ

(13)

and expand the metric g�� ¼ �g�� þ h��. The action can
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be expanded I ¼ Ið0Þ þ �Ið1Þ þ �Ið2Þ þ � � � . We are inter-
ested in contributions to terms in the effective action of the
metric perturbations that are quadratic in the perturbations
and quadratic in derivatives. We call such terms ‘‘kinetic
terms.’’ The most general coefficients matrix of the kinetic
terms is a six index object. However, as we will show, due
to symmetries it is actually a four index object also in the
general case.

As in the Einstein case, the coefficients matrix of the
kinetic terms is not diagonal in the metric perturbations.
Obviously, since the general theory contains additional
couplings, the coefficients matrix can have different eigen-
values for different H��’s leading to different gravitational

couplings �i for eachHi
��. In the basis in which the kinetic

terms are diagonal one then expands g�� ¼ �g�� þ �iHi
��.

In this general case we may also verify that �i may be
called ‘‘gravitational couplings.’’ The kinetic term for any
of the polarizations in this basis becomes canonical and
each factor of Hi

�� in the interaction terms is accompanied

by a factor of �i. A general action may contain additional
dimensionless or dimensionful couplings that determine
the strength of a particular type of interaction. However,
all the interactions of a specific polarization can be classi-
fied according to their overall power of the appropriate �i.
All interactions will vanish in the limit �i ! 0 when the
other couplings are held fixed.

From general covariance it follows that derivatives of
h�� can only appear through the Christoffel symbols either

in combinations involving the Riemann tensor and its
derivatives, or through covariant derivatives of matter
fields. The covariant derivatives of matter fields can be
expressed as symmetric and antisymmetric combinations.
Both symmetric and antisymmetric contributions can be
expressed in terms of the Riemann tensor and its deriva-
tives as explained in [4]. The argument is most transparent
in Riemann Normal coordinates in which the Christoffel
symbols vanish locally and derivatives of the Christoffel
symbols can be expressed in terms of the Riemann tensor
and its derivatives. Once the derivatives of h�� are ex-

pressed in terms of covariant background tensors then the
action built from them is invariant under general back-
ground coordinate transformations so the conclusion that
the derivatives of h�� appear only through the Riemann

tensor and its derivatives holds for any coordinate system.
We therefore know that contributions to the metric pertur-
bation kinetic terms must appear only through factors of
the Riemann tensor (or its derivatives) in the action.

Our goal is to find the coefficients matrix of the kinetic
terms. We have just argued that the kinetic terms appear
only through factors of the Riemann tensor (and its deriva-
tives). It follows that we need to focus on the specific
contribution to the variation �I

�I �
Z

dDx
ffiffiffiffiffiffiffi�g

p �L
�R����

�R���� (14)

and look in the expansion for terms that contain two factors
of the metric perturbation and two background covariant
derivatives.
The variation of the Riemann tensor can be expressed as

�R���� ¼ r������ �r������: (15)

Consequently, the relevant variation is

�L ¼ �L
�R����

ðr������ �r������Þ: (16)

In principle we could imagine expanding all factors in the
metric perturbation to obtain the contribution to the kinetic
terms. However, as we will now show, we need to expand
only the second factor ðr������ �r������Þ.
The expansion ofr������ �r������ in h�� contains

at least two derivatives and at least one factor of the
perturbation:

r������ �r������ ¼ �r����� � �r�����

þ�������
� ��������

�

þOðh2Þ: (17)

Here we have denoted for convenience

��ð1Þ

�
 � �
�
 ¼ 1

2
ð �r
h�
 þ �r�h

 � �r
h
�Þ: (18)

Hence terms in the expansion of
ffiffiffiffiffiffiffi�g

p �L
�R����

can contribute

to kinetic terms only if they contain exactly one factor of
h�� without derivatives. Such terms can come only from

the linear term in the expansion of g��,

g�� ¼ �g�� � h�� þOðh2Þ: (19)

However, if we had a term which contained a g�� inffiffiffiffiffiffiffi�g
p �L

�R����
it could have been canceled by integration by

parts because r�g
�� ¼ 0:

