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We prove that the stochastic and standard field-theoretical approaches produce exactly the same results

for the amount of light massive scalar field fluctuations generated during inflation in the leading order of

the slow-roll approximation. This is true both in the case for which this field is a test one and inflation is

driven by another field, and the case for which the field plays the role of inflaton itself. In the latter case, in

order to calculate the mean square of the gauge-invariant inflaton fluctuations, the logarithm of the scale

factor a has to be used as the time variable in the Fokker-Planck equation in the stochastic approach. The

implications of particle production during inflation for the second stage of inflation and for the moduli

problem are also discussed. The case of a massless self-interacting test scalar field in de Sitter background

with a zero initial renormalized mean square is also considered in order to show how the stochastic

approach can easily produce results corresponding to diagrams with an arbitrary number of scalar field

loops in the field-theoretical approach (explicit results up to four loops included are presented).
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I. INTRODUCTION

It has been known for a long time that light minimally
coupled scalar fields typically have anomalously high vac-
uum expectation values for even powers of fields in the de
Sitter background. In particular, the mean square of a free,
massive and minimally coupled to gravity scalar field in
the equilibrium, de Sitter invariant quantum state (the
Bunch-Davies vacuum) is [1]

h�2i ’ 3H4

8�2m2
� H2 (1)

if m2 � H2. Here H � _a=a is the Hubble parameter and
aðtÞ is the scale factor of a Friedmann-Robertson-Walker
(FRW) cosmological model. For the particular case m ¼ 0
and h�2i ¼ 0 (or small) at the beginning of the de Sitter
stage (set at t ¼ 0 here), we have

h�2i ’ H3t

4�2
(2)

which grows without bound [2–4]. This anomalous growth
is an essentially infrared effect, it occurs due to field
Fourier modes with wavelengths far exceeding the de
Sitter event horizon. Thus, it is not a consequence of the
Gibbons-Hawking effective temperature T ¼ H=2� [5]
experienced by a point observer inside her/his de Sitter
horizon. In particular, in contrast with temperaturelike
effects which should be universal for fields of all spins,
this effect occurs for minimally coupled light scalar fields
and gravitons only (but not for, e.g., photons or light
fermions).

Because of continuous creation of infrared modes and
growth of their occupation number, the quantum scalar
field can be split into a long wave (coarse-grained) com-
ponent and a short-wave (perturbative) one. Then it can be
proved that the former component effectively becomes
quasiclassical, though random (i.e. all noncommutative
parts of it may be neglected), and it experiences a random
walk described by the stochastic inflation approach. In
some specific case but beyond one-loop approximation,
this approach was used already in [3]; see [6] for the
rigorous derivation in the generic case when this scalar
field is a slow-rolling inflaton itself and for a number of
analytic nonperturbative results.1 The case of a scalar field
with the quartic self-interaction in the exact de Sitter
space-time was first studied using this approach in [9],
and a number of nonperturbative results beyond any finite
number of loops in quantum field theory (QFT) perturba-
tive expansion were obtained there.
However, it should be emphasized that, just because of

the nonperturbative nature of the stochastic approach to
inflation, it is based on a number of heuristic approxima-
tions. Therefore, it is very important to check, whenever
possible, results obtained by its application using the stan-
dard perturbative QFT in curved space-time. Also, an
inflationary space-time is not the exactly de Sitter one,
_H � 0, that can often lead to a drastic change in conclu-

1A description of the growth (2) in the free massless case in
terms of the Fokker-Planck equation was first considered in [7].
The stochastic approach was applied to the description of eternal
inflation in [8].
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sions. That is why our purpose here is to consider new
applications of this approach to inflationary space-times
with _H � 0, though with j _Hj � H2 (as required by ob-
servational data on a slope of the primordial power spec-
trum of scalar perturbations in the Universe), and to
compare results obtained in this way with those directly
following from perturbative QFT in curved space-time.
Our paper contains several novel results referring both to
inflationary space-times and to the exact de Sitter space-
time beyond one-loop approximation. Also, our results
shed new light on the much discussed problem of the
choice of an independent time variable in the Langevin
and Fokker-Planck equations in the stochastic approach.
Finally, we show that in most cases the mean square of a
scalar field at the last stages of inflation is very different
from the instantaneous Bunch-Davies value (1)—even
‘‘eternal’’ inflation (which does occur in the inflationary
models we consider for a sufficiently large initial value of
an inflaton field) is not eternal enough for a light scalar
field to reach equilibrium.

