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Lovelock black holes with a nonlinear Maxwell field
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We derive electrically charged black hole solutions of the Einstein-Gauss-Bonnet equations with a
nonlinear electrodynamics source in n(= 5) dimensions. The spacetimes are given as a warped product
M? X K2, where K" 2 is a (n — 2)-dimensional constant curvature space. We establish a generalized
Birkhoff’s theorem by showing that it is the unique electrically charged solution with this isometry and for
which the orbit of the warp factor on K" 2 is non-null. An extension of the analysis for full Lovelock
gravity is also achieved with a particular attention to the Chern-Simons case.
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I. INTRODUCTION

Gravitation physics in higher dimensions has been re-
cently investigated in a focused way mainly motivated by
string theory. Higher-dimensional general relativity is real-
ized in the lowest order of the Regge slope expansion of
strings. Even in general relativity, black holes in higher
dimensions have much richer structures than those in four
dimensions [1]. The next stringy correction yields the
quadratic Riemann curvature terms in the heterotic string
case [2,3]. In order that the graviton amplitude is ghost-
free, a special combination of the remaining curvature-
squared terms is required yielding to the renormalizable
Gauss-Bonnet term [4].

The origin of considering higher-order curvature invar-
iants lies in the attempt of generalizing the theory of
general relativity in higher dimensions. Indeed, under the
standard assumptions of general relativity it is natural to
describe the spacetime geometry in three and four dimen-
sions by the Einstein-Hilbert action while for dimensions
greater than four, a more general theory is available. This
fact has been first noticed by Lanczos [5] in five dimen-
sions and later generalized by Lovelock [6] for arbitrary
dimensions 7.

The resulting theory is described by the so-called
Lovelock Lagrangian which is a n-form constructed with
the vielbein e“, the spin connection ™ and their exterior
derivatives without using the Hodge dual. The Lagrangian
is a polynomial of degree [n/2] in the curvature two-form,
R = dw + w*, A 0, given by

[(n—1)/2]

Lo—Y &
p=0
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(1.1

where [x] denotes the integer part of x, «, being arbitrary

*hideki@cecs.cl
"hassaine @inst-mat.utalca.cl
*martinez@cecs.cl

1550-7998/2009/79(4)/044012(9)

044012-1

PACS numbers: 04.50.Gh, 04.20.Jb, 04.50.—h, 04.50.Kd

dimensionful coupling constants and wedge products be-
tween forms are understood. The corresponding action
contains the same degrees of freedom as the Einstein-
Hilbert action [7].

The local Lorentz invariance of the Lovelock action
(1.1) can be extended into a local (anti-)de Sitter ((A)dS)
symmetry in odd dimensions by fixing properly the
Lovelock coefficients «,. For the AdS case the coefficients

are given by
)
P n=2p\ p /)

where the AdS radius was set equal to 1. The resulting
Lagrangian belongs to the class of Chern-Simons gauge
theories with Yang-Mills gauge symmetries, and admit
supersymmetric extensions. (See [8] and references
therein.)

It is clear that these higher-curvature terms come into
play in extremely curved regions. Black holes and singu-
larities are one of the best testbeds for demonstrating the
effects of these higher-curvature terms. There exists an
extensive literature about the exact black-hole solutions,
the thermodynamics, the stability, and other topics con-
cerning the Gauss-Bonnet or more generally the Lovelock
theory. (See [9,10] for detailed recent reviews on the
subject.)

In the present paper, we shall consider the Gauss-Bonnet
and more generally the Lovelock action in presence of a
nonlinear electrodynamics source given as an arbitrary
power g of the Maxwell invariant,

f &' J=(F,, FH¥).

Not being exactly the same form as above, the higher
F-terms also appear in the low-energy limit of heterotic
string theory [3]. The Gauss-Bonnet black holes with the
higher F-terms have been investigated in [11]. Our action
(1.3) may be considered as the simplest model of such
higher F-terms.