Z
dDx

ffiffiffiffiffiffiffi�g
p

�L��2
Z

dDxr�

� ffiffiffiffiffiffiffi�g
p �L

�R����

�
�����:

(20)

We conclude that we need to look only at the terms
which are second order in h�� in the expansion of �R����

and zeroth order in
ffiffiffiffiffiffiffi�g

p �L
�R����

. In other words, kinetic

terms can appear only through �L¼ð ffiffiffiffiffiffiffi�g
p �L

�R����
Þð0Þ�

�Rð2Þ
����.

We now evaluate �Rð2Þ
����. From (17) one finds that

�Rð2Þ
���� ¼ �������

� ��������
�: (21)

Evaluating the product of �’s gives
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�������
� ¼ 1

4
ð �r�h�� þ �r�h�� � �r�h��Þ

� ð �r�h�
� þ �r�h�

� � �r�h��Þ
¼ 1

4
ð �r�h��

�r�h�
� þr�h��

�r�h�
�

� �r�h��
�r�h�� � �r�h��

�r�h�
�

� �r�h��
�r�h�

� � �r�h��
�r�h��

þ �r�h��
�r�h�

� þ �r�h��
�r�h

�
�

þ �r�h��
�r�h��Þ: (22)

Substituting this expression into Eq. (21) and taking into
account the symmetries of the Riemann tensor R����: the

symmetry under the double exchange �� $ �� and the
antisymmetry under the exchanges � $ �, � $ � we find
that

�Rð2Þ
���� ¼ 1

2
ð �r�h��

�r�h�� þ 2 �r�h��
�r�h��Þ: (23)

We can now explicitly exhibit the kinetic terms

�Ið2Þ ¼
Z

dDx
ffiffiffiffiffiffiffi� �g

p 1

2

�
�L

�R����

�ð0Þð �r�h��
�r�h��

þ 2 �r�h��
�r�h��Þ: (24)

It is possible to check in a straightforward manner that
applying the above procedure to the case of the Einstein-
Hilbert action reproduces exactly the result in Eq. (12).

IV. NOETHER CHARGE ENTROPY IS AQUARTER
OF THE AREA IN UNITS OF THE EFFECTIVE

GRAVITATIONAL COUPLING

By comparing Eq. (24) to Eq. (2)

�Ið2Þ ¼
Z

dDx
ffiffiffiffiffiffiffi� �g

p 1

2

�
�L

�R����

�ð0Þð �r�h��
�r�h��

þ 2 �r�h��
�r�h��Þ

SW ¼ �2�
I
�

�
�L

�Rabcd

�ð0Þ
	̂ab	̂cd �	;

(25)

we observe that the Noether charge formula involves the
gravitational coupling of specific metric perturbation po-
larizations. In the next section we show that these metric
perturbations correspond to fluctuations of the area density
on the bifurcation surface.

We may formally define

1

ð�effÞ2 ¼ � 1

4

�
�L

�Rabcd

�ð0Þ
	̂ab	̂cd: (26)

The factor �1=4 in Eq. (26) takes into account the sym-
metries of Rabcd and the negative signature of the metric
[14]. Using definition (26) we find

SW ¼ 1

4

I
�

32�

ð�effÞ2
�	: (27)

In Eq. (27) the ‘‘local unit of area’’ ð32�Þ=ð�effÞ2 appears.
It determines the weighting of the infinitesimal area bits in
the integral. Identifying Geff ¼ 8�

ð�eff Þ2 we find

SW ¼ 1

4

I
�

dA

Geff

: (28)

If Geff is constant on the bifurcation surface then

SW ¼ AH

4Geff

: (29)

In the case of extremal BH’s care should be taken when
evaluating the effective coupling. Wald’s formula can be
defined for extremal BH’s since it was shown in [5] that the
entropy can be computed on any spatial section of the
horizon and since the entropy is a rescaled Noether charge
in units in which the temperature is 1=2�. Therefore
Wald’s formula applies to extremal black holes if they
are treated as limits of nonextremal ones. Similarly, to
define the effective coupling for extremal BH’s and make
the comparison with Wald’s formula we have to treat
extremal BH’s as limits of nonextremal ones.

