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Because the gravitational Hamiltonian is a pure boundary term on shell, asymptotic gravitational fields

store information in a manner not possible in local field theories. This fact has consequences for both

perturbative and nonperturbative quantum gravity. In perturbation theory about an asymptotically flat

collapsing black hole, the algebra generated by asymptotic fields on future null infinity within any

neighborhood of spacelike infinity contains a complete set of observables. Assuming that the same algebra

remains complete at the nonperturbative quantum level, we argue that either (1) the S matrix is unitary or

(2) the dynamics in the region near timelike, null, and spacelike infinity is not described by perturbative

quantum gravity about flat space. We also consider perturbation theory about a collapsing asymptotically

anti-de Sitter (AdS) black hole, where we show that the algebra of boundary observables within any

neighborhood of any boundary Cauchy surface is similarly complete. Whether or not this algebra

continues to be complete nonperturbatively, the assumption that the Hamiltonian remains a boundary

term implies that information available at the AdS boundary at any one time t1 remains present at this

boundary at any other time t2.

DOI: 10.1103/PhysRevD.79.044010 PACS numbers: 04.70.Dy

I. INTRODUCTION

Arguments for information loss in black hole evapora-
tion are typically based on locality and causality in quan-
tum field theory on a fixed background (see e.g. [1,2]). In
perturbative quantum gravity these properties also hold at
zeroth order in the Planck length ‘p, where backreaction is

ignored. However, strict locality explicitly fails at the first
interacting order. A clean signal of this failure is the fact
that a form of time evolution is generated by a boundary
term at spacelike infinity (e.g., the Arnowitt-Deser-Misner
(ADM) energy in asymptotically flat space [3]). This fea-
ture is closely related to the lack of local observables in
diffeomorphism-invariant theories.

We show below that this simple observation leads to
interesting results. For example, consider the context of
perturbation theory about asymptotically flat collapsing
black hole backgrounds. There we will show that, at first
interacting order and beyond, a complete set of observables
is contained in the algebra generated by fields on future
null infinity (Iþ) within any neighborhood of spacelike
infinity (i0). In the asymptotically anti-de Sitter (AdS)
context, the algebra of boundary observables defined by
any neighborhood of a boundary Cauchy surface is simi-
larly complete in perturbation theory. As a result, in both
cases full information about the quantum state is contained
in the asymptotic fields.

We refer to the above completeness results as ‘‘pertur-
bative holography.’’ However, we caution the reader that,
in contrast to [4], our use of this term does not directly
imply any particular limit on the number of degrees of
freedom. The centrality of energy conservation to any

discussion of unitarity was previously emphasized in [5],
while the representation of gravitational energy as a bound-
ary term and the associated ability of the long-range gravi-
tational fields to store information was emphasized in [6].
The arguments below stem from a fusion of these ideas.
Other works connecting energy conservation to black hole
unitarity include [7].
Before beginning the main arguments, it is appropriate

to briefly address three common objections that the reader
may already hold:
Objection #1, Locality via gauge fixing.—The reader

may object that perturbative quantum gravity appears
both local and causal in, say, de Donder gauge. However,
it is important to recall that such gauges contain propagat-
ing longitudinal gravitons associated with residual gauge
symmetries. As is familiar from the Coulomb gauge in
Maxwell theory, gauge fixing all residual symmetries re-
moves the apparently manifest locality so that no immedi-
ate conclusions can be drawn regarding the nature of
observables. In Yang-Mills theory, one can avoid these
issues by constructing Wilson loops which provide a com-
plete set of compactly supported observables. In contrast,
no such compactly supported observables are available in
diffeomorphism-invariant theories of gravity.
Objection #2, The characteristic initial value prob-

lem.—Section II A considers perturbations about an
asymptotically flat collapsing black hole spacetime. At
the level of rigor used below, the characteristic initial value
theorem states that the radiative parts of metric perturba-
tions on the future horizon (Hþ) and future null infinity
(Iþ) form a complete set of independent operators. As a
result, the radiative parts of metric perturbations on Iþ
cannot, by themselves, define a complete set of observables
in this context. It is important to note that this statement*marolf@physics.ucsb.edu
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does not contradict our claims. Indeed, our argument below
makes explicit use of both the radiative and the nonradia-
tive (Coulomb) parts of the metric perturbations on Iþ.
These Coulomb parts are not independent of the radiative
parts of metric perturbations onHþ, but are instead related
to the full set of radiative perturbations by the gravitational
constraints.

Objection #3, Comparison with classical physics.—
While we use a quantum-mechanical language below,
replacing certain commutators by Poisson brackets suffices
to recast our perturbative arguments in the language of
classical gravitational physics. As a result, our arguments
imply that in classical perturbative gravity the Poisson
algebra1 generated by fields on future null infinity (Iþ) in
any neighborhood of spacelike infinity (i0) contains a
complete set of observables, and that a similar result holds
in the anti-de Sitter context.
The reader may feel that this statement should contradict
the fact the black holes lose information in classical grav-
ity. That no such contradiction arises can be illustrated
using the SO(3) angular momentum generators Jx, Jy, Jz.

