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Topological interpretation of Barbero-Immirzi parameter
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We set up a canonical Hamiltonian formulation for a theory of gravity based on a Lagrangian density
made up of the Hilbert-Palatini term and, instead of the Holst term, the Nieh-Yan topological density. The
resulting set of constraints in the time gauge are shown to lead to a theory in terms of a real SU(2)
connection which is exactly the same as that of Barbero and Immirzi with the coefficient of the Nieh-Yan
term identified as the inverse of the Barbero-Immirzi parameter. This provides a topological interpretation
for this parameter. Matter coupling can then be introduced in the usual manner, without changing the

universal topological Nieh-Yan term.
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L. INTRODUCTION

The Hilbert-Palatini Lagrangian for pure gravity is writ-
ten in terms of the connection fields wﬁ[ and tetrad eiL as
independent field variables. Its Holst generalization is
given in terms of the Lagrangian density [1]:

1 14 12853
L =2 eSfIR,, (@) + gezﬁ‘, R, (@), (1)
where
1= slef ey —efe)),

R, (@) = o0, + wp, '

RMVIJ(G)) — %GIJKLRMVKL(w)_

J
wv]K ’

The second term is the Holst term with 7~ ! as the

Barbero-Immirzi parameter [2,3]. For m = —i, this
Lagrangian density leads to the canonical formulation in
terms of the self-dual Ashtekar connection, which is a
complex SU(2) connection [4]. For real 7, we have a
Hamiltonian formulation in terms of a real SU(2) connec-
tion, which coincides with the Barbero formulation for
n=11[2,5].

Inclusion of the Holst term does not change the classical
equation of motion of the Hilbert-Palatini action; there is
no dependence on 7 in the equations of motion. In fact,
when the connection equation "/ = w '/ (e) is used, the
Holst term is identically zero.

Adding matter in the generalized Lagrangian density (1)
needs special care. In particular, when spin—% fermions are
included through minimal coupling, the classical equations
of motion acquire a dependence on 7 [6]. However, it is
possible to modify the Holst term in such a way that the
equations of motion remain unchanged. Such modification
for spin—% fermionic matter and also those inthe N = 1, 2,
and 4 supergravities have been obtained [7,8]. When the
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connection equation of motion is used, the modified Holst
terms in each of these cases become total divergences
involving Nieh-Yan invariant density and divergence of
axial current densities involving the fermion fields. The
modified Holst term used in these formulations changes
with the matter content of the theory.

It has been suggested that the Barbero-Immirzi parame-
ter should have a topological interpretation in the same
manner as the # parameter of QCD [9]. For this to be the
case, 1 should be the coefficient of a term in the
Lagrangian density which is a topological density. Since
such a term would be a total derivative for all field con-
figurations, the classical equations of motion would remain
unaltered. Such a term would be universal in the sense that
it would not change when any matter coupling to gravity is
introduced. The Holst term in (1) or any of its modifica-
tions mentioned above do not have such a property.

In the four-dimensional gravity, there are three possible
topological densities, namely, Pontryagin, Euler, and Nieh-
Yan. The first two are quadratic in the curvature tensor. The
Nieh-Yan density contains a term linear in R ,,’/ (w) and an
R-independent term. This is shown below to be associated
with the Barbero-Immirzi parameter.

The Nieh-Yan density is given by [10]

Iny = eluvaﬂ[D/_L(w)e{/Da(w)elﬂ - %E%VRC!BIJ(‘U)])

D, (w)e}, = 0d,el, + wi”e{,. (2)
This is a topological density; that is, it is a total divergence:

Iny = 9, J{y(e, ),

(e, w) = emraBel D (w)eys.

3)

Note that, unlike the Pontryagin and Euler densities, the
Nieh-Yan density vanishes identically for a torsion-free
connection.

The classical equations of motion from the Lagrangian
density containing the Hilbert-Palatini term as well as the
Nieh-Yan density
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are the same as those from the Hilbert-Palatini Lagrangian
alone. We shall demonstrate that the canonical Hamil-
tonian formulation based on this new Lagrangian density
also leads to a theory of real SU(2) connections, exactly the
same as that emerging from the theory with the original
Holst term. This in turn, for » = 1, is the Barbero formu-
lation. Inclusion of matter now does not need any further
modification, and equations of motion continue to be in-
dependent of 7 for all couplings. This also allows a direct
interpretation of the n parameter as a topological parame-
ter in a manner analogous to the # parameter in QCD.

