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In this paper we use the second order formalism of Hartle to study slowly and rigidly rotating stars with

focus on the quadrupole moment of the object. The second order field equations for the interior fluid are

solved numerically for different classes of possible equations of state and these solutions are then matched

to a vacuum solution that includes the general asymptotically flat axisymmetric metric to second order,

using the Darmois-Israel procedure. For these solutions we find that the quadrupole moment differs from

that of the Kerr metric, as has also been found for some equations of state in other studies. Further we

consider the post-Minkowskian limit analytically. In the paper we also illustrate how the relativistic

multipole moments can be calculated from a complex gravitational potential.
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I. INTRODUCTION

Sources for the Kerr metric have been sought for long,
but with little success. The only known exact solution that
can be matched to the Kerr metric seems to be the rotating
dust disk, with maximal allowed angular momentum,
found by Neugebauer and Meinel [1]. Some numerical
studies with different equations of state for the source
find quadrupole moments differing from that of the Kerr
metric; see, e.g., [2–5]. In some recent papers [6,7] it is
shown that in the rigidly rotating case incompressible
fluids and fluids with a polytropic equation of state cannot
be sources of the Kerr metric in the post-Minkowskian
limit. These results are in accordance with the general
expectation that the ellipsoidal shape of the rotating fluid
ball produces an extra contribution to the quadrupole mo-
ment which should also be present in the corresponding
quadrupole moment of the external field [4,8]. For a gen-
eral review of relativistic rotating stars see [9].

In the present work we use the second order formalism
for slowly and rigidly rotating stars, developed by Hartle
[10], to study the quadrupole moment and its deviation
from that of the Kerr metric for different classes of possible
equations of state. For some earlier applications of the
formalism see, e.g., [2,3,11] and for a comparison with
numerical solutions of the full Einstein equations see [4].
The relativistic multipole moments of the vacuum exterior
metric up to order two are calculated using an algorithm
developed in [12].

The field equations for the fluid region to second order in
the small rotational parameter � will be solved numeri-
cally using fourth order Runge-Kutta. When imposing an
equation of state this system can be rewritten as a first order
system of ordinary differential equations for nine func-
tions, but a subsystem for six of these functions will be

sufficient to study for our purposes. Assuming regularity at
the center the solutions will depend on three constants of
integration, corresponding to zeroth order central density
or pressure, the magnitude of the angular velocity and one
more second order small constant. If the solutions are
required to be asymptotically flat this second order con-
stant will be determined in terms of the other constants.
Because of scaling invariance in the angular velocity it
may be given a fixed value in the numerical runs. Hence,
given an equation of state, we need only vary the central
pressure or density when scanning the solution space. The
solutions are then matched to a second order axisymmetric
vacuum solution using the Darmois-Israel procedure [13–
15]. This metric includes the general second order asymp-
totically flat stationary axisymmetric vacuum solution as a
special case.
We also consider the post-Minkowskian limit analyti-

cally by expanding the field equations in the small parame-
ter � � GM=r1c

2 and make a comparison with the results
of [6,7].
The paper is organized as follows: In Sec. II the method

is briefly described and the field equations are presented.
Also the second order vacuum metric is given and its
relativistic multipole moments up to order two are calcu-
lated. The matching procedure is described in Sec. III and
the integration constants for the vacuum solution are
solved for in terms of the values of the interior solution
on the matching surface. In Sec. IV the equations are
rewritten in a form suitable for numerical integration.
The results of the numerical runs are given in Sec. V and
finally a post-Minkowskian analysis is made in Sec. VI.

II. PRELIMINARIES

To second order the metric of a slowly rotating axisym-
metric object, both in the interior fluid region and the
outside vacuum region, can be written as
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ds2 ¼ ð1þ 2hÞA2dt2 � ð1þ 2mÞ 1

B2
dr2

� ð1þ 2kÞr2½d�2 þ sin2�ðd’�!dtÞ2�; (1)

where! is first order and h,m and k are second order in the
rotational parameter [10]. The requirements of regularity at
the center and asymptotic flatness imply that the first order
function ! depends on r only. The second order functions
h, m, k can be given as

h ¼ h0 þ h2P2ðcos�Þ; m ¼ m0 þm2P2ðcos�Þ;
k ¼ k2P2ðcos�Þ;

(2)

where h0, m0 and h2, m2, k2 are functions of r only and
P2ðxÞ ¼ 1

2 ð3x2 � 1Þ is the second order Legendre polyno-

mial. This result follows from reflection symmetry in the
equatorial plane, from that the equations for h, m and k
separate with the ansätze h ¼ P1

i¼0 hiðrÞPiðcos�Þ etc., and
from the fact that there are no inhomogeneous terms con-
taining ! in the equations for hi, ki and mi for i > 2. For
more details see [10].

The matching of the two spacetime regions happens via
the application of a coordinate transformation ’ ! ’þ
�t in the fluid region. It means that the inner fluid region
rotates with respect to the distant stationary observers with
angular velocity �. This parameter � is considered to be
the small expansion parameter with respect to which ! is
first order and the other corrections h, m, k are second
order. In addition to this, we can also rescale the interior
time coordinate first by a zeroth order constant c4, and then
later by a second order small constant c3, i.e. t ! c4ð1þ
c3Þt.

The matter content of the interior is modeled by a perfect
fluid

Tab ¼ ð�þ pÞuaub � pgab: (3)

The coordinate system used in (1) is assumed to be comov-
ing with the fluid, i.e. the 4-velocity is assumed to possess
the form

ua ¼ ð1= ffiffiffiffiffiffiffi
g00

p
; 0; 0; 0Þ ¼ ðð1� hÞ=A; 0; 0; 0Þ (4)

which also implies that the shear of the fluid is zero so it
rotates rigidly.

