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We set up a canonical Hamiltonian formulation for a theory of gravity based on a Lagrangian density

made up of the Hilbert-Palatini term and, instead of the Holst term, the Nieh-Yan topological density. The

resulting set of constraints in the time gauge are shown to lead to a theory in terms of a real SUð2Þ
connection which is exactly the same as that of Barbero and Immirzi with the coefficient of the Nieh-Yan

term identified as the inverse of the Barbero-Immirzi parameter. This provides a topological interpretation

for this parameter. Matter coupling can then be introduced in the usual manner, without changing the

universal topological Nieh-Yan term.
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I. INTRODUCTION

The Hilbert-Palatini Lagrangian for pure gravity is writ-
ten in terms of the connection fields !IJ

� and tetrad eI� as

independent field variables. Its Holst generalization is
given in terms of the Lagrangian density [1]:

L ¼ 1

2
e���

IJ R��
IJð!Þ þ �

2
e���

IJ
~R��

IJð!Þ; (1)

where

���
IJ

:¼ 1
2ðe�I e�J � e�J e

�
I Þ;

R��
IJð!Þ :¼ @½�!��

IJ þ!½�
IK!��K

J;

~R��
IJð!Þ :¼ 1

2�
IJKLR��KLð!Þ:

The second term is the Holst term with ��1 as the
Barbero-Immirzi parameter [2,3]. For � ¼ �i, this
Lagrangian density leads to the canonical formulation in
terms of the self-dual Ashtekar connection, which is a
complex SUð2Þ connection [4]. For real �, we have a
Hamiltonian formulation in terms of a real SUð2Þ connec-
tion, which coincides with the Barbero formulation for
� ¼ 1 [2,5].

Inclusion of the Holst term does not change the classical
equation of motion of the Hilbert-Palatini action; there is
no dependence on � in the equations of motion. In fact,
when the connection equation!�

IJ ¼ !�
IJðeÞ is used, the

Holst term is identically zero.
Adding matter in the generalized Lagrangian density (1)

needs special care. In particular, when spin- 12 fermions are

included through minimal coupling, the classical equations
of motion acquire a dependence on � [6]. However, it is
possible to modify the Holst term in such a way that the
equations of motion remain unchanged. Such modification
for spin- 12 fermionic matter and also those in the N ¼ 1, 2,

and 4 supergravities have been obtained [7,8]. When the

connection equation of motion is used, the modified Holst
terms in each of these cases become total divergences
involving Nieh-Yan invariant density and divergence of
axial current densities involving the fermion fields. The
modified Holst term used in these formulations changes
with the matter content of the theory.
It has been suggested that the Barbero-Immirzi parame-

ter should have a topological interpretation in the same
manner as the � parameter of QCD [9]. For this to be the
case, � should be the coefficient of a term in the
Lagrangian density which is a topological density. Since
such a term would be a total derivative for all field con-
figurations, the classical equations of motion would remain
unaltered. Such a term would be universal in the sense that
it would not change when any matter coupling to gravity is
introduced. The Holst term in (1) or any of its modifica-
tions mentioned above do not have such a property.
In the four-dimensional gravity, there are three possible

topological densities, namely, Pontryagin, Euler, and Nieh-
Yan. The first two are quadratic in the curvature tensor. The
Nieh-Yan density contains a term linear in R��

IJð!Þ and an
R-independent term. This is shown below to be associated
with the Barbero-Immirzi parameter.
The Nieh-Yan density is given by [10]

INY ¼ �����½D�ð!ÞeI�D�ð!ÞeI� � 1
2�

IJ
��R��IJð!Þ�;

D�ð!ÞeI� :¼ @�e
I
� þ!I

�Je
J
�: (2)

This is a topological density; that is, it is a total divergence:

INY ¼ @�J
�
NYðe;!Þ;

J
�
NYðe;!Þ :¼ �����eI�D�ð!ÞeI�:

(3)

Note that, unlike the Pontryagin and Euler densities, the
Nieh-Yan density vanishes identically for a torsion-free
connection.
The classical equations of motion from the Lagrangian

density containing the Hilbert-Palatini term as well as the
Nieh-Yan density
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L ¼ 1

2
e���

IJ R��
IJð!Þ þ �

2
INY (4)

are the same as those from the Hilbert-Palatini Lagrangian
alone. We shall demonstrate that the canonical Hamil-
tonian formulation based on this new Lagrangian density
also leads to a theory of real SUð2Þ connections, exactly the
same as that emerging from the theory with the original
Holst term. This in turn, for � ¼ 1, is the Barbero formu-
lation. Inclusion of matter now does not need any further
modification, and equations of motion continue to be in-
dependent of � for all couplings. This also allows a direct
interpretation of the � parameter as a topological parame-
ter in a manner analogous to the � parameter in QCD.