The paper is organized as follows. In Sec. II the growth
of fluctuations of a light test field during inflation driven by
a massive inflaton is investigated. We prove that the results
obtained in [10,11] using QFT with adiabatic regulariza-
tion in curved space-time can be obtained from a general
diffusion equation with a noise term which has the same
form as that in the Langevin equation for an inflaton field in
the stochastic inflation approach [6]. In Sec. III more de-
tails are presented on how the mean square of a test scalar
field with an arbitrary (though light, m � H) mass is
obtained using adiabatic regularization in curved space-
time with a slowly changing curvature. Generation of light
scalar field fluctuations in inflationary models can be so
strong as to dominate finally the classical energy density of
an inflaton and to drive a second stage of inflation. As an
example, in Sec. IV we derive the conditions under which
such a second stage can occur for the m2�2 inflationary
model, with or without a break between the two stages of
inflation. In Sec. V we discuss the impact of this infla-
tionary particle production on the moduli problem. We
show that quantum moduli problems are worse than the
classical one and we improve on previous investigations
[12,13]. In Sec. VI we discuss the diffusion (Langevin)
equation for inflaton fluctuations in the case of a generic
chaotic power-law potential Vð�Þ / �n. Using the results
obtained by QFT methods, we show that, if one is inter-
ested in metric fluctuations, this diffusion equation should
be formulated in terms of the independent time variable lna
which is directly related to the number of e-folds during
inflation N (this was among the possibilities envisioned in
[6]). In Sec. VII it is shown that the stochastic method can
also be used beyond the one-loop approximations for a
self-interacting scalar field in the exact de Sitter space-
time, again leading to the same results as obtained by QFT
methods. We conclude in Sec. VIII and discuss the pertur-
bative expansion of the diffusion equation in the Appendix.

II. GROWTH OF LIGHT TEST FIELD
FLUCTUATIONS DURING MASSIVE INFLATION

IN STOCHASTIC APPROACH

Let us first consider the production of particles and
fluctuations for a test quantum field � with a small mass
m � H. Thus, we neglect the � energy density and pres-
sure in the background FRWequations. Also, it is assumed
that there is no Bose condensate of �, h�i ¼ 0.
As an example, in this section we limit ourselves to the

simplest case of inflaton with the quadratic potential. Some
of the QFT results for this model have already been ob-
tained in [10,11]. The Friedmann equation for the massive
inflaton is

H2 ¼ ��

3M2
pl

¼ 1

3M2
pl

� _�2

2
þm2 �

2

2

�
’ m2

M2
pl

�2

6
; (3)

where 8�G ¼ M�2
pl . In the slow-roll approximation, the

inflationary trajectory is well approximated by

H ¼ HðtÞ ’ H0 �m2

3
ðt� t0Þ; (4)

�ðtÞ ’ �0 �
ffiffi
2
3

q
mMplðt� t0Þ; (5)

aðtÞ ’ a0 exp

�
3

2m2
ðH2

0 �H2Þ
�
; (6)

where the subscript 0 denotes the beginning of inflation
(these expressions were first presented in [14] in the con-
text of a closed bouncing FRW universe). In the rest of the
paper, we set a0 ¼ 1 for simplicity. The equation for
inhomogeneous Fourier modes of � is

€� k þ 3H _�k þ
�
k2

a2
þm2

�

�
�k ¼ 0; (7)

and we denote m2
� ¼ �m2. Let us first discuss the case

m� ¼ m, or � ¼ 1, in order to see the relation between

renormalized QFT results and the stochastic approach.
This case was studied in [10] where inflaton fluctuations
in a rigid space-time were considered. For the value of h�2i
renormalized by adiabatic subtraction, one obtains in the
leading order:

h�2iREN ’ H2

4�2
loga; (8)

This result agrees with the solution of the differential
equation for h�2iREN:

dh�2iREN
dt

þ 2m2

3HðtÞ h�
2iREN ¼ H3ðtÞ

4�2
(9)

[see e.g. Eq. (10) of paper [3] ] withH not constant in time,
but having the time evolution given by Eq. (4). In the scope
of the stochastic approach, the right-hand side of Eq. (4)
arises from a noise term in the Langevin equation for the

FINELLI, MAROZZI, STAROBINSKY, VACCA, AND VENTURI PHYSICAL REVIEW D 79, 044007 (2009)

044007-2



large-scale part of �, see Eq. (36) below, coarse-grained
over the physical 3D volume �ð�HÞ�3 which slowly ex-
pands during inflation. Here � � 1 is an auxiliary parame-
ter which enters into the definition of the coarse-graining
scale kcg ¼ �aH in momentum space. Since we are inter-

ested in the leading order of the slow-roll approximation,
terms of order _H=H2 coming either from taking an explicit
time derivative of H or from solutions of the wave
equation (7) at the coarse-graining scale may be neglected.
With the same accuracy, one may alternatively take the
physical coarse-graining scale kcg=a to be exactly constant

during inflation and equal to �HðtfÞ, where tf denotes the

end of inflation.
The general solution to Eq. (9) in the background (4) is

indeed

h�2iREN ¼ CH2 þ H2

4�2
loga

¼ CH2 þ 3H2

8m2�2
ðH2

0 �H2Þ; (10)

whereC is an integration constant and we have used Eq. (6)
in the second expression. For a long stage of inflation,
when HðtÞ � H0, we have [10]

h�2iREN ’ CH2 þ 3H2

8m2�2
H2

0

¼ h�2ðt0ÞiREN H2

H2
0

þ 3H2

8m2�2
H2

0 : (11)