A. The field equations

In this subsection we list the field equations relevant to
various orders. A similar system of equations with a
slightly different choice of variables was given in [16]. If
no equation of state is specified then the only equation one
gets to zeroth order of the rotational parameter is the
pressure isotropy condition G1

1 ¼ G2
2 which reads as

B
d2A

dr2
þ dðrAÞ

dr

dðB=rÞ
dr

þ A

r2B
¼ 0: (5)

Making use of G0
0 ¼ T0

0 and G1
1 ¼ T1

1 the energy den-

sity and pressure of the nonrotating configuration reads as

�0 ¼ 1

r2

�
1� dðrB2Þ

dr

�
; p0 ¼ 1

r2

�
B2

A2

dðrA2Þ
dr

� 1

�
:

(6)

To first order in the rotation parameter the only relation
follows from G3

0 ¼ 0

d

dr

�
r4

B

A

d!

dr

�
þ 4r3!

d

dr

�
B

A

�
¼ 0: (7)

The second order Einstein equations yield the following
conditions. From G1

2 ¼ 0 one gets

r
d

dr
ðh2 þ k2Þ þ rðh2 �m2Þ 1A

dA

dr
� h2 �m2 ¼ 0: (8)

The pressure isotropy condition in the angular directions,
G2

2 ¼ G3
3, gives

6ðh2 þm2Þ � r4
B2

A2

�
d!

dr

�
2 þ 4r3!2 B

A

d

dr

�
B

A

�
¼ 0: (9)

The equality of the pressure in the angular and radial
directions, i.e. G1

1 ¼ G2
2, gives two equations. After

eliminating the derivative of h2 using (8) one obtains
from the P2ðcos�Þ part

2r
B2

A

dA

dr

�
r
dk2
dr

�m2

�
� 2r2Bh2

d

dr

�
B

r

�
þm2 � 4k2

� 5h2 � 1

3
r4

B2

A2

�
d!

dr

�
2 ¼ 0; (10)

while the �-independent part gives an equation for m0 and
h0.
The energy density function can be decomposed as � ¼

�0 þ �2, where �2 ¼ �20 þ �22P2ðcos�Þ and �20 and �22

are second order small functions of the coordinate r. The
analogous decomposition of the pressure is similarly given
by p ¼ p0 þ p2 ¼ p0 þ p20 þ p22P2ðcos�Þ. We get one
more equation form0 and h0 if we assume that the equation
of state � ¼ �ðpÞ is unchanged to second order. For details
see [11].

B. Equations of state

To complete the system one more equation, e.g., an
equation of state

� ¼ �ðpÞ; (11)

has to be specified. In this paper we will consider equations
of state in the form

� ¼ d1pþ d2

�
p

pc

�
1=� þ d3: (12)

Here pc is the central pressure. Equation (12) includes
some of the more used approximations for the equation
of state of dense stars, like Newtonian polytropes, relativ-

MICHAEL BRADLEYAND GYULA FODOR PHYSICAL REVIEW D 79, 044018 (2009)

044018-2



istic polytropes with d1 ¼ 1=ð�� 1Þ, linear ones as well as
the incompressible case.

We use units such that the speed of light c ¼ 1 and
8�G ¼ 1. If then the unit of length is taken as � meter,
the relation between our units and SI units are given by

�SI ¼ 5:358� 1025
�

�2
kg=m3;

xSI ¼ 4:813� 1042
x

�2
kgm�1 s�2;

d1SI ¼ d1; (13)

where x ¼ �c2, p, d2 or d3.
Note that m0 and h0 do not appear in Eqs. (5) and (7)–

(11) and hence this subsystem for A, B, !, m2, k2 and h2
decouples. Notice also that the equations can be solved

order by order and that the equations contain m2 only
algebraically. In Sec. V the system will be reformulated
as a coupled system of six first order ordinary differential
equations. Because of the requirement of a regular center
the solutions to this subsystem will only depend on three
constants of integration.

C. Vacuum metric

In the exterior vacuum region we will use a frame
adapted to the asymptotically nonrotating observer.
Solving the field equations detailed in Sec. II A by impos-
ing p ¼ � ¼ 0 the metric functions for the vacuum region
are given as follows [10,17]1

A2 ¼B2 ¼ 1� 2M=r; !¼ 2aM

r3
; h0 ¼�m0 ¼ 1

r� 2M

�
a2M2

r3
þ c2

�
;

h2 ¼ 3c1rð2M� rÞ log
�
1� 2M

r

�
þa2

M

r4
ðMþ rÞþ 2c1

M

r
ð3r2� 6Mr� 2M2Þ r�M

2M� r
þ
�
1� 2M

r

�
r2q1;

k2 ¼ 3c1ðr2� 2M2Þ log
�
1� 2M

r

�
�a2

M

r4
ð2Mþ rÞ� 2c1

M

r
ð2M2� 3Mr� 3r2Þþ ð2M2� r2Þq1; m2 ¼ 6a2

M2

r4
�h2:

(14)

In this approximation, the slowly rotating solution is char-
acterized by the mass M, the first order small rotation
parameter a, and the second order small constants c1, c2
and q1. When q1 takes the value zero the metric is known to
be the general asymptotically flat stationary and axisym-
metric vacuum metric to second order (see, e.g., [18]). It
can be easily checked that the solution is of Petrov-type D
only if both c1 and q1 are zero. The metric is then equiva-
lent to the Kerr metric to second order with mass M !
M� c2.

When q1 � 0 the metric cannot be asymptotically flat. It
is important to keep in mind, however, that without the
inclusion of this constant the matching conditions on the
zero-pressure surface are overdetermined in general
[17,19].

D. Multipole moments of the vacuum metric

The notion of relativistic gravitational multipole mo-
ments for static asymptotically flat vacuum spacetimes
was developed in [20] by Geroch and later extended to
the stationary case in [21,22] by Hansen and Thorne. These
moments are defined on the 3-space of the timelike Killing
trajectories.

A 3-space ðM; hÞ with positive definite metric h is said
to be asymptotically flat if it can be conformally mapped to

a manifold ð ~M; ~hÞ with the following properties

(i) ~M ¼ M [�, where � is a single point,
(ii) ~�j� ¼ ~�;ij� ¼ 0, ~Di

~Dj
~�j� ¼ ~hijj�

where ~hij ¼ ~�2hij.

