
Constraining modified gravity with large non-Gaussianities

Samuel E. Vázquez

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
(Received 17 June 2008; published 25 February 2009)

In writing a covariant effective action for single-field inflation, one is allowed to add a Gauss-Bonnet

and axion-type curvature couplings. These couplings represent modifications of gravity, and are the

unique higher-curvature terms that lead to second order equations of motion in four dimensions. In this

paper we study the observational consequences of such couplings for models with large non-Gaussianities.

Our focus is on the Gauss-Bonnet term. In particular, we study an effective action where the scalar

Lagrangian is a general function of the inflaton and its first derivative. We show that, for large non-

Gaussianities, one can write fNL in terms of only three parameters. The shape of fNL is also studied, and

we find that it is very similar to that of k-inflation. We show that the Gauss-Bonnet term enhances the

production of gravitational waves, and allows a smaller speed of sound for scalar perturbations. This, in

turn, can lead to larger non-Gaussianities which can be constrained by observations. Using current

Wilkinson microwave anisotropy probe limits on fNL and the tensor/scalar ratio, we put constraints on all

parameters. As an example, we show that for Dirac-Born-Infeld inflation, the Gauss-Bonnet coupling

leads to an interesting observational window with both large fNL and a large amplitude of gravitational

waves. Finally, we show that the Gauss-Bonnet coupling admits a de Sitter phase with a relativistic

dispersion relation for scalar perturbations.
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I. INTRODUCTION

Cosmology has entered an era of unprecedented
progress. High precision measurements of the cosmologi-
cal parameters have led to a coherent picture of the history
of our Universe that seems to favor the inflationary para-
digm [1]. Moreover, a future detection of large non-
Gaussianity in the cosmic microwave background (CMB)
would falsify the simplest inflationary scenario, namely,
single-field slow-roll inflation [2–4].

On the theoretical side, there has been great activity in
trying to produce large non-Gaussianities in single- and
multiple-field inflationary models. For single-field infla-
tion, large non-Gaussianities are easiest to produce in
models with a small speed of sound (see, e.g., [5,6]). On
a parallel set of developments, there has been recent inter-
est in developing a systematic effective field theory of
single-field inflation [7,8]. In Ref. [7], such approach was
applied directly to the Lagrangian describing the perturba-
tions around the inflationary solution. The effective action
can be viewed as an expansion in powers of (g00 þ 1) and
the extrinsic curvature Kab of the constant time hyper-
surfaces. Such approach is quite general, and provides a
straightforward way of calculating all CMB observables
directly from the effective action for the fluctuations.

On the other hand, one would like to understand how the
various terms in the effective action for the fluctuations
relate to the effective action of the inflaton itself. A method
to build such an effective action was introduced by
Weinberg in [8]. In this approach, one considers all mar-
ginal and irrelevant operators involving the inflaton and the
metric. Among these terms, there are higher-curvature

invariants coupled to the inflaton. Generically, such terms
will contain higher time derivatives on the fields which
need to be eliminated using the first order equations of
motion. Otherwise, one would be propagating more de-
grees of freedoms than intended. Weinberg showed that,
after such eliminations and to leading order in the deriva-
tive expansion, the resulting action for the inflaton takes
the familiar k-inflation type form plus two extra couplings
between the inflaton and the Weyl tensor. Such extra
couplings can be written instead in terms of the Gauss-
Bonnet tensor and an axion-type coupling. In this way, one
has an effective action that leads to second order equations
of motion explicitly.
One can then ask if it is possible to resum such an

expansion. Moreover, one would like to write down a
general local action for the inflaton coupled to gravity
that leads to second order equations of motion for all fields.
By abuse of notation we will call such resummation a ‘‘UV
completion’’ of the effective theory. An advantage of hav-
ing such action is that one can then build directly the low
energy effective action for the fluctuations as in [7], have a
clear physical interpretation of the various couplings, and a
better assessment of their relative importance. If we also
insist in preserving general covariance in the UV comple-
tion, it is not hard to see that an obvious candidate for such
action is [9]