(1.2)

(1.3)
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The nonlinear source (1.3) has been considered in gen-
eral relativity [12] where it has been derived black-hole
solutions with interesting asymptotic behaviors. In general,
black-hole solutions with nonlinear electrodynamics
sources have been extensively analyzed in the current
literature, see e.g. [13] and references therein. Nonlinear
electrodynamics sources are also good laboratories in order
to construct black-hole solutions with appealing features as
for instance regular black holes [14]. Moreover, the non-
linear electrodynamics models exhibit interesting thermo-
dynamics properties since they satisfy both the zeroth and
first laws of black-hole mechanics [15].

The plan of the paper is organized as follows. In the next
section, we consider the Einstein-Gauss-Bonnet action
with the nonlinear electrodynamics source (1.3). In this
case, we derive electrically charged black-hole solutions
and a generalized version of the Birkhoff’s theorem is
proved. In the Sec. III, the properties of the solution are
discussed. In the Sec. IV, our analysis is extended to the full
Lovelock action where it is shown that the metric is given
as a solution of a polynomial equation. In general, this
polynomial equation may have no real roots, in which case
the metric solution being purely imaginary is not physi-
cally admissible. Interesting enough, we show that this
polynomial equation always admits at least one real root
for the special election of the Lovelock coefficients given
by (1.2). The summary and the future prospect of the
present paper are given in Sec. V.

II. GAUSS-BONNET BLACK HOLES WITH A
NONLINEAR ELECTRODYNAMICS SOURCE

In this section, we consider the Einstein-Gauss-Bonnet
equations with the nonlinear electrodynamics source (1.3)
in arbitrary dimensions. The n-dimensional action is given
by

1
S[g A, ] = ] d”x\/—_gl:ﬁ (R —2A + aLGB)]
- B f d"x JG(F ,, FH),

where R and A are n-dimensional Ricci scalar and the
cosmological constant, respectively. F',,, is the strength of
the nonlinear electromagnetic field and ¢ is an arbitrary
rational number whose range will be fixed later. Further
K, = /87G,, where G, is n-dimensional gravitational
constant and « and B are the coupling constants for the
Gauss-Bonnet term Lgg and the nonlinear electromagnetic
field, respectively. The Gauss-Bonnet term Lgg iS combi-

2.1

nation of squares of Ricci scalar, Ricci tensor R, and
Riemann tensor R*,,,, as
Lgp := R* — 4R, ,R*" + R, ,,R*"P7. (2.2)

The basic equations following from the action (2.1) are
given by
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G*, =G, +aH", + AS*, = k2TF,  (2.3)

1
0= ——0,(=gFH F )
V78
where for convenience we have defined F := F,, F*”,
and where the geometric quantities and the energy-
momentum tensor of the nonlinear electromagnetic field
are defined by

(2.4)

1
G, 6 =R

mv uv Eg/.LVR’ (25)

H,uv = Z[RR,U«V - ZR,MaRaV - ZRQBR#OU’B

1
+ R;LaBYRvaB)/] - Eg,uVLGB’ (2.6)

T,, = 4B(qFMpFVPfq—1 - %gwf"). @.7)

Now we consider an Ansatz for the spacetime geometry
such that the n(= 5)-dimensional spacetime (M", g,,,) is
given as a warped product of an (n — 2)-dimensional con-
stant curvature space (K"~2,y;;) and a two-dimensional
orbit spacetime (M?, g,,) under the isometries of
(K"2, ;). Namely, the line element is given by

gupdxtdx’ = g, (y)dy'dy’ + R*(y)y,;;(z)dz'dz/, (2.8)

where a, b =0, 1;i, j=2,...,n — 1. Here R is a scalar
on (M?, g,,) with R = 0 defining its boundary and y;; is
the unit metric on (K" 2, y; ;) with its sectional curvature
==*1,0.
In what follows, we first derive an electrically charged
solution with a particular Ansatz of the form

1
f(r)
and then we prove that the solution obtained is the unique

under the assumption that D, R is not null. Here D, stands
for a metric compatible linear connection on the manifold

(M2, gab)‘

ds*> = —f(r)dr* + dr? + r27,-jdz"dzj, (2.9)

A. Electrically charged black-hole solutions

Here we only consider the electrically charged case, i.e.,
F;; = 0, and hence the nonzero components of the energy-
momentum tensor are given by 7%, = B(2g — 1) F16°,
and 7", = — B Fad' ;- In this setting, we obtain the follow-
ing solution for the Ansatz (2.9)

2 - aM  aB
£(r) = k+2r—~<1 :\/1 +45[A+%+“—7), (2.10)
a r r

C

Foe = G561

@2.11)
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for g # 1/2, where C is a constant and where we have
defined

_ 81k2BCM(—2)1(2q — 1) _2q(n—2)
 m—2m—1-29) T -1
(2.12)

The remaining constants appearing in the solution are
A:=2A/[(n — 1D(n—2)], @:= (n — 3)(n — 4)a, while
M stands for an arbitrary constant.

