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We consider the quasiblack hole limit of a stationary body when its boundary approaches its own

gravitational radius, i.e., its quasihorizon. It is shown that there exists a perfect correspondence between

the different mass contributions and the mass formula for quasiblack and black holes in spite of the

difference in derivation and meaning of the formulas in both cases. For extremal quasiblack holes the

finite surface stresses give zero contribution to the total mass. Analogous properties are derived for the

angular momentum.
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I. INTRODUCTION

In [1] we found the mass formula for static quasiblack
holes. There, we have defined a quasiblack hole as the
limiting configuration of a body, either nonextremal or
extremal, when its boundary approaches the body’s own
gravitational radius. This definition is an enlargement from
a previous definition [2] (see also [3–7]), which applied to
configurations with extremal matter (i.e., with mass density
equal to charge density in appropriate units) and spheri-
cally symmetric, to a generic static case with no particular
symmetry neither some specific matter. In particular, the
conclusion made in [2], was that static quasiblack holes,
where matter has finite surface stresses, should be ex-
tremal, where the condition of finiteness of stresses is
important for the conclusion. Then, in [1] the appearance
of infinite stresses was allowed, and the condition of ex-
tremal matter could be dropped, i.e., nonextremal matter
was also admitted. Notably, the mass formula found in [1],
also implies, when the derivation of the formula is taken
into account, that for finite stresses, quasiblack holes must
be extremal. For the static extremal case, the existence of a
quasiblack hole requires electric charge, or some other
form of repulsive matter, such as in gravitational mono-
poles [8,9]. Although, the extremal condition in the elec-
trical case may be achieved if a tiny fraction, 10�18, of
neutral hydrogen loses its electron, the requirement of
charge somewhat bounds the astrophysical significance
of such quasiblack holes. Dropping the extremal condition
for the matter, infinite stresses appear at the quasiblack
hole threshold, which makes these nonextremal objects
quite unphysical, although as argued in [1], consideration
of such systems has at least a systematic interest since it
helps to understand better the distinction between nonex-

tremal and extremal limits, and the relationship between
quasiblack holes and black holes. The related issue of
gravitational collapse to a quasiblack hole state, always
an important problem, was treated preliminary in [10].
Now, the rotational counterpart of quasiblack holes were

found first by Bardeen and Wagoner back in 1971 [11].
They discussed rotating thin disks and found that for
rotation less than extremal, the exterior metric does not
yield a Kerr vacuum spacetime, but for extremal rotation
(i.e., mass equal to angular momentum per unit mass) of
the disk, and in this case only, the exterior metric is the
extremal Kerr metric. Thus, they were the first to find a
situation in which matter in equilibrium can approach its
own horizon, now called a quasihorizon. Such systems are
precisely quasiblack holes. Recently, these rotational coun-
terparts of quasiblack holes were further considered by
Meinel [12], although the term quasiblack hole was still
not coined there (see also [13,14]). Rotating objects have
astrophysical relevance, so it is certainly of interest to
consider the rotating versions of quasiblack holes. For a
distant observer, such rapidly rotating bodies would look
almost indistinguishable from black holes.
The paper of Meinel [12] is an important development of

the subject, and it contains a very strong claim that should
be further explored. On the basis of an analysis of the mass
formulas alone, Meinel [12] argued that the only suitable
candidate to the role of a limiting configuration (i.e., a
quasiblack hole, or a body that approaches its own gravi-
tational radius) corresponds to the extremal case. So the
conclusion made in our work [2], that static quasiblack
holes should be extremal, relying heavily on the properties
of the finiteness of the surface stresses that arise in the
quasiblack hole limit, and also through the mass formula
afterward [1], have a seemingly analogous statement in the
rotating stationary extremal case. The conclusion drawn in
[12] was inferred only from the formula for the mass, and
moreover, surface stresses were not taken into account at
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all. However, with the know-how one can take from the
static case [1,2], one is led to consider these stresses in
order to be able to make more general statements.
Moreover, we will see that without an appropriate account
for the stresses the analysis would remain essentially in-
complete. Thus, bearing in mind both the theoretical inter-
est of stationary configurations on the threshold of the
formation of a horizon and their potential astrophysical
significance, one should also allow for surface stresses,
either finite or infinite, in the stationary case.