Of course, Jz lies in the Poisson algebra generated by Jx,
Jy. Nevertheless, at the classical level, the ability to mea-

sure Jx and Jy imparts no knowledge of Jz. Full informa-

tion is obtained only about algebraic functions fðJx; JyÞ. It
is only at the quantum level that the situation changes, and
that alternating measurements of Jx and Jy can indeed

provide information about Jz. This last point will be em-
phasized in a companion paper [8], which also resolves a
number of possible paradoxes that the reader may fear
might be associated with such measurements.

Having dispensed with the above objections, we may
now turn to the main arguments. At the quantum level our
discussion is somewhat formal. However, at least in the
perturbative context, mathematically rigorous results can
be obtained by reinterpreting the arguments below in terms
of classical gravity, replacing commutators with Poisson
brackets and (where appropriate) with finite flows
along Hamiltonian vector fields. As briefly discussed under
objection #3 above, while such results have minimal
implications for classical physics, it is clear that they set
the stage for more interesting effects at the quantum
level.

We begin with the asymptotically flat context in Sec. II.
After deriving perturbative completeness of the algebra
near i0, we consider implications for the nonperturbative
theory. Assuming that the same algebra remains complete
in the nonperturbative quantum theory, we show that either
(1) the Smatrix is unitary or (2) the dynamics in the region

near timelike, null, and spacelike infinity is not described
by perturbative quantum gravity about flat space.
We then derive perturbative holography for asymptoti-

cally anti-de Sitter (AdS) quantum gravity in Sec. III. We
also note that, whether or not the stated algebra continues
to be complete nonperturbatively, the assumption that the
Hamiltonian remains a boundary term implies a form of
boundary unitarity. In particular, information available at
the AdS boundary at any one time t1 remains present at this
boundary at any other time t2. We close with some final
discussion in Sec. IV.

II. QUANTUM GRAVITY IN ASYMPTOTICALLY
FLAT SPACE

To avoid making detailed assumptions about the quan-
tum nature of gravity, it is natural to proceed using either
semiclassical methods or perturbation theory. We choose
the latter here, where we have in mind treating perturbative
gravity as an effective field theory (in which appropriate
new parameters may need to be added at each order). This
is the setting for Sec. II A. Section II B then studies the
implications for the nonperturbative theory and discusses
the unitarity of the S matrix.

A. The holographic nature of perturbative gravity

It is useful to begin with a brief summary of the argu-
ment: We consider perturbation theory around an asymp-
totically flat classical solution which is flat in the distant
past but contains a black hole in the distant future. The
argument below simply uses the Hamiltonian (an operator
at i0) to translate any operator on past null infinity (I�) into
the distant past, deep into the flat region before the black
hole forms. The perturbative equations of motion then
express any such operator in terms of operators on Iþ.
That is, since the black hole does not form until much later,
very little of the operator falls into the black hole.
Furthermore, since we translated the operator on I� into
the distant past, the support on Iþ is concentrated near i0.
Taking a limit yields the desired result.
It is convenient to perturb about a background solution

which is exactly flat space before some advanced time v0

(see Fig. 1). For familiarity and concreteness, we consider
pure Einstein-Hilbert gravity in 3þ 1 dimensions so that
the black hole forms from gravitational waves arriving
from past null infinity (I�). Adding matter fields or chang-
ing the number of dimensions would not significantly
change the analysis.2 The essential inputs are only

1In fact, one requires a certain closure of the usual Poisson
algebra which allows one to flow any element A of the algebra by
a finite amount along the Hamiltonian vector field defined by any
other element B.

2The sole exception is that the infrared behavior improves in
higher dimensions. In 3þ 1 dimensions, our argument is rather
formal in that it ignores infrared divergences associated with soft
gravitons. While it may be interesting to examine the detailed
effect of IR divergences on the argument below, here we simply
assume that the usual techniques [9] allow us to use gravitational
perturbation theory and to speak of an S matrix. In higher
dimensions, no such divergences arise.
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diffeomorphism-invariance (so that the Hamiltonian is in-
deed a boundary term) and our choice of boundary
conditions.

To begin the main argument, let ~gab denote the metric of
the background spacetime and write the dynamical metric
as gab ¼ ~gab þ �hab where �2 ¼ 8�G so that the action
for hab has canonical kinetic term. As usual, we work to
some finite order in � and discard terms of higher order. We
will not need to be explicit about the details below; all that
is important is that we work to some order in which
interactions are relevant so that the gravitational version
of Gauss’ law leads to a nontrivial gravitational flux [see
(2.1) below] at spacelike infinity (i0). For later use it will
also be convenient to expand the background about flat

space by writing ~gab ¼ �ab þ �~hab. The latter expansion

is useful near infinity where ~hab is small.
The perturbations hab may be quantized in any gauge for

which all propagating modes are physical; e.g. a Coulomb-
like gauge. The Hamiltonian in such gauges is necessarily
nonlocal, but this will not be a complication. The advan-
tage of such gauges is that all equations of motion hold at
the level of the Heisenberg operators. For example, the
gravitational equivalent of Gauss’ law holds as an operator
identity and need not be imposed as a constraint on physi-
cal states.