Various comments can be made concerning the solution
obtained. Firstly, this solution reduces to the solutions
obtained by Boulware and Deser, and independently by
Wheeler for C =0, k = 1, and A = 0 [16], by Wiltshire
forq=1,k=1,and A = 0 [17], by Lorenz-Petzold and
independently by Cai for C = 0 [18,19] (the left-hand side
of Eq. (10) in [18] should be u~?2), and by Cvetic, Nojiri,
and Odintsov for ¢ = 1 [20]. Subsequently, it is important
to stress that since the only nonvanishing components of
the Maxwell tensor is given by F., the Maxwell invariant
JF = —2(F,)? is negative, and hence in order to deal with
real solutions, the exponent g must be restricted to be an
integer or a rational number with odd denominator. As a
consequence, the singular case of ¢ = 1/2 is excluded
from the discussion.

It is also clear from the expression of the constant B
(2.12) that the solution given by (2.10) is valid only for n #
2q + 1. For this particular case, which corresponds to an
exponent ¢ € IN in odd dimensions n = 2g + 1 (so ¢ =
2), the solution reads

o _ - aM aBlIn(r)

(2.13)

where @ := 2(q — 1)(2g — 3)a, A :== A/[¢(2¢ — 1)], and
B = 8Kk2BC*(—2).

B. Uniqueness

We now show that the particular solution represented by
(2.10), (2.11), (2.12), and (2.13) is the unique solution (up
to isometries) under the assumption that D, R is not null. In
what follows, we only consider the case for which DR is
spacelike since the derivation in the timelike case is quite
analogue. In the neutral case, i.e., C = 0, this generalized
Birkhoft’s theorem was shown under the same assumption,
ie., (D,R)(DR) # 0 in [17,21,22], while the complete
proof including the null case was given in [23].

In the case where DR is spacelike, we can set R to be
the radial space coordinate, and in this case the general
metric reads

1
g(t, 1)

ds® = —N(t, r)g(t, r)di? + dr? + rly,dz dz/.

(2.14)

The contravariant-covariant component (z, 7) or (r, t) of
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Eq. (2.3) imply that the metric function g does not depend
on t, i.e. g(t,r) = g(r). Subsequently, the combination
(G, — G",) — k2(T", — T",) = 0 gives rise to two possi-
bilities, N(z, r) = N(¢) or

2

g(r) = k+2r—d. (2.15)

In both cases, the nontrivial basic Egs. (2.3) are given by

G, = «kiB(2q — ) F15°, (2.16)
G' = —kBF8, (2.17)

_ 2.
F = N(Ftr). (2.18)

In the first case, namely N(z, r) = N(z), we can set
N(r) = 1 without loss of generality. Then, Eq. (2.4) gives

0= 0,(r"2F(=2F2%)4"), (2.19)

0= 0,(r"2F (=2F2%)471), (2.20)

from which we deduce that the Maxwell field strength is
given by (2.11). Finally, the remaining metric function g(r)
is given by g(r) = f(r), where f(r) is expressed as
Eq. (2.10) and (2.13) for n # 2¢ + 1 and n = 2¢q + 1,
respectively.

We now analyze the remaining option g(r)=
k + r?/(2@). In this case, considering the equation G’, +
(2¢q — 1)G%, = 0 given from Egs. (2.16) and (2.17), we
obtain that A = —1/(4&@). Through the basic Egs. (2.16)
and (2.17) with g(r) = k + r2/(2&@) and A = —1/(4@)
imply that the system is vacuum, i.e., T#, =0, and
N(z, r) is arbitrary. This exceptional vacuum (nonstatic)
solution under the special combination between the cou-
pling constants « and A was first found in [21].