The regimeHðtÞ � H0 occurs only when the number of e-
folds is N � N0 ¼ 3H2

0=ð2m2Þ.
The stochastic equation (9) can be easily extended to a

generic m� not coinciding with the inflaton mass m:

dh�2iREN
dt

þ 2m2
�

3HðtÞ h�
2iREN ¼ H3ðtÞ

4�2
: (12)

Its solution is

h�2iREN ¼ C1H
2� þ 3H4

8�2m2ð�� 2Þ

¼ C2H
2� þ 3H2�

8�2m2ð2� �Þ ðH
4�2�
0 �H4�2�Þ;

(13)

where C1, C2 are integration constants. For the particular
marginal value � ¼ 2, Eq. (13) should be replaced by

h�2iREN ¼ C2H
4 � 3H4

4�2m2
log

�
H

H0

�
: (14)

It is important to note that h�2iREN is different from the
instantaneous Bunch-Davies equilibrium value
3H4=ð8�2m2

�Þ in Eq. (1) for any �. Since HðtÞ decreases
with time, it is only for � � 2 that h�2iREN may approach

(but not become exactly equal to) the instantaneous Bunch-
Davies vacuum value at the last stage of inflation.
When HðtÞ � H0 and �< 2,

h�2iREN ’ h�2ðt0ÞiREN H2�

H2�
0

þ 3H2�H4�2�
0

8m2�2ð2� �Þ : (15)

In the limit � � 2 (but � � 0), � renormalized fluctua-
tions—and therefore the � energy density—depend non-
trivially on the duration of inflation [10,11]. Note that only
for � ¼ 1 (i.e. m� ¼ m) and at the beginning of inflation,

h�2i �H3
0t as occurs in the exact de Sitter space-time.

This shows the occurrence of a new characteristic scale

in the problem, namely
ffiffiffiffiffiffiffiffiffi
� _H

p
. In contrast to the de Sitter

space-time, where H is the only scale present, in inflation

we have also
ffiffiffiffiffiffiffiffiffi
� _H

p
, i.e. mffiffi

3
p in the model under considera-

tion. Fields which are light compared to the Hubble pa-
rameter are subsequently divided in two classes: the ones

with m� >
ffiffiffiffiffiffiffiffiffiffiffi
�3 _H

p
and the ones with m� <

ffiffiffiffiffiffiffiffiffiffiffi
�3 _H

p
. Their

corresponding particle production rates look different.
A homogeneous solution of Eq. (12) given by the term

containing C1 in Eq. (13) is also the slow-roll solution for
�2
cl, with �cl being the classical homogeneous field �ðtÞ. In

the case �< 2, this part of the general solution becomes
negligible with respect to generated quantum fluctuations
as inflation develops if h�2ðt0ÞiREN � 3H4

0=ð8�2m2ð2�
�ÞÞ [see Eq. (15)]. In particular, if zero initially, h�2iREN
becomes larger than the instantaneous Bunch-Davies equi-
librium value when

H

H0
<

�
�

2� �

�
1=½2ð2��Þ�

: (16)

The energy density of � becomes comparable to that of the
inflaton and cannot be neglected further on when

��

��
� m2

�h�2iREN
6H2M2

pl

� 1: (17)

This never happens for � � 1, but for �< 1 backreaction
effects become important when

HðtÞ 	 Hðt?Þ ¼ H0

�
H0

ffiffiffiffi
�

p
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �

p
Mpl

�
1=ð1��Þ

: (18)

Note that the dominant term in �� is m2h�2iREN, the �

kinetic and gradient energy are subleading. Also, we al-
ways consider H0 < �Mpl with � ¼ Oð1Þ.

III. RENORMALIZATION APPROACH

We now wish to present the renormalized h�2iREN for a
generic mass m� obtained using dimensional regulariza-

tion and adiabatic subtraction. Such a calculation goes
beyond [10], which addressed the first case in the previous
section (� ¼ 1) only.

GENERATION OF FLUCTUATIONS DURING INFLATION: . . . PHYSICAL REVIEW D 79, 044007 (2009)

044007-3



Let us consider solutions of the wave equation (7) which
give time-dependent coefficients in the expansion of the
quantum field � in terms of the Fock annihilation and
creation operators for each Fourier mode k, k ¼ jkj. We
use a set of approximate solutions of Eq. (7), chosen so as
to separate the ultraviolet (UV henceforth) and infrared (IR
henceforth) domains for k > ��aH and k < ��aH, respec-
tively (here �� < 1 need not coincide with the parameter �
in the definition of the coarse-graining scale introduced
above).

The UV solution whose contribution will mostly be
removed by the adiabatic regularization can be written in
the generic form,

�UV
k ¼ 1

a3=2

�
��

4H

�
1=2

Hð1Þ
	

�
�k

aH

�
; (19)

for suitable functions 	 and � (whose values are normally
close to 3=2 and 1, respectively, which are the values in the
lowest order of the slow-roll approximation).