From the timelike Killing vector field Ka one constructs
the two scalar functions f ¼ KaKa and c , where the later

is obtained from the curl ofKa, c ;a ¼ �abcdK
bKc;d, that is,

a gradient due to the vacuum equations. The complex
gravitational potential then reads

� ¼ 1� E
1þ E

(15)

in terms of the Ernst potential E ¼ fþ ic . It is given the

conformal weight�1=2, so that ~� ¼ ~��1=2�. For axisym-
metric spacetimes the metric is completely determined by
the value of the potential on the axis of symmetry [23].
The multipole tensors on the 3-space of timelike Killing

trajectories, with coordinates xi, i ¼ 1, 2, 3 and metric
given by the projection operator hab ¼ �fgab þ KaKb,
are then defined recursively as

Pð0ÞðxiÞ ¼ �; Pð1Þ
j ðxiÞ ¼ �;j;

Pðnþ1Þ
k1k2...knþ1

ðxiÞ ¼ Dhknþ1
PðnÞ
k1...kni �

1

2
nð2n� 1Þ

� Rhk1k2P
ðn�1Þ
k3...knþ1i; (16)

where hk1 . . . knþ1i denotes the symmetric and trace-free
part. Di and Rij are the covariant derivative and Ricci

tensor, respectively, with respect to the 3-metric hij [21].

The ~PðnÞ
k1...kn

are defined correspondingly in terms of the

tilded quantities.

1To make the norm of the timelike Killing field equal to unity
at spatial infinity, the expression of h0 in [17] has been slightly
modified through a second order coordinate transformation of
the time coordinate.
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For axisymmetric spacetimes the multipole moments are
given entirely in terms of the scalar moments defined as

Pn ¼ 1

n!
~PðnÞ
k1...kn

nk1 . . . nkn j� (17)

in terms of the axis vector ni [21].
In, e.g., [12,24], algorithms for calculating the multipole

moments of a stationary axisymmetric spacetime are de-
veloped. We here use the method of [12] to calculate the
moments up to second order. First, the metric is trans-
formed to the canonical form

ds2 ¼ fðdt� ~!d’Þ2 � f�1½e2�ðd�2 þ dz2Þ þ �2d’2�;
(18)

where f, � and ~! are functions of � and z, through the
coordinate transformation

� ¼ Ar sin�

�
1þ h0 þ h2 þ k2 � 3

2
sin2�ðh2 þ k2Þ

�
;

z ¼
�
ðr�MÞ

�
1þ 2h0 � 1

2
sin2�ðh2 þ 2k2 �m2Þ

�

þ r2A2

�
h0;r � 1

2
sin2�ðh2;r þ k2;rÞ

��
cos�; (19)

that holds to second order.
From the timelike Killing vector Ka ¼ 	a

0 we find the

two potentials

f ¼ KaKa ¼ g00 ¼ ð1þ 2hÞA2 � r2!2sin2� (20)

and

c ¼ � 2aM

r2
cos�; (21)

obtained from the curl of Ka.
We introduce the coordinates �� ¼ �=ð�2 þ z2Þ, �z ¼

z=ð�2 þ z2Þ. A suitable conformal factor is then ~� ¼ �r2 �
��2 þ �z2 and hence ~� ¼ ð1= �rÞ�. As shown in [12], the first
(up to n ¼ 3) scalar moments Pn are given by the coef-
ficients mn in the expansion

~�ð �� ¼ 0Þ ¼ �1
n¼0mn �z

n (22)

of ~� on the axis, that in the original coordinates corre-
sponds to � ¼ 0 (or �). Expansion of � on the axis in the
original coordinates gives to second order in the rotational
parameter

� ¼ M

r�M
þ i

Ma

ðr�MÞ2 �
M2a2

rðr�MÞ3

� ðh0 þ h2ÞA2

�
r

r�M

�
2
: (23)

From (19) one finds that r ¼ zþM to zeroth order, which
is sufficient for the three last terms in (23) since they are
already first and second order. The first term needs to be
expanded to second order in the rotational parameter, giv-

ing

M

r�M
¼ M

z� 2h0ðr�MÞ � r2A2h0;r

¼ M

z
þM

z2
½2h0ðr�MÞ þ r2A2h0;r�; (24)

where once again r ¼ zþM can be used in all second

order functions. Finally, expressing ~� in �z, one obtains to
second order

~� ¼ M� c2 þ iMa�z�M

�
a2 þ 16

5
M4c1

�
�z2: (25)

Hence the mass is given by M� c2, the angular momen-
tum by J ¼ Ma and the quadrupole moment by Q ¼
�Mða2 þ 16

5 M
4c1Þ. We will be interested in the relative

deviation of the quadrupole moment from that of the Kerr
metric

�Q

Q
� Q�QKerr

QKerr

¼ 16M4c1
5a2

: (26)

An expansion of the exterior metric for large r gives the
following leading terms of g00 (with q1 ¼ 0)

g00 ¼ 1� 2Mð1� c2
MÞ

r
þ 2MP2ðcos�Þða2 þ 16

5 M
4c1Þ

r3
;

(27)

i.e., the associated Newtonian quadrupole moment reads as
(cf., e.g., [25])

Q11 ¼ Q22 ¼ �Q33=2 ¼ 2M

�
a2 þ 16

5
M4c1

�
(28)

in an asymptotically Cartesian system with the 3-axis
along the axis of rotation. Hence it is, up to a factor of 4,
the same as the relativistic moment.

III. MATCHING

We here briefly describe the matching procedure, in
which the Darmois-Israel junction conditions [13,14] are
used. For more details the reader is referred to [11] and also
to [15] for a general discussion on the matching of axi-
symmetric bodies in second order perturbation theory. In
the fluid region, the matching surface S is defined by the
condition of vanishing pressure, p ¼ 0. In the limit of no
rotation, the matching surface is the three-dimensional
cylinder r ¼ r1. For slow rotation the equation of the
matching surface S is

r ¼ r1 þ � (29)

with

� ¼ �
�
p20 þ p22P2ðcos#Þ

dp0

dr

�
jr¼r1

� �0 þ �2P2ðcos#Þ;

(30)
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where the constants �0 and �2 are given by

�0 ¼ 1

12rB dA
dr

d
dr ðABÞ

�
12rA2 dh0

dr
� 12m0

d

dr
ðrA2Þ

þ r4
�
d!

dr

�
2
���������r¼r1

and

�2 ¼ �ð3A2h2 þ r2!2Þ
3A dA

dr

��������r¼r1

: (31)

In the vacuum exterior region suitable hypersurfaces for
matching are determined by

r ¼ r1 þ 
 � 
0 þ 
2P2ðcos#Þ; (32)

where 
0 and 
2 are constants to be determined by the
matching conditions [26].