Here we have shown the uniqueness of our solution
(2.10), (2.11), (2.12), and (2.13) under the assumption
that DR is not null. For the null case, on the other hand,
there must be the Nariai-Bertotti-Robinson type solution
[24] as in the case with or without the Maxwell field in
general relativity [25] and in the Einstein-Gauss-Bonnet
gravity [26,27].

C. Energy conditions

Before analyzing the properties of the solutions obtained
in (2.10) and (2.13), we discuss the energy conditions for
the nonlinear electromagnetic field. For the energy-
momentum tensor written in the diagonal form as T#, =
diag(—u, py» Pr» Psr -+ *), the weak energy condition
(WEC) implies =0, p,+ =0, and p, + © =0,
while the dominant energy condition (DEC) implies u =
0, —u=p,=<u,and —u = p, = u [28]. The physical
interpretations of w, p,, and p, are energy density, radial
pressure, and the tangential pressure, respectively. The
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WEC assures that a timelike observer measures the non-
negative energy density. The DEC assures in addition that
the energy flux is a future-directed causal vector. The DEC
implies the WEC, but the converse is not true.

In our case, the corresponding w, p,, and p, are, respec-
tively, given by

w=—B2qg—1F9, (2.21)
pr= BQRq—1)F1, (2.22)
= —BFY, (2.23)
F = —2(F,)~ (2.24)

It is noted again that the exponent ¢ must be restricted to be
an integer or a rational number with odd denominator in
order to deal with real solutions, so that ¢ = 1/2 is
excluded.

First we consider the condition p = 0, which deter-
mines the sign of 8 depending on the range of the exponent

qs
for g >1/2,
for g < 1/2.

sgn(B) = —(—1)¢
sgn(B) = (— 1)

Then, both WEC and DEC are satisfied forg = O0org =
1. The WEC is satisfied but the DEC is violated for 1/2 <
g < 1. On the other hand, both WEC and DEC are violated
for0<g<1/2.

We also consider the strong energy condition (SEC)
which implies p, + £ =0, p,+ £ =0, and p + p, +
(n —2)p, = 0. It is noted that the SEC is independent
from either WEC or DEC. Independent of the sign of f3,
the SEC is satisfied for ¢ > 1/2 with u >0 o0r 0 =g <
1/2 with u <0, otherwise it is violated. The result ob-
tained in this subsection is summarized in Table I.

To conclude the study of the energy condition, we would
like to stress that the excluded region 0 < g < 1/2 where
none of the energies conditions are satisfied is also ruled
out by the following argument. Since we are interested in
finding solutions with event horizons that should hide the
eventual singularities, solutions having singularities at in-
finity will be ruled out and only curvature singularities

(2.25)

TABLE I. Consistency for the nonlinear electromagnetic field
with the energy conditions under the condition (2.25) corre-
sponding to w > 0. For the real solutions, the exponent ¢ must
be an integer or a rational number with odd denominator. We
note that the strong energy condition is satisfied even for 0 =
q <1/2if u <0 holds.

g=0 0<qg<1/2 1/2<qg<1 1=g¢q
WEC Yes No Yes Yes
DEC Yes No No Yes
SEC No No Yes Yes
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surrounded by an event horizon will be allowed. For g €
(0, 1/2), the scalar curvature associated to the solution
(2.10) diverges at infinity or the metric may be complex
at infinity depending on the parameters.

III. PROPERTIES OF THE SOLUTION

In this section, we analyze the solutions obtained (2.10)
and (2.13). There are two families of solutions correspond-
ing to the sign in front of the square root in Eq. (2.10) or
(2.13), stemming from the quadratic curvature terms in the
action. The solution with the upper sign, that we call the
GR branch, has a general relativistic (GR) limit as &« — 0
given by

~ B
A2 _
f(r) =k— Ar 3 g (3.1
- M Bln(r)
f) =k= AP = ey (3.2)

forn # 2g + 1 and for n = 2q + 1 respectively. This is a
generalization of the solution obtained in [12] for k = 1
and A = 0. In contrary, the other branch, i.e. the lower
signs in (2.10) and (2.13), that we call the Gauss-Bonnet
branch, does not have the GR limit.