The most important contribution is the far IR one. Such a
solution can be computed in the same approximation as
used in our previous work [11], where a match at the
moment tk when k ¼ ��aðtkÞHðtkÞ with the UV solution is
imposed, together with the requirement of being a solution
of (7) in the deep IR limit k ! 0. In the leading order, we
choose the form

�IR
k ¼ 1

a3=2ðtÞ
�
��

4HðtÞ
�
1=2

�
HðtkÞ
HðtÞ

�
x
Hð1Þ

3=2

�
�k

aðtÞHðtÞ
�
; (20)

where the parameter x can be fixed using the second
constraint. Note for the later use that at the moment tk
one has

HðtkÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

_H

H2
0

log
k

��HðtkÞ

vuut

’ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

_H

H2
0

log
k

��H0

vuut : (21)

Substituting Eq. (20) into Eq. (7) and considering the deep
IR region, one finds that x ¼ 1� �.

In order to compute the renormalized value of h�2i at the
same scale as is used in the stochastic approach, we note
that the contribution of IR modes should be taken up to k ¼
�aðtÞHðtÞ (the UV ones cancel due to adiabatic subtrac-
tion). Then it is natural to define tk by using �� ¼ � in
Eq. (21) in order to avoid terms like log ��=�. We shall
therefore make this choice.

As mentioned above, the leading contribution to the
renormalized value of h�2i is given by the integration
over IR modes. In the leading order of the slow-roll ap-
proximation, one obtains the following result:

h�2iREN ’ h�2iIR ’ H2�ðtÞ
4�2

Z log�aðtÞHðtÞ

logl
H2�2�ðtkÞd logk;

(22)

with l ¼ �H0 and where the expansion of the Bessel
function for a small argument is performed. Thus,
adiabatic subtraction cancels the UV contribution more
and more accurately as inflation develops. This defines a
dynamical cutoff, and the IR part below this cutoff soon
becomes dominant. Taking the time derivative of Eq. (22),
one obtains

d

dt
h0j�2j0iREN ¼ H3ðtÞ

4�2
þ 2�

_H

H
h0j�2j0iREN: (23)

This coincides with Eq. (12) for a generic massm2
� ¼ �m2

since the direct computation of the integral in Eq. (22) in
the slow-roll approximation leads to the second expression
in Eq. (13) with C2 ¼ 0. Therefore, the two methods of
doing this calculation agree.

IV. CONSEQUENCES OF PARTICLE
PRODUCTION: SECOND STAGE OF INFLATION

Let us discuss in more detail how the backreaction of �
may become important. If � � 1, then the backreaction of
� will never be important during inflation [and afterwards,
too, if the inflaton does not decay faster than � during (p)
reheating]. So, we consider �< 1 in the following.
Let us introduce a new quantity 
 ¼ m2M2

pl=H
4
0 .

Backreaction of � becomes important before or after the
end of inflation driven by the inflaton� ifHðt
Þ in Eq. (18)
is greater or smaller thanm (which is the scale of the end of
inflation in the m2�2 inflationary model), respectively.
Therefore, � fluctuations become important before the
end of inflation if�

H0

m

�
2ð1��Þ H2

0

16�2M2
pl

�

2� �
> 1: (24)

Thus, for� � 1 there is a second stage of inflation without
a break if

1



¼ H4

0

m2M2
pl

>
32�2

�
; (25)

and with a break if the < holds in the equation above. A
second stage of inflation without a break starts in the
presence of a light field with mass m� in the range

1 � � ¼ m2
�

m2
> 72�2

M2
pl

m2N2
0

! m2
� > 72�2

M2
pl

N2
0

; (26)

which is a very broad range for large enough N0. A second
stage of inflation with a break would occur for smaller m�.

In such a case the slow roll of the inflaton field practically
ends, but inflation would be sustained by quantum fluctua-
tions of � corresponding to a much lower value for j _Hj �
m2=3 (see also [15–17] for examples of inflation as a
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whole, or its second stage driven by quantum fluctuations
of a scalar field). Note that a second stage of inflation can
occur even if curvature during the first stage of inflation is
low, H0 � Mpl, usually after a break in this case. Thus, a

second stage of inflation seems to be very probable if the
inflaton is not the lightest field around. Also, even without
the second stage, � may play a role of a curvaton [18–21].

V. CONSEQUENCES OF PARTICLE
PRODUCTION: IMPACT ON THE MODULI

PROBLEM

On considering � as a modulus, the above calculations
allow a better estimate of the moduli abundance produced
by the expansion during inflation. The previous section
shows that the moduli can even drive a second inflationary
stage if �< 1 and the energy stored will dominate before
the end of inflation [see Eq. (18)]. We focus here on the
case for which � does not dominate during inflation.