We now remind the reader of several facts from classical
general relativity. First, recall that the total energy of the
full metric gab is given by the ADM boundary term at
spatial infinity (i0). We denote this boundary term � as it
will be convenient to think of this term as a gravitational
flux. We have

� ¼ 1

2�

Z
C
dAðraPbcDb � rbPacDbÞð~hac þ hacÞ; (2.1)

where ra is a radial unit normal, C is a cut of i0 as defined
e.g. in [10], dA is the area element on C, and Da is the

covariant derivative defined by the fixed flat metric �ab

which also defines the spatial projection Pab orthogonal to
the chosen time direction.
Second, if past timelike infinity (i�) is regular, then the

ADM energy can also be expressed as the integral over past
null infinity (I�) of the flux of stress-energy through I�
due to gravitational radiation (see e.g. [11]). This flux is
given by the news tensor, but may be equally well thought
of as the integral of the appropriate component of the stress
tensor of linearized gravity integrated along I� (see e.g.
[12]). Either expression is purely quadratic in gab � �ab,
where �ab is a fixed flat metric at infinity. This calculation
shows explicitly that � agrees near I� with the Hamil-
tonian of linearized gravity about flat space, where the

linearized field is ~hab þ hab. We denote this Hamiltonian

Hlin
~hþh

. Note that since the perturbations ~hab, hab fall off at

I�, this linearized Hamiltonian also generates translations
along I� in the full theory (and, in particular, at any order
in perturbation theory).
Since Hlin

~hþh
is quadratic, it is straightforward to expand

in powers of hab:

Hlin
~hþh

¼ ~Eþ SþHlin
h : (2.2)

Here ~E is the v-dependent energy of the background metric

~gab, S denotes a set of ‘‘source terms’’ linear in both ~hab
and hab, andH

lin
h is just the integral of the (quadratic) stress

tensor for perturbations hab propagating on the flat metric
�ab.
Most importantly for our purposes, the above results can

be derived using the equations of motion near I� expanded
only to second order in hab. As a result, they hold in
perturbative classical gravity at any order beyond the free

v

v - τ
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v1(u1,L)

FIG. 2 (color online). As � ! þ1, operators at v� � on I�
can be written in terms of operators on Iþ before retarded time
u1.
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FIG. 1 (color online). The spacetime is flat before advanced
time v0, but the formation of a black hole prohibits a regular iþ.
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linear theory; i.e., at any order where the gravitational
Gauss’ law makes � nontrivial. Furthermore, the results
also hold in perturbative quantum gravity as the only
operator that requires regularization is the (quadratic)
stress tensor for gravitons propagating in flat space.

Below, it will be convenient to denote operators on I� as
habðvÞ, and to speak as if they are well-defined operators.
In doing so we choose a notation which suppresses several
details. First, some rescaling with r is required to define
finite objects on I�. Second, we implicitly assume that the
operators have been smeared with appropriate test func-
tions. Third, at certain points below it will be convenient to
assume that an expansion in spherical harmonics has been
performed and that each habðvÞ has a definite angular
momentum.

Since we consider perturbations about a background ~gab
which is flat before the advanced time v0, past timelike
infinity is regular. As a result, the relation

� ¼ Hlin
~hþh

(2.3)

holds as an equality of Heisenberg-picture quantum opera-
tors. This relation is somewhat subtle, however, since� as

defined in (2.1) is linear in ~hab þ hab while Hlin is qua-
dratic. The point here is simply that Hlin is defined by
linearizing about a certain background (�ab). As a result,
the relationship between � and Hlin is sensitive to this
choice of background. In particular, subtracting the
(v-dependent) energy ~EðvÞ of the background metric
yields �� ~EðvÞ ¼ SðvÞ þHlin

h , where SðvÞ is an operator

linear in both ~habðvÞ and habðvÞ as in (2.2). Thus, SðvÞ has
an explicit v dependence though the background ~habðvÞ. In
contrast, the operator Hlin

h is just what would appear in

linearized gravity about flat space; Hlin
h has no explicit v

dependence.
From (2.3) we see that � generates v translations of

~hab þ hab in the sense that

ð~hab þ habÞðvÞ ¼ e�i��ð~hab þ habÞðv� �Þei��;
or

habðvÞ ¼ e�i��habðv� �Þei�� þ ~habðv� �Þ � ~habðvÞ:
(2.4)

The terms involving ~hab on the final right-hand side are
associated with the source terms SðvÞ in (2.2), or equiv-
alently with the difference between� andHlin

h . The role of

these c-number terms is to compensate for the fact that �
effectively translates both the perturbation and the back-
ground. Equation (2.4) is a key result which we will use

liberally. Note that while ~habðvÞ is formally of order 1=�,
its effects become arbitrarily small at sufficiently large r;

i.e., near infinity terms involving ~habðvÞ need not interfere
with our perturbative treatment.