In a quantum framework, it is also possible to arrive
at the canonical formulation based on the Lagrangian
density (4) starting from the Hilbert-Palatini canonical
formulation by rescaling the wave functional by exp{%’ X
[ d®xJiy(e, w)}. Mercuri has used this approach to derive
the canonical formulation containing the Barbero-Immirzi
parameter for a theory with spin—% fermions [11]. This
demonstrated, for the first time, the role of Nieh-Yan
density as the source of the quantization ambiguity re-
flected by the Barbero-Immirzi parameter. However, in
this analysis the connection equation of motion has been
used to express the J{y (e, ) in terms of the fermions. It is
desirable to carry out this procedure, retaining the J{y as in
Eq. (3) in terms of the original geometric variables. Such a
method then can be applied directly to a theory of gravity
with or without matter.

In this paper, we work within a classical framework. In
Sec. II, we describe the Hamiltonian formulation based on
the Lagrangian density (4) closely following the analysis
carried out by Sa [5] for the Hilbert-Palatini gravity with
the Holst term. In Sec. I1I, we discuss the matter couplings,
in particular, the case of Dirac fermions. Coupling of any
other matter can be done in an analogous and straightfor-
ward manner. Section IV contains a few concluding
remarks.

II. HAMILTONIAN ANALYSIS

We propose the Lagrangian density for pure gravity to be
that given in Eq. (4), rewritten as

1
L =S¢SR, (@) + g[eE;’“JVRW”(w)

+ etr*BD (a))e{/Da(w)elﬁ]

_ Losmgo, )+

2 MVaBD,u(w)e{/Da(w)elﬁ’

(&)

where Rﬁf’,}”(w) =R, (w) + nR,,"” (w) and we have
used the identities
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R (w) = ZVRW”(O)),
. e 1 (6)
expy = EEIJKLE'MVKL = _Efwaﬁzaﬂu-

Introducing the notation #§ := ne***D,(w)e;. and €€ :=
€'%¢, the 3 + 1 decomposition is expressed as

mR(n)IJ( )+ < EubR(n)IJ( )

+ (D (w)el — Da(w)e{) (7
Defining " := 0! + n&" and E(T’)m =X+
3 we get
L = ezma w(n)IJ + w{JD (w)(eE(")m)

EahRﬁl’;)” (@) + 90,6l + w,Vt9e,,

+elDy(w)td — 0,(t%e! + e3P wl).  (8)
We parametrize the tetrad fields as

el = VeNM!' + N°VL, el = Vi

M,V =0, MM = —1, ©)
and then the inverse tetrad fields are
: M, o — yay MM
e,——\/m, e,—VI-i-m,
MVe =0,  Vivb:= st (10)
vive. = 80 + M'M,.

Defining ¢, := VIV,,; and q := detq,, leads to e :=
det(e!,) = Ng. We may thus trade the 16 tetrad fields
with the 9 fields V¢(M!V¢ = 0), the 3 fields M!(M,M" =
—1), and the 4 fields N and N°.

Next, using the identity

Eab = 2Ne Et[ﬂzﬁ]LtnKL + N[azﬂf (11)
and dropping the total space derivative terms

= 39,0 + 19, — NH — N°H, — Yol Gy,
(12)

where 2eXf) = —/gM[, V), 1} 1= ne®*D,(w)V,,, and

= 2231 31 pKLRY () — JaMID ()14,  (13)

H, = eSHRDY (0) — VID,(w)ih, (14)
Gy = —2D,(@)(e2]]") =,V a. (15)
Introduce the fields
Eq = 2626‘}, Xi- = _Mi/MO,
i (1)0i (m)ij i (n)ij (16)
A= oy — xjwa (= —Ejwg .
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In term(s )I?f these, we have 2e2§7 = —Ef Xx; and Gi)mt —9,(E* — neilk E¢ Yo + Eﬁ Xi] Ak

1 miJ _ i in i ; A ,
e 1‘}.8ta.)a = E?9,A, + {'9,x', and the Lagrangian + (= x iy — 4 Vita (18)
density is