Setting A=A =M= C=0 in (2.10) or (2.13), the
possible vacua differ drastically from one case to the other.
Indeed, in the GR branch, the metric will reduce to that of
Minkowski while for the Gauss-Bonnet branch, the metric
becomes that of (A)dS with an effective cosmological
constant that goes like —(1/«). Indeed, in this case a small
coupling constant a will correspond to a huge effective
cosmological constant.

We now turn to the crucial question about the singular-
ities and the existence of event horizons. In order to
achieve this task correctly and because of the presence of
many parameters in the metric solution (2.10), we put
several conditions on the parameters. First we assume 1 +
4@ A =0 and 1 + 4a A = 0 which ensure the existence
of the maximally symmetric solutions. We also assume the
weak energy condition for the nonlinear electromagnetic
field, under which g = 0 or ¢ > 1/2 is satisfied and 1y is
non-negative.

Under the reasonable assumptions listed above, the pa-
rameter space of the solution may be classified into several
cases depending on the falloff rate of the electromagnetic
term against the gravitational term. The first case corre-
sponding to y > n — 1 is similar to the standard Maxwell
case and will be achieved for the exponent g € (1/2, (n —
1)/2). On the other hand, the option y < n — 1 can also be
considered with ¢ =0 or ¢ > (n — 1)/2 while the case
v = (n—1) will correspond to the logarithmic metric
(2.13).

In a generic way, the solution may have two possible
singularities that are the usual r = 0 and also a branch
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singularity at r = r,,(>>0), where the argument of the square-root piece of the metric solution (2.10) or (2.13) vanishes. For

r < ry, the metric becomes complex.

In order to clarify the existence condition for the branch singularity, we write the function f(r) as

2 ~
f(r)=k+r—~<11\/1+4a/\+“
2a r"

o

2 _ —_
f(r)=k+2"—_(11\/1+4aA+aM+

for n # 2¢ + 1 and for n = 2¢ + 1 respectively, where
(r) is the energy density of the nonlinear electromagnetic
field (2.21).

For ¢ € (1/2, (n — 1)/2) corresponding to y >n — 1,
the electromagnetic term dominates inside the square-root
for r — 0. As a result, the branch singularity exists for & >
0. On the other hand, for ¢ = 0 or ¢ > (n — 1)/2 corre-
sponding to y < n — 1, the gravitational term dominates
for r — 0 and the branch singularity exists for aM < 0.
Finally, in the case of ¢ = (n — 1)/2 corresponding to the
logarithmic metric (3.4), the electromagnetic term domi-
nates for r — 0, so that the branch singularity exists for
a > 0 since 2g — 1 > 0 is satisfied.

As a consequence of the branch singularity, the event
horizon given by the positive real root of the algebraic
equation f(r,) =0 must satisfy an inequality ry, >
max(0, r,). The location of horizon r, is a root of the
following polynomial

B=0
(3.5)

p(r) i=4k*ar"™* + 4kr* 2 — AAFY — MpYTIon —

for y > n — 1, while for y < n — 1, the polynomial reads
p(r)i=4k>ar* > + 4kr* 3 — AAP =Byl — M =0,
(3.6)

For the logarithmic case, i.e., y = n — 1, the horizon ry, is
the solution of

AK2ar* =4 + 4kr2a2 — 4Ar21 + Bln(r) — M = 0,
(3.7)

which is not a polynomial. Moreover, in all the cases, the
roots must satisfy the condition F[k + r2/(2&)] =0,
where the upper and the lower signs in the left-hand side
correspond to the GR and the Gauss-Bonnet branches,
respectively. This extra condition ensures the equivalence
between the roots of the polynomial p(r) and those of the
metric function f(r). A full analysis of the existence con-
dition for the event horizon will certainly be interesting but
it is rendered long by the presence of so many parameters.

aM 8ar2(2g — NHu
1 <n—1)<n—1—2q>)’ 6-3)

8x2au In(r)
) Gb

Hence, in order to gain in clarity we avoid a more detailed
discussion.