S ¼
Z ffiffiffiffiffiffiffi�g

p �
1

2
Rþ PðX;�Þ þ V1ð�ÞE4

þ V2ð�Þ�abcdRab
efRcdef

�
; (1)
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where E4 is the Gauss-Bonnet combination,

E4 ¼ RabcdR
abcd � 4RabR

ab þ R2; (2)

and X ¼ � 1
2ra�ra� is the kinetic term. In writing (1)

we assume that we work in the Einstein frame. The second
term in the action is the familiar k-inflation type [11]. The
last two couplings in the effective action would be topo-
logical invariants in four dimensions if both potentials V1,
V2 were constant. This is the reason why they lead to
second order equations of motion for general Vi. Note
that if these potentials depended on X, one would end up
with equations of motion depending on more than two time
derivatives.

The last two terms in the action (1) represent modifica-
tions of Einstein’s gravity, and as such, they have been
studied numerous times (see, e.g., [12]). Moreover, such
couplings are known to arise in string theory [13].
Nevertheless, we would like to stress that, even though
our model could be regarded as ‘‘string inspired,’’ in string
theory there is an infinite number of higher-curvature terms
that arise from �0 and loop corrections. This is because,
string theory is a model with an infinite number of degrees
of freedom.

However, in this paper we are studying a theory which
has only 1 scalar degree of freedom, and a spin-2 graviton.
In this case, the unique choice of the local effective action
in four dimensions is Eq. (1). Alternatively, one can think
of our action as the appropriate choice when the extra
degrees of freedom can be ignored.

The last term in (1) is of the axion type and it was studied
long ago in [14], where it was shown that such coupling
does not affect the evolution of scalar fluctuations to
quadratic order. We have verified that this is still true to
cubic order. Therefore, we discard this coupling in what
follows [15]. The Gauss-Bonnet term, on the other hand,
has been studied many times in the context of dark energy
(e.g., [12]). For other studies in the context of early cos-
mology see [16]. This term does contribute to scalar fluc-
tuations and it is the main focus of this work.

We would like to mention that the higher derivative
corrections we are studying will be important only in the
UV. In other words, we expect the effect of these correc-
tions to vanish as the Universe expands and cools down.
Therefore, we are not interested in solving the cosmologi-
cal constant problem through a modification of gravity.
Once the higher derivative terms become negligible, the
inflaton should roll down and oscillate at the bottom of the
IR potential which is encoded in the function PðX;�Þ. This
will be the usual mechanism for reheating. The final value
of the cosmological constant must be fine-tuned as usual.

The purpose of this paper is to study the observational
signatures of the Gauss-Bonnet coupling in the context of
inflation. Moreover, our main interest will be in models
with large non-Gaussianities. In the following, we compute
the non-Gaussianity parameter fNL using the action (1) in

the limit of a small speed of sound. Moreover, we perform
such calculation to leading order in the slow-roll parame-
ters, but to all orders in the ‘‘strength’’ of the Gauss-Bonnet
coupling, defined as

g � 8V 0
1ð�ÞH _�; (3)

where H is the Hubble parameter. In making the calcula-
tions, we assume that the parameter g is slowly varying in
time. We find that for large non-Gaussianities, fNL can be
written in terms of only three parameters. We study the
shape of fNL as a function of these parameters. We find that
the shape of fNL is always very close to that of k-inflation,
even in the limit g ! 1. We discuss in which cases de-
formations from this shape might be observed.
The spectrum of gravitational waves is also studied, and

we find an enhancement due to the Gauss-Bonnet term.
Using Wilkinson microwave anisotropy probe (WMAP)
limits on the equilateral fNL and the tensor/scalar ratio,
we put constraints on the different parameters. For the
particular case of Dirac-Born-Infeld (DBI) inflation, we
show that one is left with only a two-parameter family of
fNL. In this case, one can put a more precise constraint on
the Gauss-Bonnet coupling:

gDBI & 3:

We also discuss implications of the Gauss-Bonnet coupling
on the Lyth bound in the context of DBI inflation [17].
An interesting aspect of the Gauss-Bonnet coupling is

that scalar perturbations are nontrivial even in a de Sitter
background, just as they are in the ghost condensate [18].
However, we find that in our case, quadratic scalar fluctua-
tions have the familiar relativistic dispersion relation !�
k instead of the nonrelativistic one !� k2 of the ghost
condensate. This matches perfectly with the new de Sitter
limit found in [7] using the effective action of the fluctua-
tions. Therefore, the Gauss-Bonnet coupling is precisely
the modification of gravity that leads to such limit.
The paper is organized as follows. In Sec. II we study the

equations of motion for the background solution and the
quadratic scalar fluctuations. We also point out the differ-
ent limits used in the calculations. In Sec. III we calculate
fNL and study its shape. In Sec. IV we calculate the
gravitational wave spectrum. We discuss the various con-
straints on the parameter space. In Sec. V we study the case
of DBI inflation. Finally, we close with some final com-
ments and future directions in Sec. VI.

II. BACKGROUND SOLUTION AND QUADRATIC
FLUCTUATIONS

The equations of motion for the homogeneous back-
ground that follow from the action (1) can be written as

E ¼ 3H2ð1þ gÞ; (4)

_E ¼ �3HðEþ PÞ þ 3H3ð1� �Þg; (5)
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where

E ¼ 2X@XP� P; X ¼ 1

2
_�2; � ¼ � _H

H2
;

and g is defined in Eq. (3).
Since we are interested in isolating the contribution to

fNL of the Gauss-Bonnet coupling, we will set � ¼ 0. That
is, we will work in a de Sitter background [19]. The
existence of such limit will be established in the next
section. Moreover, we will assume that the parameter g
varies slowly with time. Therefore, to the first approxima-
tion we can consider it to be a constant. Note, however, that
g itself can be large. Therefore, we will do our calculations
to all orders in g.

Under these assumptions, one can easily show from (4)
and (5) that

X@XP ¼ 1
2H

2g:

This will be a very useful relation in what follows. The
speed of sound of this model is given by

c2s ¼
�
1þ 2X

@2XP

@XP

��1
: (6)

Since we are interested in the limit of large non-
Gaussianities, we will be working with a small speed of
sound. In this case, one can eliminate time derivatives of�
by

_�2

H2
� �2

c2s
;

where we have defined

�2 � @XP

@2XPH
2
: (7)

In the limit of small speed of sound, we do not need to

assume that _�=H � 1, but only that _�=H is much larger
than any of the slow-roll parameters. By slow-roll parame-
ters we mean any of the parameters that encode the time
evolution of the solution such as �, � � _�=H�, etc.

In this case, one can show from the equations of motion
(4) and (5) that derivatives with respect to the field � are
suppressed, e.g.,

@�P

H2
� ðslow rollÞ

_�=H
� 1:

Similar limits can be shown for other quantities involving
derivatives of the scalar field such as, e.g., @�@XP.

Let us now define the parameters

�1 � V 00
1 ð�Þ _�2; � ¼ _X

2HX
�

€�

H _�
: (8)

Note that � is a slow-roll parameter, and by assumption, it
must be small. It is then easy to show that

�1

g
¼ _g

Hg
þ �� � � 1: (9)

Therefore, in the slow-roll limit,�1 is small compared to g.
This means that wewill be able to ignore higher derivatives
of the potential V0

1ð�Þ in the following.
Note that the slow-roll conditions are necessary to en-

sure an almost scale-invariant spectrum of scalar fluctua-
tions. Nevertheless, we will see that the value of g does not
affect the scalar tilt, and hence it can be much larger than
any of the slow-roll parameters.