In order to find isometric embeddings of the matching
surface S in the vacuum and fluid domains, we equate with
each other the respective induced metrics ds2ðvÞ, ds

2 and

induced extrinsic curvatures KðvÞ, K

ds2ðvÞjS ¼ ds2jS ; KðvÞjS ¼ KjS ; (33)

where K is defined by

K � Kabdx
adxb � ha

chb
dnðc;dÞdxadxb (34)

in terms of the unit normal na of the matching surface S
and the projection operator ha

b ¼ nan
b þ 	b

a. To adjust
the different coordinate systems with each other we apply a
rigid rotation in the fluid region by setting ’ ! ’þ�t
where � is a constant. Then we rescale the interior time
coordinate t by t ! c4ð1þ c3Þt with further zeroth and
second order constants c4 and c3 to be determined from the
matching conditions.

From the zeroth order matching conditions we get the
following relations (all functions here and in the following
first and second order relations are evaluated at the zeroth
order matching surface r ¼ r1):

M ¼ 1

2
r1ð1� B2Þ; c4 ¼ B

A
; (35)

r1 ¼ A

2B2 dA
dr

ð1� B2Þ: (36)

To first order we solve for a and �

a ¼ Br31
3AðB2 � 1Þ

d!

dr
; � ¼ r1

3

d!

dr
þ!: (37)

From the second order equations we can solve for c1, c2,
c3, q1, 
0 and 
2 as

c1 ¼ B2

9r21A
2ðB2 � 1Þ6

�
r41B

2ðB4 � 3Þ
�
d!

dr

�
2

þ 36A2h2ð1� B4Þ þ 72A2B2ðh2 þ k2Þ
�
; (38)

c2 ¼ �0

2

�
B2 � 1þ 2r1B

dB

dr

�
� r1B

2m0 � r51
36

B2

A2

�
d!

dr

�
2
;

(39)

c3 ¼ r41
36A2

�
d!

dr

�
2 þ c2

r1B
2
� h0; (40)

q1 ¼ 1

9r21A
2ðB2 � 1Þ6

�
18k2A

2ðB4 � 1ÞðB4 � 8B2 þ 1Þ

þ 216A2B2 lnB½2B2ðh2 þ k2Þ þ ð1� B4Þh2�
þ 36h2A

2B2ðB2 � 1ÞðB4 þ B2 � 8Þ
þ r41

�
d!

dr

�
2
B2½ðB2 � 1Þð2þ 11B2 � 7B4Þ

þ 6B2ðB4 � 3Þ lnB�
�
; (41)


0 ¼ �0 and 
2 ¼ �2; (42)

where �0 and �2 are obtained from (30) and (31). Note that
we did not impose the equation of state (11) when calcu-
lating the matching conditions. Hence an appropriate
matching can be done, i.e. the vacuum metric in Sec. II C
is general enough for describing the exterior of any axi-
symmetric rigidly rotating perfect fluid ball up to second
order.

IV. EQUATIONS AND BOUNDARY VALUES

In this section we provide a reformulation of the field
equations to a form more suitable for numerical integra-
tion. By doing this we can get higher precision at the origin
where apparent singularities arise, moreover the freely
specifiable constants are identified more easily this way.

A. Integrating the zeroth order field equation

In order to simplify (5) it is convenient to redefine the
functions A, h, m and k in terms of the function � as

A¼ e�; h¼ ~he�2�; m¼ ~me�2�; k¼ ~ke�2�:

(43)

The equations simplify considerably due to the fact that
only the derivative of � will appear. Hence we introduce
the function z by

z

B
¼ r

d�

dr
þ 1: (44)

Then the zeroth order equation (5) becomes first order in z
and algebraic in B [27]
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Br
dz

dr
þ 2B2 þ z2 � 4Bzþ 1 ¼ 0; (45)

furthermore, the pressure of the nonrotating configuration
(6) takes the form

p0 ¼ 1

r2
ð2Bz� B2 � 1Þ: (46)

B. Series expansion around a regular center

For sufficiently regular configurations close to the center
the metric coefficients can be given as power series in r.
Assuming that the central pressure and density are finite it
follows that Bð0Þ ¼ zð0Þ ¼ 1. The assumption of smooth-
ness of the configurations at the symmetry center, in the
spacetime sense, implies that the odd coefficients in the
expansions of the basic variables are zero.

Hence, assuming a smooth center in the spacetime
sense, the odd powers will be omitted hereafter. Plugging
the expressions

B ¼ 1þ b1r
2 þ b2r

4 þ . . . ;

z ¼ 1þ z1r
2 þ z2r

4 þ . . . ;

! ¼ !0 þ!1r
2 þ!2r

4 þ . . . ;

~h2 ¼ hð0Þ2 þ hð1Þ2 r2 þ hð2Þ2 r4 . . . ;

~m2 ¼ mð0Þ
2 þmð1Þ

2 r2 þmð2Þ
2 r4 . . . ;

~k2 ¼ kð0Þ2 þ kð1Þ2 r2 þ kð2Þ2 r4 . . .

(47)

into the field equations together with the equation of state
(11) justifies then that all coefficients can be given in terms

of z1, !0 and h1 � hð1Þ2 .

To zeroth order one obtains

hð0Þ2 ¼ mð0Þ
2 ¼ kð0Þ2 ¼ 0; (48)

then to second order

mð1Þ
2 ¼ kð1Þ2 ¼ �hð1Þ2 � �h1;

!1 ¼ 2

5
!0ðz1 � 3b1Þ; b1 ¼ � 1

6
�j2z1

(49)

and finally to fourth order

b2 ¼ � b21
2
þ 1

10
ðz21 þ 3b21 � 4b1z1Þ d�dp

��������2z1

;

z2 ¼ b1z1 � z21
2
� b21;

hð2Þ2 ¼ ð3z21 � 16z1b1 þ 8b21 � 10b2Þð!2
0 þ 3h1Þ

42ðz1 � b1Þ
þ!2

0

21
ð17b1 � 5z1Þ;

kð2Þ2 ¼ !2
0

6
ðz1 � 3b1Þ þ h1

2
ðb1 � z1Þ � hð2Þ2 ;

mð2Þ
2 ¼ 2!2

0

3
ðz1 � 3b1Þ � hð2Þ2 ;

!2 ¼ !0

70
ðz21 � 36z1b1 þ 74b21 � 50b2Þ:

(50)

The central density and pressure are given by

�0c ¼ �6b1; p0c ¼ 2z1: (51)

This shows that for realistic configurations b1 < 0 and
z1 > 0, consequently the z1 � b1 term in the denominator

of hð2Þ2 is nonvanishing.

