
Turduckening black holes: An analytical and computational study

David Brown,1 Peter Diener,2,3 Olivier Sarbach,4 Erik Schnetter,2,3 and Manuel Tiglio5,6

1Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
2Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA*
3Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA†
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We provide a detailed analysis of several aspects of the turduckening technique for evolving black

holes. At the analytical level we study the constraint propagation for a family of formulations of Einstein’s

field equations and identify under what conditions the turducken procedure is rigorously justified and

under what conditions constraint violations will propagate to the outside of the black holes. We present

high resolution spherically symmetric studies which verify our analytical predictions. Then we present

three-dimensional simulations of single distorted black holes using different variations of the turducken-

ing method and also the puncture method. We study the effect that these different methods have on the

coordinate conditions, constraint violations, and extracted gravitational waves. We find that the waves

agree up to small but nonvanishing differences, caused by escaping superluminal gauge modes. These

differences become smaller with increasing detector location.
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I. INTRODUCTION

In a previous publication [1] we discussed the turduck-
ening approach to numerical simulations of black holes in
Einstein’s theory. The technique relies on initially smooth-
ing the data inside each black hole and solving the Einstein
evolution equations everywhere at later times. The idea
was first proposed in Ref. [2] under the name of ‘‘free black
hole evolution.’’ It shares many similarities with the
‘‘stuffed black hole’’ [3,4] and ‘‘magic matter’’ [5] ap-
proaches. In Ref. [1] we presented a particular implemen-
tation that works in practice for binary black holes. We also
provided justification for our implementation, and numeri-
cal evidence of the geometrical picture behind it.
Complementary results based on very similar ideas were
independently found and presented in Ref. [6] under the
name ‘‘filling the holes.’’

The intuitive rationale behind the turduckening ap-
proach is that the physics in the exterior of a black hole
should be causally disconnected from the unphysical
smoothing in the interior. This is the same rationale behind
black hole excision [7,8], but here one proceeds in a differ-
ent way. In particular, one does not need to place an inner
boundary per black hole in order to remove the interior.
The computational domain in this technique is trivial from
a topological point of view, and therefore the discretization
remains simple. Thus, the method shares the simplicity of
the moving punctures technique [9,10] but is not restricted

to puncture-type initial data and does not require regulari-
zation of the equations near special points.
In this paper we extend our analysis of the turducken

technique, concentrating on both conceptual and practical
issues.
We begin in Sec. II by describing the formulation of the

equations that we used in Ref. [1], which is a specific
version of the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) type family. We analyze in detail the hyperbolicity
of both the main system and the subsidiary (constraint)
system, placing particular emphasis on the propagation
speeds of constraint-violating modes. It is well known
that in the Einstein equations the ‘‘true’’ degrees of free-
dom are coupled to coordinate and constrained degrees of
freedom. One therefore needs to guarantee that, for the
formulation of the Einstein evolution equations and the
gauge conditions being used, the smoothing in the interior
of each black hole does not affect the ‘‘physics’’ in the
exterior. This is a nontrivial condition and, in fact, it is
formulation and gauge dependent. In Sec. II we show that
there are some versions of the BSSN equations where this
condition does not hold, and where constraint violations
that originate in the interior of the black hole do propagate
to the outside. However, we are also able to identify a class
of BSSN-type equations for which we can rigorously guar-
antee that constraint violations inside the black hole do not
leak to the outside.
Next we concentrate on the issue of whether gauge

modes can escape from the interior of the black hole.
The gauge conditions that we use are those of the moving
punctures technique. In Sec. II we show that some of the
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characteristic speeds depend on the solution itself.
Therefore, it is not possible to determine a priori whether
or not some modes will become superluminal. There is
nothing wrong with modes leaking from the black hole
interior, as long as these modes represent the gauge free-
dom inherent in the evolution problem. It is nevertheless of
conceptual and practical importance to understand how the
turduckening procedure might affect the gauge outside the
black hole. Below we turn to this point by analyzing the
numerical data.

Having analyzed the system of equations at the contin-
uum and, in particular, having shown that at that level the
turduckening procedure does not introduce constraint vio-
lations to the exterior of a black hole, we address the
discretization and numerical implementation in the follow-
ing sections. We begin in Sec. III with a brief description of
the numerical codes that are used in this paper. In Sec. IV
we evolve turduckened initial data for a Schwarzschild
black hole with a spherically symmetric one-dimensional
code. Using this code we can corroborate with high nu-
merical accuracy that the constraint violations in the for-
mulation of the equations that we use do not leak to the
outside, as expected from our analytical analysis.

The one-dimensional numerical studies also reveal an
interesting property of turducken evolutions: even though
the stuffing procedure initially introduces large constraint
violations inside the black holes, these violations quickly
decay to very small values as the evolution proceeds. This
occurs because the shift vector quickly moves the coordi-
nate grid points away from the future domain of depen-
dence of the turduckened region, while the constraint-
violating modes are confined to the inside of the black
hole. The numerical data then relax to a portion of the
stationary 1þ log ‘‘trumpet slice’’ of the black hole [11–
13]. This is the same end state as obtained with puncture
evolution.

We also use one-dimensional simulations to investigate
the possibility of superluminal gauge modes. We find that
gauge modes are in fact superluminal and propagate from
the interior to the exterior of the black hole. In particular,
the smoothing procedure affects the coordinate conditions
outside the black hole. However, we find that the differ-
ences in gauge that arise from different types of smoothing
quickly decay in time. As already mentioned, we find that
the turducken solution approaches a portion of the trumpet
slice, regardless of the type of smoothing.

Given that it has already been shown in [1,6] that the
turduckening procedure works in practice for binary black
hole evolutions, we next analyze in detail several aspects of
single black hole evolutions. In Sec. V we present results
from three-dimensional evolutions of a single distorted
rotating black hole. These data are obtained by applying
the smoothing procedure to puncture initial data with the
Bowen-York extrinsic curvature. We compare in detail the
gauge conditions and extracted waveforms produced in

calculations with turduckening regions of different sizes
as well as a pure puncture evolution. We also show that we
have fourth order convergence in the extracted waveforms.
We find, in agreement with the one-dimensional results,

that superluminal gauge modes are able to propagate to the
outside of the horizon. However, if the turduckening region
is sufficiently small, the effect of these gauge modes de-
creases with a radius outside of the black hole, and be-
comes small enough that, for practical purposes, it can be
disregarded in 3D simulations.
Comparing the waveforms from turduckening and pure

puncture runs, we find that the differences are very small
and that most of them converge to zero with increasing
resolution. The remaining differences are caused by the
differences in gauge at the finite detector locations and are
found to become smaller with increasing detector location.
Section VI contains some final remarks.

II. FORMULATION OF THE EQUATIONS,
CONSTRAINT PROPAGATION, HYPERBOLICITY,

AND CHARACTERISTIC SPEEDS

In this section we first give the explicit form of the
evolution and constraint equations used in our Cauchy
formulation of Einstein’s field equations. It is a special
case of the family of formulations analyzed in [14]. Next,
we summarize the conditions under which this formulation
is hyperbolic and give the characteristic speeds. Finally, we
extend the analysis performed in [14] by deriving the
constraint propagation system, describing the propagation
of constraint violations, and analyzing its hyperbolic struc-
ture. In particular, we give necessary conditions for this
system to be symmetric hyperbolic and possess no super-
luminal speeds. We then prove that under these conditions
constraint violations inside a black hole which are present
in the turducken approach cannot propagate to the domain
of outer communication.