We now proceed to our main argument. Choose any
retarded time u1 along Iþ and any operator habðvÞ at any
advanced time v on I�. We wish to show that, in any state,

the operator habðvÞ can be arbitrarily well approximated by
elements of the algebra Aþ

u1 generated by operators at Iþ

supported at retarded times u < u1. By convention,3 we
consider i0 to be a point on Iþ with u ¼ �1 so that Aþ

u1

contains �. Since we may use (2.4), it remains only to
approximate habðv� �Þ by operators in Aþ

u1 .

To do so, note that since ~gab is flat for v < v0, there is
some advanced time v1ðu1; LÞ such that all null geodesics
(with angular momentum L) launched from I� before
v1ðu1; LÞ arrive at Iþ before retarded time u1. As a result,
in the geometric optics approximation to the linearized
theory, the equations of motion relate operators habðv�
�Þ with angular momentum L and v� � < v1ðu1; LÞ to an
operator in Aþ

u1 . This situation is summarized in Fig. 2.

Beyond the geometric optics approximation, and taking
into account nonlinear corrections at some fixed order of
perturbation theory, we may use the equations of motion to
write

habðv� �Þ ¼ Oabðv� �; u1Þ þ �abðv� �; u1Þ; (2.5)

where Oabðv� �; u1Þ 2 Aþ
u1 and �abðv� �; u1Þ is an

error term. Because all corrections are determined by
Green’s functions peaked on the light cone, in any fixed
state (having a finite number of particles on I�) the error
�abðv� �; u1Þ will vanish as some power law in the limit
v1 � ðv� �Þ ! 1.
This is nearly the desired result. For the final step of the

argument, it is useful to express �abðv� �; u1Þ in terms of
the operators habðvÞ on I� using the same perturbative
equations of motion. The largest contributions will come
from the region near v1ðu1; LÞ, but there will be power-law
suppressed contributions from other regions as well. Now,
since we observed above that matrix elements of �abðv�
�; u1Þ must vanish as a power law in all states having a
finite number of particles on I� in the limit ðv� �Þ ! 1,
we may expand �abðv� �; u1Þ in powers of ðv� �Þ�1;
i.e., we write

�abðv� �; u1Þ �
X
n>0

ðv� �; u1Þ�n�ðnÞ
ab ðu1Þ; (2.6)

where the operators �ðnÞ
ab ðu1Þ are independent of v, �. We

will use (2.6) only as an asymptotic series and do not
require convergence. At any fixed order in perturbation

theory, the operators �ðnÞ
ab ðu1Þ are simply integrals over

products of operators hab on I� with a weighting function
determined by u1. Using (2.6), consider now the contribu-
tion

e�i���abðv� �; u1Þei�� ¼ X
n>0

ðv� �; u1Þ�n

� e�i���ðnÞ
ab ðu1Þei�� (2.7)

3We could also have used the Bondi energy associated with a
cut of Iþ at retarded time u to approximate � as u ! �1, but
our argument loses nothing by making the above simplifying
convention.
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of �abðv� �; u1Þ to (2.4). We wish to take the limit � !
1. This has two effects. First, the factors of e�i�� translate

each �ðnÞ
ab ðu1Þ toward i0. Since correlation functions in any

Fock space state approach those of the vacuum at large

times, the large � limit of each e�i���ðnÞ
ab ðu1Þei�� is a

(finite) c number determined by the background metric
~gab. It follows that the large � limit of (2.7) must vanish
due to the factors of ðv� �; u1Þ�n.

Combining the above results we have

habðvÞ ¼ lim
�!1½e

�i��Oabðv� �; u1Þei�� þ ~habðv� �Þ
� ~habðvÞ�: (2.8)

Since any c number [e.g., ~habðvÞ or ~habðvÞ] lies inAþ
u1 , the

right-hand side contains only elements of Aþ
u1 as desired.

Thus we have shown that any fundamental field on I� can
be expressed with arbitrary accuracy as an element ofAþ

u1 .

Similarly, any product of such fields can be expressed (with
arbitrary accuracy) by taking the above limit separately for
each operator in the product.

We conclude that a complete set of operators on I� is
contained in the weak closure ofAþ

u1 . For convenience, we

used a Coulomb-like gauge, but the corresponding result
for gauge-invariant observables follows immediately in
any gauge.