A. Quadratic fluctuations

To derive the action for the fluctuations we will use the
Arnowitt-Deser-Misner formalism, where we write the
metric as

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ:
It turns out to be technically simplest to work in the gauge:

�� ¼ ’; hij ¼ e2�ð�ij þ �ijÞ;
@i�ij ¼ 0; �ii ¼ 0:

(10)

This gauge is different from the unitary gauge �� ¼ 0
used in [7]. However, we will comment on their relation in
due course.
To relate this gauge choice to the physical (conserved)

curvature perturbation, we can use the �N formalism
[20]. In this formalism, one can relate the gauge invariant
curvature perturbation 	 to the number of e-foldings since
the time of horizon crossing (t�)

	ðt; ~xÞ ¼ N ðt; ~xÞ �N 0ðtÞ � �N ;

where

N ðt; ~xÞ ¼
Z t

t�
Hðt0; ~xÞdt0; (11)

and N 0 denotes the background value without the pertur-
bation. We can then view N as a function of the scalar
field perturbation evaluated at time t�. We can then write

�N ¼ @N
@��

’� þ 1

2

@2N
@�2�

’2� þ � � � : (12)

The first derivative follows directly from (11):

@N
@��

¼ �H�
_��
;

where, as usual, the star denotes evaluation at t�.
Higher derivatives of N will be suppressed by powers

of the slow-roll parameters. For example, by using the
equations of motion (4) and (5), and in the limit where � ¼
0, one can show that

@�

�
H
_�

�
� 4

3

�
H
_�

�
2 g�

c2s
þO

�
1

cs

�
:
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It is then easy to show that the extra terms in the expansion
(12) will give corrections to fNL in powers of
�ðslow rollÞ=c2s . We assume that the slow-roll parameters
are small such that ðslow rollÞ=c2s � 1. In any case, we
will be working in a de Sitter background where these
corrections are exactly zero.

The two point function of the curvature perturbation is
given by

h	 ~kðtÞ	 ~k0 ðtÞi �
H2�
_�2�
h’~kðt�Þ’~k0 ðt�Þi

� ð2
Þ3�ð3Þð ~kþ ~k0ÞP	 ð ~kÞ: (13)

Similarly, the three point function can be written as

h	 ~k1
ðtÞ	 ~k2

ðtÞ	 ~k2
ðtÞi � �H3�

_�3�
h’~k1

ðt�Þ’~k2
ðt�Þ’~k3

ðt�Þi

� ð2
Þ3�ð3Þð ~k1 þ ~k2 þ ~k2Þ

	
�
� 6

5
fNL

�X
i<j

P	 ð ~kiÞP	 ð ~kjÞ: (14)

In the last line we have defined the non-Gaussianity pa-
rameter fNL, following the conventions in [21].

To linearized order, the solution of the constraint equa-
tions can be parametrized by two scalars,

N ¼ 1þ �N; Ni ¼ @i�:

After many integrations by parts, the quadratic Lagrangian
for the Einstein-Hilbert, scalar and Gauss-Bonnet parts of
the action read, respectively,

Sð2ÞEH ¼ 1

2

Z
e3�H�Nð3H�N þ 2r2�Þ; (15)

Sð2Þ� ¼ 1

2

Z
e3�½@2�P’2 þ 2X2@XPþ 2�Nð@�P’

þ X1@XPÞ þ X1ð2@�@XP’þ X1@
2
XPÞ
; (16)

Sð2ÞGB¼�
Z
e�8V0

1H
2�Nr2’þ

Z
e3�f�48V 0

1H
3 _��N2

þ12ðH2þ _HÞH2V00
1’

2�8H2r2�½’ðV 0
1H� _�V 00

1 Þ
�V0

1 _’
þ24H2�N½’V00
1H

_�þV 0
1ð� _�r2�þH _’Þ
g;

(17)

where

X1 ¼ _�ð _’� _��NÞ; (18)

X2 ¼ 1
2½3 _�2�N2 � e�2�ðr’Þ2 � 2 _�@i’@i�

� 4 _��N _’þ _’2
: (19)

No approximations have been made in deriving
Eqs. (15)–(19).