In a quantum framework, it is also possible to arrive
at the canonical formulation based on the Lagrangian
density (4) starting from the Hilbert-Palatini canonical

formulation by rescaling the wave functional by expfi�2 �R
d3xJtNYðe;!Þg. Mercuri has used this approach to derive

the canonical formulation containing the Barbero-Immirzi
parameter for a theory with spin- 12 fermions [11]. This

demonstrated, for the first time, the role of Nieh-Yan
density as the source of the quantization ambiguity re-
flected by the Barbero-Immirzi parameter. However, in
this analysis the connection equation of motion has been
used to express the JtNYðe;!Þ in terms of the fermions. It is
desirable to carry out this procedure, retaining the JtNY as in
Eq. (3) in terms of the original geometric variables. Such a
method then can be applied directly to a theory of gravity
with or without matter.

In this paper, we work within a classical framework. In
Sec. II, we describe the Hamiltonian formulation based on
the Lagrangian density (4) closely following the analysis
carried out by Sa [5] for the Hilbert-Palatini gravity with
the Holst term. In Sec. III, we discuss the matter couplings,
in particular, the case of Dirac fermions. Coupling of any
other matter can be done in an analogous and straightfor-
ward manner. Section IV contains a few concluding
remarks.

II. HAMILTONIAN ANALYSIS

We propose the Lagrangian density for pure gravity to be
that given in Eq. (4), rewritten as

L ¼ 1

2
e�

��
IJ R��

IJð!Þ þ �

2
½e���

IJ
~R��

IJð!Þ
þ �����D�ð!ÞeI�D�ð!ÞeI��

¼ 1

2
e���

IJ R
ð�ÞIJ
�� ð!Þ þ �

2
�����D�ð!ÞeI�D�ð!ÞeI�;

(5)

where R
ð�ÞIJ
�� ð!Þ :¼ R��

IJð!Þ þ � ~R��
IJð!Þ and we have

used the identities

�
��
IJ

~R��
IJð!Þ ¼ ~�

��
IJ R��

IJð!Þ;
e~�

��
IJ

:¼ e

2
�IJKL�

��KL ¼ � 1

2
��������IJ:

(6)

Introducing the notation taI :¼ ��abcDbð!ÞeIc and �abc :¼
�tabc, the 3þ 1 decomposition is expressed as

L ¼ e�ta
IJR

ð�ÞIJ
ta ð!Þ þ e

2
�ab

IJ R
ð�ÞIJ
ab ð!Þ

þ taI ðDtð!ÞeIa �Dað!ÞeIt Þ: (7)

Defining !
ð�ÞIJ
a :¼ !IJ

a þ � ~!IJ
a and �

ð�Þta
IJ

:¼ �ta
IJ þ

�~�ta
IJ, we get

L ¼ e�ta
IJ@t!

ð�ÞIJ
a þ!IJ

t Dað!Þðe�ð�Þta
IJ Þ

þ e

2
�ab

IJ R
ð�ÞIJ
ab ð!Þ þ taI @te

I
a þ!t

IJtaI eaJ

þ eItDað!ÞtaI � @aðtaI eIt þ e�
ð�Þta
IJ !IJ

t Þ: (8)

We parametrize the tetrad fields as

eIt ¼
ffiffiffiffiffiffiffi
eN

p
MI þ NaVI

a; eIa ¼ VI
a;

MIV
I
a ¼ 0; MIM

I ¼ �1;
(9)

and then the inverse tetrad fields are

etI ¼ � MIffiffiffiffiffiffiffi
eN

p ; eaI ¼ Va
I þ NaMIffiffiffiffiffiffiffi

eN
p ;

MIVa
I
:¼ 0; VI

aV
b
I
:¼ �b

a;

VI
aV

a
J : ¼ �I

J þMIMJ:

(10)

Defining qab :¼ VI
aVbI and q :¼ detqab leads to e :¼

detðeI�Þ ¼ Nq. We may thus trade the 16 tetrad fields

with the 9 fields Va
I ðMIVa

I ¼ 0Þ, the 3 fields MIðMIM
I ¼

�1Þ, and the 4 fields N and Na.
Next, using the identity

�ab
IJ ¼ 2Ne�t½a

IK�
b�t
JL�

KL þ N½a�b�t
IJ (11)

and dropping the total space derivative terms

L ¼ e�ta
IJ@t!