V. THE CHOICE OF POLARIZATIONS

We have shown that the relevant kinetic terms originate
from the second-order expansion of the Riemann tensor,

�L�
�

�L
�R����

�ð0Þ
�Rð2Þ

����: (30)

In Wald’s formula a choice of specific polarizations of

�Rð2Þ
���� is made:

	̂ ��	̂���Rð2Þ
����: (31)

This choice is defined by the binormal vectors to the
bifurcation surface. Recall that on the bifurcation surface
the Killing vector ~�b vanishes and the binormal to the
surface is given by 	̂ab ¼ ra ~�b.
We wish to identify the choice of polarizations in (31)

with the fluctuations of the area density a on the bifurca-
tion surface. The area of the bifurcation surface is

A� ¼ � 1

2

I
�
	̂ab	̂ab �	: (32)

Since �	 is the induced volume form on the bifurcation
surface the area density can be defined as

a ¼ � 1

2
	̂ab	̂ab: (33)

Let us consider the following effective Lagrangian for
the area density
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L a ¼ 1

2
ar2a: (34)

Since

rc	̂ab ¼ rcra ~�b ¼ �Rabcd ~�
d (35)

we obtain

r�rc	̂ab ¼ �r�ðRabcd ~�
dÞ: (36)

On a bifurcation surface the Killing vector vanishes. It
follows that

r�rc	̂ab ¼ �Rabcdr� ~�
d ¼ �Rabc

d	̂�d: (37)

Substituting Eq. (37) into

r2ð	̂ab	̂abÞ ¼ 2	̂abg
�r
r�ð	̂abÞ (38)

gives

r2a ¼ 	̂
�	̂
�R
�
�: (39)

Let us expand the Lagrangian (34) to second order. In
performing the expansion we use the fact that the normal-
ization of the Killing vector on the unperturbed bifurcation
surface leads to a ¼ 1 and we make a gauge choice such
that �	̂
� ¼ 0 as in [3]. The fluctuations of the area density
can be viewed as the difference in area density between
two slightly different surfaces. Let us denote the difference
in the metric between the perturbed and unperturbed bi-
furcation surface by �g�� ¼ h��. Since we look at two

slightly different surfaces we have the freedom to choose
how the points in the two surfaces correspond. We will use
this freedom to make the correspondence such that the
Killing vector ~�a does not change from one surface to
the other. Thus �~�a ¼ 0 and [15]

�	̂
� ¼ �r
�~�� ¼ 0: (40)

To summarize, we have shown that

ðar2aÞð2Þ ¼ 	̂
�	̂
��Rð2Þ
����: (41)

In other words, we have shown that the specific polariza-
tion of gravitons that appears in the expansion of (34) is the
same one that appears in Wald’s entropy formula.

VI. EXAMPLES

In this section we present three examples. The purpose
of presenting the first two examples is to check explicitly
the proposed relationship between the gravitational cou-
pling and the functional derivative ofL with respect to the
Riemann tensor. We do this by expanding L to second
order. The third example shows that the relationship be-
tween GN and Geff can be nonanalytic in certain cases and
resolves a long-standing puzzle [16] as to why in N ¼ 2
SUGRA BH’s (and in small heterotic BH’s) S ¼ A=2GN

rather than A=4GN .