A. Formulation of the equations

As mentioned in the Introduction, we consider a BSSN-
type formulation of Einstein’s equations where the three-
metric �ij and the extrinsic curvature Kij are decomposed

according to

�ij ¼ e4� ~�ij; (1)

Kij ¼ e4�ð ~Aij þ 1
3
~�ijKÞ: (2)

Here, the conformal factor e2� is chosen such that the
conformal metric ~�ij has unit determinant, and K ¼
�ijKij and ~Aij are the trace and the traceless part, respec-

tively, of the conformally rescaled extrinsic curvature. The
3þ 1 decomposition of Einstein’s equations, along with
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suitable gauge conditions for lapse (�) and shift (�i),
yields the following evolution system [14]1

@̂ 0� ¼ ��2fð�;�; x�ÞðK � K0ðx�ÞÞ; (3)

@̂0K ¼ �e�4�½ ~Di ~Di�þ 2@i� � ~Di�� þ �ð ~Aij ~Aij þ 1
3K

2Þ
� �S; (4)

@̂ 0�
i ¼ �2Gð�;�; x�ÞBi; (5)

@̂ 0B
i ¼ e�4�Hð�;�; x�Þ@̂0~�i � �iðBi; �; x�Þ (6)

@̂ 0� ¼ ��

6
K þ 1

6
@k�

k; (7)

@̂ 0 ~�ij ¼ �2� ~Aij þ 2~�kði@jÞ�k � 2
3
~�ij@k�

k; (8)

@̂0 ~Aij ¼ e�4�½� ~Rij þ �R�
ij � ~Di

~Dj�þ 4@ði� � ~DjÞ��TF
þ �K ~Aij � 2� ~Aik

~Ak
j þ 2 ~Akði@jÞ�k � 2

3
~Aij@k�

k

� �e�4�Ŝij; (9)

@̂0~�
i ¼ ~�kl@k@l�

i þ 1

3
~�ij@j@k�

k þ @k ~�
kj � @j�i

� 2

3
@k ~�

ki � @j�j � 2 ~Aij@j�þ 2�

�
ðm� 1Þ@k ~Aki

� 2m

3
~DiK þmð~�i

kl
~Akl þ 6 ~Aij@j�Þ

�
� Si; (10)

where we have introduced the operator @̂0 ¼ @t � �j@j.

Here, all quantities with a tilde refer to the conformal
three-metric ~�ij, and the latter is used in order to raise

and lower indices. In particular, ~Di and
~�k

ij refer to the

covariant derivative and the Christoffel symbols, respec-

tively, with respect to ~�ij. The expression ½� � ��TF denotes

the traceless part (with respect to the metric ~�ij) of the

expression inside the parentheses, and

~R ij ¼ �1
2
~�kl@k@l ~�ij þ ~�kði@jÞ~�k � ~�ðijÞk@l ~�lk

þ ~�lsð2~�k
lði~�jÞks þ ~�k

is
~�kljÞ; (11)

R�
ij ¼ �2 ~Di

~Dj�� 2~�ij
~Dk ~Dk�þ 4 ~Di� ~Dj�

� 4~�ij
~Dk� ~Dk�: (12)

The gauge conditions imposed on the lapse, Eq. (3), are
a generalization of the Bona-Massó condition [15], where
fð�;�; x�Þ is a smooth and strictly positive function and
K0ðx�Þ is an arbitrary smooth function. The conditions
imposed on the shift in Eqs. (5) and (6) is a generalization
of the hyperbolic Gamma-driver [16] condition where
Gð�;�; x�Þ and Hð�;�; x�Þ are smooth, strictly positive
functions, and �iðBj; �; x�Þ is a smooth vector-valued

function. The term @̂0~�
i in Eq. (6) is set equal to the

right-hand side of Eq. (10). Note that we use the operator

@̂0 (as opposed to @t) in these gauge conditions; not only
does this simplify the analysis of the principal part of the
evolution equations, it also results in stable binary black
hole evolutions for moving punctures [17] and the tur-
ducken approach [1].
Finally, the parameter m, which was introduced in [18],

controls how the momentum constraint is added to the

evolution equations for the variable ~�i. The standard
choice in numerical simulations is m ¼ 1, which elimi-

nates the divergence of ~Aij in Eq. (10). However, we find it
instructive not to fixm ¼ 1 in this article. The source terms

S, Ŝij, and Si are defined in terms of the four-Ricci tensor

Rð4Þ
ij and the constraint variables

H � 1
2ð�ijRð�Þ

ij þ K2 � KijKijÞ; (13)

Mi � ~Dj ~Aij � 2
3
~DiK þ 6 ~Aij

~Dj�; (14)

Ci
� � ~�i þ @j ~�

ij; (15)

as

S ¼ �ijRð4Þ
ij � 2H; (16)

Ŝ ij ¼ ½Rð4Þ
ij þ ~�kði@jÞCk

��TF; (17)

Si ¼ 2�m~�ijMj � @̂0C
i
�: (18)

In vacuum, the evolution equations consist of Eqs. (3)–(10)

with S ¼ 0, Ŝij ¼ 0, Si ¼ 0. In order to obtain a solution to

1There are two sign errors in Eqs. (5) and (6) of Ref. [14]. The
first is in front of the second term of Eq. (5) and the second is in
front of the fourth term in Eq. (6). Since these errors only affect
lower order terms, they do not affect the results in [14] in any
way. We thank Dae-Il Choi for pointing out these errors to us.
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Einstein’s vacuum field equations, one also has to solve the
constraints H ¼ 0, Mi ¼ 0, and Ci

� ¼ 0. Below, we show
that for m ¼ 1 it is sufficient to solve these constraints on
an initial Cauchy surface in the region exterior to black
holes. The constraint propagation system then guarantees
that these constraints hold at all events which are future to
the initial surface and outside the black hole regions,
provided suitable boundary conditions are specified at the
outer boundary of the computational domain.

B. Hyperbolicity and characteristic speeds for the main
system

The evolution system (3)–(10) is first order in time and
mixed first/second order in space. There exist at least three
different methods for analyzing hyperbolicity (that is, the
well-posedness of the Cauchy formulation) for such sys-
tems. The first method consists in reducing the system to
fully first order by introducing extra variables (and con-
straints) and to show that the resulting first order system is
strongly or symmetric hyperbolic (see [19] for definitions).
The hyperbolicity of the BSSN equations with a fixed shift
and a densitized lapse or a Bona-Massó-type condition
using this method has been established in Refs. [14,20].
The second method, which was developed in Refs. [21,22],
is also based on a first order system. However, the reduc-
tion makes use of pseudodifferential operators. This has
the advantage of not introducing any new constraints.
Unlike the first method, this results in a unique first order
system. The hyperbolicity of the BSSN equations with a
Bona-Massó-type condition and a hyperbolic Gamma-
driver-type condition was shown in [14] using this method.
Finally, the third method, which has been proposed in
Ref. [23] and applied to BSSN in Ref. [24], consists in
finding an energy norm which, in the limit of frozen
coefficients, is conserved. This method has been shown
[25] to be equivalent to obtaining a first order symmetric
hyperbolic reduction with the first method.

Based on the second method, the following character-
istic speeds with respect to normal observers for the evo-
lution system (3)–(10) were found in [14]: 0, ��1, ��2,
��3, ��4, ��5, and ��6, where

�1 ¼
ffiffiffi
f

p
; �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m� 1

3

s
; �3 ¼

ffiffiffiffi
m

p
; (19)

�4 ¼ 1; �5 ¼
ffiffiffiffiffiffiffiffi
GH

p
; �6 ¼

ffiffiffiffiffiffiffiffiffiffiffi
4GH

3

s
: (20)

When considering high-frequency perturbations of smooth
solutions, it is possible to classify the characteristic fields
as gauge fields, constraint-violating fields, and gravita-
tional radiation [26,27]. According to this classification,
the fields propagating with speeds �1, �5, and �6 corre-
spond to gauge modes; the fields propagating with speeds
�2 and �3 correspond to constraint-violating modes; and

the fields propagating with speeds �4 correspond to gravi-
tational radiation. As shown below, this statement can be
strengthened by noticing that 0, �2, and �3 are the char-
acteristic speeds of the constraint propagation system. In
fact, it can be shown [28] under quite general assumptions
that the characteristic speeds of the constraint propagation
system are a subset of the speeds of the main evolution
system.
In [14] the following necessary conditions for strong

hyperbolicity are given: f > 0, m> 1=4 and GH > 0 or
f > 0, m> 1=4 and G ¼ H ¼ 0. [Notice that for G ¼
H ¼ 0 the evolution equation for the shift, Eq. (5), decou-
ples from the remaining system.] If, in addition, the pa-
rameter m and the functions f, G, and H can be chosen
such that the functions

4GH

3f� 4GH
;