C. System of differential equations

Motivated by the results of the previous section it is
advantageous to define the new dependent variables �,  ,

~!, !̂, ĥ, k̂ and m̂ through

B ¼ 1þ r�; z ¼ 1þ r; ! ¼ !0 þ r ~!;

!;r ¼ ~!þ !̂; ~h2 ¼ rĥ; ~k2 ¼ rðr2k̂� ĥÞ;
~m2 ¼ rðr2m̂� ĥÞ:

(52)

The closed subsystem of Eqs. (5) and (7)–(11) then gives
six first order differential equations for the quantities �,  ,

~!, !̂, ĥ and k̂, while m̂ can be solved for algebraically. The
equations for the zeroth order quantities are given by

d

dr
¼ � 1

rB
ð� � 3r�þ r2 þ 2r�2Þ; (53)

d�

dr
¼ � 1

2rB
ðr�0 þ 4�þ 3r�2Þ; (54)

where the density �0 is given by equation of state �0 ¼
�ðp0Þ with the pressure given by

p0 ¼ 1

r
ð2 þ 2r�� r�2Þ: (55)

The equations for the first order quantities ~! and !̂ are

d ~!

dr
¼ !̂

r
; (56)
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d!̂

dr
¼ � 1

rB

�
rð4!0 þ 5r ~!þ r!̂Þ d�

dr
þ 4ð2�� Þ!0

þ ð14r�þ 4� 5rÞ ~!þ ð7r�þ 5� rÞ!̂
�
;

(57)

whereas the ones for the second order quantities ĥ and k̂ are
long and hence are not given here. The corresponding
homogeneous equations, given by putting ! ¼ 0 in (8)–
(10), are

dĥh
dr

¼ 2rk̂h � �ĥh
rð�� ÞB þ ĥh

�� 

d�

dr
; (58)

dk̂h
dr

¼ rk̂hð2r � 5r�� 3Þ þ 2ĥhð�� Þ
r2B

: (59)

These two last equations will be used when adjusting the
parameters so that the solutions become asymptotically
flat.

Boundary conditions at r ¼ 0 are given as

d�

dr
¼ b1;

d

dr
¼ z1;

d ~!

dr
¼ d!̂

dr
¼ 2

5
!0ðz1 � 3b1Þ; dĥ

dr
¼ h1;

dk̂

dr
¼ !2

0

6
ðz1 � 3b1Þ þ h1

2
ðb1 � z1Þ:

(60)

The constants b1 ¼ ��0c=6 and z1 ¼ p0c=2 are related
through the equation of state (11), implying that we have
three independent constants of integration (apart from
possible constants in the equation of state). One of this
(h1) will be determined through the matching conditions
on the zero-pressure surface in terms of the others when the
requirement of asymptotic flatness is imposed.

There is a rescaling associated to the rescaling of the
rotational parameter !0, following the rule !0 ! �!0,
which induces the transformation

!; ~!; !̂ ! �!;� ~!;�!̂; ĥ; m̂; k̂ ! �2ĥ; �2m̂; �2k̂;

�; ; r ! �; ; r: (61)

Because of this scale invariance of the equations the con-
stant!0 can be fixed. All other configurations with a given
equation of state and specified central pressure can be
obtained by rescaling.

The rescaling of the radial coordinate r ! �r induces a
change of the parameters in the equation of state, (12),
given by

d1 ! d1; d2; d3; p0c ! d2
�2

;
d3
�2

;
p0c

�2
: (62)

The dependent variables then scale as

�; ; ~!; !̂; m̂; k̂ ! �

�
;


�
;
~!

�
;
!̂

�
;
m̂

�
;
k̂

�
;

!;!0; ĥ ! !;!0; �ĥ: (63)

Using this scale invariance we can set one of the constants
in the equation of state to a fixed value.

D. Asymptotically flat solutions

Asymptotically flat solutions can be obtained by consid-
ering suitable linear combinations of homogeneous and

particular solutions for h2 and k2, or equivalently for ĥ

and k̂. These are solutions of the linear equations (58) and
(59) and their corresponding inhomogeneous equations,
respectively. Since we solve the equations order by order,

and hence k̂ and ĥ do not appear in the lower order
equations, we can add any homogeneous solution to a

given particular solution, i.e., k̂ ¼ k̂p þ Ck̂h, ĥ ¼
ĥp þ Cĥh, where C is an arbitrary constant and the sub-

scripts p and h refer to particular and homogeneous solu-
tions, respectively. A solution to the field equations is
asymptotically flat iff q1 ¼ 0. Now the expression (41) is

also linear in k2 and h2, or equivalently in k̂ and ĥ, it has a
structure like

q1 ¼ �1 þ �2k̂þ �3ĥ: (64)

Hence

q1 ¼ �1 þ �2ðk̂p þ Ck̂hÞ þ �3ðĥp þ CĥhÞ
¼ �1 þ �2k̂p þ �3ĥp þ Cð�2k̂h þ �3ĥhÞ
� q1p þ Cq1h (65)

and q1 ¼ 0 can be obtained by choosing C ¼ �q1p=q1h.

Also the constant c1 (38), that is used to calculate the
quadrupole moment, has a similar structure, and hence
the resulting c1 is given by c1 ¼ c1p þ Cc1h.

V. NUMERICAL SOLUTIONS

In this section we consider solutions with equations of
state (12), with special attention to the quadrupole mo-
ments and their deviation from that of the Kerr metric. In
particular we determine the quantity �Q=Q defined in
(26). The system was solved using fourth order Runge-
Kutta. In scanning the parameter space, due to the scaling
invariance, without loss of generality, we fixed !0 ¼ 0:1
and the method for obtaining asymptotically flat solutions,
described in Sec. IVD below, indirectly fixes the value of
h1. Hence, for a given equation of state, we only need to
vary the central pressure, 2z1. When considering different
equations of state we use the scale invariance (62) and (63)
to fix one of the constants d2 or d3. When performing the
corresponding rescaling r ! �r the quantity �Q=Q is
invariant.
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The integrations were carried out until the zero-pressure
surface was reached. The accuracy of the code was
checked for the Wahlquist solution [28].