A. Rþ �Rn

As a first example let us consider the following
Lagrangian:

L ¼ 1

16�GN

ðRþ �RnÞ:

The calculation of Wald’s Noether charge entropy gives
(substitution in Eq. (4)):

SW ¼ � 1

4GN

I
r¼rH;t¼const

ð �gtt �grr � �grt �grtÞð1þ n�Rn�1Þ

� ½qðrÞ�ðd�1=2Þd�2
d�1

¼ AH

4ð1þ n�½RðrHÞ�n�1Þ�1GN

: (42)

Again, in this case GN does not determine by itself the
strength of the gravitational coupling or of the gravitational
force. The similarity to the case of dilaton-gravity can be
made more explicit by performing a field redefinition into
the Einstein frame [5]. The gravitational coupling of the
specific metric perturbation polarization ðt; rÞ can be ob-
tained using Eq. (26):

1

ð�effÞ2
¼ � 1

2

1

16�GN

ð �gtt �grr � �grt �grtÞð1þ n�Rn�1Þ

¼ 1

32�GN

ð1þ �nRn�1Þ: (43)

In this case the entropy in Eq. (42) becomes

SW ¼ AH

4Geff

:

The computation of the kinetic term for this example is
as follows. Using the expansion of R to second order in h��

from Sec. III:

R ¼ �Rþ 1

4
ð �r
h��

�r
h�� � 2 �r
h��
�r�h�
 � �r
h

�r
h

þ 2 �r
h
�r�h


�Þ þ � � � ; (44)

we obtain

1

16�GN

ðRþ �RnÞ ¼ 1

16�GN

ð �Rþ � �RnÞ þ 1

64�GN

� ð1þ �n �Rn�1Þð �r
h��
�r
h��

� 2 �r
h��
�r�h�
 � �r
h

�r
h

þ 2 �r
h
�r�h


�Þ
so that we identify the prefactor of the kinetic term

�2
eff ¼ 32�GNð1þ �n �Rn�1Þ�1; (45)

and thus

Geff ¼ GNð1þ �n �Rn�1Þ�1: (46)

This is the same Geff that we obtained in Eq. (43).
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B. Rþ �R����R
����

Next let us consider a more complicated example:

L ¼ 1

16�GN

ðRþ �R����R
����Þ:

Since Wald’s formula is linear in the Lagrangian we can
substitute �

16�GN
R����R

���� in Eq. (4) and obtain the

correction term to the Bekenstein-Hawking entropy,

� 8�
I
r¼rH;t¼const

�

8�GN

Rrtrt½qðrÞ�ðd�1=2Þd�2
d�1

¼ ��Rrtrt

GN

AH: (47)

Then

SW ¼ AH

4GN

ð1� 4�RrtrtÞ: (48)

The gravitational coupling of the specific metric perturba-
tion polarization ðt; rÞ can be obtained using Eq. (26):

1

ð�effÞ2 ¼ � 1

2

1

16�GN

ð �gtt �grr � �grt �grt þ 4�RrtrtÞ

¼ 1

32�GN

ð1� 4�RrtrtÞ: (49)

In this case the entropy becomes

S ¼ AH

4Geff

: (50)

On the other hand the expansion of �
16�GN

R����R
���� to

second order [17] in h�� according to Eq. (23), is the

following:

�

8�GN

ð�������
� ��������

�ÞR����

¼ �

16�GN

ð �r�h��
�r�h�� þ 2 �r�h��

�r�h��ÞR����

(51)

When we add this contribution to the EH action (44) we get
the full kinetic term

1

64�GN

ðg��g�� � g��g�� � 4�R����Þ

� ð �r�h��
�r�h�� þ 2 �r�h��

�r�h��Þ: (52)

In this example we have to take the ðt; rÞ sector and then we
obtain

�2
eff ¼ 32�GNð1� 4�RtrtrÞ�1; (53)

and thus

Geff ¼ GNð1� 4�RtrtrÞ�1: (54)

This is the same Geff that we obtained in Eq. (49).