6ðm� 1Þ
4m� 1� 4GH

;
2ðm� 1ÞGH
m�GH

have smooth limits at 3f ¼ 4GH, 4m ¼ 1þGH, and
m ¼ GH, then strong hyperbolicity is guaranteed [14].
For the standard choice m ¼ 1 it is sufficient to verify
that f > 0, GH > 0 and that the function 4GH=ð3f�
4GHÞ has a smooth limit at 3f ¼ 4GH.
In the three-dimensional simulations below, we fix the

functions f,K0 andG,H, and �i as follows. We choose the
1þ log condition

f ¼ 2

�
; K0 ¼ 0;

and the Gamma-driver shift condition

G ¼ 3

4�2
; H ¼ e4�; �i ¼ �Bi

with � ¼ 1=2. In this case, �1 ¼
ffiffiffiffiffiffiffiffiffi
2=�

p
and strong hyper-

bolicity is guaranteed if the function 2�e�4� � 1 does not
cross zero. In our initial slices � ! 1 and � ! 0 in the
asymptotic region, while near black holes �> 0 is small
(� � 0:3 at the horizon) and � positive. Therefore, there
already exists a two-surface where the condition
2�e�4� � 1 � 0 is violated in the initial data. On the other
hand, since this surface is a set of zero measure in the
computational domain, there is hope that the violation of
our sufficient conditions at this surface might still result in
a well-posed Cauchy problem. The numerical simulations
below show no apparent sign of instability.

C. Hyperbolicity and characteristic speeds of the
constraint propagation system

Next, we derive the constraint propagation system which
describes the propagation of constraint violations. We
prove that for 1=4<m � 1 constraint violations inside a
black hole region cannot propagate to the outside.
A convenient way of finding the constraint propagation

system is to perform a 3þ 1 decomposition of the con-

tracted Bianchi identities, 2r�Rð4Þ
�� �r�R

ð4Þ ¼ 0, where
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one sets the quantities S, Ŝij, and Si defined in Eqs. (16)–

(18) to zero. Taking into account the definitions of the
constraint variables H, Mj, and Ci

� defined in Eqs. (13)–

(15), one finds that they obey the linear evolution system

@̂ 0H ¼ � 1

�
Djð�2MjÞ � �e�4� ~Aij ~�ki@jC

k
� þ

2�

3
KH;

(21)

@̂ 0Mj ¼ �3

3
Djð��2HÞ þ �KMj þMi@j�

i

þDið�½~�kði@jÞCk
��TFÞ; (22)

@̂ 0C
i
� ¼ 2�m~�ijMj: (23)

In order to analyze this system, which is mixed first/second
order in space, we use the first method described in
Sec. II B and reduce it to a first order symmetric hyperbolic
system. This allows us to establish the causal propagation
of the constraints via a standard energy inequality.
Introducing the additional constraint variable Zi

k ¼
@iC

k
�, Zij ¼ Zi

k ~�kj, Eqs. (21)–(23) can be rewritten as

the following first order linear system:

@̂ 0H ¼ � 1

�
Djð�2MjÞ � �e�4� ~AijZij þ 2�

3
KH; (24)

@̂ 0Mj ¼ �3

3
Djð��2HÞ þ �KMj þMi@j�

i

þDið�ZðijÞÞTF � ��e�4�½@kZj
k � @jZk

k�;
(25)

@̂ 0C
i
� ¼ 2�m~�ijMj; (26)

@̂0Zij ¼ 2m@ið�MjÞ � 2�m~�klð@i ~�jkÞMl � 2� ~AkjZi
k

þ Zik@j�
k þ Zkj@i�

k þ Zi
k ~�lj@k�

l

� 2
3Zij@k�

k: (27)

Here, we have included in the right-hand side of Eq. (25)
the term @kZj

k � @jZk
k with an arbitrary factor �. Since

Zi
k ¼ @iC�

k, this term is identically zero. However, as we

will see now, its addition allows greater flexibility in
obtaining a symmetric hyperbolic system. The system
(24)–(27) has the form

@̂ 0C ¼ �½AðuÞi@iCþBðuÞC�; (28)

where C are the constraint variables, u ¼
ð�;�i; �;K; ~�ij; ~AijÞ are the main variables, and Ai, i ¼
1, 2, 3, and B are matrix-valued functions of u.

Decomposing Zij ¼ ẐðijÞ þ Z½ij� þ �ijZ=3 into its trace-

free symmetric part, ẐðijÞ, its antisymmetric part, Z½ij�,
and its trace, Z ¼ �ijZij ¼ e�4�Zk

k, and representing C

in terms of the variables C ¼ ðCi
�; S1 :¼ 2mH þ Z; S2 :¼

Hþ 2�Z;Mj; ẐðijÞ; Z½ij�Þ, the principal symbol AðnÞ ¼
AðuÞini is given by

A ðnÞ

Ci
�

S1
S2
Mj

ẐðijÞ
Z½ij�Þ

0
BBBBBBBB@

1
CCCCCCCCA
¼

0
0

ð4m�� 1ÞnjMj
1
3njS2 þ ð1� �ÞniẐðijÞ þ �niZ½ij�

2mðnðiMjÞÞTF
2mn½iMj�

0
BBBBBBBB@

1
CCCCCCCCA
:

(29)

Here ni � �ijnj and ni is normalized such that nin
i ¼ 1.

This system is symmetric hyperbolic if and only if the
following inequalities hold:

4m�� 1> 0; 2mð1� �Þ> 0; 2m�> 0;

which is equivalent to the two conditions m> 1=4 and
1=ð4mÞ<�< 1. Therefore, as long as m> 1=4 (which is
also a necessary condition for the main evolution system to
be strongly hyperbolic; see Sec. II B) we can choose �
between 1=ð4mÞ and 1 and obtain a symmetric hyperbolic
constraint propagation system. For the standard choice
m ¼ 1, for instance, we can choose � ¼ 1=2 which is
the case considered in [1]. A symmetrizer H ¼ HT is
given by

CTHC ¼ ~�ijC
i
�C

j
� þ S21 þ

1

3ð4m�� 1Þ S
2
2 þ �ijMiMj

þ 1� �

2m
�ik�jlẐðijÞẐðklÞ þ �

2m
�ik�jlZ½ij�Z½kl�:

H is positive definite and satisfiesHAðnÞ ¼ AðnÞTH. The
symmetrizer allows us to obtain an energy-type estimate2

for the constraint variables C. For this, define the four-
current

J�@� ¼ 1

2�
CTHC@̂0 � 1

2
CTHAiC@i:

By virtue of Eq. (28) the current satisfies the conservation
law

@�J
� � @tJ

t þ @iJ
i ¼ CTLC; (30)

with 2L ¼ HBþ ðHBÞT þ @tð��1HÞ � @iðHAi þ
��1�iHÞ. Next, let �T ¼ S

0�t�T�t be a tubular region
obtained by piling up open subsets �t of t ¼ const hyper-
surfaces. This region is enclosed by the spacelike hyper-
surfaces �0, �T and the surface T :¼ S

0�t�T@�t, which
is assumed to be smooth. Integrating (30) over �T and
using Gauss’ theorem in R4 with the Euclidean metric, one
obtains

2Such estimates are a standard technique in the theory of
hyperbolic partial differential equations. In particular, they allow
one to prove uniqueness and continuous dependence on the data
and to establish the principle of finite propagation speed. For
references, see for instance [28,29].
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Z
�T

Jtd3x ¼
Z
�0

Jtd3xþ
Z
�
CTLCd4x�

Z
T
J�e�dS;

where e� is the outward unit one-form normal toT and dS

the volume element on that surface. If the boundary term
J�e� is positive or zero, one obtains the estimateZ

�T

Jtd3x �
Z
�0

Jtd3xþ
Z
�
CTLCd4x

¼
Z
�0

Jtd3xþ
Z T

0

�Z
�t

CTLCd3x

�
dt

�
Z
�0

Jtd3xþ b
Z T

0

�Z
�t

Jtd3x

�
dt;

where b is a constant and where we have used the positivity
of Jt ¼ CTHC=ð2�Þ in the last step. By Gronwall’s
lemma, one obtains the inequalityZ

�t

Jtd3x � ebt
Z
�0

Jtd3x; 0 � t � T: (31)

Since 2�Jt ¼ CTHC is positive definite, this then implies
that C ¼ 0 everywhere on �T if C ¼ 0 on �0, which
shows that it is sufficient to solve the constraints C ¼ 0
on the initial slice �0. In view of numerical applications,
however, the constraints are not exactly satisfied on �0.
Instead, numerical errors introduced by solving the con-
straint equations on a finite grid may be modeled by a
sequence Cn of initial constraint violations which con-
verges to zero as the resolution n goes to infinity. In this
case, the estimate (31) shows that for each fixed t 2 ½0; T�
the L2 norm of the constraint variables Cn converges to
zero on �t.

