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We argue that quintessence may reside in certain corners of the string landscape. It arises as a linear

combination of internal space components of higher-rank forms, which are axionlike at low energies, and

may mix with 4-forms after compactification of the Chern-Simons terms to 4D due to internal space

fluxes. The mixing induces an effective mass term, with an action which preserves the axion shift

symmetry, breaking it spontaneously after the background selection. With several axions, several 4-forms,

and a low string scale, as in one of the setups already invoked for dynamically explaining a tiny residual

vacuum energy in string theory, the 4D mass matrix generated by random fluxes may have ultralight

eigenmodes over the landscape, which are quintessence. We illustrate how this works in the simplest

cases, and outline how to get the lightest mass to be comparable to the Hubble scale now, H0 � 10�33 eV.

The shift symmetry protects the smallest mass from perturbative corrections in field theory. Further, if the

ultralight eigenmode does not couple directly to any sector strongly coupled at a high scale, the

nonperturbative field theory corrections to its potential will also be suppressed. Finally, if the compacti-

fication length is larger than the string length by more than an order of magnitude, the gravitational

corrections may remain small too, even when the field value approaches MPl.
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The experimental discovery that the Universe is domi-
nated by a dark energy, which comprises over 2=3 of its
mass contents, has had a profound impact both on cosmol-
ogy and on the quest for the microscopic theory of nature.
In recent years it has stimulated a remarkable convergence
of the inflationary paradigm and string theory. The emerg-
ing idea of the origins of our Universe is based on the
concept of a ‘‘string landscape’’ [1–3], the myriad of
consistent string vacua distinguished by specific values of
moduli, which is populated by the self-reproduction
mechanism of eternal inflation. Some of its corners, this
framework posits, may yield big hospitable universes as
our own.

A particularly important aspect of the landscape ap-
proach to describing our Universe is how it addresses the
cosmological constant problem. The idea is that the cos-
mological constant varies over the landscape, just like any
other low energy Lagrangian parameter of the theory. It can
change by nucleation of membranes [4], charged under a
locally constant 4-form field whose flux compensates bare
vacuum energy [5,6]. The membranes are nucleated during
inflation and, in some regions of the dynamical landscape,
may yield a nested system of vacuum bubbles with the
vacuum energy inside the bubbles changing across the
system of boundaries. Bousso and Polchinski have shown
[5] how a mechanism, generalizing the earlier proposal by
Linde [7] and by Brown and Teitelboim [4], can be em-

bedded in string theory, in a way which yields a set of states
with different charges, but only a tiny difference between
their vacuum energy densities, due to incommensurability
of the membrane charges sourcing the 4-forms. They have
outlined specific requirements for the corner of the land-
scape with states where this vacuum energy mismatch is
comparable to the residual vacuum energy that would
explain current cosmological observations, ��
10�12 eV4. Bousso and Polchinski then showed that the
random dynamics of successive membrane emissions dur-
ing inflation can take the system somewhere in space to a
state with so miniscule a vacuum energy, with a large last
jump which left enough room for a stage of a slow roll
inflation to refill the Universe with matter. This then set the
stage for the anthropic resolution of the cosmological
constant, championed by Weinberg [8], Linde [9], and
Vilenkin [10].
This explanation fits the observations, and emerges from