In the case of ¢ = 1, the global structure of the solution
was fully investigated in [29]. (See [30] for the neutral
case.) In fact, the number of the horizons, structure of the
singularity, and asymptotic behavior at infinity, sharply
depend on the parameters in the solution.

IV. EXTENSION TO LOVELOCK GRAVITY

The extension of the analysis in the previous section to
the more general Lovelock gravity is an interesting subject
by itself. In this objective, we shall consider the Lovelock
gravity (1.1) with the nonlinear electrodynamics source
(1.3) in arbitrary dimensions and look for particular solu-
tions. The Ansatz for the geometry we shall consider is the
same that in the Gauss-Bonnet case (2.9), and we shall also
restrict the nonlinear electromagnetic field to be a purely
radial one. As in the Gauss-Bonnet case, this Ansatz will
restrict the exponent ¢ to be given as a rational number
with odd denominator.

In this analysis, we opt for the Hamiltonian formalism
that provides an easy way to write down the field equations
and integrate them. In order to achieve this task, we first
write the reduced Lovelock Hamiltonian [31],

P
HE=—(n 2)!\/;dr

y [rn_l [m—zn/z] o Zp)(k — f)p]’ @1

2
p=0 r

where 7 is the determinant of y;;. In an analogue way, the

reduced nonlinear electromagnetic Hamiltonian is given
by

2g — 1)(—2)4/2q=1)P2q/(2q—1)
He:_ﬁz(q ) )_ R
f (4gPB)*e/ 4= n=2)/2q=1)

4.2)

where P 1= 4BqgF¢ /" 2F, is the rescaled radial mo-
mentum which is constant by virtue of the Gauss law.
Defining a function H(r) such that f(r) = k — r2H(r),
the constraint becomes a first-order equation given by

044012-5



MAEDA, HASSAINE, AND MARTINEZ

PHYSICAL REVIEW D 79, 044012 (2009)

[(n—1)/2] 2g — 1)(—2)%/2a—1)p2q/2q—1)
i[rn-l > a,,(n—zp)Hﬂ] -_F ‘( 1 )E /(2)71) TSy (4.3)
dr = (n—2)!  (4¢B)*4/ 24Dy 1
whose straightforward integration yields
[(n—1)/2] C B(2g — 1)2(—2)4/24=1)Pp24/2-1)
_ p 1 q

2 a,(n —2p)H T G S 2 (4g BT T — 1 = 2g) P V1) forn # 2q + 1 4.4)

[(n=1)/2] C 2q — 1)(—=2)4/Qa=1)Pq/(2q—-1) |
S a,(n—2p)Hr =~ ¢~ 1)(=2) T forn=2g+1, 4.5)

r

p=0

where C; is an integration constant in both cases. In both
cases, the electric field is given by the same expression as
in the Gauss-Bonnet case (2.11).

A. Dimensionally continued gravity

In principle, one may find up to [”—;1] real roots and in
dimensions n =4m + 3 and 4m + 4 with an integer
m(= 1), these equations will always admit at least one
real root. However, it is interesting to observe that an
enormous simplification occurs in these equations as the
Lovelock coefficients «, takes the particular values (1.2)
that convert the Lovelock action into a Chern-Simons
gauge theory in odd dimensions. Indeed, in this case, and
for odd as well as even dimensions, the left-hand sides of
the Egs. (4.4) and (4.5) become the Newton binomial
expression,

[(n—1)/2]

a,(n —2p)H? = (1 + H)=D2L (4.6

p=0

Consequently, in both cases, the function H can be deter-
mined explicitly. The metric solution f can be written in

odd dimension by
C 2/(n—1)
2 ) , (47

= 2 - T 1 AN A1)
f(r) k+r (Cl + Hn—1-29)/(2g—1)

while the expression in even dimension is giving by

I c 2/n-2)
f) =kt = s (Cl - ,(nﬂﬂq)/@q—l)) ’

(4.8)
where C, stands in both cases for

_ Bg — 1)X(—2)7/@a-Dp2a/Cq=1)
T (= 2)!4gBP % (n — 1 - 2g)

This solution is a generalization of the solution obtained by
Bafiados, Teitelboim, and Zanelli for k =1 and ¢ = 1 in
[31] and by Cai and Soh for ¢ = 1 in [32]. In odd dimen-
sions, this solution is the higher-dimensional counterpart
with a nonlinear electromagnetic charge of the so-called
BTZ black hole in three dimensions [33]. It is very appeal-

4.9)

(2q — 1)!(4gB)?/@4~ D24

f
ing that for the special election of the Lovelock coeffi-
cients, the metric function can be integrated easily in odd
as well as even dimensions.