In order to analyze the conditions under which the
boundary term is nonnegative, it is convenient to expand
the outward normal vector as e�dx

� ¼ N½a�dtþ
niðdxi þ �idtÞ� where ni is normalized such that
�ijninj ¼ 1 and N > 0 is a normalization factor. We set

N ¼ 1 in the following since we are only interested in the
sign of the boundary term. Notice that jaj< 1 if T is
timelike, jaj> 1 if T is spacelike, and jaj ¼ 1 if T is a
null surface. With this notation, the boundary term is equal
to

J�e� ¼ 1
2C

T½aH�HAini�C:
Therefore, the condition for this boundary term to be
positive or zero is that all the eigenvalues of the matrix
Aini are smaller than or equal to a. If T is a future event
horizon, then a ¼ 1 and this condition means that all of the
eigenvalues must be smaller than or equal to 1. For the
symbol given in Eq. (29) these eigenvalues are the charac-
teristic speeds (with respect to normal observers) and are

0; ��2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m� 1

3

s
; ��3 ¼ � ffiffiffiffi

m
p

:

In particular, there are no superluminal speeds if 1=4<
m � 1, and in this case no constraint violations can propa-
gate out of a black hole. For the standard choicem ¼ 1 this
condition is satisfied. However, we also see that choosing

m> 1 in the evolution equation for ~�i, Eq. (10), yields
superluminal constraint speeds in which case constraint
violations inside a black hole can affect the exterior region.
Finally, we would like to point out that if the computa-

tional domain contains timelike boundaries, then jaj< 1
and the sign of the boundary term J�e� is not automati-

cally positive or zero. In this case, boundary conditions
need to be specified such that this term is nonnegative and
such that a well-posed Cauchy problem is obtained.

D. Spherical symmetry

The BSSN equations can be specialized to spherical
symmetry as described in Ref. [30]. The first step is to
remove the restriction ~� ¼ 1 on the determinant of the
conformal metric and replace it with an evolution equation
for ~� [31]. In this paper we use the ‘‘Eulerian evolution’’
defined by @t ~� ¼ 2~� ~Di�

i. The conformal connection
functions are defined in terms of the conformal

Christoffel symbols by ~�i � ~�jk~�i
jk.

The reduction to spherical symmetry is achieved by
writing the conformal metric as ds2 ¼ ~�rrdr

2 þ ~�		d
2�,

where d2� is the metric for the unit two-sphere. The
independent component of the trace-free part of the extrin-

sic curvature is ~Arr, and the independent component of the

conformal connection functions is ~�r.
In one dimension as in three, we use 1þ log slicing and

the Gamma-driver shift condition (although here we use
� ¼ 1 for the damping parameter). For the main evolution
system in spherical symmetry, the characteristic speeds are
0, ��1, ��2, and ��5. Strong hyperbolicity is guaran-
teed for f > 0, m> 1=4, and GH > 0 if the following
conditions hold: f � GH and 3GH þ 1 � 4m.
The constraint evolution system can be obtained by

spherical reduction of the system (21)–(23), or by direct
calculation from the 1D equations of motion [30]. Let Zr

r �
@rC

r
� and define the vector of constraints by C �

ðH;Mr; C
r
�; Z

r
rÞT . The constraint evolution equations have

the form @̂0C ¼ �½Ar@rCþBC� where Ar and B are
functions of the BSSN variables. The principal symbol is
given by

A r ¼
0 �2e�4�=~�rr 0 0
1=6 0 0 2e�4�=3
0 0 0 0
0 2m=~�rr 0 0

0
BBB@

1
CCCA: (32)

The characteristic fields are Cr
�, mHþ e�4�Zr

r, and H �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4m� 1Þ=~�rr

p
e�2�Mr þ 4e�4�Zr

r with proper speeds

0, 0, and ��2 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4m� 1Þ=3p
, respectively. This sys-

tem is symmetric hyperbolic as long as 4m> 1. For the
case of primary interest, m ¼ 1, the characteristic fields propagate along the normal and along the light cone.
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A symmetrizer can be constructed from the squares of the characteristic fields:

CTHC ¼ ðmH þ e�4�Zr
rÞ2 þ ðCr

�Þ2 þ ðH þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4m� 1Þ=~�rr

q
e�2�Mr þ 4e�4�Zr

rÞ2

þ ðH � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4m� 1Þ=~�rr

q
e�2�Mr þ 4e�4�Zr

rÞ2
¼ ðm2 þ 2ÞH2 þ ðCr

�Þ2 þ 24ð4m� 1Þe�4�ðMrÞ2=~�rr þ 33e�8�ðZr
rÞ2 þ 2e�4�ðmþ 8ÞHZr

r: (33)

The spacetime current, defined by

J�@� ¼ 1

2�
CTHC@̂0 � 1

2
CTHArC@r; (34)

satisfies the conservation law

@�J
� � @tJ

t þ @rJ
r ¼ CTLC (35)

where 2L ¼ HBþ BTHþ @tðH=�Þ � @rðHðAr þ
�r=�ÞÞ. As in the 3D case, we can now show that if
J�e� is non-negative at the boundaries, thenZ

�t

Jtdr � ebt
Z
�0

Jtdr; 0 � t � T (36)

for some constant b. It follows that the constraints will
vanish on �t if they vanish on the initial hypersurface �0.

The assumption that J�e� is non-negative at the

boundaries for m ¼ 1 can be seen to hold at the black
hole horizon by following the same reasoning as in the
three-dimensional case. We expand the Euclidean normal
one-form e� as a linear combination of the unit normal u�
to the t ¼ const surfaces and the unit normal ni to the two-
dimensional boundary within the spacelike hypersurfaces.
As in the three-dimensional case, we have e�dx

� ¼
N½a�dtþ nrðdxr þ �rdtÞ� where jaj ¼ 1 characterizes a
null surface. By dropping the positive constant N, we find
J�e� ¼ CTðaH�HArnrÞC=2. This shows that for a

black hole horizon J�e� is positive if the eigenvalues of

Arnr are less than or equal to 1. This is indeed the case for
m ¼ 1, since the constraint propagation system has eigen-

values 0 and � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4m� 1Þ=3p
.

III. CODE DESCRIPTIONS

We use two different codes for the simulations presented
in this paper. One of them is McLachlan, a three-
dimensional adaptive mesh refinement code, which uses
the BSSN system of equations, as described in [16,32],
with the gauge conditions described in Sec. II above. See
Sec. II for the exact form of these equations. The
McLachlan code is a Cactus thorn which is entirely gen-
erated by Kranc [33–35] directly from equations and dif-
ferencing stencils specified in MATHEMATICA format.
McLachlan uses the Cactus framework [36,37] and the
Carpet mesh refinement driver [38,39]. The evolution
code is fully fourth order accurate in time and space. We
use fifth order spatial interpolation at mesh refinement
boundaries, using buffer zones as described in [38] to

ensure stability and convergence at mesh refinement
boundaries, and using tapered grids as described in [40]
to avoid the Berger-Oliger time interpolation. Our finite
differencing operators are the standard centered fourth
order accurate first and second finite differencing opera-
tors, except for the advection terms which are upwinded
(also fourth order). We use a fourth order Runge-Kutta
time integrator and add fifth order Kreiss-Oliger dissipa-
tion [41] to the right-hand sides. We apply standard radia-
tion (Sommerfeld) boundary conditions (as described in
[16]) to all components of the evolved fields. These bound-
ary conditions are neither fourth order convergent nor
constraint preserving, so nonconvergent constraint viola-
tions will propagate inwards from the outer boundary. We
therefore expect our code, in the limit of infinite resolution,
to be fully fourth order accurate only in the region that is
causally disconnected from the outer boundaries. We place
our outer boundaries far enough out that they do not affect
our wave extraction procedure.
We center a stack of refined regions around the origin.