the idea of the string landscape. Its immediate prediction,
which could, in principle, be falsified, is that the dark
energy equation of state is w ¼ �1. In fact, such was the
dearth of reasonable explanations of vacuum energy that
could be embedded in string theory, that it has been sug-
gested that the dark energy models with local dynamics,
such as quintessence, are an unnecessary digression [11].
Given the obstacles for accommodating accelerating cos-
mologies in string theory, both conceptual [12–14] and
practical [15], it may indeed seem that seeking a serious
candidate for quintessence, which really [16] dwells in
string theory, is in vain.
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The aim of this article is to argue that this is not so. On
the contrary, a mild extension of the arguments employed
in the Bousso-Polchinski proposal for relaxing the vacuum
energy, with ingredients already present in the landscape
framework, yields a low energy theory candidate of quin-
tessence [17]. The key role is played by internal compo-
nents of higher-rank forms. These fields are axionlike at
low energies, after compactification. In the presence of
internal fluxes in orthogonal subspaces, they will mix
with residual 4-forms after compactification due to the
trilinear Chern-Simons terms, where—as usual—we as-
sume that the dilatonic volume moduli are all stabilized.
The mixing generates an axion mass term while preserving
the axion shift symmetry of the action, which is broken
spontaneously once the background solution is chosen
[18]. When there are more axions, which couple to more
4-forms in 4D, the axion mass matrix generated by random
fluxes may have ultralight eigenmodes over the landscape,
if the string scale is low, as invoked by Bousso and
Polchinski in one of the implementations of their mecha-
nism. The reason for the smallness of the mass is, roughly,
similar to why there may be a small jump in the absolute
value of the cosmological constant between subsequent
local vacua, arising from a small mismatch between the
charges of different form fields. We illustrate this with
explicit examples with few axions and 4-forms, which
can come about if the internal manifold has multiple
higher-rank forms, as in e.g. type IIB theories.
Evaluating the mass eigenvalues, we show that the lightest
mass can be comparable to the Hubble scale now, H0 �
10�33 eV. In this case, the theory has a low string scale,
Ms � few� 10 TeV, and two large dimensions, L�
0:1 mm, just like in the simplest large dimension scenario
of [19,20]. The quintessence mass is protected from per-
turbative corrections in field theory by the shift symmetry
of the axion effective action. If the ultralight eigenmode
does not couple directly to any sector strongly coupled at a
high scale, the nonperturbative field theory corrections to
its potential are also suppressed. Moreover, when the com-
pactification length is larger than the string length, the
gravitational corrections may remain small too, even
when the field value approaches MPl, exceeding the effec-
tive axion width constant fa and yielding a very curvy
potential. When this happens, the nonperturbative potential
is negligible, leaving the residual flat potential generated
only by the form fields. While it is not yet clear if the low
energy standard model cohabitates with quintessence in
this precise corner of the landscape, it is at least possible to
find it in various type IIB compactifications [20–23]. Since
the mechanism which we illustrate is quite generic, it may
appear in places where the standard model lurks.

Let us now review the dynamics of axions coupled to
forms. Start with the simplest case of a single axion mixing
with a single 4-form, via a term �������F����. The

action, which includes minimal coupling to gravity, con-

sistent with the assumption that all volume moduli are
stabilized, is composed of bulk and membrane terms.
The bulk term is

S bulk ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R� 1

2
ðr�Þ2 � 1

48
F2
����

þ �

24
�
�����

ffiffiffi
g

p F���� þ . . .

�
; (1)

where the ellipsis refers to the matter sector contributions,
and ����� is the Levi-Civita tensor density, as indicated by
the explicit factor of the metric determinant. The 4-form
field strength is the antisymmetric derivative of the 3-form
potential F���� ¼ 4@½�A����. The parameter � has di-

mension of mass, as required to correctly normalize the
bilinear ������F����. In dimensional reduction � is the

flux through compact dimensions, as we will see later. The
membrane term includes the standard coupling to the 3-
form potential,

S brane 3 e

6

Z
d3�

ffiffiffiffi
�

p
eabc@ax

�@bx
�@cx

�A���; (2)

where the integration is over the membrane world volume
�a with the induced metric �ab. We have absorbed numeri-
cal factors in the membrane charge e, which is normalized
to the membrane tension, and may be renormalized by
internal volume factors if the membrane is actually a
higher-dimensional p-brane which wraps some of the
compact dimensions; see below for more details. The
membrane action also includes the membrane kinetic
terms or, equivalently, the boundary terms for bulk fields
which ensure that the membrane is embedded along world
volumes that respect canonical bulk boundary conditions.
These terms are the Gibbons-Hawking term for gravity and
its analogue for the 4-form [24,25]. When � ¼ 0 this term
is

R
d4x

ffiffiffi
g

p 1
6r�ðF����A���Þ with our normalizations.

However, when � � 0, an extra contribution,

�R
d4x

ffiffiffi
g

p 1
6r�ð�������ffiffi

g
p A���Þ, must be added. When �

vanishes, in 4D the 4-form is nonpropagating: because it is
completely antisymmetric, its field equations are locally
trivial in the bulk, and its value is locally constant. In the
presence of membranes, however, the 4-form can change
between the interior and the exterior of the membrane,
jumping across its surface. Indeed, setting � ¼ 0 and
varying (1) and (2) with respect to A��� yields

r�F
���� ¼ 0; in the bulk; (3)

�F���� ¼ e
ffiffiffi
g

p
�����; across the membrane: (4)