L =E9AL+ 19, +1§9,VE — NH — N°H, . ) -
Groe = 0q(e7Ef xy + mE{) + eMMALE] — {xi — 1Va),

— 501Gy, (a7 1o
where, now we need to reexpress H, H,,, and G;; (Gl ‘=
Goi» Gl '= % €7*G ;) in terms of these new fields:
|
H, = B[R} (@) = iR} (0)] = ViDy(w)i] (20)
J 1
= E} oAl + {19 X0 — Vidut + 1701,V
Rl 5 [ELxnAL + (& — x - {xi) — Vi — neMALEL — Lxi — VDAL
1 1 o y
a 1+ 77 [ l]k(nGbooqt + Gfot) B Xl(Gjboobt nGmt ]wgﬂ)”, @D

1 i
H = ~E{xiH, = 5(1 = x - VEERG (@) = (ExiVi + JaM)Dy (o)t}

l—x-x

2(1 )é’l[ Gboost + nGrot] - (E XkVI + qMI)abt;]

1 .
— B H, (1 - X)[E?aaa + faE?E;?aaEf,]

_I_X/\/lab J a Al ijk J ra 2 a _7] ijk rayk
e _QE[IE,]AA + BfALX - £+ meRGALEL + 0 6P = 0+ 3Lty Va, = Tae Vi ]
I—x-xT 1 1 i ik

L= x-x[ 1 p o M
+—= 2 - —=xitt +—=
1+72 L vEXY T oUE

/el + (1 + n})E¢9,EL + E¢ x ELAT — ne™ E4ELAL

) ) - ’
- g(EUmEZ + EunEfn)Xm{n]ubj 2(1 i /\;(Xm)(n - 3mn)EaEbulm / (22)
In the above, E} :=+/EV} is the inverse of EY, i.e., 74 = neDy(w)Vey
ELE! = &), ELES =6, and E~'=q(M°)? equals
a i il _ — 77\/_ o [2f mk + Nok i
detE¢. Furthermore we have also set u : = EEj, BT + €nnGhoost b (25)

IE[’ gﬂ Notice that E?ul/ = 0. The six mdependent fields
in u;/ may be parametrized in terms of a symmetric matrix
MU as ud =% e ElL M [5].

We have replaced the original 16 tetrad fields with
16 new fields: E{, x;, N, and N. In place of the original 2fu = € EJ[(1 + ﬂz)ElbaaEf + x;AL]
24 connection fields wi[, we use the new set of 24 fields A’ + n(E?Af, _ 5k1Ean;n — &) + (L= k), (26)
£ MM, 0¥ and w%. The fields V. and ¢ are not indepen-
dent; these are given in terms of the fundamental fields as
VI = vl and 1§ = 7}, where

where

Nkl = Eijk(Xij - 5mj)E?u£4m + (l - k)

| - ‘ 1 .
v)i=——=FEy, vi = ——F!, (23)
¢ \/-E o ¢ E ¢ = (X X T 1)(Mkl - Mmmakl) + Xananakl
7.8 - neabCDb(w)VOL + XXM — Xm(Xkal + XIMmk)' 27
+ .
= n\/EE%[G;’Z)t - % (M + €, Ggoost)], We can upgrade V! and #¢ as independent fields through
n

terms containing the Lagrange multiplier fields ¢4 and ¢/,
(24)  in the Lagrangian density:
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L =E%9,AL+ 'ox + 150,V — H,
H = NH + N°H, + Lo G, + (V] — vl) (28)
+ do(tf — ),

where v/, and 7¢ are defined in Eqs. (23)—(25). We have
24 pairs of canonically conjugate independent field varia-
bles (E¢, A}), (£, Xj) and (¢4, V). The remaining fields,
namely, N, N, !, £, ¢!, and M*, have no conjugate
momenta since in the Lagrangian their velocities do not
appear. Preservation of these constraints (vanishing of the
variation of the Hamiltonian with respect to the fields)
leads to the secondary constraints From the variations
with respect to fields w, , o, N°, N, &4, and !, we get
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Using constraints (30), and the expressions (23)—(25) for
74, vl, Eq. (31) implies