Each region is a cube with a resolution half of the next
coarser region.
We also use a one-dimensional code to analyze several

issues related to the turducken technique in the context of a
spherically symmetric black hole. This is the code used in
[12] and described in detail as the ‘‘Eulerian case’’ in [30].
The 1D code uses a uniform radial grid with nodes at
coordinate radii rj ¼ ðj� 1=2Þ�r, where j ¼ 1, 2, etc.

Fourth order finite differencing is used for spatial deriva-
tives, and a fourth order Runge-Kutta time integrator is
used for the time update. No boundary conditions are
imposed at the origin for any of the variables except the
shift vector component �r. That is, for all variables except
�r, the finite difference stencil is shifted toward positive r
near the origin so that no guard cells are needed. For �r we
impose the boundary condition @r�

r ¼ 0 at r ¼ 0 by using
a fourth order, one-sided, finite difference representation of
@r�

r. The resulting guard cell value is

�rð0Þ ¼ 1

22
½17�rð1Þ þ 9�rð2Þ � 5�rð3Þ þ �rð4Þ� (37)

where the numbers in parentheses label grid points. In the
evolution code, spatial derivatives of �r are computed by
shifting the finite difference stencil toward positive r near
the origin. In this way only the single guard cell value
�rð0Þ is needed. Numerical experiments show that the
condition (37) (or a similar one) is needed for stability.
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The one-dimensional code uses the variable 
 � e�4�

rather than�. The Courant-Friedrichs-Lewy factor is 0.25,
and unless otherwise stated the resolution for all the one-
dimensional runs discussed here is �r ¼ M=200.

IV. SINGLEBLACKHOLEEVOLUTIONSANDTHE
END STATE

In this section we investigate the effects of black hole
smoothing on the evolution of a spherically symmetric
single black hole.

We start with the (Schwarzschild) isotropic black hole
data

~�rr ¼ 1; (38a)

~�		 ¼ r2; (38b)

e� ¼ 1þM=ð2rÞ; (38c)

~�r ¼ �2=r; (38d)

along with K ¼ 0 and ~Arr ¼ 0. For all one-dimensional
simulations, we use the 1þ log slicing and Gamma-driver
shift conditions as described in Sec. II B. The initial values
for the gauge variables are � ¼ 1 and �r ¼ Br ¼ 0.
Unless otherwise stated, all simulations use m ¼ 1.

The black hole interior is turduckened by making the
replacement r ! �rðrÞ in the data (38) for 0 � r � rt,
where

�rðrÞ � r0 � ð10r0 � 4rtÞr2=r2t þ ð20r0 � 6rtÞr3=r3t
� ð15r0 � 4rtÞr4=r4t þ ð4r0 � rtÞr5=r5t : (39)

The function �r has the properties �rð0Þ ¼ r0, �r0ð0Þ ¼ 0,
�rðrtÞ ¼ rt, �r0ðrtÞ ¼ 1, �r00ðrtÞ ¼ 0, and �r000ðrtÞ ¼ 0. Thus,
with this turduckening, we extend r inside rt in such a
way that the initial data are C3 at rt and nonsingular at r ¼
0. The lack of smoothness at rt generates an error in any
centered, fourth order, finite difference derivative whose

stencil extends across rt. For first derivatives the error is
Oð�r3Þ, and for second derivatives the error is Oð�r2Þ.
Note that initially the horizon is located at the coordinate
radius r ¼ M=2. As long as rt <M=2, the turduckening
lies entirely inside the black hole.
The turducken runs considered below use either r0 ¼

0:1M, rt ¼ 0:4M or r0 ¼ 0:05M, rt ¼ 0:45M. These two
types of smoothing are referred to as case TA and case TB,
respectively. We compare these results to results obtained
with puncture data, denoted P, which is equivalent to no
turduckening (puncture evolution).

A. Behavior of constraint violations

Initially, the constraint violations are restricted to the
black hole interior, and our analysis in Sec. II shows that
for m � 1 they should stay there. Thus, we expect the
constraints to hold everywhere and at all times in the black
hole exterior.
One obvious way to test this is to monitor the numerical

constraints as functions of time, and confirm that the
violations introduced by the turduckening do not leak out
of the black hole. This is indeed the case. For smoothing-
types TA and TB, the initial Hamiltonian constraint viola-
tion inside the black hole is �10�1=M2, while (at resolu-
tion �r ¼ M=200) the initial constraint violation outside
the black hole is �10�9=M2. The constraint violation
outside the black hole remains �10�9=M2 throughout
the evolution.
Moreover, we find that the region of constraint violation

quickly shrinks relative to the numerical grid, and the
constraints quickly lose memory of the turduckening.
This comes about because the grid points surrounding the
origin acquire a radially outward velocity that becomes
superluminal within a time of a fewM. The curves labeled
‘‘coord’’ in Figs. 1 show the proper speed of the coordi-
nates in the radial direction with respect to observers at rest
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FIG. 1 (color online). Proper speeds as a function of proper distance from the horizon for the turduckening case TA. The curve
labeled ‘‘coord’’ is the proper speed of the coordinate system with respect to the normal observers,

ffiffiffiffiffiffiffi
~�rr

p
e2��r=�. The curve labeled

‘‘mode 1’’ is the proper speed �1 ¼
ffiffiffiffiffiffiffiffiffi
2=�

p
. The curve labeled ‘‘mode 5’’ is the proper speed �5 ¼

ffiffiffi
3

p
e2�=ð2�Þ. The horizontal line is

light speed.
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in the spacelike hypersurfaces. The speed is plotted as a
function of proper distance from the black hole horizon,
with the convention that positive values are outside the
black hole and negative values are inside the black hole.
What we see from these figures is that the coordinate grid
inside the black hole moves faster than the speed of light
(c ¼ 1) in the radially outward direction. The region of
constraint violation moves causally, with speeds 0 and�1.
Thus, the coordinates soon move outside the forward light
cone of the stuffed region, and into the future light cone of
the initial data that satisfy the constraints. The graphs in
Fig. 1 were taken from simulations with smoothing-type
TA. The graphs obtained with smoothing TB are nearly
identical.

In Fig. 2 we plot the Hamiltonian constraint as a function
of the coordinate radius for the initial data t ¼ 0 and for the
later times t ¼ 4M, 8M, and 12M. The data for turducken-
ing types TA and TB are shown, as well as for puncture
data P. The constraint violation does not propagate beyond
the black hole horizon. The value of the Hamiltonian
constraint violation inside the black hole drops from
�0:1 to �10�9 by t ¼ 12M. Beyond about t ¼ 12M, the
constraint data for TA and TB are everywhere (that is, also

inside the black hole) indistinguishable from each other,
and indistinguishable from the results obtained with punc-
ture data P.
The success of the turduckening procedure depends on

the constraint-violating modes propagating with speeds
less than or equal to 1. Our analysis in Sec. II predicts
that this condition is met for the BSSN family of evolution
equations (3)–(10) if and only if 1=4<m � 1. In Fig. 3 we
plot the numerical Hamiltonian constraint as a function of
coordinate radius r for m ¼ 1:25. One can clearly see that,
as predicted by the theory, in this case the constraint
violation does propagate from the interior to the exterior
of the black hole. This illustrates the fact that, for a given
formulation of the Einstein equations, one cannot simply
assume that the constraints will propagate with nonsuper-
luminal speeds.