A. Incompressible fluids (interior Schwarzschild)

This case was already considered in [3]. The numeri-
cally calculated quantity �Q=Q, defined in (26), as a
function of the central pressure is depicted in Fig. 1. In
Fig. 2 the same quantity is given as function of the radius of
the corresponding nonrotating configuration. When the
central pressure approaches infinity and the radius the
Buchdahl limit 9M

4 , then �Q=Q approaches 0.0212.

Because of the scaling invariance, (62) and (63), this
limiting value is independent of the density.

B. Linear equations of state

Linear equations of state

� ¼ d1pþ d3 (66)

are of interest not only because they could approximate
some compact objects, but also since in this class one
might have a chance of finding exact solutions, at least to
zeroth order.

An exact spherically symmetric perfect fluid solution is
given by the Whittaker metric [29], with equation of state
� ¼ �3pþ�0. Its metric is

ds2 ¼ f0dt
2 � dr2

f0ð1� �2�0r
2=2Þ � r2ðd�2 þ sin2�d’2Þ;

where

f0 ¼ 1þ 1

�2

�
1� arcsin

�
�

ffiffiffiffiffiffi
�0

2

r
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�2�0r
2
� 1

s �
; (67)

and the pressure is

p ¼ 1

2
�0ð1� �2f0Þ: (68)

It is the nonrotating limit of the Wahlquist metric [28], that
cannot be matched to an asymptotically flat vacuum region
[17,30]. However, there is another rotating generalization
of Whittaker that can be matched, although its closed form
is not known [31].
In the limit when the central pressure goes towards

�0=2, corresponding to � ! 0, the Whittaker metric ap-
proaches the anti-de Sitter spacetime and the radius r1
blows up to infinity as

ffiffiffiffiffiffiffiffiffiffiffi
2=�0

p
=�, but r1=2M goes as 1þ

4�2=�2, i.e. the surface approaches the event horizon. This
is not in conflict with the Buchdahl limit [32], since this
spacetime does not meet the usual physical requirements.
Even if the these are weaker than in Buchdahl’s original
work, see, e.g., [33], the central density becomes negative
in the anti-de Sitter limit. For the corresponding second
order rotating and asymptotically flat configuration we find
that the quadrupole moment approaches that of the Kerr
metric in this limit.
Similar results hold for all configurations with d1 <�1.

For all these �0c ¼ �p0c when p0c ¼ d3=ð�d1 � 1Þ, and
since the anti-de Sitter spacetime is a solution to our zeroth
order equations and the solution is uniquely given by
central pressure and density this is the resulting spacetime.
Since the zero-pressure surface is further and further
pushed outward when approaching the limit p0c ¼
d3=ð�d1 � 1Þ, all these configurations also become infi-
nite in extension. The ratio r1=2M once again tends to-
wards one, and we also reobtain that the quadrupole
moment approaches that for Kerr. Even if these spacetimes
are quite unphysical, a study of them still is helpful in
understanding which conditions are needed for a success-
ful matching to the Kerr metric.
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100
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FIG. 1. The quantity �Q=Q as function of central pressure for
a sequence of fluid balls with constant density � ¼ 1.
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FIG. 2. The quantity �Q=Q as function of radius r1=2M for a
sequence of fluid balls with constant density � ¼ 1.
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When performing the numerical runs, due to the scaling
invariance, (62) and (63), we put d3 ¼ 1. Negative values
of d3 are excluded if the surface density should be larger
than or equal to zero, and configurations with d3 ¼ 0 are
not finite in size [34]. The quantity �Q=Q for a sequence
of values for d1 are given in Fig. 3. As seen, for more
realistic configurations with d1 � 1 it differs significantly
from zero.

C. Polytropes

1. Newtonian polytropes

In a recent paper [7] it was shown that slowly and rigidly
rotating polytropes cannot be sources of the Kerr metric in
the post-Minkowskian limit. Here we numerically find that
slowly and rigidly rotating polytropes with arbitrary
strength of the gravitational field cannot be matched to
Kerr either.

We use the equation of state � ¼ d2ð ppc
Þ1=� obtained by

putting d1 ¼ d3 ¼ 0 in (12). Because of the scaling invari-
ance, (62) and (63), we put d2 ¼ 1. In Fig. 4 �Q=Q is
shown as a function of the central pressure for a sequence
of values of �, including the physically interesting cases
� ¼ 4=3 and � ¼ 5=3. As shown in [34] the configurations
are finite in size for � > 1:2295 (1=� < 0:7695) and infi-
nite for � < 1:2 (1=� > 0:833). In the interval in between
the central pressure determines whether the configuration
is finite or not. As seen �Q=Q never seems to approach
zero. Furthermore, for physically reasonable configura-
tions with pc � �c ¼ 1, the quantity differs significantly
from zero.

2. Relativistic polytropes

For a fluid with one type of constituent particles, a
relativistic polytrope is given by p ¼ Cn�, where C is a
constant, in terms of the particle density n and the poly-

tropic index �. This equation is suitable, e.g., to describe
an ideal degenerate neutron gas. Using the energy conser-
vation equation for a perfect fluid it is then easy to show
that the equation of state becomes

� ¼ 1

�� 1
pþ d2p

1=� (69)

in terms of the pressure p. As seen the equation of state
approaches a linear equation of state for large pressures
and a Newtonian polytrope for low pressures. For a dis-
cussion of relativistic polytropes see, e.g., [35]. The results
of the numerical runs are given in Fig. 5. As expected the
results are similar to those of the Newtonian polytropes.
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FIG. 3. The quantity �Q=Q as a function of central pressure
for a sequence of fluid balls with linear equation of state � ¼
d1pþ 1.
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FIG. 4. The quantity �Q=Q as a function of central pressure
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� ¼ ð ppc

Þ1=�.