(me*x; + 8:)2f 1+ Nj)
+ 11+ 7 X Glas — XiGioo) + (k= ) = 0.
Using (29), this in turn implies the constraint
2fru+ N =0, (32)

where f;; and Ny; are given in (26) and (27). This con-
straint can be solved for My;. Furthermore, it implies, from

the definitions (24) and (25), that 7§ = 0 and hence
the constraints
i ~ i~ (- —~ ~ () 19 = 0. 33
Gboost 0, Grot =~ 0; Ha =~ 0, H =0, 1 ( )
(29) Implementing this constraint then reduces the
Hamiltonian density to
Vi -yl =0, tf —71¢ = 0. (30)
o b ) H = NH + NH, + LoV Gy, (34)
From the variation with respect to M* or equivalently u;,
we get where now
5}5 st = NOH sy Ghoost = ~0alEf — meT Ef i) + EfixgAu
oM oM ; ;
Ny + (= x- L8 =0, (35)
= W[(mz — €M iV + fu
| Glow = da(€*Eg xi + mEf) + €/MALEL = {ixa) = O,
+ —Nkl]BMkl =~ () (36)
This leads to
|
. 1 . o )
Ha = Efogadly + G0u0 — sl + & = e O = ne (ALEL = G W
1 1
o 1+ 77 [ Uk(T]Gboost + Gi(Ot) X (Gboost - nGrot ] 7 = 0 (37)
H——EH + -y ol Eac+ crrrs ]+ L XX g G!
= kXid1q XX Efdqd; zgz i Ljoaly 2(1 ) & boost T MGrat

1_

W[ Ef’Eb]A AJ
1+ 2

I=xx

200+ n2)

In the last equation we have M* given by the constraint
2fu + Ny = 0, which can be solved as

(A= x - XIMy=2f + X XnSmn — Frm) Ok
+ (Xanfmn + fmm)/\/k/\/l
= 2Xm X0k + XacS mi)- (39)

This is the same set of equations as those obtained by Sa
[5] in his analysis of the action containing the Holst term.

. ; 3
+EfAL - £+ mendALEL+ 00 0P =5 0]

1 1
[szM“ 430 x = DM = MM + L (M7 M Mkpsz)] ~0. (3%

We may fix the boost gauge transformations (time
gauge) by imposing x' = 0 which together with the
Gl o = 0 forms a second class pair. Solving the boost

constraint with ' = 0 yields
{i = 0,E7. (40)

In this gauge we then recover a canonical Hamiltonian
formulation in terms of real SU(2) gauge fields A, which
reduces to the Barbero formulation for n = 1 [5].
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To summarize, like the Holst term, the Nieh-Yan term
leads to an SU(2) gauge theoretic formulation. But it is
only the coefficient of the Nieh-Yan term that has a topo-
logical character.

III. MATTER COUPLING

As stated earlier, the matter can now be coupled to
gravity in a straightforward manner. As an example, we
consider a spin-1 Dirac fermion with its usual minimal
coupling to gravity. The Lagrangian density is'

1 Ui
L= 5¢ YR (w) + EINY

+ %[)_vy“DM(a))A ~ D (@Ay*A],  (41)

where

D, (0)A:=d,A+ %wﬂuoﬂ/\,

1y 1J
EAwM”a' .

D, (w)A:=d,A—
Notice that, unlike earlier attempts of setting up a theory
of fermions and gravity with the Barbero-Immirzi parame-
ter [7,8] where the Holst term was modified to include an
additional nonminimal term for the fermions, the
Lagrangian density here containing the Nieh-Yan density
does not require any further modification; just the usual
minimal fermion terms suffice. This is so because the
Nieh-Yan term is topological.
We expand the fermion terms as

£(F) i= 5[y Dy(@)A = Dy(wihy# Al

=[9,AIl —19,A] — NH(F) — N“H,(F)

1
- E w{JGlJ(F)J (42)

where IT and IT are canonically conjugate momenta fields
associated with A and A, respectively. Explicitly,’

1= _%)_Wt = —lfMIX)’I,
: 7 43)
i

II=——yx=2X2MyA
27 B 1Y

Hl/l = Elba[aAZ] + giaa/\/i -

(P V) + 10, V) + [0,A(1 + imys)IT — TI(1 + inys)d,A] —
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GVY(F)=Tol’A+ AoVl (44)
H,(F) = D, (w)AIl — IID,(w)A, (45)
H(F) = (—2e31%)[D,(w)Ad” 11 + " D, (w)A].