ð�ÞIJ
a þ taI @te

I
a � NH � NaHa � 1

2!
IJ
t GIJ;

(12)

where 2e�ta
IJ ¼ � ffiffiffi

q
p

M½IVa
J�, t

a
I
:¼ ��abcDbð!ÞVIc, and

H ¼ 2e2�ta
IK�

tb
JL�

KLR
ð�ÞIJ
ab ð!Þ � ffiffiffi

q
p

MIDað!ÞtaI ; (13)

Ha ¼ e�tb
IJR

ð�ÞIJ
ab ð!Þ � VI

aDbð!ÞtbI ; (14)

GIJ ¼ �2Dað!Þðe�ð�Þta
IJ Þ � ta½IVJ�a: (15)

Introduce the fields

Ea
i
:¼ 2e�ta

0i ; 	i: ¼ �Mi=M
0;

Ai
a :¼ !ð�Þ0i

a � 	j!
ð�Þij
a ; 
i :¼ �Ea

j!
ð�Þij
a :

(16)
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In terms of these, we have 2e�ta
ij ¼ �Ea

½i	j� and

e�ta
IJ@t!

ð�ÞIJ
a ¼ Ea

i @tA
i
a þ 
i@t	

i, and the Lagrangian
density is

L ¼ Ea
i @tA

i
a þ 
i@t	

i þ taI @tV
I
a � NH� NaHa

� 1
2!

IJ
t GIJ; (17)

where, now we need to reexpressH,Ha, andGIJ (G
i
boost

:¼
G0i, G

i
rot :¼ 1

2 �
ijkGjk) in terms of these new fields:

Gi
boost ¼ �@aðEa

i � ��ijkEa
j	kÞ þ Ea

½i	k�Ak
a

þ ð
i � 	 � 
	iÞ � ta½0Vi�a; (18)

Gi
rot ¼ @að�ijkEa

j	k þ �Ea
i Þ þ �ijkðAj

aEa
k � 
j	k � tajV

k
aÞ;

(19)

Ha ¼ Eb
i ½Rð�Þ0i

ab ð!Þ � 	jR
ð�Þij
ab ð!Þ� � VI

aDbð!ÞtbI (20)

¼ Eb
i @½aAi

b� þ 
i@a	
i � VI

a@bt
b
I þ tbI @½aVI

b�

� 1

1þ �2
½Eb

½i	l�Al
b þ ð
i � 	 � 
	iÞ � tb½0Vi�b � ��ijkðAj

bE
b
k � 
j	k � tbjV

k
bÞ�Ai

a

� 1

1þ �2

�
1

2
�ijkð�Gk

boost þGk
rotÞ � 	iðGj

boost � �Gj
rotÞ

�
!ð�Þij

a ; (21)