Thus the 4-form is locally indistinguishable from a (posi-
tive) contribution to the cosmological constant, which can
be reduced by membrane emission in the interior of the
membrane.
There are important differences when� � 0. As already

noted in [18], although still without local propagating
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modes, in this case the 4-form is not locally constant.
Instead, it is proportional to the scalar field�, which mixes
with it, and so it may vary from place to place. In turn, the
scalar field is massive: the 4-form background provides an
inertia to the scalar’s propagation, which by local Lorentz
invariance translates into the scalar mass term. Once the
background is selected, and the value of the 4-form locked
to that of �, the shift symmetry is broken spontaneously,
with the vacuum selection [18]. Still, at the level of the
action it remains operative, as can be seen readily from (1):
under � ! �þ�0, the action changes only by a total
derivative, and so the local dynamics remains invariant. In
fact, although this total derivative could affect the mem-
brane action (2), it gets completely canceled on any physi-
cal membrane term by the variation of the boundary term

�R
d4x

ffiffiffi
g

p 1
6r�ð�������ffiffi

g
p A���Þ, possibly leaving only a

boundary term at infinity. So, actually, the theory retains
full shift symmetry in the action.

These statements can be simply verified by working
explicitly in the action. We can integrate out the 4-form,
because it remains an auxiliary field even when � � 0,
since it is fully determined by � and an integration con-
stant. This integration constant can be recovered by the
Lagrange multiplier method [26]: first, we recast (1) in the
first order formalism, enforcing the relation F���� ¼
4@½�A���� with a Lagrange multiplier. Because of antisym-

metry, it takes only one multiplier q, and the result is to add
the term

S q ¼
Z

d4x
q

24
�����ðF���� � 4@�A���Þ (5)

to the action (1). Then we can complete the squares in
F����, introducing the new variable ~F���� ¼ F���� �ffiffiffi
g

p
�����ðqþ��Þ. The action only depends on ~F����

through ~F2, which therefore yields a Gaussian functional
integral and can be dropped as an overall normalization of
the partition function. This effectively replaces the 4-form
with its Hodge dual, and enforces the 4-form equation of
motion as a constraint. The end result is the effective action
describing the �� q sector coupled to gravity,

Seff ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R� 1

2
ðr�Þ2 � 1

2
ðqþ��Þ2

þ 1

6

�����

ffiffiffi
g

p A���@�q

�
; (6)

where the last term was obtained from an integration by
parts, and its total derivative completely cancels against the

membrane terms 1
6r�½ðF���� � �����ffiffi

g
p ��ÞA���Þ� after the

shift to the new variable ~F����. The charge term (2) still

remains, as it controls the global dynamics of the field q.
Locally, this field is a constant, as is clear from (1) upon
variation with respect to the 3-form A���, which yields

@q ¼ 0. In the presence of a membrane, however, the
membrane term (2) acts as a source for q, and shows that
it jumps in the direction along the normal to the membrane,

�qj ~n ¼ e: (7)

This reproduces the boundary condition for the 4-form (4)
in the dual formulation of (6).
From (6) it is immediately clear that � is massive, with

� being precisely its mass. The 4-form in the bulk yields an
effective potential V ¼ 1

2 ðqþ��Þ2 instead of the pure

cosmological constant contribution 1
2q

2. In spite of the

�-dependent potential, the shift symmetry � ! �þ�0

is not explicitly broken in the action. Indeed, the variation
of� is compensated by the shift of the ‘‘field’’ q according
to q ! q���0, such that both the bulk action (6) and the
membrane term remain unchanged. On the other hand,
once the vacuum is picked by selecting the solution q ¼
q0, specified by the membrane sources in the spacetime,
the shift symmetry is broken spontaneously, and the field�
is massive. In the � vacuum, � ¼ �q0=�, the 4-form
contribution to the vacuum energy is completely canceled
by the scalar field contribution. Hence if the mass � is
large, greater than the Hubble scale of the Universe, the
field � will rapidly roll to the minimum of the potential,
preventing the 4-form that it mixes with from participating
in the neutralization of the vacuum energy. This could be
averted if the axion � picks up additional potential terms
which stabilize it near � ¼ 0, counteracting the mixing
effects and possibly explicitly breaking shift symmetry.
Clearly, if this does not occur, only the forms which do
not mix with any heavy axions can play a role in the
cosmological adjustment of the vacuum energy. In what
follows, therefore, we will assume the existence of both
forms which do and forms which do not mix with axions.
The unbroken shift symmetry in the action (6) implies

that a massive field � retains a protective mechanism in
perturbation theory which prevents radiative corrections to
its mass. Indeed, � will couple to other matter only de-
rivatively, and so radiative corrections generated through
those couplings will not shift the mass term away from the
value induced by mixing with the 4-form, as it is the only
perturbative term of dimension 2. Further, since the 4-form
remains auxiliary in 4D, even when � � 0, it does not
involve local dynamics that can change the scalar mass in
the framework of 4D effective field theory. Thus, as far as
perturbation theory is concerned, once � is set, it stays put
on a fixed background.
That does not imply that the mass � is an absolute