C. Small black holes in heterotic string theory

Sen has defined the BH entropy function [18] and used it
[8,19] to find the near horizon geometry of extremal BH
solutions in the four dimensional low energy effective

action of heterotic string theory on M� S1 � ~S1. The
manifold M is some four manifold suitable for heterotic
string compactification. The entropy function can be used
to compute the entropy of such BH’s.
For completeness we recall the field content and action

of Sen’s construction. The four dimensional fields relevant
for the construction of this are related to the ten dimen-

sional string metric Gð10Þ
MN , antisymmetric tensor field Bð10Þ

MN

and the dilaton �ð10Þ via the relations:

�¼�ð10Þ � 1

4
lnðGð10Þ

99 Þ � 1

4
lnðGð10Þ

88 Þ � 1

2
lnVM;

G�� ¼Gð10Þ
�� � ðGð10Þ

99 Þ�1Gð10Þ
9� Gð10Þ

9� � ðGð10Þ
88 Þ�1Gð10Þ

8� Gð10Þ
8� ;

S¼ e�2�; R¼
ffiffiffiffiffiffiffiffiffiffi
Gð10Þ

99

q
; ~R¼

ffiffiffiffiffiffiffiffiffiffi
Gð10Þ

88

q
;

Að1Þ
� ¼ 1

2
ðGð10Þ

99 Þ�1Gð10Þ
9� ; Að2Þ

� ¼ 1

2
ðGð10Þ

88 Þ�1Gð10Þ
8� ;

Að3Þ
� ¼ 1

2
Bð10Þ
9� ; Að4Þ

� ¼ 1

2
Bð10Þ
8� ; (55)

where VM denotes the volume of M measured in the
string metric. The effective action of these fields is given
by

I ¼ 1

16�GN

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p

S½RG þ S�2G��@�S@�S

� R�2G��@�R@�R� ~R�2G��@� ~R@� ~R

� R2G��G�0�0
Fð1Þ
��0F

ð1Þ
��0 � ~R2G��G�0�0

Fð2Þ
��0F

ð2Þ
��0

� R�2G��G�0�0
Fð3Þ
��0F

ð3Þ
��0 � ~R�2G��G�0�0

Fð4Þ
��0F

ð4Þ
��0 �

þ higher derivative termsþ string loop corrections:

(56)

In [19] Sen considered extremal BH’s with two electric
and two magnetic charges assuming the near horizon so-
lution is of the form AdS2 � S2:

ds2 ¼ �1

�
�r2dt2 þ dr2

r2

�
þ �2d�

2: (57)

Here �1, �2 and all the additional fields are constant on the
horizon. By extremizing of the entropy function one ob-
tains the solution (justifying the ansatz above):

�1 ¼ �2 ¼ 4NW; (58)

e�2�ðrHÞ ¼
ffiffiffiffiffiffiffiffiffi
nw

NW

r
; (59)

where n, w are electric charges that correspond to momen-
tum and winding modes of the fundamental string, N, W
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are the corresponding magnetic charges and �ðrHÞ is the
value of the dilaton field on the horizon. Since the solutions
are extremal they may be expressed as a function of the
charges without an explicit dependence on the mass.

The area of the horizon is

A ¼ 4��2 ¼ 16�NW; (60)

and the entropy is, according to Eq. (6),

SW ¼ A

4GN

e�2�ðrHÞ ¼ 4�

GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nwNW

p
: (61)

Such BH’s are singular in the limit when the magnetic
charges, either N or W, go to zero. In this case the horizon
area vanishes and consequently also the entropy. In this
limit 
0 corrections become important since the curvature
is large in comparison with the radius of the BH. To model
the effects of the corrections Sen considered the addition of
a Gauss-Bonnet term to the original low energy effective
Lagrangian:

�

16�GN

e�2�½R����R
���� � 4R��R

�� þ R2�

where � is equal to
0 up to a numerical constant. Using the
same ansatz (57) for the near horizon solution Sen obtained
the following solution:

�1 ¼ �2 ¼ 4NW þ 8�

GN

(62)

e�2�ðrHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nw

NW þ 4 �
GN

s
: (63)

The area of the horizon in this case is

A ¼ 4��2 ¼ 16�NW þ 32�
�

GN

: (64)

The gravitational coupling of the specific metric pertur-
bation polarization, ðt; rÞ, can be obtained using Eq. (26)