H ¼ �Ea
k	kHa � 1

2
ð1� 	 � 	ÞEa

i E
b
jR

ð�Þij
ab ð!Þ � ðEa

k	kV
I
a þ ffiffiffi

q
p

MIÞDbð!ÞtbI

¼ �Ea
k	kHa þ ð1� 	 � 	Þ

�
Ea
i @a
i þ

1

2

iE

a
i E

b
j @aE

j
b

�
þ 1� 	 � 	

2ð1þ �2Þ 
i½�Gi
boost þ �Gi

rot� � ðEa
k	kV

I
a þ ffiffiffi

q
p

MIÞ@btbI

� 1� 	 � 	
1þ �2

�
1

2
Ea
½iE

b
j�A

i
aA

j
b þ Ea

i A
i
a	 � 
 þ ��ijk
iA

j
aEa

k þ
3

4
ð	 � 
Þ2 � 3

4
ð
 � 
Þ þ 1

2

it

a
½0Vi�a � �

2

i�

ijktajV
k
a

�

þ 1� 	 � 	
1þ �2

�
1ffiffiffiffi
E

p Ai
at

a
i þ

1

2
Vi
að
 � 	tai � 	i
jt

a
j þ ��ijk
jt

a
kÞ
�

þ 1� 	 � 	
1þ �2

�
� 1ffiffiffiffi

E
p 	it

b
j þ

�

2
ffiffiffiffi
E

p �ijktbk þ ð1þ �2ÞEa
i @aE

b
j þ Ea

i 	jE
b
mA

m
a � ��imnEa

mE
b
nA

j
a

� �

4
ð�ijmEb

n þ �ijnEb
mÞ	m
n

�
uijb þ 1� 	 � 	

2ð1þ �2Þ ð	m	n � �mnÞEa
jE

b
i u

im
a ujnb : (22)

In the above, Ei
a :¼

ffiffiffiffi
E

p
Vi
a is the inverse of Ea

i , i.e.,
Ei
aE

b
i ¼ �b

a, Ei
aE

a
j ¼ �i

j, and E�1 ¼ qðM0Þ2 equals

detEa
i . Furthermore, we have also set uija :¼ !

ð�Þij
a �

1
2E

½i
a 
j�. Notice that Eb

i u
ij
b ¼ 0. The six independent fields

in uija may be parametrized in terms of a symmetric matrix

Mij as uija :¼ 1
2 �

ijkEl
aM

kl [5].
We have replaced the original 16 tetrad fields with

16 new fields: Ea
i , 	i, N, and Na. In place of the original

24 connection fields!IJ
� , we use the new set of 24 fields Ai

a,


i,M
kl, !ij

t , and !
0i
t . The fields V

I
a and t

a
I are not indepen-

dent; these are given in terms of the fundamental fields as
VI
a ¼ �I

a and taI ¼ �aI , where

�0
a :¼ � 1ffiffiffiffi

E
p Ei

a	i; �i
a :¼ 1ffiffiffiffi

E
p Ei

a; (23)

�a0 :¼ ��abcDbð!ÞV0c

¼ �
ffiffiffiffi
E

p
Ea
m

�
Gm

rot � 	l

2

�
2fml þ Nml

1þ �2
þ �mlnG

n
boost

��
;

(24)

�ak :¼ ��abcDbð!ÞVck

¼ ��

2

ffiffiffiffi
E

p
Ea
m

�
2fmk þ Nmk

1þ �2
þ �kmnG

n
boost

�
; (25)

where

2fkl :¼ �ijkE
a
i ½ð1þ �2ÞEl

b@aE
b
j þ 	jA

l
a�

þ �ðEa
l A

k
a � �klEa

mA
m
a � 	l
kÞ þ ðl $ kÞ; (26)

Nkl :¼ �ijkð	m	j � �mjÞEa
i u

lm
a þ ðl $ kÞ

¼ ð	 � 	� 1ÞðMkl �Mmm�klÞ þ 	m	nMmn�kl

þ 	l	kMmm � 	mð	kMml þ 	lMmkÞ: (27)

We can upgrade VI
a and t

a
I as independent fields through

terms containing the Lagrange multiplier fields a
I and �I

a

in the Lagrangian density:
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L ¼ Ea
i @tA

i
a þ 
i@t	

i þ taI @tV
I
a �H ;

H :¼ NH þ NaHa þ 1
2!

IJ
t GIJ þ a

I ðVI
a � �I

aÞ
þ�I

aðtaI � �aI Þ;
(28)

where �I
a and �aI are defined in Eqs. (23)–(25). We have

24 pairs of canonically conjugate independent field varia-

bles ðEa
i ; A

j
bÞ, ð
i; 	jÞ, and ðtaI ; VI

aÞ. The remaining fields,

namely, N, Na, !IJ
t , 

a
I , �

I
a, and Mkl, have no conjugate

momenta since in the Lagrangian their velocities do not
appear. Preservation of these constraints (vanishing of the
variation of the Hamiltonian with respect to the fields)
leads to the secondary constraints. From the variations

with respect to fields !0i
t , !

ij
t , N

a, N, a
I , and �I

a, we get
the constraints

Gi
boost � 0; Gi

rot � 0; Ha � 0; H � 0;

(29)

VI
a � �I

a � 0; taI � �aI � 0: (30)