 0.1

 1

 10

 100

 1000

 10000

 0  0.5  1  1.5  2  2.5  3  3.5  4

∆Q
/Q

p0c

1/γ = 0.30
1/γ = 0.50
1/γ = 0.60
1/γ = 0.65
1/γ = 0.70
1/γ = 0.72
1/γ = 0.75

FIG. 5. The quantity �Q=Q as a function of central pressure
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D. Combined linear and polytropic

When adding a constant to the Newtonian polytropes in
Fig. 4 typically the local minima and maxima get less
pronounced or disappear and for large central pressures
the quadrupole moments get closer to that of the incom-
pressible case, but never smaller. For combined linear and
polytropic equations of state the curves become more
similar to those of the relativistic polytropes in Fig. 5,
and when there is additative constant the limiting value
of the quadrupole moment for large pressures once again
gets closer to that of the incompressible case.

VI. THE POST-MINKOWSKIAN LIMIT

Since we cannot solve the equations in the fluid region
analytically, we look at the weak gravity limit by making
an expansion in the small parameter � ¼ M=r1, or in SI
units GM=r1c

2. HereM is the mass of the fluid ball and r1
is its radius. A similar study, using global harmonic coor-
dinates and the Lichnerowicz matching conditions [36],
was performed in [6,7].

From an expansion of the equations in this parameter it
turns out that the pressure is one order higher in � than the
density. This can also be understood in a Newtonian con-
text where the virial theorem applied to a spherically
symmetric configuration gives hpi ¼ k�h�i, where k is a
constant of order unity and hpi and h�i are the average
values of pressure and energy density. By considering the
balance between gravitational and centrifugal forces on the
equator of a rotating Newtonian fluid ball one obtains for

the angular velocity that !<
ffiffiffiffi
�

p
=r1, so it seems reason-

able to let! go as
ffiffiffiffi
�

p
. This is also consistent with that! or

its derivatives only appear quadratically in (9) and (10).
We first consider the post-Minkowskian expansion of

the spherically symmetric system. The functions A and B
are expanded as

A ¼ 1þ A1 þ A2 þ . . . ; B ¼ 1þ B1 þ B2 þ . . . ;

(70)

where subscripts refer to the order in �. The freedom of
rescaling the time coordinate was used to put the zeroth
order term in A to one. We do a similar expansion of the
pressure p ¼ p1 þ p2 þ . . . and density � ¼ �1 þ �2 þ
. . . . Using the field equation (5) we first obtain that p1 is a
constant. We put this constant to zero so that a zero-
pressure surface can be obtained. Then

B1 ¼ �r
dA1

dr
: (71)

The first nonvanishing terms of the density and pressure are

�1 ¼ 2

r2
d

dr

�
r2
dA1

dr

�
; (72)

p2 ¼ pc �
�
dA1

dr

�
2 � 4

Z 1

r

�
dA1

dr

�
2
dr: (73)

To complete the system we have to impose an equation of
state p ¼ pð�Þ, giving an equation for A1. The differenti-
ated version of this equation reads as

dpð�1Þ
d�1

d�1

dr
¼ ��1

dA1

dr
; (74)

where �1 is given by (72). We note that the total massM of
the configuration will be of the order �, while the radius r1
will be of zeroth order.
The function !, which is first order in the rotational

parameter �, has the post-Minkowskian expansion

! ¼ !1=2 þ!3=2 þ . . . ; (75)

where the indices correspond to the appropriate fractional
orders of the quantities in �. From the field equation (7) we
obtain that !1=2 is a constant. This corresponds to a rigid

rotation of the system. It is necessary to keep!1=2 nonzero,

since this will provide the nonlinear source term in the
higher order equations.
The quantities second order in the rotational parameter,

i.e. h2, m2 and k2, are expanded as

h2 ¼ h21 þ h22 þ . . . ; m2 ¼ m21 þm22 þ . . . ;

k2 ¼ k21 þ k22 þ . . . ; (76)

where the second index at each new quantity indicates the
order in the post-Minkowskian parameter �. To first order
in � Eqs. (8)–(10) yield m21 ¼ k21 ¼ �h21 and

d2h21
dr2

þ 2

r

dh21
dr

� 1

2

�
d�1

dA1

þ 12

r2

�
h21 ¼

!2
1=2r

2

6

d�1

dA1

;

(77)

where

d�1

dA1

¼ 2
d3A1

dr3
=
dA1

dr
� 4

r2
þ 4

r

d2A1

dr2
=
dA1

dr
: (78)

We note that a particular solution to Eq. (77) is given by
h21p ¼ �!2

1=2r
2=3.

Using the condition that q1, given by Eq. (41), should
vanish (to first order in �) for an asymptotically flat solu-
tion and that the corresponding c1 is given by c1 ¼ c1p �
c1hq1p=q1h as described in Sec. IVD one obtains

c1 ¼ � 5!2
1=2

48r51ðdA1

dr Þj5r¼r1

d
dr logðh21h=ðr4 dA1

dr ÞÞjr¼r1
d
dr logðrh21h= dA1

dr Þjr¼r1

: (79)

Here h21h is a regular nonzero solution of the homogeneous
version of (77). Note that in general c1 goes to infinity as
1=�4.
From the matching condition (35) it follows that

dA1

dr

��������r¼r1

¼ M

r21
; (80)

where we assume that the mass M is positive. In [11] it is
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shown that the rotating fluid ball is oblate in shape if

k2jr¼r1 þ
�2

r1
< 0; (81)

where �2 is given by (31). Substitution of k21 ¼ �h21 ¼
!2

1=2r
2=3� h21h in (81) together with (80) gives that the

fluid ball is oblate iff h21hjr¼r1 > 0 to first order in �.