B. Nonperturbative gravity and unitarity
of the S matrix

We saw above that perturbative gravity about an asymp-
totically flat spacetime is holographic in the sense that the
algebra of observables generated by the ADMHamiltonian
� and the usual asymptotic fields within any neighborhood
of i0 in Iþ contains a complete set of observables. Thus, all
of the information present at I� is encoded in observables
in the stated region of Iþ. However, discussions of black
hole unitarity typically focus on unitarity of the S matrix.
This is a somewhat different question, defined in terms of
the Fock spaces at I�. In particular, it is manifestly clear
that, at a finite order in perturbation theory about a collaps-
ing black hole, the Fock spaces at I� do not encode the
same degrees of freedom.

From our point of view, this difference arises because
there is no regular future timelike infinity in a black hole
spacetime. As a result, in perturbation theory about such a
background, the total gravitational flux � cannot be ex-
pressed solely in terms of the stress tensor at Iþ, and thus
cannot be expressed in terms of creation and annihilation
operators at Iþ. This was possible at I� only due to the
particular boundary conditions chosen at i�.

On the other hand, one expects any black hole that forms
to decay by Hawking evaporation. While this process
cannot be fully described in perturbation theory, perturba-
tive quantum gravity (say, about flat spacetime) may well

be a good description of the end products resulting from
the decay. In this case, iþ is regular. Let us therefore
suppose that, in any asymptotically flat state of the non-
perturbative theory, perturbative quantum gravity about flat
spacetime becomes an arbitrarily good approximation for
field operators near past (i� and I�), future (iþ and Iþ),
and spacelike infinity (i0). Let us also extrapolate our
perturbative result and assume that the algebra generated
by � and asymptotic fields on Iþ in any Aþ

u1 again

contains a complete set of observables, at least within an
appropriate superselection sector.4 Since we have a regular
iþ, the gravitational flux� can be expressed as the integral
of the linearized stress tensor over Iþ. It follows that any
observable can indeed be expressed in terms of creation
and annihilation operators on Iþ. Our discussion is tailored
to settings with no stable massive particles but, since we
assume that physics is perturbative near iþ, allowing stable
massive particles would merely require � to be expressed
in terms of the stress tensor at both Iþ and iþ, and for the
corresponding creation and annihilation operators at iþ to
be included in our discussion.
Note that the other Poincaré generators on I� can be

related to those on Iþ in precisely the same manner as was
done for time translations. Thus the Poincaré-invariant
vacuum on I� also defines a Poincaré-invariant state on
Iþ. Since such a state is unique in perturbative quantum
field theory, the Fock vacua on I� coincide.
The unitarity of the S matrix now follows in the usual

way. N-particle states are defined by the action of local
operators at I� on the Fock vacuum. Since local operators
can be translated between Iþ and I�, and since the vacua at
I� coincide, these constructions merely define two bases
for the same Hilbert space. The S matrix is then nothing
more than the expression of the dictionary between I� and
Iþ. Since the two bases define the same Hilbert space, the S
matrix is unitary.

III. ASYMPTOTICALLYADS QUANTUMGRAVITY

We saw above that there is a sense in which perturbative
gravity is holographic in asymptotically flat space. As we
now show, similar methods lead to an analogous result in
the context of (e.g., 3þ 1) AdS asymptotics. To be spe-
cific, we require that the metric has a Fefferman-Graham
expansion [14] (see also [15]) of the form

4Note that this is necessarily a new assumption. In particular, it
does not follow from the assumption that perturbation theory is
arbitrarily good near infinity. Our previous perturbative argu-
ment required us to propagate fields from I� to Iþ through the
bulk of the spacetime where nonperturbative effects can be
important. The purpose of mentioning our perturbative argument
here is only to render this assumption plausible by removing
objections based on perturbative fields falling into semiclassical
black holes. See e.g. [13] for further discussion of the idea that
this assumption may hold only within an appropriate super-
selection sector.
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gab ¼ ‘2

r2
dr2 þ

�
gð0Þij

r2

‘2
þ gð1Þij

r

‘
þ gð2Þij

þ gð3Þij
‘

r
þ � � �

�
dxidxj; (3.1)

for some fixed boundary metric gð0Þij. Here ‘ is the AdS

scale, the xi are coordinates on S2 � R, and the � � � repre-
sent higher order terms in r=‘ which may include cross
terms of the form drdxi. The coefficients gð1Þij, gð2Þij are
determined by the choice of gð0Þij (and any matter fields,

see below) via the Einstein equations. In contrast, gð3Þij
depends on the propagating degrees of freedom in the bulk.
For convenience below, we will take one of the coordinates
to be some t such that the intersection of each t ¼ constant
surface with the boundary spacetime is a Cauchy surface of
the boundary spacetime.