In order to estimate the ratio n�=s (where n� ¼ ��=m�

and s are the number of � particles and the entropy of
produced particles, respectively), which is required to be
less than 10�12, we proceed as in [13]. We assume the
immediate thermalization for the inflaton and � after the
accelerated expansion:

�� ¼ 3H2M2
pl ’

�2gT4

30
; s ¼ 2�2gT3

45
; (27)

where T is the reheating temperature and g is the number
of species (for instance g ¼ 106:75 for the standard model
[22]).

We first consider � � 2 and obtain

n�

s
’ 5g

96� 102
T5

m�M
4
pl

: (28)

Because of strong positive dependence on the reheating
temperature, the requirement n�=s < 10�12 can easily be

satisfied.
We now consider �< 2, the case for which particle

production is very different from the one extrapolated
from the exact de Sitter space-time. The energy density
stored in � for H � H0 is

�� ’ m2
�

h�2iREN
2

’ �
3H2�H4�2�

0

16�2ð2� �Þ ; (29)

and we obtain

n�
s

’ 3

64�2

�T

m�

H2��2

2� �

H4�2�
0

M2
pl

/ T4��3: (30)

This equation replaces Eq. (4.16) of [13].2 Note that the

dependence on T is rather peculiar: for �> 3=4, it grows
with T, while for �< 3=4, it decreases with T. For �� 0,
the ratio is

n�

s
� �

270

128�4

H4
0

m�gT
3
: (31)

Therefore the problem of light moduli cannot be solved by
lowering the reheating temperature in them2�2 model and
is much worse than expected in [13].

VI. INFLATON FLUCTUATIONS AND
STOCHASTIC APPROACH FOR

GAUGE-INVARIANT FLUCTUATIONS

An inflaton has an effective mass which is much smaller
than the Hubble parameter during inflation. Therefore, the
above approach should hold for inflaton fluctuations, too.
However, such a case differs from the previous one, since
scalar metric fluctuations should be taken into account in
addition to field (inflaton) ones. In other words, the quan-
tity which is quantized is a linear combination of field and
metric fluctuations. As in [11], we choose the gauge in
which inflaton fluctuations coincide with the gauge-
invariant Mukhanov variable which is canonically quan-
tized [23]. Then our results will be valid in any gauge, if a
gauge-invariant variable is considered.
The time evolution of the renormalized inflaton fluctua-

tions for the m2�2 inflationary model has been already
obtained in [11,24] using a perturbative QFT analysis of
the Einstein equations. To the lowest order in the slow-roll
and in long-wavelength approximations, equations for
fluctuations in the first [11] and second [24] order are

3H� _�ð1Þ þ ðm2 þ 6 _HÞ��ð1Þ � 0; (32)

3H� _�ð2Þ þ ðm2 þ 6 _HÞ��ð2Þ �
_�

2H

m2

M2
pl

ð��ð1ÞÞ2: (33)

We now observe that these two equations can be ob-
tained order by order from the expansion around a classical

solution, �ðt;xÞ ¼ �clðtÞ þ ��ð1Þ þ ��ð2Þ, of the equa-
tion:

d�

dN
¼ � V�

3H2
; (34)

where N ¼ logða=a0Þ is the e-fold number from the begin-
ning of inflation. This suggests that the equation (34) is
valid to all orders in �� � ���clðtÞ in the context of the
approximation used. Returning to the time evolution and
using dN ¼ Hdt, one has

2Equation (4.16) of [13] agrees with Eq. (30) for � ¼ 1 only;
nevertheless, it is used for any �. Also, the growth law (2) is used
there which is valid for � ¼ 1 only as pointed above.
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1

H

d

dt
��¼�

�
d

d�

�
V�

3H2

��
�¼�cl

��

� 1

2

�
d2

d�2

�
V�

3H2

��
�¼�cl

ð��Þ2 þOðð��Þ3Þ

’ �
�
V��

3H2
�

�
V�

3H2Mpl

�
2
�
�¼�cl

��

� 1

2

�
V���

3H2
� V��V�

3H4M2
pl

þ 2V3
�

27H6M4
pl

�
�¼�cl

ð��Þ2

þOðð��Þ3Þ; (35)

where V� ¼ dV
d� and so on. The quadratic inflaton potential

leads to the result in Eqs. (32) and (33) after expanding

�� ¼ ��ð1Þ þ ��ð2Þ and taking the coefficients in the
brackets to the lowest order in slow roll. The same method
may be used for an arbitrary inflaton potential Vð�Þ.