B. Properties of the solution

Now let us discuss the properties of the solution (4.7)
and (4.8) under the weak energy condition. The constant C,
can be written in terms of the energy density of the non-
linear electromagnetic field (2.21) as

(2g — 1) urar=2)/Qq=1)
-2 —1-2¢9)

C, = (4.10)
Therefore, under the weak energy condition, C, <0
for g € (1/2, (n — 1)/2) while C, >0 for ¢ =0 or ¢ >
(n—1)/2.

In the case for which the dimension is expressed as n =
4m + 1 or n = 4m + 2, where m(= 1) is an integer, the
exponent in the binomial expression (4.6) is even and
hence the Egs. (4.5) have two branches of solutions

C2 )1/(2’”)

= 2 - e
fin=k+r=x <C1 + 20/

for n =4m + 1, (4.11)
C C 1/(2m)
- 2 (=t 2
fr)=k+r +(r +r4m/(2q71)) ,
for n = 4m + 2. (4.12)

Note that the Einstein-Gauss-Bonnet solution derived pre-
viously (2.10) in five dimensions with the special election
& = —1/(4A) reduces to the first expression (4.11) with
m = 1. This is not surprising since the condition & =
—1/(4A) is nothing but the Chern-Simons limit of the
Gauss-Bonnet theory in five dimensions.

For the solutions (4.11) and (4.12), we have to care about
the possible branch singularities. In these cases, the gravi-
tational term dominates the nonlinear electromagnetic
term at infinity for ¢ € (1/2, (n — 1)/2), so that C; must
be positive in order that the metric is real at infinity. On the
other hand, there exists a branch singularity since C, < 0 is
required by the weak energy condition. For ¢ =0 or
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g > (n — 1)/2, the nonlinear electromagnetic term domi-
nates the gravitational term at infinity and the metric is real
because the weak energy condition requires C, > 0. In this
case, there exists a branch singularity for C; <0 and a
central singularity for C; > 0.

In the case with n =4m + 3 or n = 4m + 4, on the
other hand, both C; and C, may be negative since we
may rewrite (4.7) and (4.8) as

C, )z/<n 1)’ 13

_ 2 o
fi)=k+r +< €~ e

and

I c 2/(n-2)
. _c - 2
fir) =kt r r2/<"—2>< € r(n—1—2q>/<2q—1>) :

(4.14)

respectively. The branch singularity exists only for C;C, <
0. Unlike the case of n = 4m + 1 or n = 4m + 2, there is
no region where the metric becomes complex even if there
exists a branch singularity. Under the weak energy condi-
tion, the branch singularity exists for ¢ € (1/2, (n — 1)/2)
with C; >0 and for g = 0or g > (n — 1)/2 with C; <0.

In the solution (4.7) and (4.8), the falloff rate to infinity is
slower than the standard one. Even under the weak energy
condition, the electromagnetic term diverges at infinity for
g <1/2 or g > (n — 1)/2. However, it is shown that the
divergence is faster than r? only for 0 < g < 1/2 both in
odd and even dimensions, which is ruled out by the weak
energy condition. As a result, the regular infinity is assured
by the weak energy condition. This slow falloff phenome-
non was first pointed out in the study of the static black
holes with and without the Maxwell field in the class of
Lovelock gravity admitting a unique (A)dS vacuum [34].
Recently, this phenomenon was shown to be universal for
any matter field satisfying the dominant energy condition
in Einstein-Gauss-Bonnet gravity with 1 + 4@ A = 0 and
a >0 [35].