constant. As we have already noted, in the context of
dimensional reduction, which one expects to lead to ac-
tions like (1), the parameter � is an internal form flux. Let
us illustrate this. Consider a simple dimensional reduction
of the 4-form sector in 11D supergravity (SUGRA), on a
background which factorizes as a 4D spacetime, a three-
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torus and a four-torus, M4 � T3 � T4, and take the 3-form
potential Awith components A���ðx�Þ inM4,Aabcðx�Þ on
T3, and ÂijkðylÞ. So, the potential on the three-torus de-

pends only on the spacetime coordinates, whereas the
potential on the four-torus is independent of the spacetime
location. For the components of F ¼ dA, the field equa-
tions are d�F ¼ 1

2F ^ F, where the 3-form potential A is

dimensionless, with the 11D form action normalized to
S4 form �M9

11

R� F ^ Fþ . . . , with M11 the 11D Planck

mass. Substituting our 3-form Ansatz first yieldsriF
ijkl ¼

0, which implies that Fijkl ¼ ��ijkl on the four-torus.

Then, after straightforward manipulation, defining ’ ¼
Aabc, and introducing canonically normalized 4D fields

� ¼ MPl’
V3M

3
11

and F���� ¼ MPlffiffi
2

p 4@½�A����, the remaining

equations reduce to r2� ¼ �
ffiffiffiffiffi
g4

p
�����F

���� and

r�F���� ¼ �
ffiffiffiffiffi
g4

p
�����@

��, where the mass parameter

� is exactly the internal four-torus magnetic flux of Fijkl,

up to possibly a combinatorial factor of Oð1Þ. These are
precisely the variational equations which follow from (1).
Hence (1) can indeed be interpreted as a truncation of 11D
SUGRA, if all other moduli are stabilized. In fact, there are
string theory constructions where such low energy dynam-
ics are known to arise [27,28]. This also shows that the 4D
axion mass � can change if the magnetic flux in the
internal dimensions changes, for example, by membrane
nucleation. Indeed, if a membrane charged under Fijkl is

nucleated, inside the bubble of space enveloped by it, the
flux, and consequently also the axion mass, will change to
�0 ¼ �� e. In other words, the parameter � is com-
pletely analogous to the variable q which we introduced
in the dual formulation of the 4-form action (6). Just like
the vacuum energy, the low energy dynamics of the axion
will also be controlled by very different scales in different
regions of the metaverse, when it is permeated by the many
bubbles formed by membrane nucleations [1,5,29,30]
(other aspects of eternal inflation were discussed in [31]).
Inflation will ensure that at low energies the Universe will
in fact be composed of a diverse set of regions with vastly
different values of the axion mass.

Clearly, the mass can change in discrete steps. However,
an even stronger statement holds: the mass � is in fact
quantized in the effective 4D theory, just like any 4-form
flux. The elegant discussion of this issue is presented by
Bousso and Polchinski [5]. The point is that the classical
integration constant which arises in the solution for the 4-
form field strength, Fijkl ¼ �̂�ijkl, can only take discrete

values, quantized in the units of the membrane charge. The
argument which shows this is similar to the Dirac string
construction, and is most readily understood from the
viewpoint of the higher-dimensional parent theory, where
all the 4-form field strengths are sourced by membranes or
five-branes. Thus, with our normalization, the quantities q
and �̂ should be viewed as the integer multiples qi of the
appropriate membrane charges [32],

qi ¼ ni
e11ffiffiffiffiffi
Zi

p ; (8)

where Zi are the internal volume factors which depend on
the dilatonic moduli, and e11 ¼ 2	M3

11 is the fundamental

membrane charge, normalized to the 11D Planck mass
M11. For the electric forms these factors are Ze ¼
2	M9

11V7 ¼ M2
Pl=2, while for magnetic forms they are

Zm;i ¼ 2	M3
11
V7

V2
3;i

¼ M2
Pl

2M6
11
V2
3;i

[5]. Although these quantization

rules were nominally derived in the absence of mixing
counterterms which arise from the reduction of the
Chern-Simons action, they remain valid in the limit of
thin membranes, because for continuous field configura-
tions the integrals of the products of A and F over the thin
membrane vanish. For the specific application to our case
of interest, since � is the charge of a magnetic 4-form,
these formulas give