(46)
Incorporating these fermionic terms in the pure gravity
Lagrangian density given in Eq. (28), we write the full

Lagrangian density as

L =E%,AL + ['9,x; + 199,VE + 9,AI1 — T19,A

~ NH' = N°H, = 3ol G}, — &V} — vl)
— ph(1d — 1), 47
where now

G, =G +GV(F), H,=H,+H,F)

(48)
H' = H + H(F),
with G/, H,, and H as the contributions from the pure
gravity sector as given by Eqs. (13)—(15) or equivalently by
Eqgs. (19)-(22).
The various quantities above can then be rewritten in
terms of the basic fields as

Glooy = —9a(Ef — me Ed x,) + Ef xiyAq
+ (Z[ X éVX) - t Vt]a + [H(l + ”7’}/5)0-0!
+ M1+ inys)ogIl]; (49)

Gliy = 0,(€7°Ed y; + nE?) + eM(ALE] —
+ [[L(iys — N)ogA + Aliys —

{ixe — 17Vy)
n)oylIl]; (50)

[)_\O'OiH + 1:[0'01‘)\]142

i ——[EbxpAL + & — x - O — Vi, — neMALED — x;d — 1P VEAL
1 y
- 1+ 77 [ l]k(nGbooet + Gi’ét) X (Gboost nGrot ] (77)11; (51)
'Our Dirac matrices satisfy the Clifford algebra: y'y’ + y/y! = 29!/, 5!/ := diag(—1, 1, 1, 1). The chiral matrix y5 := iy%y'y2y3

and o/ 1= [y, ¥’].

>The fermions are Grassmann-valued, and the functional differentiation is done on the left factor which accounts for the signs in the

definitions of the conjugate momenta in (43).
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1 4
H' = —Ex H, — (Ex VL + JqgM)a,t? + (1 — x - X)[E?aag,. + —g,.E;.lEj?aaE{,]

(0 =x X)[
1+ n?

1=x-x
2(1 + n?)
(1 - X X) [ b 1
RS S O
VE( + 7?) 2
+ E¢xila A1 + imys)IT — TI(1 + im's)aa)\]

2 Tl e

[Zi - ZV;;(tg )][ Gboo%t

E, t[z Xj]gl

- EZXk[I:IO—Ol/\ + XU—OIH]AL 2(1 + )

where, as earlier, 2e2; = Ef, 2eXf = —E{ x;, and [},
and Ny, (M) are given by Eqs (26) and (27), respectively.
Also,

it = 1] = neSfAysy’A

i
=t§‘+—ne

Nz

+2M; (ITyso™ A + Aysa/11)], (53)

7} Mj(fh’s)\ - )_WSH)

M!
My,

2 = A + + 26 A
ki 2\/— 75(Xk71 XYk ki MO )

= 5(51«1 + MM (IysA — Aysll)
+iM M’ (Mysopyh + Ayso Il + (k< 1). (54)
The Hamiltonian density now reads

H = NH'+ NH}, + LoV G}, + £(V] = v))
+ a(tf — 7). (55)

The constraints associated with the fields N¢, N, &%, a),’ ,

£9, and ¢!, respectively, are
H,=0, H' =0 Gl =0  Gi=0
(56)
VI—ul =0, #—19=0. (57)

The remaining fields M*/, from 58111;“ SMFM = (), lead to the
constraint
(i — €}tV + fu + 3N + (1 + 97y

+ (k1) =0. (58)

ELEMAAL + EEA - £+ mepddBy + 300 02 =30

nGli, — t"’V,]a + neukt’“V"]
,,kt”’EJ {k] —2e3%[a,A(1 + inys)oTL + I1(1 + inys)o'’d,A]
2e31[—Aago’ T + Tlot o A1AL

(1=x v } |
A [(ntff‘ — €MV + fr + (L + )y + ZNkI(M)]Mkl: (52)

Using tf = ¢, we write

2fu + N
t;{a =~ _1 \/_EHI:M + 2Jkl + Eklnng)ostiI’

1+
2y + N
e ~ n\/EEz“[Gﬁn - %(lclk%nzkl +2u (59)

+ €xn Gboost) ]

Using (59) in (58) leads to
2f1+ Ny + 2(1 + 9*)Jy =0, (60)

generalizing the constraint (32) of the pure gravity case.
This in turn implies

i =0, (61)

corresponding to the constraint (33) for pure gravity.
Implementing this constraint along with those in (57)
reduces the Hamiltonian density to

H =NH'+ N°H, + 30/ G}, (62)
where the final set of constraints is obtained from
Egs. (49)—(52) by substituting 1 = 0 and dropping the
terms containing G{. . and G, in H), and H'. The M}, is
given by the solution of the constraint (60).

