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We develop the complex angular momentum method in the context of the BTZ black hole physics. This

is achieved by extending a formalism introduced a long time ago by Arnold Sommerfeld, which allows us

to define and use the concept of the Regge pole in a framework where the notion of an S matrix does not

exist. The Regge poles of the BTZ black hole are exactly obtained, and from the associated Regge

trajectories we determine its quasinormal mode complex frequencies. Furthermore, our approach permits

us to physically interpret them: they appear as Breit-Wigner-type resonances generated by surface waves

supported by the black hole boundary at infinity which acts as a photon sphere.
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I. INTRODUCTION

Some years ago, by using complex angular momentum
(CAM) techniques, we showed that the quasinormal mode
(QNM) complex frequencies of the Schwarzschild black
hole of mass M are Breit-Wigner-type resonances gener-
ated by a family of ‘‘surface waves’’ lying on its photon
sphere at r ¼ 3M [1]. More precisely, by noting that each
surface wave is associated with a Regge pole of the S
matrix of the Schwarzschild black hole [1–3], we have
been able to construct the spectrum of the QNM complex
frequencies from the Regge trajectories, i.e., from the
curves traced out in the CAM plane by the Regge poles
as a function of the frequency. In this way, we have
established, on a ‘‘rigorous’’ basis, an appealing and physi-
cally intuitive interpretation of the Schwarzschild black
hole QNMs suggested by Goebel in 1972 [4], i.e., that
they could be interpreted in terms of gravitational waves in
spiral orbits close to the unstable circular photon orbit at
r ¼ 3M which decay by radiating away energy (see also
Refs. [5–8] for alternative implementations of the Goebel
interpretation).

Now, it is natural to use the CAM approach in order to
physically understand the resonant aspects of more general
black holes. We believe that,mutatis mutandis, it should be
fairly easy to generalize the CAM analysis developed in
Refs. [1–3] for all the asymptotically flat black holes with a
photon sphere. By contrast, for black holes immersed in a
nonasymptotically flat background, i.e., in a framework
where the notion of an S matrix does not exist, we can
expect to encounter new difficulties. However, because
such black holes play a central role in the context of
superstring theory and quantum gravity, their CAM analy-
sis seems to be an interesting and important task which
could, in particular, shed light on AdS/CFT correspon-
dence and holography from a new point of view.

In the present paper, our aim is more modest even if we
try to make some steps in this direction. We shall consider
the most simple black hole immersed in an asymptotically
anti-de Sitter space-time, namely, the ð2þ 1Þ-dimensional
Bañados-Teitelboim-Zanelli (BTZ) black hole [9]. It seems
to us very interesting in order to test our approach because,
in that particular space-time, the wave equation can be
solved exactly [10–13]. We shall revisit the QNM problem
for this black hole from the point of view of the CAM
approach in order to analyze it semiclassically, i.e., in term
of surface waves. In Sec. II, we shall define the Regge poles
and the associated Regge modes for a massless scalar field
defined on the BTZ black hole by extending a formalism
introduced a long time ago by Sommerfeld [14] as an
alternative to the usual Watson approach of scattering
[15]. It permits us to use the concept of the Regge pole
in a framework where the notion of an S matrix does not
exist. The Regge poles and the Regge modes of the BTZ
black hole are exactly obtained and physically interpreted
in terms of surface waves supported by its boundary, this
boundary furthermore playing the role of a photon sphere.
In Sec. III, we shall first construct from the Regge modes
the diffractive part of the Feynman propagator associated
with the scalar field. We shall then show that the poles of its
temporal Fourier transform are the QNM complex frequen-
cies of the BTZ black hole and prove that they are gen-
erated by the surface waves supported by the black hole
boundary. In a short conclusion, we shall make some re-
marks concerning the AdS/CFT correspondence and the
possibility to consider black hole photon spheres as holo-
graphic screens.