How does one rederive these results in the stochastic
approach? The consideration above suggests that one has
to choose the time variable N ¼ R

HðtÞdt in the Langevin

stochastic equation for the large-scale part of � for this
aim. Then it acquires the form [see Eq. (55) of [6]]

d�

dN
¼ � V�

3H2
þ f

H
;

hfðN1ÞfðN2Þi ¼ H4

4�2
�ðN1 � N2Þ; (36)

where H2ðtÞ ¼ Vð�ðtÞÞ=3M2
pl in this (leading) order of the

slow-roll approximation, thus, H may be considered as a
function of �. As proved in [6] (see also [9]), though
formally the noise fðNÞ is an operator quantity containing

the Fock annihilation and creation operators ak and ayk for

modes with k ¼ �aH, its values in different points of space
and for different N are commutative. Thus, it is equivalent
to some classical noise whose distribution function appears
to be Gaussian since the quantum noise f is linear in ak and

ayk . Correspondingly, the large-scale part of the quantum

inflaton field �̂ is equivalent to a classical stochastic field
� with some normalized probability distribution �ð�;NÞ,R
�ð�;NÞd� ¼ 1, in the sense of equality of all possible

classical and quantum expectation values:

hF½�̂�iREN ¼
Z

�ð�ÞF½��d�; (37)

where Fmeans any functional which may include time and
spatial derivatives of any order.3

Following [6], the number of e-folds N was considered
as a time variable in the stochastic Langevin equation in a
number of papers, e.g. in [28] and most recently in [29],
while in many other ones the proper time twas used, e.g. in
[25,30–32]. This usage of different time variables should
not be mixed with the invariance of all physical results with
respect to a (deterministic) time reparametrization t ! fðtÞ
which is trivially satisfied after taking the corresponding
change in the metric lapse function into account. In con-
trast, the transformation from t to N made using the
stochastic function Hð�ðtÞÞ leads to a physically different
stochastic process with another probability distribution.
Our new statement in this paper following the arguments
above is that one should use the N variable when calculat-
ing mean squares of any quantity containing metric fluc-
tuations like the Mukhanov variable �� or the gauge-
invariant metric perturbation � . Otherwise, incorrect re-
sults would be obtained using the stochastic approach
which would then not coincide with those obtained using
perturbative QFT methods. This statement is further sup-
ported by exact nonperturbative results (valid to all orders
of metric perturbations) from the general �N formalism
which relates the value of � after inflation to the difference
in the number of e-folds N in different points of space—it
was first used in [3] for one inflaton field, see Eq. (17) of
this paper, and then generalized to multicomponent infla-
tion in [33,34], see also [35,36] for its recent developments.
On the other hand, the usage of the t variable is natural if

one is interested e.g. in differences of the local duration of
inflation in proper time in different points of space which,
in principle, may be measured using a spatial distribution
of a phase of the wave function of a heavy particle with a
massm � H. Thus, the choice of a proper time variable in
the stochastic equation is not an absolute one but is dictated
by the physical nature of ‘‘clocks’’ relevant to observable
effects. In our case, N is the ‘‘clock.’’ For example, if a
rather small (� 10%) contribution from the integrated
Sachs-Wolfe effect due to the existence of dark energy
(or a cosmological constant) in the present Universe is
neglected, a large angle anisotropy of the cosmic micro-
wave background temperature for multipoles l < 50 is just
given by �N � N � hNi at the last scattering surface:
�T=T ¼ ��N=5, so that a larger local amount of inflation
produces a negative spot in the cosmic microwave back-
ground temperature map (here h imeans averaging over the
2-sphere—the last scattering surface).
Now, in order to compare with perturbative QFT results,

let us assume that fluctuations in � are still much less than
the classical background value �clðNÞ: j��j �
j���clj � j�clj. In the rest of this section, we shall
denote by H and � their classical background values.
Then the noise term in Eq. (36) may be considered as a
perturbation. In the first order, after expanding the first
term in the right-hand side of Eq. (36) in powers of ��,

we get the following equation for � � ��ð1Þ (the super-

3Note that the so-called volume-weighted averaging [25], for
which � is not normalizable and thus loses the sense of a
probability distribution, is nowhere used in this paper, as well
as in [6,9]. For this reason, criticism of this approach contained
e.g. in the recent paper [26] has no application to our results. See
[27] for the most elaborate proposal of how to cure problems of
the volume-weighted approach.
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script 1 denotes the order of expansion):

d�

dN
þ 2M2

pl

�
H0

H

�0
� ¼ f

H
; (38)

where the prime denotes the derivative with respect to �.
Multiplying both sides of Eq. (38) by �, averaging and
using the relation hf�i ¼ H3=8�2, we obtain the equation

for u � hð��ð1ÞÞ2i corresponding to the one-loop approxi-
mation of QFT in curved space-time:

du

dN
þ 4M2

pl

�
H0

H

�0
u ¼ H2

4�2
: (39)

Equation (39) is valid for any potential Vð�Þ satisfying the
slow-roll conditions. Its generic solution is

u ¼ � H02

8�2H2M2
pl

Z H5

H03 d�; (40)

where the integration variable has been changed from N to
� using the slow-roll relation dN ¼ �H=ð2H0M2

plÞd�.

Applying this solution to the case Vð�Þ ¼ m2�2=2, H ¼
m�=ð ffiffiffi

6
p

MplÞ and assuming uð0Þ ¼ 0, we obtain

u ¼ H6
0 �H6

8�2m2H2
; (41)

that just coincides with the result derived in [11] using QFT
methods. Also, applying Eq. (40) to power-law inflation
where aðtÞ � tp with p � 1 and H exponentially depends
on �, we easily recover the correct leading renormalized
value of u obtained in [37].