In this paper, we thus consider stationary configurations
with surface stresses which can either be finite or grow
without bound when the rotating quasiblack hole is being
formed. In this sense, the statements in [12] are general-
ized. We extend further the analysis and consider configu-
rations not only with mass and angular momentum [12], as
well as surface stresses, but also with electrical charge. We
find the angular momentum and mass formulas for this
general charged stationary configuration. We also elucidate
what makes the extremal state in the stationary case a
distinguished configuration.

As in the static case [1], the two issues, namely, the
relation between surface stresses and the mass formula for
quasiblack holes, on the one hand, and the mass formulas
for quasiblack holes and pure black holes, on the other
hand, are interconnected. We argue there is a close corre-
spondence between the mass formulas for quasiblack holes
and black holes in all cases, nonextremal and extremal,
despite the fact that the physical nature of these objects
(see [2]) and the derivation of the mass formula itself are
quite different. This, of course, makes the encountered
close relationship between the formulas nontrivial. Our
analysis has also rather unexpected consequences for the
general relativistic counterpart of the classical Abraham-
Lorentz model for the electron, connected with the distin-
guished role played by the stationary quasihorizon in the
extremal case.

II. METRIC FORM FOR ROTATING STATIONARY
CONFIGURATIONS

A. Metric form and the definition of a stationary
quasiblack hole

Let us have a distribution of matter in a gravitational
field which does not depend on time. Put the four-
dimensional spacetime metric ds2 ¼ g��dx

�dx�, with �

and � being spacetime indices, in the form

ds2 ¼ �N2dt2 þ gikðdxi þ NidtÞðdxk þ NkdtÞ; (1)

where, we use 0 as a time index, and i; k ¼ 1; 2; 3 as spatial
indices. In addition, N and Ni are the lapse function and
shift vector which depend in general on the spatial coor-
dinates xi.

From (1), the metric of a stationary axially symmetric
system can be written in a useful form by putting N3 ¼

N� ¼ �!, where � is the azimuthal coordinate and ! an
angular velocity, and the other Ni obey Ni ¼ 0. We denote
the radial coordinate by l and put the radial potential gll ¼
1. If we further define a cylindrical coordinate z, the metric
can be written in the form

ds2 ¼ �N2dt2 þ dl2 þ gzzdz
2 þ g��ðd��!dtÞ2; (2)

an axially symmetric form, where the metric coefficients
depend on l and z [15].
In [1] we extended the definition of a quasiblack hole

from the spherically symmetric and extremal case [2] to a
generic static case. Now, we extend it further to a stationary
spacetime. Several points of [1] are repeated with the
reservation that now g00 � �N2 due to the terms respon-
sible for rotation. Namely, consider a configuration de-
pending on a parameter " such that (a) for small but
nonzero values of " the metric is regular everywhere
with a nonvanishing lapse function N, and at most the
metric contains only deltalike shells, (b) taking as " the
maximum value of the lapse function on the boundary NB,
then in the limit " ! 0 one has that the lapse function N �
NB ! 0 everywhere in the inner region, (c) the
Kretschmann scalar Kr remains finite in the quasihorizon
limit. This latter property implies another important prop-
erty which can be stated specifically, namely, (d) the area A
of the two-dimensional boundary l ¼ const attains a mini-
mum in the limit under consideration, i.e., lim"!0

@A
@l jl� ¼

0, where l� is the value of l at the quasihorizon. In addition,
now we also require that in the limit under discussion! !
!h ¼ const everywhere in the inner region. Here !h cor-
responds to the angular velocity of a black hole to which
the quasiblack hole metric tends outside. Without this
property, the differential rotation inside would serve to
distinguish a black hole and quasiblack hole metrics and,
thus, the definition of a quasiblack hole would not have
physical meaning. The constancy of !h is a known prop-
erty of black holes and can be substantiated by the regu-
larity of the curvature invariants [15]. It is worth also
mentioning that the system under consideration can in
general represent either a compact body with a well-
defined junction to an electrovacuum solution, or a dis-
persed distribution of matter.