Time gauge

We may now make the gauge choice y; = 0 and solve
the boost constraint G{i . = 0 to obtain

i = 0,E¢ — in[IlysogA + Aysog Il (63)
Thus we have a canonical Hamiltonian formulation for a
theory of gravity with fermions in terms of real SU(2)
gauge fields Al with the following constraints:
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Gﬁ)t = naaE? + EijkA{lEZ + l.[].=.[')/50'0iA + XYSO-OiH] = 0,
Hj, = E} 9 Al + [0,A(1 + imys)TT — II(1 + inys)o, Al
_ 1—+ 772 [aaE? - netjkAJbEi
— in(IlysogA + AysogI1)]AL = 0;
1 .
H = [E;‘aag,. + EgiE?Eﬁ?aaE{,:I
_ 1 lEaEbAiAj+ Aan_3 .
T+ 2 L2 EiEnteds neijbidakly =714 L
+2E9[0,A(1 + inys) oo 11 + TL(1 + inys)og:d,A]
+ E¢ Aoy 11 + [ToAJAL

+ 2(1+772)[{ka + (1 + )Mt

1
— Z(MHMM — Mklel):I ~ 0’ (64)

where ¢! are given by (63) and
Mkl = 2[fkl + (1 + 772)sz] - 5kl[fn1m + (1 + 772)Jmm],

(65)
with
2fu =1+ n*)e*E{EL0,E? + n(E{AlL, — SYELAY)
+ (k< 1),
( ) 66)

2y = i5k1[ﬁ75)\ - )_‘751_[]'

This completes our discussion of a fermion minimally
coupled to gravity including the Nieh-Yan term. This
analysis can now be extended in an analogous manner to
a theory with any matter content with any couplings.

IV. CONCLUSIONS

We have demonstrated that inclusion of Nieh-Yan topo-
logical density in the Lagrangian density of a theory of

PHYSICAL REVIEW D 79, 044008 (2009)

gravity allows us, in the time gauge, to describe gravity in
terms of a real SU(2) connection. The set of constraints so
obtained in the Hamiltonian formulation, for n = 1, is the
same as that in the Barbero formulation. For other real
values of this parameter, we have the Immirzi formulation
with Barbero-Immirzi parameter y = 1~ !. Thus the pa-
rameter 7 has a similar interpretation as the 6 parameter of
QCD. Like the topologically nontrivial vacuum structure
of QCD, which reflects itself in terms of presence of the 6
parameter, the 1 parameter in the theory of gravity should
indicate a rich vacuum structure of gravity which needs
further and thorough investigation.

Like the 6 term in QCD, the Nieh-Yan term in gravity is
also universal; i.e., it does not need to be changed when
various kinds of matter are coupled to the theory. We have
discussed this in detail for spin- % matter coupled to gravity.
For other matter, for example, in the theories involving an
antisymmetric tensor gauge field, and also theories of
supergravity, the same Nieh-Yan topological term allows
a description in terms of a theory of a real SU(2) gauge
connection in the time gauge. This is to be contrasted with
the case of Holst modification of Hilbert-Palatini action,
where for different matter couplings, the corresponding
Holst term in the Lagrangian density needs to be changed
on a case by case basis so as to keep the equations of
motion unaltered [7,8]. It is worth emphasizing that the
Nieh-Yan density is entirely made up of geometric quan-
tities while the modified Holst terms contain matter fields
as well. The two get related only after using the connection
equation of motion.

In a complete theory of gravity, besides the Nieh-Yan
topological term, we need to include two other topological
terms: the Pontryagin density and the Euler density. This
introduces two additional topological parameters associ-
ated with such topological terms, besides the parameter n
we have discussed here. Any quantum theory of gravity
should have all of these three CP-violating topological
couplings.
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