From the variation with respect to Mkl or equivalently uija ,
we get

�H
�Mkl

�Mkl � N�H

�Mkl
�Mkl

¼ Nð1� 	 � 	Þ
2ð1þ �2Þ

�
ð�tak � �ijk	it

a
j ÞVl

a þ fkl

þ 1

2
Nkl

�
�Mkl � 0:

This leads to

ð�tak � �ijk	it
a
j ÞVl

a þ fkl þ 1
2Nkl þ ðk $ lÞ � 0: (31)

Using constraints (30), and the expressions (23)–(25) for
�aI ; �

I
a, Eq. (31) implies

ð��ijk	i þ �kjÞð2fjl þ NjlÞ
þ �ð1þ �2Þð�kl	mG

m
boost � 	lG

k
boostÞ þ ðk $ lÞ � 0:

Using (29), this in turn implies the constraint

2fkl þ Nkl � 0; (32)

where fkl and Nkl are given in (26) and (27). This con-
straint can be solved forMkl. Furthermore, it implies, from
the definitions (24) and (25), that �aI � 0 and hence

taI � 0: (33)

Implementing this constraint then reduces the
Hamiltonian density to

H ¼ NH þ NaHa þ 1
2!

IJ
t GIJ; (34)

where now

Gi
boost ¼ �@aðEa

i � ��ijkEa
j	kÞ þ Ea

½i	k�Ak
a

þ ð
i � 	 � 

iÞ � 0; (35)

Gi
rot ¼ @að�ijkEa

j	k þ �Ea
i Þ þ �ijkðAj

aEa
k � 
j	kÞ � 0;

(36)

Ha ¼ Eb
i @½aAi

b� þ 
i@a	i � 1

1þ �2
½Eb

½k	l�Al
b þ 
i � 	 � 
	i � ��ijkðAj

aEa
k � 
j	kÞ�Ai

a

� 1

1þ �2

�
1

2
�ijkð�Gk

boost þGk
rotÞ � 	iðGj

boost � �Gj
rotÞ

�
!

ð�Þij
a � 0; (37)

H ¼ �Ea
k	kHa þ ð1� 	 � 	Þ

�
Ea
i @a
i þ

1

2

iE

a
i E

b
j @aE

j
b

�
þ ð1� 	 � 	Þ

2ð1þ �2Þ 
i½�Gj
boost þ �Gj

rot�

� ð1� 	 � 	Þ
1þ �2

�
1

2
Ea
½iE

b
j�A

i
aA

j
b þ Ea

i A
i
a	 � 
 þ ��ijk
iA

j
aEa

k þ
3

4
ð	 � 
Þ2 � 3

4
ð
 � 
Þ

�

þ ð1� 	 � 	Þ
2ð1þ �2Þ

�
fklM

kl þ 1

4
ð	 � 	� 1ÞðMklMkl �MkkMllÞ þ 1

2
	k	lðMppMkl �MkpMlpÞ

�
� 0: (38)

In the last equation we have Mkl given by the constraint
2fkl þ Nkl ¼ 0, which can be solved as

ð1� 	 � 	ÞMkl ¼ 2fkl þ ð	m	nfmn � fmmÞ�lk

þ ð	m	nfmn þ fmmÞ	k	l

� 2	mð	lfmk þ 	kfmlÞ: (39)

This is the same set of equations as those obtained by Sa
[5] in his analysis of the action containing the Holst term.

We may fix the boost gauge transformations (time
gauge) by imposing 	i � 0 which together with the
Gi

boost � 0 forms a second class pair. Solving the boost

constraint with 	i ¼ 0 yields


i ¼ @aE
a
i : (40)

In this gauge we then recover a canonical Hamiltonian
formulation in terms of real SUð2Þ gauge fields Ai

a which
reduces to the Barbero formulation for � ¼ 1 [5].
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To summarize, like the Holst term, the Nieh-Yan term
leads to an SUð2Þ gauge theoretic formulation. But it is
only the coefficient of the Nieh-Yan term that has a topo-
logical character.