Certain simplifications arise if we couple the gravita-
tional field to a conformally coupled scalar field �, though
this does not appear to be essential to the argument. In 3þ
1 dimensions we take the scalar to have the standard
asymptotic behavior (see e.g. [16])

� ¼ �

r
þ �

r2
þ � � � ; (3.2)

where � will be a fixed scalar function on the boundary. In
this context, we may fix gð0Þab to be the metric on the

Einstein static universe. We also take � ¼ 0 before some
time ti and again after some time tf. In particular, we take

the background metric ~gab to describe empty AdS space to
the past of some boundary time tf. For ti < t < tf, the time

dependence of�will be chosen to generate scalar radiation
which collapses to form a black hole.5 Note that for such
boundary conditions we may define a time-dependent
Hamiltonian which differs from the Hamiltonian for � ¼
0 by the addition of certain source terms for the scalar field
in the region ti < t < tf.

Now consider any spacelike surface � in the initial pure
AdS region. It is clear that any field at any later time can be
expressed in terms of fields on �. Similarly, in the line-
arized approximation, any field on � can be expressed in
terms of the boundary fields gð3Þab and � at earlier times.

Some explicit formulas for the scalar case6 appear in e.g.
[17], but the fact that this is possible follows immediately
from the observation that any linearized solution with
given �g0ðabÞ and � is determined by the values of

�g0ðabÞ, �, g3ðabÞ, and � to the past of �. This in turn

follows from a simple argument: Suppose that two such
solutions have the same values of �g0ðabÞ, �, g3ðabÞ, and �

to the past of �, so that their difference has �g0ðabÞ ¼ � ¼
g3ðabÞ ¼ � ¼ 0. This solution also satisfies ingoing bound-

ary conditions, and so must vanish in the distant past. In
particular, the energy function defined by Dirichlet bound-
ary conditions vanishes in the distant past when evaluated
on this solution. But by construction our difference solu-
tion conserves this notion energy, so that it must vanish at
all times; i.e., the solution must vanish identically. We
conclude that any linearized field on � is determined by
the boundary fields gð3Þab and� at earlier times. As a result,

any operator in the linearized theory may be expressed in
terms of the boundary operators gð3Þab and �.
It follows that the same result holds at each order in

perturbation theory. However, we stress that since we have
used gð3Þab and � at all times, this statement does yet not

constitute ‘‘holography.’’ Instead, it merely notes certain
properties of wave equations in anti-de Sitter space.7

To complete the argument for our perturbative hologra-
phy, simply note that the algebra of boundary operators
At;�t supported within any time�t of any boundary time t
contains the Hamiltonian. Thus we may in fact express any
perturbative field on� as an element ofAt;�t for any t,�t,
including those times in the distant future. For t > ti, we
need merely include the effects of the source terms in the
time-dependent Hamiltonian. Since the coordinate t is
arbitrary, it follows that the algebra generated by boundary
fields within any neighborhood of any boundary Cauchy
surface is similarly complete.
At least at the level of perturbation theory, we have

expressed any observable in terms of the boundary fields
at an arbitrary time t. In this sense, perturbative gravity in
AdS may be called ‘‘holographic.’’ However, as in the case
of asymptotically flat space, this observation does not
immediately allow us to express our observable as a set
of standard creation and annihilation operators at the de-
sired late time. As in flat space, it is manifestly clear that
such an expression is not possible at any finite order in
perturbation theory about a black hole background.
Let us therefore briefly consider a nonperturbative the-

ory. In asymptotically flat space we assumed that perturba-

5It is straightforward to find such boundary conditions.
Consider for the moment a solution to the free conformally
coupled scalar wave equation on the 3þ 1 Einstein static uni-
verse in which� ¼ 0 in the northern hemisphere at some time ti,
but in which a large spherically symmetric pulse of short-
wavelength scalar radiation crosses the equator a short time
later. Now restrict this solution to the northern hemisphere and
conformally map the result to a solution of the free scalar
equation on AdS. The �ðxÞ defined by this solution generates
a large spherical pulse of scalar radiation which enters the AdS
space through the boundary shortly after time ti. For large
enough amplitude, this pulse will collapse to form a black hole.

6The explicit formula in [17] expresses local bulk fields in
terms of boundary fields in a compact region of the boundary
causally disconnected from the point at which the local bulk field
is defined. A small additional time translation will reexpress this
result in terms of fields at earlier times.

7This result is similar to certain consequences of Holmgren’s
uniqueness theorem [18], though in our context we find global
uniqueness of the solution.
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tive quantum gravity was a good approximation at both
early and late times in order to derive unitarity of the S
matrix. We could give a similar argument in the AdS case,
but it would require nonstandard boundary conditions that
allow the particles to leave the original AdS space. For
example, we could consider the evaporon model of [19].
However, it is perhaps more enlightening to maintain
standard AdS boundary conditions and to derive a more
restrictive result. To proceed, we assume only that

(i) There is a well-defined, perhaps time-dependent,
family of self-adjoint operators HðtÞ.

(ii) EachHðtÞ is a member of the corresponding algebra
At;�t of boundary observables.