We finally end this section with some speculation con-
cerning a possible Birkhoff’s theorem. In Lovelock gravity,
the generalized Birkhoff’s theorem has been proven under
the same assumption of the present paper in the vacuum
case and for the standard Maxwell case [36,37]. Because of
the similarity in the treatment, we may envisage that our
charged solution is the unique electrically charged solution
within the nonlinear source considered here.

V. SUMMARY AND FURTHER PROSPECTS

In the present paper, we obtained electrically charged
black-hole solutions in Einstein-Gauss-Bonnet gravity
with a nonlinear source given as an arbitrary exponent g
of the Maxwell invariant. We have considered the class of
the n(= 5)-dimensional spacetime given as a warped prod-
uct M? X K2, The generic solution is shown to have
two branches and only one of them has a GR limit. For an
integer value of ¢ with a dimension n = 2g + 1, the metric
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solution involves a logarithmic dependence and as in the
generic case, the solution presents as well two different
branches. We show that these solutions are the unique
electrically charged solution in the case where the orbit
of the warp factor on K"~? is non-null.

We find that an intriguing slow falloff to the spacelike
infinity is possible even under the dominant energy condi-
tion. This slow falloff was shown to be universal for any
matter field satisfying the dominant energy condition in the
special case of 1 + 4a A =0 and a >0, which corre-
sponds to the Chern-Simons gravity in five dimensions
[34,35]. Our solution is an example exhibiting the slow
falloff with generic coupling constant. We have analyzed
the properties of the solutions emphasizing the study on the
branch singularities.

We have also derived charged black-hole solutions for
the full Lovelock gravity. In this case, the metric function is
obtained implicitly as a solution of a polynomial equation.
We have pointed out that for a very precise combination
between the coupling constants, which converts the
Lovelock action into a Chern-Simons gauge theory in
odd dimensions, the metric function is obtained in a closed
form both in odd and even dimensions. It has been shown
that a branch singularity appears under the weak energy
condition depending on the parameters. Unlike the Gauss-
Bonnet case, the metric does not become complex for n =
4m + 3 and n = 4m + 4 with an integer m(= 1) even if
there is a branch singularity. The slow falloff to the regular
infinity is a generic property under the weak energy con-
dition both in odd and even dimensions.

This slow falloff has recently attracted much attention
[38] for theories of AdS gravity coupled to a scalar field
with mass at or slightly above the Breitenlohner-Freedman
bound [39]. These theories admit a large class of asymp-
totically AdS spacetimes with slower falloff conditions
than the standard ones.

The dynamical stability of the black-hole solution is an
important problem. In the standard Einstein-Maxwell case,
the stability analysis has been carried out in four dimen-
sions [40] as well as in higher dimensions [41], see Table I
in [42] for the summary of the analytic results. In the
Einstein-Gauss-Bonnet gravity, the analysis has been
done only in the neutral case [43], while there is no result
for higher-order Lovelock gravity. In the case of the non-
linear electromagnetic field, the stability analysis has not
been done even in four dimensions. In this context, the
asymptotic slow falloff would be important because it
could affect the boundary conditions for the perturbations.

The black-hole thermodynamics is another interesting
subject. In Einstein-Gauss-Bonnet gravity, this subject
have been intensively investigated with or without the
Maxwell charge [19,20,30,44]. The extension to the full
Lovelock gravity is also well studied [31,32,45]. In this
context, the slow falloff to the spacelike infinity becomes
important. Under the standard falloff condition, the higher-
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dimensional ADM mass is available as the global mass in
the asymptotically flat case [46]. In the asymptotically (A)
dS spacetime, several definitions of the global mass have
been proposed in Einstein-Gauss-Bonnet gravity [47—49].
However, the slow falloff means that they are diverging at
infinity. In order to discuss the thermodynamical properties
of black holes correctly, one should first reformulate the
global mass in order to give a finite value under the slower
falloff condition in this special case. This problem has been
investigated in Chern-Simons gravity [50] and in the the-
ory admitting a unique (A)dS vacuum [34]. (See also
[51,52].)

Other aspects to explore are the extensions of the solu-
tions presented here in more general context. For example,
it will be interesting to explore the possible dilatonic
solutions in this setup or the existence of magnetically
charged solutions. These prospects presented here are left
for possible future investigations.
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