III. MATTER COUPLING

As stated earlier, the matter can now be coupled to
gravity in a straightforward manner. As an example, we
consider a spin- 12 Dirac fermion with its usual minimal

coupling to gravity. The Lagrangian density is1

L ¼ 1

2
e�

��
IJ R��

IJð!Þ þ �

2
INY

þ ie

2
½ ����D�ð!Þ��D�ð!Þ�����; (41)

where

D�ð!Þ� :¼ @��þ 1
2!�IJ�

IJ�;

D�ð!Þ�: ¼ @� ��� 1
2
��!�IJ�

IJ:

Notice that, unlike earlier attempts of setting up a theory
of fermions and gravity with the Barbero-Immirzi parame-
ter [7,8] where the Holst term was modified to include an
additional nonminimal term for the fermions, the
Lagrangian density here containing the Nieh-Yan density
does not require any further modification; just the usual
minimal fermion terms suffice. This is so because the
Nieh-Yan term is topological.

We expand the fermion terms as

L ðFÞ :¼ ie

2
½ ����D�ð!Þ��D�ð!Þ�����

¼ ½@t ���� ��@t�� � NHðFÞ � NaHaðFÞ

� 1

2
!IJ

t GIJðFÞ; (42)

where �� and � are canonically conjugate momenta fields
associated with � and ��, respectively. Explicitly,2

�� ¼ � ie

2
���t ¼ i

ffiffiffi
q

p
2

MI
���I;

� ¼ � ie

2
�t� ¼ i

ffiffiffi
q

p
2

MI�
I�;

(43)

GIJðFÞ ¼ ���IJ�þ ���IJ�; (44)

HaðFÞ ¼ Dað!Þ��� ��Dað!Þ�; (45)

HðFÞ ¼ ð�2e�ta
IJÞ½Dað!Þ��IJ�þ ���IJDað!Þ��:

(46)

Incorporating these fermionic terms in the pure gravity
Lagrangian density given in Eq. (28), we write the full
Lagrangian density as

L ¼ Ea
i @tA

i
a þ 
i@t	i þ taI @tV

I
a þ @t ���� ��@t�

� NH0 � NaH0
a � 1

2!
IJ
t G

0
IJ � a

I ðVI
a � �I

aÞ
��I

aðtaI � �aI Þ; (47)

where now

G0
IJ ¼ GIJ þGIJðFÞ; H0

a ¼ Ha þHaðFÞ;
H0 ¼ H þHðFÞ; (48)

with GIJ, Ha, and H as the contributions from the pure
gravity sector as given by Eqs. (13)–(15) or equivalently by
Eqs. (19)–(22).
The various quantities above can then be rewritten in

terms of the basic fields as

G0i
boost ¼ �@aðEa

i � ��ijkEa
j	kÞ þ Ea

½i	k�Ak
a

þ ð
i � 	 � 
	iÞ � t0a½0Vi�a þ ½ ��ð1þ i��5Þ�0i�

þ ��ð1þ i��5Þ�0i��; (49)

G0i
rot ¼ @að�ijkEa

j	k þ �Ea
i Þ þ �ijkðAj

aEa
k � 
j	k � t0aj Vk

aÞ
þ ½ ��ði�5 � �Þ�0i�þ ��ði�5 � �Þ�0i��; (50)

H0
a ¼ Eb

i @½aAi
b� þ 
i@a	i � @bðt0bI VI

aÞ þ t0bI @aVI
b þ ½@a ��ð1þ i��5Þ�� ��ð1þ i��5Þ@a�� � ½ ���0i�þ ���0i��Ai

a

� 1

1þ �2
½Eb

½i	l�Al
b þ 
i � 	 � 
	i � t0b½0Vi�b � ��ijkðAj

aEb
k � 	j
k � t0bj Vk

bÞ�Ai
a

� 1

1þ �2

�
1

2
�ijkð�G0k

boost þG0k
rotÞ � 	iðG0j

boost � �G0j
rotÞ

�
!ð�Þij

a ; (51)

1Our Dirac matrices satisfy the Clifford algebra: �I�J þ �J�I ¼ 2�IJ , �IJ :¼ diagð�1; 1; 1; 1Þ. The chiral matrix �5 :¼ i�0�1�2�3

and �IJ :¼ 1
4 ½�I; �J�.