(iii) This family of operators generates time evolution
in the usual sense associated with time-dependent
Hamiltonians; i.e., the time translation is

Uðt1; t2Þ ¼ P expð�i
Rt2
t1 HðtÞdtÞ, where P denotes

path ordering.
From these assumptions alone we cannot conclude that

At;�t contains the full set of observables, nor can we

conclude that all information is present at the boundary.
However, given any observable Ot0 2 At0;�t, we can use

(i) and (ii) to define a one-parameter family of operators
Ot 2 At;�t which satisfy

d

dt
Ot ¼ i½HðtÞ;Ot�: (3.3)

It then follows from (ii) that d
dtOt also lies in At;�t. Since

this holds for each possible Ot 2 At;�t, the algebra does

not change with time. That is, each At;�t contains the

same set of observables. In this sense, any information
which happens to be present at the boundary at any time
t1 remains present at any other time t2. This result is
naturally called ‘‘boundary unitarity.’’

We again stress that the above argument does not assume
completeness of the boundary observables. In particular,
assumption (i) does not specify the Hilbert space on which
HðtÞ is self-adjoint. We leave thus open the possibility of
new nonperturbative bulk observables, or perhaps even of
new observables corresponding to ‘‘baby universes.’’ The
role of assumption (i) is merely to ensure that the path-
ordered exponential of

R
HðtÞdt is well defined. In a cor-

responding argument at the classical level, all that would
be required is that one be able to flow any boundary
observable O by any finite amount of time along the
(time-dependent) Hamiltonian vector field generated by
HðtÞ; i.e., one simply requires time evolution to be well
defined along the asymptotic boundary. Such a requirement
would amount to a rather weak form of cosmic censorship.

To provide some physical interpretation of the above
result, consider a hypothetical observer who lives outside
the spacetime but who can interact with our spacetime
through the boundary observables. If the observer has
complete control over the full algebra At;�t of boundary

observables at each t, then at any time t2 boundary unitarity

will allow her to extract any information which she has
encoded in the spacetime at any earlier time t1.
Physically, the point is that particles which travel inward

from the boundary at time t1 leave an imprint on the
boundary fields: the gravitational constraints precisely en-
code the total energy in the gravitational flux � at the
boundary. Because energy is the generator of time trans-
lations, the boundary observer can recover the desired
information at any later time through appropriate couplings
to this energy. Such processes will be explored in detail in
[8].

IV. DISCUSSION

We have argued that perturbative quantum gravity about
a collapsing black hole background is, in a certain sense,
holographic. By this we mean that, in the asymptotically
flat context, the algebra generated by asymptotic fields on
Iþ within any neighborhood of i0 contains a complete set
of observables. In the AdS context, the algebra of boundary
observables associated with any neighborhood of any
Cauchy surface of the boundary spacetime is similarly
complete. The fact that the gravitational Hamiltonian is a
pure boundary term played a key role, in a manner similar
to that predicted in [6].
If this same algebra remains complete at the nonpertur-

bative level, and if perturbative quantum gravity about flat
space is a good approximation to some asymptotically flat
nonperturbative quantum gravity theory near past infinity
(i� and I�), future infinity (iþ and Iþ), and spacelike
infinity (i0), it follows that the S matrix is unitary. This is
again true if the completeness holds only in some appro-
priate superselection sector, as it would in an asymptoti-
cally flat analogue of the scenario outlined in [13].
It is interesting to classify possible failures of the as-

sumption that perturbative gravity describes physics near
I�, i�, and i0 into two types. First, the physics might be
described by perturbative quantum gravity about some
different background. This might occur if the original
boundary conditions are somehow unstable and if addi-
tional boundaries arise dynamically. The other sort of fail-
ure would preserve the boundary conditions but not allow a
good approximation by perturbative quantum gravity. This
might occur if, for example, strongly coupled regions
continue to interact with perturbative fields at all times.
This could be the case in so-called third-quantized theories
[20], in which a given universe continually interacts with a
bath of baby universes. However, in such cases a form of
unitarity may nevertheless hold due to the superselection
effects discussed in [21].
In the AdS context, much weaker assumptions imply

that similar superselection effects must occur. Specifically,
whether or not the set of boundary observables is complete,
boundary unitarity follows directly from the assumption
that, in the nonperturbative theory, the algebra of boundary
observables again contains a self-adjoint Hamiltonian.
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While complete information may never be present at the
boundary, any information present there at one time t1 is
also contained in boundary observables at any other time
t2. Any independent observables that may exist do not
affect the evolution of boundary observables, though a
given quantum state might contain interesting correlations.
We note briefly that this fits well with the picture of certain
extensions of AdS/CFT discussed e.g. in [22,23] and with
the general picture of AdS/CFT described in [13].

A number of possible objections were already addressed
in the introduction. Nonethless, the reader may have cer-
tain further concerns. For example, one may worry that the
presence of so much information near infinity might vio-
late the ‘‘no quantum Xerox theorem’’ [24]. However, the
original quantum state has in no way been copied to new
degrees of freedom. Instead, the equations of motion imply
operator identities which require two a priori different
operators to be sensitive to the same qubit of quantum
information.