In the Appendix, the mean value of a second order field

fluctuation h��ð2Þi is calculated and also conditions of the
validity of the perturbation theory are reviewed.

To emphasize the difference, note that if we repeat the
same procedure using the stochastic equation (36) written
in terms of the independent variable t, dt ¼ dN=H, we
would obtain a different result [25,32]:

~u ¼ � H02

8�2M2
pl

Z H3

H03 d�; (42)

which, in particular, reduces to 3ðH4
0 �H4Þ=ð16�2m2Þ for

massive inflation. As already explained above, the discrep-
ancy between (40) and (42) is not surprising and reflects
the fact that different stochastic processes are considered,
which is why we wrote ~u instead of u in Eq. (42).

The general result presented in Eq. (40) for the renor-
malized value of the average squared gauge-invariant mas-
sive inflaton fluctuation has been explicitly verified by the
authors in the context of QFT with renormalization ob-
tained on employing the adiabatic subtraction prescription.
In particular, we have considered a family of chaotic infla-
tionary models with potentials Vð�Þ ¼ �

n 

n�4�n and ob-

tained for such models results similar to those presented in
Sec. II, but valid for gauge-invariant fluctuations. Equation

(40) has been found to give renormalized values in com-
plete agreement with our perturbative QFT calculations in
the slow-roll approximation.

VII. FOUR-LOOP CALCULATION FOR A
MASSLESS SELF-INTERACTING TEST SCALAR

FIELD IN THE STOCHASTIC APPROACH

In the previous sections, only the mean value of

hð��ð1ÞÞ2i corresponding to one scalar loop in external
background curved space-time was calculated (with small
metric fluctuations taken into account also for the case of
an inflaton scalar field). However, as was shown in [6,9],
the stochastic approach can reproduce QFT results for any
finite number of scalar loops and even beyond (e.g. results
obtained using instantons). As an example, let us consider
a massless self-interacting test scalar field � with the
potential Vð�Þ ¼ ��4=4 in the exact de Sitter space-time
with the curvature H0 following [9]. Then N ¼ H0t, and it
makes no difference which time variable is used in the
stochastic Langevin equation (36). It is straightforward to
construct the corresponding Fokker-Planck equation for a
normalized probability distribution �ð�;NÞ:4

@�

@N
¼ �

3H2
0

@ð��3Þ
@�

þ H2
0

8�2

@2�

@�2
: (43)

Multiplying Eq. (43) by �n where n is an even integer
and integrating over � from �1 to 1, we obtain the
following recurrence relation (cf. also [38]):

d

dN
h�ni ¼ � n�

3H2
0

h�nþ2i þ nðn� 1ÞH2
0

8�2
h�n�2i: (44)

Then solving Eq. (44) iteratively beginning from n ¼ 2
with the initial conditions h�nð0Þi ¼ 0 for all n, we find

h�2iREN ¼ H2
0N

4�2
ð1þ �1�X

2 þ �2�
2X4 þ �3�

3X6 þ � � �Þ;

h�4iREN ¼ 3

�
H2

0N

4�2

�
2ð1þ 
1�X

2 þ 
2�
2X4 þ � � �Þ;

h�6iREN ¼ 15

�
H2

0N

4�2

�
3ð1þ �1�X

2 þ � � �Þ; (45)

where X ¼ N=ð2�Þ and

�1 ¼ � 2

3
�2 ¼ 4

5
�3 ¼ � 424

315


1 ¼ �2 
2 ¼ 212

45
�1 ¼ �4:

(46)

The result for �1 agrees with the perturbative QFT com-
putations in [39,40] (see also [41]). Since the
�-independent term in the expression for h�2iREN corre-

4This one point distribution function should not be confused
with the energy density �� of a test � field considered in Secs. II,
III, IV, and V.
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sponds to one scalar loop and each next power of � requires
one more scalar loop, the total result for h�2iREN presented
in (45) and (46) requires consideration of diagrams up to
four loops included in the perturbative QFT treatment.

VIII. CONCLUSIONS

We have studied the application of the stochastic ap-
proach to inflationary space-times with _H � 0 and com-
pared its results to those obtained using the standard QFT
in curved space-time, extending the results of [10,11]. We
can summarize our main results by the following points:

(1) On considering a test field � with mass m� in m2�2

inflation, we have shown that the instantaneous
Bunch-Davies expectation value h�2i ¼
3H4ðtÞ=ð8�2m2

�Þ is never reached. It may be ap-

proached at the end of inflation for m� � m only.

If m� � m, the value of h�2i at the end of inflation

is quite different from that extrapolated from the
exact de Sitter space-time.

(2) We have analyzed implications of the particle pro-
duction peculiar to m2�2 inflation. The moduli
problem is more serious than in the classical coun-
terpart and also with respect to previous quantum
investigations [13].