2The fermions are Grassmann-valued, and the functional differentiation is done on the left factor which accounts for the signs in the
definitions of the conjugate momenta in (43).
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H0 ¼ �Ea
k	kH

0
a � ðEa

k	kV
I
a þ ffiffiffi

q
p

MIÞ@bt0bI þ ð1� 	 � 	Þ
�
Ea
i @a
i þ

1

2

iE

a
i E

b
j @aE

j
b

�

� ð1� 	 � 	Þ
1þ �2

�
1

2
Ea
½iE

b
j�A

i
aA

j
b þ Ea

i A
i
a	 � 
 þ ��ijk
iA

j
aEa

k þ
3

4
ð	 � 
Þ2 � 3

4
ð
 � 
Þ

�

þ ð1� 	 � 	Þ
2ð1þ �2Þ ½
i � 2Vi

bðtb0 � t0b0 Þ�½�G0i
boost þ �G0i

rot � t0a½0Vi�a þ ��ijkt
0a
j V

k
a�

þ ð1� 	 � 	Þffiffiffiffi
E

p ð1þ �2Þ
�
t0bmAm

b þ 1

2
Ei
bt

0b
½i 	j�
j þ �

2
�ijkt

0b
i E

j
b
k

�
� 2e�ta

IJ½@a ��ð1þ i��5Þ�IJ�þ ��ð1þ i��5Þ�IJ@a��

þ Ea
k	k½@a ��ð1þ i��5Þ�� ��ð1þ i��5Þ@a�� � 2e�ta

IJ½� ���0l�
IJ�þ ���IJ�0l��Al

a

� Ea
k	k½ ���0l�þ ���0l��Al

a þ ð1� 	 � 	Þ
2ð1þ �2Þ

�
ð�t0ak � �ijk	it

0a
j ÞVa

l þ fkl þ ð1þ �2ÞJkl þ 1

4
NklðMÞ

�
Mkl; (52)

where, as earlier, 2e�ta
0i ¼ Ea

i , 2e�
ta
ij ¼ �Ea

½i	j�, and fkl
and NklðMÞ are given by Eqs. (26) and (27), respectively.
Also,

t0aI :¼ taI � �e�ta
IJ
���5�

J�

¼ taI þ
i�ffiffiffi
q

p e�ta
IJ½MJð ���5�� ���5�Þ

þ 2MLð ���5�
LJ�þ ���5�

LJ�Þ�; (53)

2Jkl :¼ 1

2
ffiffiffiffi
E

p ���5

�
	k�l þ 	l�k þ 2�kl

MI�I

M0

�
�

¼ i

2
ð�kl þMkMlÞð ���5�� ���5�Þ

þ iMlM
Jð ���5�Jk�þ ���5�Jk�Þ þ ðk $ lÞ: (54)

The Hamiltonian density now reads

H ¼ NH0 þ NaH0
a þ 1

2!
IJ
t G

0
IJ þ a

I ðVI
a � �I

aÞ
þ�I

aðtaI � �aI Þ: (55)

The constraints associated with the fields Na, N, !0i
t , !

ij
t ,

a
I , and �I

a, respectively, are

H0
a � 0; H0 � 0; G0i

boost � 0; G0i
rot � 0;

(56)

VI
a � �I

a � 0; taI � �aI � 0: (57)

The remaining fields Mkl, from �H0
�Mkl �M

kl � 0, lead to the

constraint

ð�t0ak � �ijk	it
0a
j ÞVl

a þ fkl þ 1
2Nkl þ ð1þ �2ÞJkl

þ ðk $ lÞ � 0: (58)

Using taI � �aI , we write

t0ak � ��

2

ffiffiffiffi
E

p
Ea
l

�
2fkl þ Nkl

1þ �2
þ 2Jkl þ �klnG

0n
boost

�
;

t0a0 � �
ffiffiffiffi
E

p
Ea
l

�
G0l

rot � 	k

2

�
2fkl þ Nkl

1þ �2
þ 2Jkl

þ �klnG
0n
boost

��
:

(59)

Using (59) in (58) leads to

2fkl þ Nkl þ 2ð1þ �2ÞJkl � 0; (60)

generalizing the constraint (32) of the pure gravity case.
This in turn implies

t0aI � 0; (61)

corresponding to the constraint (33) for pure gravity.
Implementing this constraint along with those in (57)
reduces the Hamiltonian density to

H ¼ NH0 þ NaH0
a þ 1

2!
IJ
t G

0
IJ; (62)

where the final set of constraints is obtained from
Eqs. (49)–(52) by substituting t0aI ¼ 0 and dropping the
terms containing G0i

boost and G0i
rot in H0

a and H0. The Mkl is

given by the solution of the constraint (60).