One might also worry that our scenario may lead to
paradoxes associated with noncommuting measurements
of some qubit being performed by spacelike-separated
observers: one in the interior of the spacetime who mea-
sures local degrees of freedom, and one at the boundary
who makes use of the holographic encoding in the algebra
of boundary observables. However, in a context where the
boundary observables are complete, the boundary observer
has access to all degrees of freedom, including the mea-
suring devices of the local observer. As a result, no para-
doxes can arise. Any measurement made by a local
observer can always be undone by the boundary observer,
though it would of course be interesting to understand the
details.

An interesting, if perhaps somewhat artificial, context
where the usual algebra of boundary observables is not
complete can be constructed by adding a second boundary
to the spacetime. We may then place one observer outside
each boundary, so that there is no danger of the local
observer’s devices being holographically encoded at the
other boundary. Since the interesting case arises when the
two boundaries are in causal contact, we take this new
boundary to be at finite distance (i.e., it is not an asymptotic
boundary).

In the asymptotically flat version, this finite boundary
may prohibit iþ from being regular and may also interfere
with the scattering of wave packets at early times. As a
result, we cannot conclude that complete information is
contained in a neighborhood of i0. However, at least in the
AdS case our notion of boundary unitarity will remain.
Attempts to make use of this effect to extract a priori
‘‘lost’’ information appear to involve extremely precise
measurements of the gravitational flux � at infinity. For
now, we merely note that such experiments are very diffi-
cult. Indeed, we expect that the coarse graining which leads
to semiclassical black hole thermodynamics is mostly a

lack of precision in measuring�. In this way, our perspec-
tive is consistent with that of [6], and also with [25] (where
information is also lost simply by the erasure of quantum-
mechanical detail in semiclassical measurements). This
issue and the associated possible paradoxes will be ex-
plored further in [8].
There are many interesting issues that we have not

addressed in this work. For example, we have in no way
suggested a microscopic mechanism that would determine
the entropy of black holes, or even to render it finite. As a
result, we do not address the sort of unitarity questions
raised in [22,26].
Even under the assumptions which led to unitarity of the

S matrix, a second (related) issue that we have not ad-
dressed is the rate at which information is transferred to the
Hawking radiation. To see the relation to the density of
states, let us briefly summarize the picture of this process
suggested by our arguments in the asymptotically flat
context. Motived by our perturbative results, we first as-
sumed that the algebra of observables near i0 is complete,
and contains full information (at least in some superselec-
tion sector). The most important observable was the gravi-
tational flux�, which led to completeness when combined
with the usual perturbative observables. However, an ob-
server outside the black hole who uses, say, a set of particle
detectors to extract information from the outgoing
Hawking radiation does not measure � directly. Instead,
the flux of stress energy in the Hawking radiation is related
(via the gravitational Gauss’ law) to the difference between
� at i0 and the corresponding gravitational flux �horizon at
the black hole horizon. If one assumes that the density of
states associated with �horizon is given by the Bekenstein-
Hawking formula, then one can predict the rate at which
information is transferred to the Hawking radiation. This
amounts essentially to the classic analysis of [27].
However, we again emphasize that we have provided no
detailed justification for this assumption here.
What we have done is to point out that, if the black hole

evaporates completely, the constraints then relate � di-
rectly to the stress tensor. At this point there is no analogue
of �horizon and the information has become fully encoded
in the Hawking radiation. Furthermore, even before the
black hole evaporates fully, we see that the horizon need
not limit the transfer of information to outgoing radiation.
Since information associated with particle degrees of free-
dom inside the black hole is also encoded in the gravita-
tional field outside the black hole (e.g., in�), local physics
outside the horizon is in principle sufficient to imprint this
information on the Hawking radiation.
The essential point in our discussion was that the

Hamiltonian of a classical diffeomorphism-invariant the-
ory is a pure boundary term. A similar feature holds in
quantum perturbation theory, and it seems reasonable to
conjecture this property to hold in a nonperturbative quan-
tum theory—even if the concepts of spacetime and
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diffeomorphism-invariance themselves break down. This
conjecture seems to hold, for example, in AdS/CFT [28],
see [15,29].

As we have seen, the logical consequence of this prop-
erty is that the asymptotic fields store information in a way
that would not be possible in a local quantum field theory.
It is clear that such arguments can be generalized to many
other boundary conditions. A generalization may also hold
for the case of closed cosmologies. There one imagines
that a physical clock might play the role of the boundaries
used above. In perturbation theory, the gravitational con-
straints will tie the energy of such a clock to the integral of
the linearized stress tensor of the gravitational degrees of
freedom, so that it might be used much like the gravita-
tional flux � in our work above. Indeed, one might model
such an observer by replacing their worldline with an
interior boundary. We will save the detailed exploration
of such ideas for future work.
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