As pointed out in the previous section, in the slow-roll
limit we can ignore the terms involving the second deriva-
tive of the potential V1. Varying Eqs. (15)–(17) with re-
spect to the constraints we obtain

�N � csg

2�ð1þ 3
2gÞ

_’

H
; (20)

r2� � �
�
1þ 3

2
g

��1
�
gcs
2�H

e�2�r2’

þ g

2�cs
ð _’� _��NÞ

�
; (21)

where we have kept only the leading terms in the limit
cs ! 0 [22]. Therefore, we see that in this limit,

�N � cs; �� 1

cs
: (22)

This order-of-magnitude estimate is important to deter-
mine which terms in the action survive the small speed
of sound limit.
Inserting the solution for the Lagrange multipliers (20)

and (21) back into the quadratic actions (15)–(17) and
taking the small speed of sound limit, we obtain the qua-
dratic action for the scalar fluctuations:

lim
cs!0

Sð2Þ ¼
Z

e3�fðgÞ½ _’2 � ~c2sðr’Þ2e�2�
; (23)

where

fðgÞ ¼ 2gð1þ gÞ2
�2ð2þ 3gÞ2 ; ~c2s ¼ ð1þ 2gÞð2þ 3gÞ

2ð1þ gÞ2 c2s :

Note that the quadratic action for the fluctuations is non-
trivial even in the de Sitter background that we are con-
sidering. Moreover, we see that g must be positive in this
limit in order to give the correct sign for the kinetic term in
Eq. (23).
The dispersion relation for the quadratic fluctuations is

precisely of the relativistic type !� k. Such fluctuation
spectrum around de Sitter was first found in [7] by studying
the effective action for the scalar fluctuations directly. We
then see that our approach gives a physical interpretation to
such fluctuations: they are generated by the Gauss-Bonnet
coupling of the inflaton. The precise dictionary between

our variables and those of Ref. [7] is the following: 	 ¼
�H
 ¼ ðH= _�Þ’, where 
 is the ‘‘Goldstone-Boson’’ of
[7]. Moreover, in our gauge, the extrinsic curvature and the
lapse can be written as

�Kij ¼ �@i@j�; �N � �1
2ð1þ g00Þ:

It is then easy to see that the terms that give the relativistic
dispersion for the quadratic fluctuations come precisely
from couplings of the form ð1þ g00Þ�Ki

i in the effective
action. These were the terms studied in [7].
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The quantization of the perturbations using the action
(23) proceeds in the standard way. We write

’ð�; ~xÞ ¼
Z d3k

ð2
Þ3 ’~kð�Þei ~k� ~x;

where the Fourier transform is written in terms of the
standard harmonic oscillator operators

’~kð�Þ ¼ u ~kð�Þay~k þ u�~kð�Þa� ~k:

Here we are using conformal time defined by dt ¼ e�d�.
For de Sitter space, e� ¼ �1=ðH�Þ where � 2 ð�1; 0
.

The properly normalized Bunch-Davies vacuum is given
by [23]

u ~k ¼
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4f~c3sk
3

p ð1� ik~cs�Þeik~cs�:

The power spectrum follows from the definition (13):

P	 ðkÞ ¼ H2ð2þ 3gÞ2
8gð1þ gÞ2~cs

1

k3
� P 	

1

k3
: (24)

Note that, in the slow-roll limit, we have a scale-invariant
spectrum. Therefore, observations of the scalar tilt do not
put constraints on the value of the Gauss-Bonnet coupling.

III. NON-GAUSSIANITIES

To study the non-Gaussianities for this model, we need
to expand the action to cubic order. In this section we will
show only the leading terms in the limit of a small speed of
sound. Moreover, we will always ignore the mixing with
gravity. To estimate the size of the various terms, the limits
(22) are useful. It turns out that the cubic action is of order
�1=cs. There are many integrations by parts necessary to
put the results in a simple form. The final result for the
cubic couplings takes the form,

lim
cs!0

Sð3ÞEH ¼ � 1

2

Z
e3��N½@i@j�@i@j�� ðr2�Þ2
; (25)

lim
cs!0

Sð3Þ� ¼
Z

e3�
�
X1X2@

2
XPþ 1

3
X3
1@

3
XP

�
; (26)

lim
cs!0

Sð3ÞGB ¼ �
Z

e�
gcs
�H

�N½@i@j’@i@j�� ðr2’Þðr2�Þ


� 3

2

Z
e3�g�N½@i@j�@i@j�� ðr2�Þ2


�
Z

e3�
gcs
�

@i’@i�r2�

þ 1

2

Z
e3�

gcs
�H

_’½@i@j�@i@j�� ðr2�Þ2
; (27)

where

X1 ¼ �H

cs

�
_’� �H

cs
�N

�
;

lim
cs!0

X2 ¼ � 1

2
e�2�ðr’Þ2 � �H

cs
@i’@i�:

In the usual k-inflationary scenario (g ¼ 0), the
Einstein-Hilbert action Eq. (25) gives a contribution to
the trispectrum which is of higher order in slow roll: fNL �
�2=c2s . Therefore, this term has been ignored in previous
calculations. However, with a nonzero Gauss-Bonnet cou-
pling, we have seen that fluctuations can exist even in a
de Sitter background. Therefore one can have g � �. In
this case, which is the main focus of this paper, all terms in
Eqs. (25)–(27) are equally important.
In the language of the effective field theory of [7], we

can readily identify some of the cubic couplings. For

example, the Einstein-Hilbert term can be written as Sð3ÞEH �Rð1þ g00Þð�Ki
j�K

j
i � ð�Ki

iÞ2Þ. However, since our gauge
choice is different from [7], not all terms in (25)–(27) can
be written only in terms of the lapse and the extrinsic
curvature.
In order to calculate the scalar three point function we

follow the standard procedure. To leading order in the
cubic perturbation, the three point function is given by

h’~k1
ðtÞ’~k2

ðtÞ’~k3
ðtÞi ¼ �i

Z t

�1
dt0h0j½’~k1

ðtÞ’~k2
ðtÞ’~k3

ðtÞ; Hintðt0Þ
j0i

� �i
Z 0

�1
d�0e�ð�0Þh0j½’~k1

ð0Þ’~k2
ð0Þ’~k3

ð0Þ; Hintð�0Þ
j0i;

where in the last line we have changed the integration to
conformal time, and made the usual late time approxima-
tion. The interaction Hamiltonian is given in terms of the
cubic Lagranian density: Hint ¼ �Lð3Þ.

The cubic Lagrangian density can be written in Fourier
space as

Lð3ÞðtÞ ¼
Z d3k1

ð2
Þ3
d3k2
ð2
Þ3

d3k3
ð2
Þ3 ð2
Þ

3�ð3Þð ~k1 þ ~k2 þ ~k3Þ

	 ~Lð3Þðk1; k2; k3; tÞ:
Then, it is not hard to see that the three point function can
be written as
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h’~k1
ðtÞ’~k2

ðtÞ’~k3
ðtÞi ¼ �ið2
Þ3�ð3Þð ~k1 þ ~k2 þ ~k3Þ

	Y3
i¼1

ju ~ki
ð0Þj2

Z 0

�1
dx

Hx
~Lð3Þ

	 ðk1; k2; k3; xÞ þ c:c:þ perms;

where we have defined the integration variable x ¼ ~cs�.

Moreover, ~Lð3Þðk1; k2; k3; xÞ is calculated by taking
the cubic Lagrangian density that follows from
Eqs. (25)–(27) and replacing the fields ’ using the rules:

’ ! ð1� ikxÞeikx; _’ ! �Hk2x2eikx;

where k ¼ j ~kj. Moreover, all spatial derivatives are re-

placed by their Fourier transform: @i ! ið ~kÞi. Using the
definition of fNL in Eq. (14), we can write

fNLðk1; k2; k3Þ ¼ � 5�3P 	

6c3s
P
i
k3i

�
i
Z 0

�1
dx

Hx
~Lð3Þðk1; k2; k3; xÞ

þ c:c:þ perms

�
: (28)

In doing the integrals, one projects to the correct inter-
acting ground state by rotating slightly the contour so that
� ! ð1� i�Þ�. With these considerations, it is straightfor-
ward to calculate the three point function. As an example,
let us work out the Einstein-Hilbert term, Eq. (25). The
Fourier transform Lagrangian density can be written as