B. Other discussions

For a situation in which the body’s surface approaches
the would-be horizon (quasihorizon), we take advantage of
the asymptotics of the lapse function N and the function !
near the horizon [15]. Then, for the nonextremal case,
approximating the metric in the outer region by that of a
black hole, we have the following relations:

N ¼ �lþOðl3Þ; (3)

and

! ¼ !h þOðl2Þ; (4)
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where � is the surface gravity at the horizon obeying
� ¼ constant � 0, and !h is the horizon value of ! obey-
ing !h ¼ constant. For the extremal case � ¼ 0 similarly
to the static case and N � expð�BlÞ, B ¼ constant [1]. For
the ultraextremal case [1], one has N � l�n and � ¼ 0. In
both these two cases we assume that near the horizon

! ¼ !h þ a1N þ a2N
2 þ � � � ; (5)

where !h and a1; a2; . . . are constants.
Two reservations are in order. First, the relevance of the

asymptotics in Eq. (5) in our context should follow from
the analysis of the near-horizon behavior of the scalars
(such as Ricci, Kretschmann, and other scalars), composed
out of the curvature components. Such an analysis was
performed in [15] for the nonextremal case, only partially
for the ultraextremal one, and not at all for the extremal
case. Strictly speaking, the necessity of the asymptotics (5)
was not proved formally in [15] for extremal and ultra-
extremal horizons and remains a gap to be filled. However,
its derivation represents a formal problem on its own that
would take us far afield. Therefore, we simply assume the
validity of the Taylor expansion given in Eq. (5). Second,
Eq. (5) is assumed to be an expansion with respect to the
quasihorizon for the outer region. On the other hand, we
assume (as explained at the end of Sec. II A) that ! !
!h ¼ const everywhere in the inner region. As a result,
there is a jump of the normal derivative @!

@l in the quasihor-

izon limit for the nonextremal case. This is similar to what
happens to the lapse function [1].

III. THE ANGULAR MOMENTUM AND MASS
FORMULAS FOR THE STATIONARY CASE: A

STATIONARYAXIALLY SYMMETRIC ROTATING
CONFIGURATION SPACETIME

If the matter is joined onto a vacuum spacetime, then one
has to be careful and use the junction condition formalism
[16,17]. The angular momentum and mass of the matter
distribution can be written as integrals over the region
occupied by matter and fields. Defining T�

� as the stress-

energy tensor, the momentum Ji relative to a coordinate x
i

is given by

Ji ¼ �
Z

T0
i

ffiffiffiffiffiffiffi�g
p

d3x; (6)

where g is the determinant of the metric g��. When the

coordinate xi is angular and cyclic �, say, then J� is an

angular momentum and one puts J� � J (see, e.g., [18]).

The mass of the matter distribution can be written as an
integral over the region occupied by matter and fields. It is
given by the Tolman formula [19] (see also [18,20])

M ¼
Z
ð�T0

0 þ Tk
kÞ

ffiffiffiffiffiffiffi�g
p

d3x: (7)

This is the starting point of our analysis. We discuss these
integrals for an axially symmetric rotating matter distribu-

tion in an axially symmetric rotating spacetime. In sum-
mary, we consider the stationary case, generalizing the
static case discussed in a previous paper [1]. For the
angular momentum and mass formulas for black holes,
rather than quasiblack holes, see [21–24] and, particularly,
[25] for the angular momentum formula.

A. The various angular momenta and masses

We consider the stationary case, with axial symmetry.
We assume that the body has a well-defined quasiblack
hole limit.