For the incompressible case the equations can be inte-
grated completely and give for the asymptotically flat case

A1 ¼ �1r
2

12
þ a0; B1 ¼ ��1r

2

6
;

!3=2 ¼
�1r

2!1=2

5
; h21 ¼

r2!2
1=2

2
;

p2 ¼ pc � �2
1r

2

12
:

(82)

The integration constant a0 can be transformed away by a
first order (in �) rescaling of the time coordinate. The
choice a0 ¼ ��1r

2
1=4 makes the constant c4 in (35) equal

to unity. Since h21hjr¼r1 ¼ 5!2
1=2r

2
1=6> 0 the ball is ob-

late. From this solution the radius r1 of the fluid ball and
the parametersM and a of the exterior metric are given by

r1 ¼ 2
ffiffiffiffiffiffiffiffi
3pc

p
�1

; M ¼ 4

3

ð3pcÞ3=2
�2
1

;

a ¼ � 24

5

pc!1=2

�2
1

;

(83)

respectively. The value of c1 for asymptotically flat metrics
is in this case

c1 ¼ 5

1024

�
�1

pc

�
5
!2

1=2 (84)

and the relative difference to the Kerr quadrupole moment
is

�Q

Q
¼ 25�1

16pc

(85)

which diverges as 1=�. By scaling the input parameters
�0c, p0c and !0 in the numerical code used in the previous

section as �, �2 and �1=2, respectively, these values are also
obtained numerically in the limit � ! 0.

For Newtonian polytropes, p ¼ pcð ��c
Þ�, where �c and

pc are the central density and pressure, respectively, the
integration of (74) gives the following equation for A1:

� ¼ 2
d2A1

dr2
þ 4

r

dA1

dr
¼ kða1r1 � A1Þ1=ð��1Þ (86)

with a1r1 ¼ A1ðr1Þ being the value of A1 at the zero-

pressure surface and

k ¼
�
��
c

pc

ð�� 1Þ
�

�
1=ð��1Þ

: (87)

The homogeneous version of (77) then becomes

d2h21h
dr2

þ 2

r

dh21h
dr

� 1

2

� �k

�� 1
ða1r1 � A1Þð2��Þ=ð��1Þ þ 12

r2

�
h21h ¼ 0: (88)

From (86) it follows that

d2A1

dr2
=
dA1

dr

��������r¼r1

¼ �2=r1 (89)

on the zero-pressure surface r ¼ r1. Substitution of this
and (80) into (79) now gives

c1 ¼ � 5

48

r5!2
1=2

M5

ðdh21hdr =h21h � 2=rÞ
ðdh21hdr =h21h þ 3=rÞ

��������r¼r1

: (90)

Let h21h � 0 be the solution of (88) that makes the space-
time asymptotically flat. Substitution of h21 ¼
�!2

1=2r
2=3þ h21h in (41) then gives

q1 ¼ 1

15r2

�
9h21h þ 3r

dh21h
dr

� 5!2
1=2r

2

���������r¼r1

¼ 0 (91)

from which the denominator of (90) is�
dh21h
dr

=h21h þ 3

r

���������r¼r1

¼ 5!2
1=2

3h21h
: (92)

Note that h21h ¼ 0 would give a nonzero q1.
With the identifications � � 1þ 1=n,

A1 � ���þ a1r1 ; h21h � ��

2
�2 (93)

in terms of the functions � (that corresponds to the
Newtonian potential for the nonrotating configuration)

and �2 used in [7], and a rescaling of the r coordinate r �ffiffiffiffiffiffiffiffi
2= �k

p
s, with �k � k�n�1, Eqs. (86) and (88) read as

d2�

ds2
þ 2

s

d�

ds
þ�n ¼ 0 (94)

and

d2�2

ds2
þ 2

s

d�2

ds
þ

�
n�n�1 � 6

s2

�
�2 ¼ 0; (95)

respectively. Hence these are exactly the same as Eqs. (23)
and (41) in the paper [7] by Martı́n et al. By rescaling the
time coordinate to first order in � the central data for their
function � can be met and hence we may rely on their
theorem on page 10. From their proof the following in-
equality holds for regular solutions �2 of (95)

�0
2ðs1Þ

�2ðs1Þ
� 2

s1
< 0; (96)

with �0
2 � d�2=ds and s1 ¼

ffiffiffiffiffiffiffiffi
�k=2

p
r1, or in our notation
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dh21h=dr

h21h

��������r¼r1

� 2

r1
< 0: (97)

That�2ðs1Þ � 0 and hence also h21hðr1Þ � 0 is guaranteed
by their lemma. But (97) is actually exactly one of the
factors in the numerator of (90) and hence we conclude that
c1 � 0.

Substitution of (92) in (90) now gives that c1 > 0 iff
h21hjr¼r1 > 0, or equivalently if the fluid ball is oblate in

shape. Hence �Q=Q ¼ 16M4c1=5a
2 > 0 for oblate

Newtonian polytropes.

VII. CONCLUSIONS

It seems that generically the modulus of the quadrupole
moment for slowly and rigidly rotating perfect fluid balls is
larger than that of the Kerr metric. Also, typically it
becomes large for small central pressures. For the incom-
pressible case the ratio �Q=Q is a monotonically decreas-
ing function of central pressure. In the limit, when central
pressure goes to infinity, it approaches a small, but positive
value. Newtonian polytropes show a slightly more compli-
cated behavior, and �Q=Q possesses a minimum for � <
2. However, these minimal values are always larger than
0.2. The relativistic polytropes behave in a similar way, and
the values of the minima are even higher. For linear equa-
tions of state something interesting happens. When the
constant d1 is less than �1, the configuration becomes
infinite in extent for a finite central pressure. In this limit

the zero-pressure surface approaches the event horizon and
�Q=Q goes to zero. Also the central regions of these fluids
approach the anti-de Sitter spacetime. All of these solution
are quite unphysical since they have a central region with
negative density. For the more realistic values of d1, i.e.
d1 > 1, the curves for �Q=Q show minima, but with
values larger than 0.2.
In a post-Minkowskian approximation the field equa-

tions simplify, but still the equation of state can make the
problem analytically unsolvable. Generically �Q=Q
seems to go to infinity as ��1. For the incompressible
case the equations can be solved completely and the result
agrees with [6]. We further verify the result of [7] that
Newtonian polytropes cannot be matched to Kerr and also
show that�Q=Q> 0 if the rotating configuration is oblate.
The differences in approach were essentially that they used
global harmonic coordinates and the Lichnerowicz match-
ing conditions, whereas we used the Darmois-Israel match-
ing procedure. The equivalence of the Lichnerowicz and
Darmois-Israel matching conditions has been demon-
strated in the post-Minkowskian limit for the cases of
Wahlquist and polytropes by Cuchı́ et al.; see [37].
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