B. Behavior of the coordinates

The relatively large value of the radial component of the
shift vector moves the grid points beyond the region of
constraint violation within a time of a fewM. However, the
grid points do not move beyond the influence of the tur-
duckening. Recall that the main evolution system in spheri-
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FIG. 2 (color online). Hamiltonian constraint versus coordinate radius r at various times, in units ofM. TA and TB denote two types
of turduckening, and P is puncture data. The vertical line shows the location of the black hole horizon.
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cal symmetry is strongly hyperbolic with characteristic

speeds 0, ��1 ¼ � ffiffiffiffiffiffiffiffiffi
2=�

p
, ��2 ¼ �1, and ��5 ¼

� ffiffiffi
3

p
e2�=ð2�Þ. The modes with speeds �1 and �5 can

become superluminal. Figure 1 shows the speeds �1 and
�5 at times t ¼ 3M and t ¼ 6M, along with the speed of
the coordinate grid relative to the normal observers. Both
speeds �1 and �5 are larger than the coordinate speed at
the black hole horizon (the origin of proper distance). As
discussed in Sec. II B, in some sense the modes corre-
sponding to �1 and �5 can be associated with gauge free-
dom. We therefore expect that the turduckening process
can affect gauge conditions outside the black hole.
Although the full Einstein equations are satisfied in the
black hole exterior, independent of the smoothing, the
slicing and coordinate conditions outside the black hole
can depend on the details of the stuffing.

Figure 4 shows the differences between lapse functions
and the areal radius R, at four different times. For the curve
TA-P, we compute the difference between the lapse func-
tion for smoothing TA and the lapse function obtained
from puncture evolution (no smoothing). These calcula-
tions require some explanation. The areal radius is not a
monotonic function of the coordinate radius; rather, the
areal radius has a minimum at the black hole throat.
Therefore, for each of the runs TA and P we use only the
data for which R is an increasing function of the coordinate
radius. We then consider the overlap region in which R is
increasing for both data sets TA and P. The difference in
lapse values is computed by interpolating this data onto a
common grid that covers the overlap region. The differ-
ences TB-P are computed in the same way, but with data
from smoothing-type TB. Note that the overlap regions
extend inside the black hole horizon, which has areal
radius R ¼ 2M.

The effect that the turduckening has on the slicing is
relatively small when compared to the nominal value of 1
for the lapse, but is clearly seen in Fig. 4. This effect begins
inside the black hole and propagates superluminally to the
outside, where it continues to spread radially outward.
The turduckening’s effect on the slicing condition fades

with time. As the evolution proceeds, the data relax to a
portion of a stationary 1þ log slice of a Schwarzschild
black hole, independent of the initial stuffing details. This
stationary 1þ log slice has a ‘‘trumpet’’ geometry [13]. It
is the same final slice obtained with puncture evolution
[12,42,43]. In Fig. 5 we graph the areal radius as a function
of proper distance from the horizon (with the convention
that positive distances are outside the black hole, and
negative distances are inside). These plots show the data
for smoothing-types TA and TB, and for no smoothing P, at
early (t ¼ 0:25M) and late (t ¼ 50M) times. The station-
ary 1þ log slice of a Schwarzschild black hole is shown as
the curve labeled S. Initially, the R versus proper distance
relation shows a strong dependence on smoothing. By t ¼
50M all of the TA, TB, and P data have relaxed to approxi-
mate a portion of the trumpet slice S. At this time, and with
resolution �r ¼ M=200, the numerical slices all end at
proper distance � �6:45M. Close inspection of the data
shows that, near the end of the numerical slice, the areal
radii for the cases TA, TB, and P agree with one another to
more than seven decimal places; at proper distance �6M,
we find � � 1:320 13. The areal radius for a stationary 1þ
log slice at proper distance �6M is � � 1:320 18.
Although the stuffing can affect the slicing beyond the

black hole horizon, it does not always do so. For the type of
simulations considered here, it appears that any stuffing
that is initially inside a coordinate radius of about 0:2M
remains causally disconnected from the black hole exte-
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FIG. 3 (color online). Hamiltonian constraint versus coordinate radius r for m ¼ 1 and m ¼ 1:25, where m is the parameter that
controls the mixing of the momentum constraint in the equation of motion for �r. The smoothing-type TB is used in both cases. The
vertical line shows the location of the black hole horizon. As predicted by the theory, the constraint violations inside the black hole do
propagate to the outside if m> 1.
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rior. In Fig. 6 we show the difference between lapse
functions for stuffing types TD, TE, and puncture data P.
The cases TD and TE use turduckening radii rt ¼ 0:2M
and rt ¼ 0:3M, respectively. Both cases use r0 ¼ 0:02M.
The figure shows the common logarithm of the lapse
differences at t ¼ 3M and t ¼ 6M, for low (�r ¼
M=100) and high (�r ¼ M=200) resolutions.

The top two graphs show that the lapse difference TD-P
converges to zero with increasing resolution. On the log
plots the difference between low and high resolution
curves is logð16Þ � 1:2. These results show that, with its
small turduckening radius, the data for stuffing-type TD
are indistinguishable from puncture data in the black hole
exterior. The bottom two graphs show the lapse difference
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FIG. 5 (color online). Areal radius R versus proper distance from the horizon. The horizontal line at R ¼ 2 is the horizon. By
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TE-P. In this case the difference converges to a nonzero
value which spreads from the black hole interior to its
exterior.

Let us refer once again to Fig. 1, which shows the gauge
propagation speeds �1, �5 along with the coordinate sys-
tem speed. Observe that the speed �1 ¼

ffiffiffi
f

p
depends on

the slicing condition (3), while the speed �5 ¼
ffiffiffiffiffiffiffiffi
GH

p
depends on the coordinate shift conditions (5) and (6).
Thus, it is the speed �1 that we examine closely here.
Figure 1 shows that the coordinate system moves faster
than �1 within a proper distance of �M of the puncture.
This appears to be a common result, independent of the
stuffing details. If the stuffing initially extends beyond this
�1 sphere, where the speed curve for �1 crosses the
coordinate speed curve, then the stuffing’s effect on the
slicing can propagate radially outward through the black
hole horizon. This is the case for data-type TE. If the
stuffing is initially contained entirely within the�1 sphere,
then the stuffing’s effect on the slicing is lost as the
coordinate grid quickly moves beyond the influence of
mode �1. This is the case for data-type TD.

Note that the precise value of the turduckening radius
where the influence of the gauge speed �1 is lost might

depend on a number of details of the simulation. For
example, black hole spin, the initial values of the lapse
and shift, as well as the details of the stuffing profile might
affect whether or not the gauge modes will be lost in the
black hole interior.
Finally, let us observe that the gauge speed �5 is larger

than the coordinate speed throughout the black hole
interior.3 Thus, we expect that the stuffing details will
affect the shift in the black hole exterior, regardless of
how small the stuffing region might be. This expectation
is supported by the results shown in Fig. 7. This figure
shows the difference in coordinate radii for turducken data
TD and puncture data P as a function of areal radius. As
discussed above, in the limit of infinite resolution the
slicing outside the black hole appears to be identical for
turducken data TD and puncture data P. Thus the difference
shown in Fig. 7 is due to differences in the coordinate grid.
In particular, the radial shift in the coordinate grid in the
black hole exterior depends on the type of stuffing used. At
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FIG. 6 (color online). Common logarithm of the difference between lapse functions. The top two graphs show the difference between
case TD and puncture data for low (�r ¼ M=100) and high (�r ¼ M=200) resolutions. The bottom two graphs show the difference
between case TE and puncture data for low and high resolutions. [Note that the curves at time t ¼ 3M appear to terminate at an areal
radius of about 3.3 (case TD) or 3.5 (case TE). This occurs because, beyond these values, the lapse difference is exactly 0.0 to 13 or
more decimal places. The logarithm is undefined for larger values of the areal radius.]

3This observation partially explains why the one-dimensional
code [30] seems to require boundary conditions at the origin for
the shift vector.
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time t ¼ 2M the difference has just begun to cross the
black hole horizon. The difference continues to move into
the black hole exterior as the evolution proceeds.

V. THREE-DIMENSIONAL BLACK HOLE
EVOLUTIONS

A. Turduckening procedure in 3D

Numerical initial data with black holes may contain
singular ‘‘puncture’’ points or excised regions. If the data
are incomplete due to excision, the excised regions must be
filled before the turducken method can be used to evolve
the data. Even if the data are complete, as in the puncture
case, it may be advantageous to replace the data near
singular points with data that are smoother.

We experimented with various methods for turducken-
ing the initial data in the black hole interior. We found that
the details do not matter much in practice, as long as the
fields are sufficiently smooth across the turduckening
boundary and the spacetime remains unchanged within a
layer inside the horizon whose width is at least a few times
the width of the finite differencing stencil. Empirically, a
width of 10 grid points suffices for us; we expect this
number to depend on the particular differencing operators
which are used.