1. Total angular momentum, and total mass

Let us have a distribution of matter and a gravitational
field which do not depend on time. Note also from Eq. (2)
that

ffiffiffiffiffiffiffi�g
p ¼ N

ffiffiffiffiffi
g3

p
, where g3 is the determinant of the

spatial part of the metric (2), i.e., is the determinant of
the metric on the hypersurface t ¼ constant. We consider
first the angular momentum. Then from Eq. (6), the total
angular momentum J is given by

J ¼ �
Z

T0
�N

ffiffiffiffiffi
g3

p
d3x: (8)

Then, the total value of the angular momentum (8) can be
split into three contributions, the inner, the surface, and the
outer, such that

Jtot ¼ Jin þ Jsurf þ Jout: (9)

Next, we consider the mass, which can be written as an
integral over the region occupied by matter and fields,

M ¼
Z
ð�T0

0 þ Tk
k ÞN

ffiffiffiffiffi
g3

p
d3x: (10)

From Eq. (10) it is again convenient here to compose the
linear split of the total mass into three different contribu-
tions, the inner, the surface mass, and the outer masses,
such that

Mtot ¼ Min þMsurf þMout: (11)

Note that for the outer mass a long-range electromagnetic
field may be present.

2. Inner angular momentum and mass

As in the static case [1], one has for a quasiblack hole
thatNB ! 0, where NB is the value of N at the boundary as
well as N ! 0 for the whole inner region. So, the inner
contribution to the angular momentum vanishes in the
quasiblack hole limit due to the factor N, i.e.,

Jin ¼ 0: (12)

For the same reasons, and analogously to the static case,
the inner contribution to the mass vanishes:

Min ¼ 0: (13)
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3. Surface angular momentum and mass

Now consider the contribution of the surface to the
angular momentum and mass. First, the angular momen-
tum. One has

Jsurf ¼ �
Z
surface

T0
�N

ffiffiffiffiffi
g3

p
d3x: (14)

Defining � as

� ¼ � 1

2N2
g��

@!

@l
; (15)

we can put Eq. (14) in the form

Jsurf ¼ 1

8�

Z
�Nd�; (16)

where d� is the two-dimensional surface spanned by t ¼
constant, l ¼ constant. Now, for the pure black hole case,
the angular momentum of the horizon is equal to [25]

Jh ¼ � 1

8�

Z
horizon

��;�d���; (17)

where the integration is taken over the horizon surface with
element d���, and �

� are the components of the rotational

Killing vector �, which is given by � ¼ @
@� , and a semi-

colon denotes covariant derivative (see, e.g., [25]). One can
now show that in the quasiblack hole limit, Eq. (16)
reduces to Eq. (17). Indeed, taking a cross section of the
metric (2) such that t ¼ constant and l ¼ constant, and
developing expression (17) explicitly, one finds that
in the quasiblack hole limit (16) coincides exactly with
(17), so that

Jsurf ¼ Jh; (18)

where Jh should now be interpreted as the angular momen-
tum of the quasiblack hole. For the nonextremal case it is
finite and, in general, nonzero. For the extremal case it is
also finite and in general nonzero, as it follows from (5) and
from N � expð�BlÞ as l ! 1. Only in some special ex-
tremal configurations the surface stresses vanish (see, e.g.,
the example of the spherically symmetric static system
composed of extremal charged dust in [6] and references
therein). For the ultraextremal case, defined above, assum-
ing the validity of the asymptotic expansion (5) one finds
that the surface contribution to the angular momentum
vanishes.

Now consider the contribution of the surface to the mass

Msurf ¼
Z
surface

ð�T0
0 þ Tk

kÞN
ffiffiffiffiffi
g3

p
d3x: (19)

As in the static case there are deltalike contributions, given
by

S�� ¼
Z

T�
�dl; (20)

where the integral is taken across the shell. Define 	 as

	 ¼ 8�ðSaa � S00Þ: (21)

Then, from a combination of the equations above, we get

Msurf ¼ 1

8�

Z
	Nd�; (22)

where d� is the surface element. Now, one also has the
relationship 8�S�� ¼ ½½K�

��� � 
�
�½½K��, where K�

� is the

extrinsic curvature tensor, ½½. . .�� ¼ ½ð. . .Þþ � ð. . .Þ��, sub-
scripts ‘‘þ’’ and ‘‘�’’ refer to the outer and inner sides,
respectively (see, e.g., [16,17]). Also, K�� ¼ �n�;�,

where at the boundary surface N ¼ constant, and the nor-
mal unit vector is n� � N;�. Thus, 	 ¼ �½½2K0

0��, and
further calculations give

	 ¼ 2

N

��
@N

@l

�
þ
�

�
@N

@l

�
�

�
þ 1

N2
g��ð!�!hÞ@!@l ;

(23)

and so

Msurf ¼ 1

4�

Z
surf

���
@N

@l

�
þ
�

�
@N

@l

�
�

�

þ 2

N
g��!