II. REGGE MODES OF THE BTZ BLACK HOLE

A. Quasinormal modes and Regge modes of the BTZ
black hole

The metric of the spinless BTZ black hole with mass
M> 0 ‘‘immersed’’ into AdS3 with length scale ‘ is given
by
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�
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�
r2 � r2h

‘2

��1
dr2 þ r2d�2 (1)

where t 2� �1,þ1½, r > rh, and � has period 2�. Here

rh ¼ ‘
ffiffiffiffiffi
M

p
denotes the horizon radius of the BTZ black

hole. Propagating on this gravitational background, we
consider a massless, minimally coupled, scalar field �
solution of the wave equation,

h� ¼ 0: (2)

By inserting the metric (1) into (2), the wave equation
provides
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and we can look for its solutions by separation of variables
or, more precisely, by using the ansatz

��;!ðt; r; �Þ ¼ 1ffiffiffi
r

p f�;!ðrÞeið���!tÞ: (4)

The radial equation satisfied by f�;!ðrÞ takes the form
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This differential equation can be solved exactly (see [10–
13]) in terms of hypergeometric functions [16]. We then
obtain for the general form of its solution
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where A�;! and B�;! are arbitrary complex constants.
From now on, we consider, more particularly, the mode

solutions defined by (4) and (6) which correspond to the so-
called QNMs and the so-called Regge modes. They are
both defined as mode solutions which are purely ingoing at
the horizon (i.e., for r ¼ rh) and vanish at infinity (i.e., for
r ¼ þ1). The first condition selects B�;! ¼ 0. By noting

that Fða; b; c; 1Þ ¼ ½�ðcÞ�ðc� a� bÞ�=½�ðc� aÞ�ðc�
bÞ� if c � 0;�1;�2; . . . and Reðc� a� bÞ> 0, the sec-
ond one imposes

1� i‘

2rh
ð‘!� �Þ ¼ �n with n 2 N (7a)

or

1� i‘

2rh
ð‘!þ �Þ ¼ �n with n 2 N: (7b)

Let us first consider the QNMs. Because they are peri-
odic in �, we must have � ¼ m 2 Z. They are therefore
only defined for the discrete complex values of the fre-
quency ! (see also Refs. [12,13]),

!�
mn ¼ �m

‘
� i

2rh
‘2

ðnþ 1Þ with m 2 Z and n 2 N

(8)

[here, the plus sign corresponds to (7a) and the minus one
to (7b)], and they are given by

��
mnðt; r; �Þ ¼ 1ffiffiffi

r
p f�mnðrÞeiðm��!�

mntÞ (9)

with

f�mnðrÞ ¼ A�
mn
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(10)

It should be noted that 8 m 2 Z, !þ�mn ¼ !�
mn but

�þ�mnðt; r; �Þ � ��
mnðt; r; �Þ. As a consequence, each

QNM complex frequency is twofold degenerated.
Let us now consider the Regge modes. They are defined

on the covering space of the BTZ black hole obtained by
relaxing the condition of periodicity in the coordinate �,
i.e., by considering that � 2� �1, þ1½, and by further-
more assuming that!> 0. The covering space of the BTZ
black hole considered here is, in fact, nothing other than
one of the 12 charts which permits us to provide a global
covering of AdS3 in BTZ coordinates [17]. However, it
should be noted that we do not work on AdS3: relaxing the
condition of periodicity in the coordinate � is just a trick
which will permit us to consider multivalued mode solu-
tions of the wave equation (2), which describe surface
waves propagating around the BTZ black hole, and to
take into account their multiple circumnavigations as
well as the associated radiation damping due to their
attenuations. Such a trick has been invented by
Sommerfeld in order to analyze scattering by spheres and
to emphasize the role of surface waves (see Ref. [14] and,
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more particularly, Appendix II of Chapter V as well as the
appendix of Chapter VI). The Sommerfeld approach is an
alternative to the usual CAM approach of scattering devel-
oped by Watson [15]. It allows us to use the concept of the
Regge pole in a framework where the notion of an Smatrix
does not exist, and therefore to extend our CAM analysis of
the Schwarzschild black hole [1] to the BTZ one.

The Regge modes of the BTZ black hole are only
defined for particular complex values of the parameter �,
which we shall call Regge poles even if they are not the
poles of an S matrix. These Regge poles are exactly given
by

��
n ð!Þ ¼ �!‘� i

2rh
‘

ðnþ 1Þ with !> 0 and

n 2 N (11)

[here, the plus sign corresponds to (7a) and the minus one
to (7b)], and the corresponding Regge modes are given by
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(12b)
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It should be noted that, even if the radial parts of�þ
�nð!Þ and

��
�nð!Þ are identical, these mode solutions are different. In

fact, because we have �þ
n ð!Þ ¼ ���

n ð!Þ, they respectively
describe waves with identical properties but propagating
counterclockwise and clockwise with an exponential decay
around the BTZ black hole, with jRe��

n ð!Þj ¼ !‘ repre-
senting their azimuthal propagation constant and
jIm��

n ð!Þj ¼ ð2rh=‘Þðnþ 1Þ their damping constant.