One rather simple method for turduckening is blending,
which fills the excised region with arbitrary data, and then
modifies some of the nonexcised grid points to create a
smooth match. This has the disadvantage that it may
require quite a few nonexcised grid points inside the hori-
zon—one needs to have sufficiently many grid points to
ensure the smooth match, plus the grid points which need
to be left unmodified.

Instead, we choose a method which leaves all given data
unchanged and fills in all excised points in a smooth
manner. In particular, we solve an elliptic equation of the
form

�
@n

@xn
þ @n

@yn
þ @n

@zn

�
A ¼ 0 (40)

to fill the excised points of a quantity A, using standard
centered derivatives everywhere and using the given non-
excised data as boundary conditions. Here n is an even
integer which controls the smoothness of the resulting field
A. If n ¼ 2, A will be only C0. Increasing n by 2 results in
one additional derivative being continuous, so that for n ¼
4, A is C1, and for n ¼ 6, the resulting A is C2. Since we
need to take two derivatives of the metric, we choose n ¼ 6
to keep all derivatives continuous. We will show later that
using n ¼ 2 still works, but leads to large errors.
Equation (40) is linear, and we employ a standard con-

jugate gradient method [44] to solve it. This numerical
scheme is robust and rather easy to implement, and it
converges reasonably quickly at the resolutions within
reach on current supercomputing hardware. The algorithm
has been implemented in the Cactus thorn NoExcision that
we have made freely available.4

Higher values of n lead to smoother initial data. It is also
possible to choose a nonzero right-hand side in (40),
modifying the shape of the solution in the excised region.
In this paper we do not take advantage of this additional
freedom. Other turduckening procedures may also be pos-
sible and could be directly integrated into the initial data
solvers.

B. Distorted rotating black hole evolutions

We now turn to evolutions of single distorted, rotating
black holes and investigate the effects of black hole tur-
duckening on the numerical solution and the extracted
waveforms. We use single puncture initial data with a
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FIG. 7 (color online). The difference between the coordinate radius for turducken data TD and puncture data, as a function of areal
radius. Both low (�r ¼ M=100) and high (�r ¼ M=200) resolution results are shown, although the curves are difficult to distinguish.
The vertical line is the location of the black hole horizon.

4The Cactus thorn can be obtained via the command svn
checkout https://svn.aei.mpg.de:/numrel/AEIThorns/
NoExcision/trunk NoExcision.
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Bowen-York extrinsic curvature [45]. We use a puncture
mass mp ¼ 0:751 744 and a moderately large angular mo-

mentum parameter S ¼ 0:7, resulting in a black hole with
irreducible mass Mirr � 0:925 785, dimensionless spin
a=M ¼ S=M2 ¼ 0:7, and mass M ¼ 1:0 [see e.g.
Eq. (27) in [46] for a definition of the horizon mass used
here]. The Arnowitt-Deser-Misner (ADM) mass of the
spacetime is MADM � 1:002 52.

We chose puncture initial data to be able to compare
turducken and puncture evolutions (see also Sec. IV). We
chose a nonzero angular momentum to arrive at a more
interesting, nonspherically-symmetric case which also in-
cludes gravitational wave emission, as the conformally flat
rotating single punctures do not represent the Kerr space-
time [47].

We perform simulations of four different initial data
setups. The first is a pure puncture setup where the tur-
duckening procedure is not applied. In the other three
cases, the puncture data are modified inside of different
turduckening radii: small (rt ¼ 0:1MÞ, medium (rt ¼
0:15M), and large (rt ¼ 0:2M), but kept unchanged every-
where else. The radius of the initial apparent horizon is
rhor ¼ 0:3758M. For all four cases we perform simulations
at three different resolutions: low (dx ¼ 0:024M), medium
(dx ¼ 0:016M), and high (dx ¼ 0:012M), as measured on
the finest refinement level. Table I lists the approximate
number of grid points between the horizon and the tur-
duckening region in each of these cases. These runs were
performed using the McLachlan code (see Sec. III), eight
levels of mesh refinement, and the outer boundaries located
at R ¼ 256M. Refinement boundaries were placed at R ¼
½128; 64; 16; 8; 4; 2; 1�M. Fifth order Kreiss-Oliger dissipa-
tion [41] was applied to all evolved variables.

We choose the initial lapse profile as

�init ¼ 1

1þmp=ð2rÞ ; (41)

which corresponds to the average of the isotropic lapse and
unit lapse. Except for the puncture case, the lapse is further

modified in the turduckening region by smoothing it using
Eq. (40) with n ¼ 6. The shift and its time derivative are
initially set to zero.

C. Numerical results

1. Constraints

Figure 8 shows the convergence behavior for the
Hamiltonian constraint for the small turduckening radius
rt ¼ 0:1M and the puncture run along the x axis at a late
time T ¼ 115:2M (any late time could have been chosen,
since the numerical spacetime has essentially become sta-
tionary). The vertical line shows the location of the horizon
at this time. Similar results hold for the momentum con-
straint. These results show that at late times the constraints
converge to zero at a fourth order rate, except for a few grid
points near the origin. Since the stationary solution we are
approaching has a 1=

ffiffiffi
r

p
singularity in the conformal factor

[12,13], this is to be expected, as a neighborhood of the
origin is under-resolved. Note also that the convergence
plots are practically identical for the turducken and punc-
ture simulations. These results are consistent with the 1D
results of Sec. IV.

2. Lapse

The behavior of the lapse is also consistent with the
spherically symmetric simulations of Sec. IV. Figure 9
shows the lapse profile along the x axis at four different
times (T ¼ 0M, T ¼ 3:84M, T ¼ 9:6M, and T ¼ 96M)
for the high resolution case. The region with significant
differences in the slicing is at all times safely contained
within the horizon. However, as can be seen from the inset
in the bottom left graph, there are real (but small) differ-
ences in the lapse function also outside the horizon at early
times. These differences do not converge away with reso-
lution. In other words, the details of the turduckening
procedure result in real (but small) differences in the slic-
ing outside of the horizon. With time, the differences
become smaller, and are no longer visible in the bottom
right graph at T ¼ 96M.

3. Waveforms: Convergence with resolution

We extract the ‘ ¼ 2, m ¼ 0 mode of the Weyl scalar
�4 on coordinate spheres at four different radii (R ¼ 30M,
R ¼ 40M, R ¼ 50M, and R ¼ 60M), choosing the com-
monly used hypersurface-adapted tetrad described e.g. in
[48]. Figure 10 shows convergence tests for the waveforms
obtained with different turducken radii and with puncture
evolutions, in all cases extracted at R ¼ 30M.
The top left graph shows the waveform with a small

turducken radius, rt ¼ 0:1M, at three different resolutions.
The top right graph shows the differences between the
different resolutions, scaled for fourth order convergence.
The fact that the curves look so similar is a manifestation of
clean fourth order convergence.

TABLE I. Number of grid points between the turduckening
region and the radius of the initial apparent horizon (rhor ¼
0:3758M), for three turduckening radii rt and three grid reso-
lutions dx. The resolution dx is given in multiples of � ¼
0:04M. If there are too few grid points between the horizon
and the turduckening region, information about the turduckening
procedure escapes out of the black hole, which must be avoided.

Turduckening

radius

Low

resolution

Medium

resolution

High

resolution

rt 6� 4� 3�

Small 0:10M 11 17 23

Medium 0:15M 9 14 19

Large 0:20M 7 11 15
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The bottom left graph shows the scaled differences for a
pure puncture run, also indicating clean fourth order con-
vergence. The case rt ¼ 0:15M (not shown here) behaves
similarly.