� ¼ 2	nV3M
3
11

�
M11

MPl

�
2
M11: (9)

The change of � when a membrane of unit charge is

emitted is ��� V3M
3
11ðM11

MPl
Þ2M11, and is clearly the small-

est when the internal three-torus volume is comparable to
the 11D Planck scale, V3M

3
11 � 1. The numerical lower

bound can be easily estimated by recalling thatM11 may be
as low as the electroweak scale, M11 * MEW � TeV,
which implies that �� * 10�16 eV. Clearly, in this case
the four-torus volume V4 must be large in units of M11 to
give the hierarchically largeMPl, but to get there one needs
linear dimensions to exceed M�1

11 by a factor of �107:5.
By itself, this is not sufficient to make � a quintessence

field. In the regions of the smallest mass �min ���, the
field � would fall out of slow roll in the very early

Universe, when the temperature is of the order of T �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=H0

p
K� 108 K, or around the time of nucleosynthe-

sis. Curiously, this is close to the mass required for a
pseudoscalar which could affect supernovae dimming, if
it coupled to ordinary electromagnetism, as explained in
[33]. On the other hand, as Bousso and Polchinski noted,
the scale which one gets from a single 4-form is also too
coarse to provide a plausible mechanism for gradual re-
laxation of vacuum energy. To address this, they pointed
out that, parametrically, much smaller differences between
vacuum energies of different states may be engineered in
multiform frameworks. There, form fields with incommen-
surate charges give rise to vacua with very different form
charges, but tiny variations of the net vacuum energy. Note,
however, that the problem with the simple setup above is
purely numerical: getting the mass to be as small as the
current value of the Hubble scale. Without this, one finds a
perfectly reasonable agent for driving cosmic acceleration
at a higher scale: an inflaton. We hope to revisit this
interesting avenue elsewhere [34].
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We now argue that multifield setups also yield small net
masses for at least one of the axions. So, imagine that the
low energy theory contains several copies of the axion-
form sector in (1), or (6). Such cases may occur in, for
example, multithroat compactifications, where at low en-
ergies there is replication of degrees of freedom. Since the
throats connect to the bulk of the internal Calabi-Yau
manifold, the wave functions of fields residing in different
throats have an overlap. The kinetic terms for the axions
and 4-forms can be separately rotated to the orthogonal,
canonical form, leaving us with mixed coupling terms.
Similar mixing terms will arise from direct compactifica-
tions of higher-dimensional theories with more higher-rank
forms, such as type IIB string theory. In general, the low
energy action found in such constructions will gain the
form

Scouplings ¼
Z

d4x
X
a;b

�ab�
����Fa

�����
b: (10)

The matrix �ab is the mixing matrix between different
forms and axions, and, in general, it need not even be
square. The low energy axion mass matrix is related to
�ab. It can be obtained quickly by employing the same
trick we used to get (6). So, rewrite the action with several
axion-form sectors in the first order formalism, introducing
a Lagrange multiplier for each 4-form. Then integrate out
the 4-forms. The action which remains is

Seff ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R� 1

2

X
b

ðr�bÞ2

� 1

2

X
a

�
qa þX

b

�ab�
b

�
2 þ �����

6
ffiffiffi
g

p
X
a

Aa
���@�q

a

�
;

(11)

and so the axion mass matrix is

Mbc ¼
X
a

�ab�ac: (12)

If we choose to normalize the matrix �ab to a selected
scale �0 ¼ �=n of Eq. (9), on the assumption that this is
the smallest such scale in the construction, the matrix
�ab=�0 is a dimensionless matrix. The diagonal entries
are given by the combinatorial factors times the internal
flux in units of �0, following our discussion leading to (9),
whereas the off-diagonal entries measure the coupling of
different sectors. For example, in throaty compactifications
they are controlled by the ratio of the Calabi-Yau volume
VCY to the throat volume Vthroat. Their precise numerical
value will depend on the details of the construction, and
one expects them to be adjustable parameters depending on
where the volume moduli are stabilized. In fact, some of
the numerical tunings may be mitigated with more degrees
of freedom. Specifically, if the mixing matrix entries arise

due to independent internal fluxes, they are multiples of
combinatorial factors and possibly large integers. In the
phase lattice of such a space, there will be points where
some of the eigenvalues are very small, even when the
individual matrix elements are much larger than unity,
similarly to what occurs in the cosmological constant ad-
justment of Bousso and Polchinski. To be able to say more
about such examples, we need to consider a more detailed
setup.
A simple example is provided by the case with three

axions and three 4-forms, but also eight 3-forms with
internal space fluxes, in type IIB theory. The action for
the bosonic sector of type IIB supergravity is, in the
Einstein frame, and ignoring the dilaton kinetic terms on
the assumption that the dilaton is stabilized,