B. More on the physical interpretation of the Regge
modes

The Regge poles and the Regge modes obtained in the
previous subsection can be semiclassically interpreted in
terms of surface waves supported by the boundary at
infinity of the BTZ black hole, this boundary furthermore
playing the role of a photon sphere. We shall now discuss
more precisely these two important results which permit us
to establish some interesting analogies between the BTZ
and the Schwarzschild black holes.

The propagative behavior in expði½Re��
n ð!Þ��

!t�Þ ¼ expði½�!‘��!t�Þ of the Regge modes defined
by (12) and (13) permits us to note that the waves they
describe circle the BTZ black hole in time

T ¼ 2�

!
jRe��

n ð!Þj ¼ 2�‘: (14)

Furthermore, a scalar photon (associated with the massless
scalar field �) on the circular orbit with constant radius R
takes the time

T0 ¼ 2�Rffiffiffiffiffiffiffiffiffiffi
R2�r2

h

‘2

q ¼ 2�Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

‘2
�M

q (15)

to circle the BTZ black hole. Such a result can be easily
found by solving ds2 ¼ 0 with ds2 given by (1), i.e. by
integrating the equation of a circular null geodesic. By

equating T and T0, we obtain that necessarily R ! þ1.
In other words, the circular orbit of the scalar photon lies
on the BTZ black hole boundary and we can consider that
the set of Regge modes constitutes a family indexed by
n 2 N of surface waves supported by this boundary.
Let us now consider the photon sphere of the BTZ black

hole. We recall that, for a static spherically symmetric
black hole of dimension d with metric of the form

ds2 ¼ �gttðrÞdt2 þ grrðrÞdr2 þ r2d�2
d�2; (16)

the photon sphere is defined by the greater positive solution
of the equation,

g0ttðrÞ
gttðrÞ

¼ 2

r
(17)

[see Ref. [18] for a general definition and an extension of
the photon sphere concept in an arbitrary space-time, and
also Eq. (54) of that paper]. For the BTZ black hole, (17)
admits a unique formal solution for r ! þ1. In that sense,
the boundary of the BTZ black hole can be formally
considered as its photon sphere which then acts as the
support of the Regge surface waves defined by (12) and
(13).

III. DIFFRACTED FEYNMAN PROPAGATOR AND
QUASINORMAL FREQUENCIES

The Feynman propagator associated with the scalar field
� as well as the corresponding retarded and advanced
Green functions satisfy the wave equation

hxGðx; x0Þ ¼ ��3ðx; x0Þ (18)

which, in the BTZ black hole space-time defined by (1),
takes the form
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All these Green functions can be constructed by Fourier
transform from the Green function G!ðr; �; r0; �0Þ with
!> 0 defined as the symmetric solution of the Helmholtz-
type equation,
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which vanishes at infinity. For example, we have for the
Feynman propagator

GFðt; r; �; t0; r0; �0Þ ¼ 1

2�

Z þ1

�1
½�ðþ!ÞGþ!ðr; �; r0; �0Þ

þ�ð�!ÞG�!ðr;�; r0; �0Þ�
� ei½!ðt�t0Þ�d!: (21)

Here, � denotes the Heaviside step function, and it should
be noted that, in order to construct the Feynman propagator
GFðt; r; �; t0; r0; �0Þ, we need the Green function
G!ðr; �; r0; �0Þ also for !< 0. In fact, as we shall see
later, we will also need G!ðr;�; r0; �0Þ in the full complex
! plane in order to discuss the resonant aspects of the BTZ
black hole. It can be obtained by analytic continuation
from its expression for !> 0.