1

ð�effÞ2
¼ � 1

64�GN

e�2�½2 �gtt �grr þ 2�ð4Rrtrt � 4 �gttRrr

� 4 �grrRtt þ 2 �gtt �grrRÞ�
¼ 1

32�GN

e�2�½1þ 2�ð2Rrt
rt � 2 �grrR

rr

� 2 �gttR
tt þ RÞ�: (65)

Using the metric (57) and the solution (62) and (63) one
gets that the gravitational coupling of the specific metric
perturbation polarization ðt; rÞ is

Geff ¼ GN

NW þ 2�
GNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nwðNW þ 4 �
GN
Þ

q ; (66)

and the entropy becomes

A

4Geff

¼ 4�

GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nw

�
NW þ 4

�

GN

�s
: (67)

In the limit of a small BH we obtain that

Geff ¼
ffiffiffiffiffiffiffiffiffiffi
�GN

nw

s
¼ GN

2
e2�: (68)

This example is different than the previous ones since the
dependence of the effective coupling is not analytic in GN .
This may be expected due to the singular behavior of the
horizon in the original solution which is resolved by the
added Gauss-Bonnet term.
Transforming to the Einstein-frame we get AE ¼ Ae�2�

and therefore for small black holes we obtain that

Geff ¼ GN

2
: (69)

The same result is, of course, obtained by direct application
of Eq. (26) and thus the entropy becomes

AE

4Geff

¼ AE

2GN

: (70)

The factor of 2 difference between Wald’s entropy and the
Bekenstein-Hawking entropy has been somewhat of a
puzzle since its discovery in the context of N ¼ 2
SUGRA [16]. However, it is simply explained by the
difference in the effective gravitational coupling.

VII. CONCLUSIONS AND OUTLOOK

We have found that the Noether charge entropy is equal
to an integral over the horizon of the ‘‘entropy density’’
dSW ¼ dA

4Geff
. The only difference between the Wald en-

tropy and the Bekenstein-Hawking entropy is that the ‘‘unit
of area’’ rather than being Newton’s constant GN is Geff .
We believe that this simple appealing expression may be
valid for a more general class of black holes, not only those
for which the Noether charge entropy can be defined.
The Geff in Wald’s entropy is associated with a specific

metric perturbation polarization. We have been able to
identify the polarizations with area fluctuations on the
bifurcating surface. It would be interesting to relate the
choice of polarization to the fact that the entropy satisfies
the first law and to understand the choice from a dynamical
point of view. Perhaps this polarization is related to the
response of the black hole to a change in its energy.
We have been able to verify our proposal only for static

backgrounds, which in our formulation are spherically
symmetric. For spherically symmetric solutions the effec-
tive coupling is trivially constant on the horizon. Stationary
(nonstatic) solutions may involve a varying effective cou-
pling, so it would be interesting to find such solutions and
to put our proposal to a nontrivial test. For this we would
need an example of a stationary black hole solution (in-
cluding higher derivative corrections) in string theory
whose entropy can be calculated via microstates counting.
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We were not able to find any such solutions in the
literature.

The local and observer dependent expression for the
entropy is consistent with the entanglement interpretation
of BH entropy and hence resolves the apparent tension
between the Wald’s entropy of BH’s in higher derivatives’
theories and the entanglement entropy [9]. The entangle-
ment ‘‘entropy density’’ has the form dSEntanglement ¼
dA=4�D�2 with �D�2 being some ‘‘unit of area’’ defined
by a UV scale in the theory. Our results suggest that �D�2

should be proportional to Geff .
Our results explain in a simple way the results of [10,11]

where it was found that entropy of certain BH’s is propor-
tional to the area as a function of the charges rather than
being a more general function of the charges. We now
understand that in the examples discussed in [10,11] the
effective gravitational coupling Geff is determined only by
the dilaton on the horizon which is independent of the
charges.

Our results should be extendible to cosmological space-
times. It has long been suspected that entropy bounds may
provide important clues to the nature of cosmological

singularities and their possible resolution. The form of
the entropy bounds in theories with higher derivatives
has been under debate (For a review, see for example
[20]). Our results suggest a specific form for cosmological
entropy bounds.
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