SIIB ¼ 1

2
2
10

Z
d10x

ffiffiffi
g

p �
R� 1

12
g�1
s H2

3 �
1

12
gsF

2
3

� 1

240
~F2
5

�
þ 1

4
2
10

Z
F5 ^ B2 ^ F3; (13)

where gs ¼ e� is the string coupling, 2
2
10 ¼ ð2	Þ7�04 is

given in terms of the string scale �0, and H3 ¼ dB2 and
F3 ¼ dC2 are the Neveu-Schwarz and Kalb-Ramond 3-
form field strengths and 2-form potentials. Similarly, F5 ¼
dC4 are the 5-form field strength and 4D-form potential,
which define the self-dual 5-form ~F5 ¼ F5 � 1

2C2 ^H3 þ
1
2F3 ^ B2 where � ~F5 ¼ ~F5. Assuming that the volume

moduli are all stabilized by additional ingredients in the
theory, and ignoring their dynamics hereafter, we reduce
(13) to 4D by using the consistent truncation of the form
sector,

F1
���� ¼ MPl

~F����5=
ffiffiffi
2

p
; �1 ¼ MPlB47=

ffiffiffiffiffiffiffiffi
6gs

p
;

F2
���� ¼ MPl

~F����6=
ffiffiffi
2

p
; �2 ¼ MPlB48=

ffiffiffiffiffiffiffiffi
6gs

p
;

F3
���� ¼ MPl

~F����7=
ffiffiffi
2

p
; �3 ¼ MPlB49=

ffiffiffiffiffiffiffiffi
6gs

p
;

(14)

where all of these fields are taken to depend on the 4D
coordinates x� and the 3-forms with internal fluxes only,

Fijk ¼ ð2	Þ2�0 nijk
LiLjLk

; (15)

where ði; j; kÞ take values in the set

fð5; 6; 8Þ; ð5; 6; 9Þ; ð5; 7; 8Þ; ð5; 7; 9Þ; ð5; 8; 9Þ; ð6; 7; 8Þ;
ð6; 7; 9Þ; ð6; 8; 9Þg: (16)

nijk are the units of flux in Fijk in the directions parame-

trized by ði; j; kÞ and Li are the sizes of the dimensions
supporting the Fijk flux. One can check directly that (15)

obeys the form field equations following from (13), and so
this truncation is consistent, if the volume moduli are
stabilized. Clearly, there are other possibilities from trun-
cations similar to the one displayed here, starting with a
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trivial exchange of dimensions used here for those which
were ignored. We leave the general case aside, to be
addressed in future work, since this one example is suffi-
cient for illustrative purposes. The dimensionally reduced
4D effective Lagrangian becomes

Seff ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R� 1

2

X3
b¼1

ðr�bÞ2 � 1

48

X3
a¼1

ðFa
����Þ2

þ 1

24

�����

ffiffiffi
g

p
X3

a;b¼1

�abF
a
�����

b

�
: (17)

Let us now choose four of the compact dimensions to be

the string scale, L4 ¼ . . . ¼ L7 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2	�0p

, and two to be

larger than the string scale, L8 ¼ L9 ¼ L � ffiffiffiffiffiffiffiffiffiffiffi
2	�0p

.
Further, let us pick the fluxes such that n589 ¼ �n689 ¼
�1, n579 ¼ n568 ¼ n� 1, n569 ¼ n578 ¼ n679 ¼ �n, and
n678 ¼ nþ 1. Then, the mixing matrix � becomes

ð�abÞ ¼
"2 n" ðnþ 1Þ"
"2 ðn� 1Þ" n"
0 n" ðn� 1Þ"

0
B@

1
CA�0; (18)

where �0 ¼
ffiffiffiffiffiffiffiffi
3	gs
2�0

q
and " ¼ ffiffiffiffiffiffiffiffiffiffiffi

2	�0p
=L. The eigenvalues of

the mass matrixM ¼ �T� are the roots � ¼ m2=�2
0 of the

cubic P3ð�Þ ¼ �3 � 6n2"2�2 þ 8n2"4�� "8 (where we
have kept only the leading terms in the limit " � 1, n �
1). Since the matrixM is real-symmetric, the characteristic
polynomial must have three real roots. To find the smallest
one, we could, in principle, use the Cardano formulas for
the roots of a cubic [35]. However, a quicker method is to
inspect the graph of P3 and realize that, due to the signs of
the four terms, the smallest root is (i) positive and
(ii) controlled by the cancellation between the linear term
and the constant. In the limits n � 1 and " � 1 which we
are interested in, the smallest of the three roots is

m2
min ’