@!

@l

�
d�: (24)

Now, as our surface approaches the would-be horizon, i.e.,
the quasihorizon, we take advantage of the asymptotics
near the horizon of the lapse functionN and of the function
!. Thus, taking into account expression (16) and the
asymptotics (3) and (4) in the nonextremal case, or
Eq. (5) in the extremal or ultraextremal cases, we obtain

Msurf ¼ �Ah

4�
þ 2!hJh; (25)

where � is the surface gravity of the quasiblack hole. So, in
relation to the contribution of the surface stresses to the
mass, what was said in the static case [1] applies here to the
first term of Eq. (25). Namely, in the nonextremal case the
stresses are infinite but their contribution is finite and
nonzero, in the extremal case they are finite but their
contribution vanishes, and in the ultraextremal case the
stresses themselves are zero, so the contribution to the
mass is zero as well. As far as the second, new, term in
(25) is concerned, it follows that the surface contribution is
nonzero for the nonextremal and extremal cases but van-
ishes in the ultraextremal one. Note also that, although for
the nonextremal (� � 0) case on one hand and for the
extremal and ultraextremal (� ¼ 0) cases on the other,
we have used different asymptotics of the metric coeffi-
cients near the quasihorizon, the smooth limiting transition
� ! 0 can be made in the formula (25) for the surface
contribution as a whole, surely. Since Eq. (25) shows
clearly that one cannot ignore surface stresses contribution
in the nonextremal case, the analysis in [12] is incomplete.
It omits from the very beginning just the most important
feature of nonextremal configurations in their confronta-
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tion with the extremal ones. This means the final conclu-
sion of [12] hangs in midair. That is, one could naı̈vely
think that one could simply restrict oneself to the case of
vanishing stresses but in the problem under discussion this
is impossible. Indeed, we have just seen that the stresses
enter the mass formulas via the quantity	, so in the case of
vanishing stresses Msurf would also vanish. But this does
not happen.

4. Outer angular momentum and mass

The outer angular momentum is given generically by the
expression

Jout ¼ �
Z
outer

T0
�N

ffiffiffiffiffi
g3

p
d3x: (26)

The outer mass is given generically by the expression

Mout ¼
Z
outer

ð�T0
0 þ Tk

k ÞN
ffiffiffiffiffi
g3

p
d3x: (27)

Further, we may split Mout into an electromagnetic part
Mem

out, and a nonelectromagnetic part, Mmatter
out , say, for the

case of dirty black holes or dirty quasiblack holes, exactly
in the manner as it was already done in [22], and obtain
Mout ¼ Mem

out þMmatter
out . Since Mem

out ¼ ’hQ (see [1] for de-
tails), where ’h is the electric potential on the horizon in
the case of black holes, and the electric potential on the
quasihorizon in the case of quasiblack holes, and Q is the
corresponding electric charge, one finds

Mout ¼ ’hQþMmatter
out : (28)

B. The angular momentum and mass formulas

Putting all together, for the quasiblack hole case, and
recalling that Jin goes to zero, the total angular momentum
is equal to

J ¼ Jh þ Jout: (29)

In vacuum, if matter is absent or negligible outside, we
have only Jh; i.e., the total angular momentum is the
quasiblack hole angular momentum.

In a similar way, recalling thatMin goes to zero, we find
the total mass is equal to

M ¼ �Ah

4�
þ 2!hJh þ ’hQþMmatter

out : (30)