Time gauge

We may now make the gauge choice 	i ¼ 0 and solve
the boost constraint G0i

boost ¼ 0 to obtain


i ¼ @aE
a
i � i�½ ���5�0i�þ ���5�0i��: (63)

Thus we have a canonical Hamiltonian formulation for a
theory of gravity with fermions in terms of real SUð2Þ
gauge fields Ai

a with the following constraints:
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G0i
rot ¼ �@aE

a
i þ �ijkAj

aEa
k þ i½ ���5�0i�þ ���5�0i�� � 0;

H0
a ¼ Eb

i @½aAi
b� þ ½@a ��ð1þ i��5Þ�� ��ð1þ i��5Þ@a��

� 1

1þ�2
½@aEa

i ���ijkA
j
bE

b
k

� i�ð ���5�0i�þ ���5�0i�Þ�Ai
a � 0;

H0 ¼
�
Ea
i @a
i þ

1

2

iE

a
i E

b
j @aE

j
b

�

� 1

1þ�2

�
1

2
Ea
½iE

b
j�A

i
aA

j
bþ��ijk
iA

j
aEa

k �
3

4

 � 


�

þ 2Ea
i ½@a ��ð1þ i��5Þ�0i�þ ��ð1þ i��5Þ�0i@a��

þEa
i ½ ���il�þ ���il��Al

a

þ 1

2ð1þ�2Þ
�
ffkl þð1þ�2ÞJklgMkl

� 1

4
ðMklMkl �MkkMllÞ

�
� 0; (64)

where 
i are given by (63) and

Mkl ¼ 2½fkl þ ð1þ �2ÞJkl� � �kl½fmm þ ð1þ �2ÞJmm�;
(65)

with

2fkl ¼ ð1þ �2Þ�ijkEa
i E

l
b@aE

b
j þ �ðEa

kA
l
a � �klEa

mA
m
a Þ

þ ðk $ lÞ;
2Jkl ¼ i�kl½ ���5�� ���5��:

(66)

This completes our discussion of a fermion minimally
coupled to gravity including the Nieh-Yan term. This
analysis can now be extended in an analogous manner to
a theory with any matter content with any couplings.

IV. CONCLUSIONS

We have demonstrated that inclusion of Nieh-Yan topo-
logical density in the Lagrangian density of a theory of

gravity allows us, in the time gauge, to describe gravity in
terms of a real SUð2Þ connection. The set of constraints so
obtained in the Hamiltonian formulation, for � ¼ 1, is the
same as that in the Barbero formulation. For other real
values of this parameter, we have the Immirzi formulation
with Barbero-Immirzi parameter � ¼ ��1. Thus the pa-
rameter � has a similar interpretation as the � parameter of
QCD. Like the topologically nontrivial vacuum structure
of QCD, which reflects itself in terms of presence of the �
parameter, the � parameter in the theory of gravity should
indicate a rich vacuum structure of gravity which needs
further and thorough investigation.
Like the � term in QCD, the Nieh-Yan term in gravity is

also universal; i.e., it does not need to be changed when
various kinds of matter are coupled to the theory. We have
discussed this in detail for spin- 12matter coupled to gravity.

For other matter, for example, in the theories involving an
antisymmetric tensor gauge field, and also theories of
supergravity, the same Nieh-Yan topological term allows
a description in terms of a theory of a real SUð2Þ gauge
connection in the time gauge. This is to be contrasted with
the case of Holst modification of Hilbert-Palatini action,
where for different matter couplings, the corresponding
Holst term in the Lagrangian density needs to be changed
on a case by case basis so as to keep the equations of
motion unaltered [7,8]. It is worth emphasizing that the
Nieh-Yan density is entirely made up of geometric quan-
tities while the modified Holst terms contain matter fields
as well. The two get related only after using the connection
equation of motion.
In a complete theory of gravity, besides the Nieh-Yan

topological term, we need to include two other topological
terms: the Pontryagin density and the Euler density. This
introduces two additional topological parameters associ-
ated with such topological terms, besides the parameter �
we have discussed here. Any quantum theory of gravity
should have all of these three CP-violating topological
couplings.
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