"4

8n2
�2

0 ’
3	3gs�

0

4L4

1

n2
: (19)

Since it is positive, there are no tachyons in the spectrum.
In fact, this should have been expected all along, since we
know that we can rewrite the action (18) in the form (12),
where the potential is a sum of squares, implying that none
of the mass eigenmodes are tachyonic. As a matter of fact,
the other two roots, by a reasoning similar to the one
yielding (19), will obey m2 * "2�2

0 and m2 * n2"2�2
0,

which are determined by a different interplay of the terms
in the cubic. Thus, they may also end up being parametri-
cally smaller than �0. We can now use both small " and
small 1=n to render mmin much lighter than �0. However,
we cannot make n as large as we wish, since the internal
fluxes after dimensional reduction contribute to the effec-
tive 4D cosmological constant, as�4 3 gsF

2
3. In fact, if we

take the correct UV cutoff of the effective IIB SUGRA to
be set by the string scale, above which we need full string
dynamics, we should require that gsF

2
3 &

1
2	�0 . Evaluating

the flux for our truncation and substituting in this formula,
we find

n2 &
1

24	2"2gs
’ L2

48	3�0gs
: (20)

Using the Gauss law relating 4D Planck mass, the string
scale, and the compactification volume, M2

Pl ¼ V6=

2
10,

yields L2 ¼ 16	5M2
Pl�

02, and therefore

m2
min ’

3gs
210	7M4

Pl�
03

1

n2
*

9g2s
210	9M6

Pl�
04 : (21)

Hence, for consistency, mmin cannot be dialed below the
lower bound in Eq. (21). On the other hand, this mode will
be the quintessence as long as mmin <H0. For this to be
possible, we need to ensure that the string coupling is
smaller than the critical value,

gs� ¼ 32

3
	9=2M3

Pl�
02H0 ’ 10�2

�
eV

Ms

�
2
�
MPl

Ms

�
2
; (22)

where Ms is the string scale. Now, to ensure that we get
reasonable 4D phenomenology, withMPl � 1018 GeV, and
4D gravity valid down to millimeter distances, we need to
take L & 0:1 mm, which implies Ms * few� 10 TeV.
This also guarantees that it is easy to stay in the regime
where type IIB is perturbative, since then gs� & 1, and so
we can take any gs < 1. In fact, we can take gs � 10�3

which will guarantee that the higher-dimensional Planck
mass is somewhat greater than the string scale, M10 �
Ms=gs. For these parameters, somewhere in the landscape
of the theory spanned by the volume moduli and internal
fluxes, n will fall in the right regime for the lightest axion
mass to be & H0 so that it could remain in slow roll
throughout the cosmic history to date.
So far, we have neglected the issue of nonperturbative

corrections to the low energy action from gauge and gravi-
tational sectors. In fact, although the shift symmetry pro-
vides protection for the axion from perturbative corrections
arising from matter that the axion couples to, it is explicitly
broken by nonperturbative effects. These yield instanton-
induced effective potentials, Veff �P

n�
4
n cosð2n�=f�Þ,

where f� is the axion decay constant and �n are dynami-

cally generated scales in the instanton expansion, typically

related to the UV cutoff via �1 �Me��=g and with �n>1 <
�1 (see, e.g., [36,37]). In QCD, �1 happens to be the QCD
scale �QCD, but there are examples where it can be vastly

different from a characteristic scale of the low energy
theory whose gauge sector yields the potential. Now, in
string theory it is very difficult to obtain large axion decay
constants obeying f� * MPl. On the other hand, in much

of the quintessence model building, such scales are neces-
sary, since (i) the axion vacuum expectation value needs to
be * MPl in order to yield at least an e-fold of late
acceleration, and (ii) the potential must remain flat enough
for this to occur, so that the higher order terms in the
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Fourier series for Veff remain negligible for all� * MPl. In
the case we have described (and in contrast to the more
usual models of axion quintessence, such as those dis-
cussed e.g. in [38]), the instanton terms are not needed to
get the axion mass. Indeed, even if f� <MPl, and the

higher order terms are not negligible, as long as �4
n <

m2
minf

2
� the instanton mass term is small compared to the

mass term induced by the mixing with 4-forms. So, to have
a working quintessence candidate, one needs not only to
select the right region in the landscape, but also to carefully
pick the couplings of the lightest axion to the matter sector.
Yet, this is, at least in principle, a problem which is often
encountered in the landscape model building, and can
presumably be addressed.