(3) Concerning gauge-invariant inflaton fluctuations,
we have clarified why the stochastic Langevin equa-
tion for the large-scale part of an inflaton field
should be formulated using the number of e-folds
N ¼ lnða=a0Þ as an independent time variable, if
one is interested in any result regarding gauge-
invariant inflaton fluctuations and metric perturba-
tions. The mean square of inflaton fluctuations cal-
culated in this way has been shown to coincide with
the earlier result of [11] obtained using standard
perturbative methods.

(4) In the inflationary space-times studied here, neither
test fields nor inflaton mean square expectation
value admit a static equilibrium solution.

(5) The equivalence between the stochastic and the
standard field-theoretic approaches works beyond
the one-loop approximation to QFT in curved
space-time.

ACKNOWLEDGMENTS

A. S. was partially supported by the Russian Foundation
for Basic Research, Grant No. 08-02-00923, and by the
Research Program ‘‘Elementary Particles’’ of the Russian
Academy of Sciences. This work was started during visits
of A. S. to Bologna in 2003–2005 financed by INFN: we
thank INFN for support. Some of these results were pre-
sented at the International Conference on Theoretical
Physics in the Physical Lebedev Institute, Moscow
(Russia), April 11–16, 2005.

APPENDIX

In this Appendix, we shall denote by H and � their

classical background values; we also use u � hð��ð1ÞÞ2i.
Starting from Eq. (36), and performing a perturbative
expansion, it is easy to derive for the average second order

fluctuation h��ð2Þi a time evolution also governed by (see
also [28])

d

dt
h��ð2Þi ¼ H3

16�2

�
V�

V

�
�

�
1

3H
V�� þ 2

_H

H

�
h��ð2Þi þ 1

2

�
�
� 1

3H
V��� þ

�
1

H
V�� þ 4

_H

H

�
V�

V

�
u:

(A1)

The general solution of Eq. (A1) with the initial condition
��ðt ¼ tiÞ ¼ 0 is given by

h��ð2Þi ¼
�
V�

V

�Z t

ti

dt0
�
V

V�

��
H3

16�2

�
V�

V

�
þ 1

2

�
�
� 1

3H
V��� þ

�
1

H
V�� þ 4

_H

H

�
V�

V

�
u

�
:

(A2)

In the particular case of a chaotic inflation with Vð�Þ ¼
m2

2 �2 we obtain Eq. (41) for first order and

h��ð2Þi ¼
_�

32�2m2HM2
pl

�
H6

0 �H6

H2
� 3ðH4

0 �H4Þ
�
;

(A3)

for second order. Note that the solution (41) clearly agrees
with the solution (13) for suitable initial conditions and
� ¼ �1.
Now we wish to study the validity of the perturbative

expansion by considering the ratio h��ð2Þiffiffi
u

p and
ffiffi
u

p
� . Using the

former results one obtains

h��ð2Þiffiffiffi
u

p ¼ � 1

8�
ffiffiffi
3

p 1

Mpl

1
H2 ðH6

0 �H6Þ � 3ðH4
0 �H4Þ

ðH6
0 �H6Þ1=2

(A4)

ffiffiffi
u

p
�

¼ 1

4�
ffiffiffi
3

p 1

Mpl

1

H2
ðH6

0 �H6Þ1=2: (A5)

Thus, as we can see, those two ratios differ only by a factor
2 for the leading term toward the end of inflation. To see
when the perturbative expansion is no longer useful, we
can use the variable ~N defined as the number of e-folds
away from the maximum value Nmax ¼ N0 ¼
logamax

aðtiÞ ¼ 3
2

H2
0

m2 , namely,

Nmax � ~N ¼ log
aðtÞ
aðtiÞ !

~N ¼ 3

2

H2

m2
: (A6)

Using this variable one obtains, to leading order, for the
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ratio (A4) the following result:

h��ð2Þiffiffiffi
u

p ¼ �
ffiffiffi
2

p
24�

m

Mpl

Nmax

~N
ðNmax � ~NÞ1=2: (A7)

If we require that the absolute value of this ratio be less

than one we obtain, under the condition 768�2 M2
pl

H2
0

� 1, the

following approximate constraint:

~N � 3
ffiffiffi
3

p
48�

H3
0

Mplm
2
: (A8)

If we consider the end of inflation when H ¼ m this
corresponds to ~N ¼ 3=2, so in order to have a perturbative
expansion with small terms for all of the duration of

inflation we obtain, on considering the condition (A8)
with ~N ¼ 3=2, the following condition on H0:

H0 <

�
24�ffiffiffi
3

p Mplm
2

�
1=3

; (A9)

similarly on considering the ratio (A5) one obtains the
condition

H0 <

�
12�ffiffiffi
3

p Mplm
2

�
1=3

: (A10)

The above correspond, for the particular numerical value
Mpl ¼ 105 m, respectively, to H0 < 163:28 m and H0 <

129:596 m. Such bounds are in agreement with previous
investigations [24].
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