From now on, we shall mainly focus our attention on the
Green function G!ðr; �; r0; �0Þ. Following Sommerfeld
[14] (see also Sec. 2.1 and Appendix A.1 of Ref. [19] for
a pedagogical introduction to the Sommerfeld method and
the full paper for applications to cylinders), we construct
G!ðr; �; r0; �0Þ from the Regge modes defined in the pre-
vious section or, more precisely, we seek it in the form

Gd
!ðr; �; r0; �0Þ ¼ 1ffiffiffi

r
p Xþ1

n¼0

½f�þ
n ð!ÞðrÞVþ
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þ f��
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Here we consider that the functions f��
n ð!ÞðrÞ are given by

(13) with A�
�nð!Þ ¼ 1 and we assume that the functions

V�
n;!ð�; r0; �0Þ are such thatGd

!ðr;�; r0; �0Þ is a solution of
(20) symmetric under the exchange ðr;�Þ $ ðr0; �0Þ.
Furthermore, by working in Sec. II with the Regge modes,
we have deferred the imposition of periodicity in the
coordinate � on the solutions of the wave equation, but

now we shall impose this condition on (22) and therefore
on (21).
It is important to note that the Green function con-

structed by inserting (22) into (21) differs from the
Feynman propagator which could be obtained from the
exact normalized mode solutions of the wave equa-
tion (2). Indeed, the Regge modes do not constitute a
complete system of solutions of this equation. In fact, the
Sommerfeld method permits us to only consider that part
of the exact Feynman propagator which describes more
particularly ‘‘diffraction’’ by the BTZ black hole. Such a
result was noted by Sommerfeld for its analysis of scatter-
ing by spheres and remains valid in the present context.
This drawback is not too serious because, in fact, it is the
diffractive part of the Feynman propagator which contains
all the information about the resonant aspects of the
problem.
By inserting (22) into (20) and by using (5) with � ¼

��
n ð!Þ, we find that the functions V�
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We then multiply (23) by f��
p ð!ÞðrÞ and integrate over the

radial domain r 2 ½rh;þ1½ which contains r0. The ortho-
normalization relation
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for the Regge radial modes which can be obtained from (5)
by generalizing, mutatis mutandis, the calculation dis-
played in Appendix A.1 of Ref. [19], permits us to write
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The general solution of (26) can be sought in the form
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Now, by inserting (28) into (22) and by taking into account
the expression (25) of the normalization factor N�
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obtain the final result
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complex ! plane.

Before exploiting the expression of Gd
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given by (29) and (30) in order to recover the resonant
aspects of the BTZ black hole, it seems to us interesting to
make a digression which provides a physical interpretation
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By reinstating the temporal dependence in ei!ðt�t0Þ into
Eq. (32) [see Eq. (21)], this expression provides a physical
interpretation of the diffractive Feynman propagator. It
appears as a sum over n 2 N, i.e., over all the surface
waves supported by the BTZ black hole boundary. In that
sum, terms like ei½��

n ð!Þð�0��þk2�Þ� correspond to the con-
tributions of surface waves propagating around the black
hole, and the sums over the index k take into account their
multiple circumnavigations.

We shall now complete this section by considering the
analytic structure of Gd

!ðr;�; r0; �0Þ in the complex !
plane and, more precisely, by looking for its poles in this
plane because they correspond to the resonance frequen-
cies of the scalar field� propagating in the BTZ black hole
space-time. The only poles ofGd

!ðr;�; r0; �0Þ are the zeros
of the functions sin½���

n ð!Þ� with n 2 N. They are there-
fore obtained by solving

��
n ð!Þ ¼ m with m 2 Z (33)
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which provides the exact results given by (8) for the QNM
complex frequencies and which furthermore clarifies the
meaning of the indices n andm introduced to denote them:
the QNM complex frequencies are grouped into families
labeled by the indices n 2 N, each family being associated
with a given surface wave or, equivalently, with a Regge
pole, and the members of a given family are indexed by
m 2 Z.

It is worth noting that the method we have developed in
this article should not only be regarded as a new way to
calculate the QNM complex frequencies !�

mn. It is, above
all, an approach which permits us to physically interpret
them: they appear as Breit-Wigner-type resonances gener-
ated by the family of surface waves supported by the BTZ
black hole boundary at infinity. Indeed,

(i) In the immediate neighborhood of a QNM complex
frequency!�

mn,G
d
!ðr;�; r0; �0Þ given by (29) has the

Breit-Wigner form; i.e., we can write

Gd
!ðr; �; r0; �0Þ � N �

!ðr;�; r0; �0Þ
!�!�ðoÞ

mn þ i��
mn=2

; (34)

with !�ðoÞ
mn ¼ �m=‘ and ��

mn=2 ¼ ð2rh=‘2Þðnþ 1Þ.
This result is a direct consequence of the formula
sinð�xÞ � ð�1Þm�ðx�mÞ for x ! m with m 2 Z.