Similar concerns arise when one encounters gravita-
tional effects [39]. These effects also yield effective poten-
tials given by harmonic series, but with coefficients
proportional to the exponential of the instanton action.
When we compactify the theory with dimensions which
are larger than the fundamental scale, the actions will
rapidly grow in units of the string length. In fact, taking
the internal dimensions to only exceed the fundamental
scale by 1 order of magnitudewill yield actions of the order
of S� 10d, where d is the number of compact dimensions.
Ensuring this is Oð1000Þ or more will render the relevant
normalization factors small enough to be ignored in the
reckoning with dark energy.

Our discussion so far has been centered on the existence
of an ultralight axion quintessence. Once it is there, how
does it actually come to be dark energy at late times? As in
the Bousso-Polchinski scenario, most of the bare vacuum
energy in our part of the inflating metaverse should be
canceled by the 4-forms which do not mix with the axions.
For this purpose, one needs to have a number of such forms
in order to ensure that the bare vacuum energy in some
states can be canceled with the precision set by the value of
the allowed vacuum energy now, 10�12 eV4. When the
string scale is very low, this can be accomplished with
Oð10Þ form fields [5]. In the course of cosmic evolution of
our Universe, the membranes are emitted during inflation,
eventually reducing the net vacuum energy inside the
sequence of inflating bubbles down to the presently accept-
able value. Part of the effective vacuum energy may also
come from the fluxes of the 4-forms which do mix with the
axions. Further, at the very least, the light axions will
thermally drift around over their domain of definition,
and will certainly not rest in the low energy vacua. In
fact, the low energy vacua may not even be defined yet,
as their actual location is set by the background 4-form
fluxes, which may yet change by membrane emission, as is
clear from Eqs. (12) and (18). Indeed, the potential for the
axion multiplet is Veff ¼ 1

2

P
aðqa þ

P
b�ab�

bÞ2. After di-
agonalization, the lightest direction has the effective po-
tential Vlightest ¼ 1

2m
2
minð�þ qeff=mminÞ2, where qeff is a

linear combination of the 4-form fluxes which mix with the

axions. Both qeff and � may scan their full range of
allowed values [41]. Generally, q2eff � M2

PlH
2
0 , and so a

part of Veff will still be canceled by the forms which do not
mix with the axions. It is then sufficient that in some
inflating bubbles the final state vacuum energy, involving
this linear combination and the additional, unmixed 4-
forms, acquires �þ qeff=mmin * MPl. The residual vac-
uum energy can beM2

PlH
2
0 , and the field will sit in slow roll

to the present time, suspended on the shallow potential set
by mmin, with the right value to become the dominant
component of dark energy now, and provide an e-fold or
so of accelerated expansion as required by observations.
Note that as the field eventually rolls to its minimum � ¼
�qeff=mmin and compensates the 4-form contribution to
the vacuum energy, the leftover vacuum energy might be
negative. This means that the Universe could collapse in
the distant future, realizing a scenario discussed in
[9,43,44].
In sum, in this work we have argued that the string

landscapes may naturally accommodate degrees of free-
dom which can play the role of quintessence. These modes
are components of higher-dimensional forms, which mix
with 4-forms in 4D theory after compactification. For the
low string scale, and large extra dimensions, there may be
sufficiently light axions which can be quintessence now,
with masses m & H0 � 10�33 eV, that come about thanks
to incomplete cancellations between large fluxes of forms,
much like in the mechanism for canceling vacuum energy
of [5]. The axion shift symmetry protects the quadratic
potential against quantum contributions, guaranteeing the
flatness of the potential and the absence of an � problem.
We have provided an explicit example using type IIB
theory on a space with two large dimensions and string
scale �few� 10 TeV, where we assumed the volume
moduli to be stabilized. While so far such compactifica-
tions have not seemed exactly realistic from the point of
view of low energy particle physics, there is an effort
underway to search for type IIB compactifications with
only two large dimensions [45]. Moreover, the main ingre-
dients of the mechanism are sufficiently generic that they
may arise in other setups too. It would be interesting to
search for the corners of the landscape where the standard
model may coexist with quintessence modes. Further, it is
also interesting to classify more precisely cosmological
signatures of the quintessence dynamics, as this may ac-
commodate discretely variable mass due to membrane
emission. We hope to return to these issues elsewhere.
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