However, the scaled differences for rt ¼ 0:2M (bottom
right graph) look noticeably different. We attribute this to
the smaller number of grid points between the turducken-

ing region and the initial apparent horizon (see Table I), so
that, in the low resolution case, there are too few grid points
between the turduckening region and the horizon for the
numerical waveforms to be effectively isolated from the
stuffing. The curve for the difference between the medium
and high resolution waveforms is very similar to the other
cases, which indicates that it is only the low resolution run
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FIG. 9 (color online). Lapse profile along the x axis for the distorted single black hole evolutions at the times T ¼ 0M (top left
graph), T ¼ 3:84M (top right graph), T ¼ 9:6M (bottom left graph), and T ¼ 96M (bottom right graph) for the high resolution,
comparing different turduckening radii. The vertical lines show the location of the apparent horizon. The insets in the bottom graphs
enlarge a small region near the horizon. While the lapse profiles differ near the origin, they are very similar at the horizon, and their
difference decreases with time. However, for the medium and large turduckening radii, a superluminal gauge mode is clearly escaping.
On the other hand, the differences between the lapse profiles of the puncture and small turduckening radius cases converge to zero with
resolution.
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that is not in the convergent regime. We expect, though we
have not yet confirmed this with numerical experiments,
that a convergence test with a higher minimal resolution
will also show a lack of convergence if the turduckening
region is chosen so that rt is only�7 (or fewer) grid points
away from the horizon at the minimal resolution. Thus, as a
rule of thumb, we expect that one should always choose the
turduckening region so that rt is more than �7 grid points
away from the horizon. Finite differencing schemes that
differ from the one used in our code would probably
require different limits. Experimentation would be neces-
sary on a case-by-case basis.

4. Waveforms: Comparison among different solution
methods

Figure 11 shows, for the three resolutions, the differ-
ences between the puncture waveform and the turducken
waveforms with turduckening radii rt ¼ 0:1M, rt ¼
0:15M, and rt ¼ 0:2M. In all cases two extraction radii
are used: R ¼ 30M and R ¼ 60M. As can be seen from the
figure, the difference between the puncture waveform and
the rt ¼ 0:1 one goes to zero as the resolution is increased.
This is not true for the rt ¼ 0:15 and rt ¼ 0:2 cases, where
the difference, especially clear at R ¼ 30M, does not
converge to zero with increasing resolution. Differences

in the slicing do appear to affect the extracted gravitational
wave signal. However, at the larger extraction radius R ¼
60M, the nonconvergent part of the waveform difference is
significantly smaller.
As already discussed, there are gauge modes that travel

at superluminal speeds with our parameter choices, and
differences in gauge are able to propagate beyond the
horizon. This is true independently of whether the initial
data are pure puncture or turduckened data. The fact that
we only find differences between the puncture waveforms
and turducken ones with larger rt does not mean that we
consider the puncture waveforms and the turducken wave-
forms with small rt to be correct, and any deviation from
them to be an error. As described above, we modify the
initial lapse profile away from the puncture profile only
inside of the turduckening region. We would expect that a
pure puncture run with a different initial lapse profile (for
example, constant lapse equal to 1) would also yield sig-
nificant differences in the lapse at the location of the
detector. Instead, the conclusion is that since wave extrac-
tion is carried out at a finite radius, our resolutions are high
enough so that the seemingly small differences in slicing
lead to noticeable differences in waveforms. Furthermore,
even though this is a rotating black hole, which cannot be
compared directly to a Schwarzschild black hole, we be-

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  20  40  60  80  100  120

30
Ψ

4 
(l=

2,
 m

=
0)

Time (M)

rt = 0.1 M, R = 30 M

low
med

hi

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 0  20  40  60  80  100  120

30
Ψ

4 
(l=

2,
 m

=
0)

Time (M)

rt = 0.1 M, R = 30 M

low-med
5.9429*(med-hi)

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 0  20  40  60  80  100  120

30
Ψ

4 
(l=

2,
 m

=
0)

Time (M)

punc, R = 30 M

low-med
5.9429*(med-hi)

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 0  20  40  60  80  100  120

30
Ψ

4 
(l=

2,
 m

=
0)

Time (M)

rt = 0.2 M, R = 30 M

low-med
5.9429*(med-hi)

FIG. 10 (color online). Effect of the turduckening radius on the ‘ ¼ 2, m ¼ 0 mode of gravitational waveforms r�4, extracted at
R ¼ 30M. The top left graph compares all three resolutions, and the top right graph shows their differences, scaled for fourth order
convergence, both for the small turduckening region rt ¼ 0:1M. The bottom left graph shows the scaled differences for a pure puncture
run, and the fact that it looks virtually identical indicates that rt ¼ 0:1M is a good choice for these resolutions. On the other hand, the
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not yet in the convergent regime.

BROWN, DIENER, SARBACH, SCHNETTER, AND TIGLIO PHYSICAL REVIEW D 79, 044023 (2009)

044023-16



lieve that this is the same effect as seen in the 1D spheri-
cally symmetric case (see Fig. 6 and its discussion in
Sec. IVB). Namely, differences in slicing get trapped in-
side the black hole for a sufficiently small turducken radius
(while the puncture evolution can be considered as the
limit rt ! 0). Note also that the slicing differences (and
consequently the waveform differences) are transient since
both puncture and turducken runs approach the same
trumpet slice at late times.

What we have seen is that, through a proper convergence
test, we can detect differences in the waveforms due to
different slicings at fixed, finite extraction radii. However,
it is far from clear that these differences are of any practical
importance. For example, for each of our turduckening
radii, the largest difference (at the highest resolution)
between a turducken waveform and the puncture one is
6	 10�6. The amplitude of the wave is about 0.015, so the
relative difference is about 4	 10�4.

Finally, we performed experiments at low (dx ¼
0:024M) and medium (dx ¼ 0:016M) resolutions with a

turduckening radius rt ¼ 0:1, but with n ¼ 2 in Eq. (40),
so that the evolution fields are only C0 at the boundary of

the turduckening region. In Fig. 12 the left graph shows

the difference between the waveforms from runs with
n ¼ 2 and n ¼ 6, while the right graph shows the differ-
ence between the n ¼ 2 and puncture waveforms. These
two graphs are almost identical, and a comparison with

the top left graph in Fig. 11 explains why. As can be seen,

the difference between the puncture waveforms and the
rt ¼ 0:1waveforms is about 10 times larger for n ¼ 2 than
n ¼ 6. Note that in the rt ¼ 0:1M case the turduckening

region is far enough inside the black hole that we do not see

gauge differences, so this must be caused by increased

numerical noise coming from the less smooth data in the

n ¼ 2 case.
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FIG. 11 (color online). Difference between the ‘ ¼ 2, m ¼ 0 mode of r�4 for a puncture evolution and for three different
turduckening radii, extracted at R ¼ 30M (left-hand graphs) and R ¼ 60M (right-hand graphs). See the main text for the discussion.
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VI. FINAL REMARKS

In this paper we have analyzed in detail several aspects
of the turduckening technique for evolving black holes.

First we presented a detailed analytical study of the
constraint propagation for a rather general family of
BSSN-type formulations of the Einstein equations. We
could appropriately identify a subfamily for which the
constraints propagate within the light cone and give a
rigorous justification of the turduckening procedure. At
the same time, we showed that in other subfamilies the
constraint violations do move superluminally. As a conse-
quence, in those cases, smoothing the interior of black
holes will result in constraint violations that propagate to
the outside.

Through high resolution spherically symmetric numeri-
cal simulations, we analyzed in detail the behavior of the
constraints and gauge modes. In particular, we confirmed
to a very high accuracy the predictions of our analytical
study. We found that the numerical constraints are pre-
served outside the black hole when the theory predicts so,
and are violated otherwise. We also found cases in which
gauge modes do propagate superluminally, escaping from
the black hole, and cases in which they are trapped inside.
These differences in gauge modes have consequences for
wave extraction, as discussed below. We also observed
that, when the constraints are guaranteed to propagate
within the light cone, the region of constraint violations
inside the black hole shrinks with time, and that the same
final stationary configuration seems to be approached,
regardless of the details of the turduckening procedure.
We also provided explanations for these features.

Finally, we presented detailed three-dimensional simu-
lations of single distorted black holes, comparing turduck-
ened and puncture evolutions. We studied the effect that
these different methods have on the coordinate conditions,
constraint violations, and extracted gravitational waves.

We found the waves to agree up to small but nonvanishing
differences. Our convergence tests showed that those dif-
ferences are not numerical artifacts but true features of the
solution, caused by superluminal gauge modes escaping
from the black hole. We also found that these differences in
waveforms decay with increasing extraction radius.
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