(ii) For a given value of n, a term like 1= sin½���
n ð!Þ� is

produced by interference between the different
components of the nth Regge surface wave sup-
ported by the black hole boundary [see Eq. (31)
and compare (29) with (32)], each component cor-
responding to a different number of circumnaviga-
tions. Furthermore, a constructive interference
between its different components occurs when the
quantity Re��

n ð!Þ coincides with an integer, i.e.,

for real resonance frequencies !�ðoÞ
mn obtained from

the Bohr-Sommerfeld-type quantization conditions

Re ��
n ð!�ðoÞ

mn Þ ¼ m m 2 Z: (35)

This equation again provides the real parts !�ðoÞ
mn of

the family of QNM complex frequencies !�
mn gen-

erated by the nth Regge surface wave.

IV. CONCLUSION AND PERSPECTIVES

In the present paper, by considering the Regge poles of
the spinless BTZ black hole, we have provided a new
interpretation for its QNMs: they can be considered as
generated by surface waves propagating on its boundary,
and the associated complex frequencies are Breit-Wigner-
type resonances. This interpretation can be easily extended
to the rotating BTZ black hole [20]. In that case, the Regge
modes are associated with the Regge poles

�þ
n ð!Þ ¼ þ!‘þ i

2ðrþ � r�Þ
‘

ðnþ 1Þ; (36a)

��
n ð!Þ ¼ �!‘� i

2ðrþ þ r�Þ
‘

ðnþ 1Þ; (36b)

with !> 0 and n 2 N. Here rþ and r� denote the outer
and inner horizon radii of the rotating BTZ black hole
which are linked with its mass M and its angular momen-
tum J by M ¼ ðr2þ þ r2�Þ=‘2 and J ¼ 2rþr�=‘. The
Regge modes correspond again to surface waves supported
by the boundary of the black hole but, now, it should be
noted that they describe surface waves with different prop-
erties. Indeed, even if they have the same azimuthal propa-
gation constant jRe��

n ð!Þj ¼ !‘, their attenuations are
different: the damping constant jIm�þ

n ð!Þj ¼ ½2ðrþ �
r�Þ=‘�ðnþ 1Þ of the wave which propagates counterclock-
wise around the BTZ black hole (i.e., which is in corotation
with the black hole) is less than the damping constant
jIm��

n ð!Þj ¼ ½2ðrþ þ r�Þ=‘�ðnþ 1Þ of the wave which
propagates clockwise. Such a behavior leads directly to the
splitting of the QNM complex frequencies: when we insert
(36a) and (36b) into the resonance condition (33), we
obtain the exact results [13]

!þ
mn ¼ þm

‘
� i

2ðrþ � r�Þ
‘2

ðnþ 1Þ; (37a)

!�
mn ¼ �m

‘
� i

2ðrþ þ r�Þ
‘2

ðnþ 1Þ; (37b)

with m 2 Z and n 2 N. Now we have !þ�mn � !�
mn, and

the twofold degeneracy of the QNM complex frequencies
noted in Sec. II is removed due to the rotation of the BTZ
black hole, which induces different damping for the sur-
face waves propagating counterclockwise and clockwise.
Because the BTZ black hole geometry frequently ap-

pears as a factor in the near horizon geometry of higher
dimensional black holes of string theories (see, e.g.,
Ref. [21]), our Regge pole analysis could be directly
generalized and analogous results could be obtained in a
more general context. Similarly, it would be interesting to
explore the more general situation of quantum corrected
BTZ black holes (see, e.g., Ref. [22]). We believe that these
results could be helpful in order to shed light on AdS/CFT
correspondence from a new point of view. Unfortunately,
we have been unable to make important steps in this
direction. In particular, we do not actually have at our
disposal a clear CFT2 interpretation of the BTZ Regge
poles analogous to the interpretation of the QNM complex
frequencies provided in Refs. [23,24].
It is finally important to recall that the boundary of the

BTZ black hole can also be considered as its photon
sphere. It is therefore quite tempting to wonder if the
photon sphere of all the other black holes might play a
central role in the context of holography. In particular,
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could one holographically map a quantum field theory (or a
string theory) defined on the Schwarzschild black hole of
mass M on a conformally invariant quantum field theory
defined on its photon sphere at r ¼ 3M? And more gen-
erally, could one not systematically consider photon
spheres as holographic screens?
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We thank Stéphane Ancey, Denis Bernard, Paul
Gabrielli, Bruce Jensen, and Bernard Raffaelli for various
discussions concerning some of the topics considered in
this article.
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