Equation (30) is the mass formula for stationary quasiblack
holes. But on closer inspection it is nothing else than the
mass formulas for black holes [21–25]. Note that for the

extremal case, the term �Ah

4� in Eq. (30) goes to zero, since �

is zero. In vacuum, if matter is absent or negligible outside,
we return to

Mh ¼ �Ah

4�
þ 2!hJh þ ’hQ; (31)

which is Smarr’s formula, but now for quasiblack holes;

i.e., Eq. (31) is equal to a formula first found by Smarr for
Kerr-Newman black holes [24]. Here we see it holds good
for rotating quasiblack holes as well. It is also worth noting
that in our approach we did not restrict ourselves to a
compact body rotating with a constant angular velocity in
vacuum as it was done in [12]. Instead, we have admitted
all types of rotation, including differential and rigid rota-
tions, as well as matter distribution outside the quasihor-
izon. Now, in the context of the uniqueness theorems, it is
specially interesting to trace how the configuration of a
self-gravitating rotating body approaches an outer vacuum
Kerr-Newman metric. In this context, by allowing infinite
surface stresses we can conjecture, resorting to the unique-
ness theorems (see, e.g., [25]) and continuity arguments
between a horizon and a quasihorizon with outer vacua,
that the generic Kerr-Newman metric, and so the Kerr
metric, is an outer metric for some type of matter that
allows infinite stresses. In addition, Eqs. (30) and (31)
reduce to the static case considered in [1] for !h ¼ 0.
Consider, as an example, the case where there is only

rotation and no electrical field nor matter in the outer
region. Thus, the exterior to the quasiblack hole is de-
scribed by the extremal Kerr metric. Then � ¼ 0, and
Mh ¼ 2!hJh. Also see [1] for the case !h ¼ 0 and the
example for the charged static case.
Thus, we have traced how the total mass of a quasiblack

hole, which can be defined at asymptotical infinity as usual
[26,27], is distributed among different terms including the
contribution from the quasihorizon. We have found perfect
correspondence with the black hole case.

IV. CONCLUSIONS

There are three main topics and conclusions that can be
taken out of our results: (i) With rotation and charge the
problem of a self-consistent analog of an elementary par-
ticle in general relativity is much more interesting than
without rotation. If one wants a classical model for the
electron, one certainly should look for including rotation;
see [1,28,29] for the static case (see also [26,27]). As a by-
product, we have obtained that an extremal quasiblack hole
can serve as a classical model of an Abraham-Lorentz
electron in that both the inner and surface contribution of
nonelectromagnetic forces vanish. In doing so, we showed
that one may weaken the requirement of vanishing surface
stresses since the finite stresses have zero contribution to
the total mass. (ii) Here we have traced how the limiting
transition from a stationary configuration to the quasiblack
hole state reveals itself in the mass formula, going thus
beyond the static case [1] and beyond what was found in
[12] for a particular set of stationary configurations (see
also [13,14]). It turns out that the perfect one-to-one cor-
respondence between the different contributions for the
total mass of a quasiblack hole and the mass formula for
black holes persists in the generic stationary case. In
particular, the inner contribution to the total mass vanishes
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in the quasiblack hole limit (it is absent in the black hole
case from the very beginning). The contribution of the
surface stresses corresponds just to the contribution from
the horizon surface of a black hole. This is not trivial, since
the corresponding terms have quite different origins. In the
quasiblack hole case they are due to the boundary between
both sides of the surface. Meanwhile, in the black hole case
only one (external) side is relevant and the integrand over
this surface has nothing to do with the expression for
surface stresses. Nonetheless, both terms coincide in the
limit under discussion. Similar results were obtained for
the angular momentum of the rotating configurations. As
bodies with rotation occur widely in nature, the results
obtained may have astrophysical implications. (iii) The
difference between nonextremal and extremal quasiblack
holes consists in that in the first case the surface stresses
give finite contribution to the total mass, but become
infinite, while in the second case they give zero contribu-
tion to the total mass, but are finite. As far as the mass is

concerned, in the nonextremal case the surface of a quasi-
black hole appears in a way similar to a membrane in the
membrane paradigm setup [30], whereas in the extremal
one we have in general a ‘‘membrane without membrane’’
[31]. The system with infinite stresses was rejected in [2],
since it looks unphysical, and thus in [2] only extremal
black holes were considered. However, consideration of
such systems helps in understanding better the relationship
between quasiblack holes and black holes and the distinc-
tion between nonextremal and extremal limits. With its
astrophysical as well as theoretical importance, the rotating
case, as was discussed here, acquires added relevance.
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