~L ð3Þ
EHðk1; k2; k3; xÞ ¼ � 1

2

�
� ~cs
Hx

�
3½ð ~k2 � ~k3Þ2

� k22k
2
3
 ~�Nðk1Þ~�ðk2Þ~�ðk3ÞeiKx;

where

� ~NðkÞ ¼ � ~csab

2�
k2x2;

~�ðkÞ ¼ bHx2

4a�~cs
½�2þ b� 2a2ð1� ikxÞ
;

and

cs ¼ a~cs; K ¼ k1 þ k2 þ k3;

a2 ¼ 2ð1þ gÞ2
ð1þ 2gÞð2þ 3gÞ ; b ¼ g

1þ 3
2g

:

Therefore, the time integration gives

Z 0

�1
dx

Hx
~Lð3Þ
EHðk1; k2; k3; xÞ ¼ � ib3~c2sk

2
1

32aH2K5�3
½ð ~k2 � ~k3Þ2

� k22k
2
3
ð48k2k3a4 þ 6ð2a2

� bþ 2ÞKðk2 þ k3Þa2
þ ð�2a2 þ b� 2Þ2K2Þ:

Using the definition (28) we find the contribution to fNL of
the Einstein-Hilbert action:

fðEHÞNL ¼ 5b2ð3b� 2Þk21½ð ~k2 � ~k3Þ2 � k22k
2
3


96a4ðb� 2Þ2~c2sK5
P
i
k3i

f6½ð2a2 � bþ 2Þ

	 Kk3 þ k2ð8k3a2 þ ð2a2 � bþ 2ÞKÞ
a2
þ ð�2a2 þ b� 2Þ2K2g þ perms: (29)

In calculating the contribution from the scalar sector,
one encounters the question of how big @3XP is compared to
@2XP (note that both X1X2 and X

3
1 scale as�1=c3s). There is

no way of knowing this without a detailed form of P. We
will simply introduce a new variable  and write

 � �2H2 @
3
XP

@2XP
¼ @XP@

3
XP

ð@2XPÞ2
: (30)

Then, following the same steps as in the Einstein-Hilbert
term, it is easy to show that the contribution from the scalar
sector to fNL is given by

fð�Þ
NL ¼ 5ð2� bÞk21k22k23

6a4~c2sK
3
P
i
k3i

þ 5ð ~k2 � ~k3Þk21
12a4ð2� bÞ~c2sK3

P
i
k3i

	 ½2ðb� 1ÞðK þ 2k2Þk3a2 þ ð2a2ðb� 1Þ
� ðb� 2ÞbÞKðK þ k2Þ
 þ perms: (31)

Finally, the contribution from the Gauss-Bonnet term
gives

fðGBÞNL ¼ � 5b2

48a4ðb� 2Þ2~c2sK5
P
i
k3i

fðb� 2Þðð ~k2 � ~k3Þ2 � k22k
2
3Þ½18k2ð8k3a2 þ ð2a2 � bþ 2ÞKÞa2 þ ð6a2 � 3bþ 2Þ

	 Kð6k3a2 þ ð2a2 � bþ 2ÞKÞ
k21 þ 2Kð ~k1 � ~k2Þk23k1½4ðð2a2 � bþ 2ÞKk3 þ k2ð6k3a2 þ ð2a2 � bþ 2ÞKÞÞ
	 a2 þ ð�2a2 þ b� 2Þ2K2
 þ 2K2ð ~k1 � ~k2Þk23½2ðð2a2 � bþ 2ÞKk3 þ k2ð4k3a2 þ ð2a2 � bþ 2ÞKÞÞa2
þ ð�2a2 þ b� 2Þ2K2
g þ perms: (32)

The total contribution to fNL is then
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fNL ¼ fðEHÞNL þ fð�Þ
NL þ fðGBÞNL ; (33)

where the different terms are given in Eqs. (29), (31), and
(32). Note that the wave-vector dependence of fNL can be
written in terms of the magnitudes ki by using

~k i � ~kj ¼ 1
2ðkl � ki � kjÞ; l � i; j:

If we take the limit of vanishing Gauss-Bonnet coupling
g ! 0, only the scalar contribution survives and we get

lim
g!0

fNL ¼ 5k21k
2
2k

2
3

3c2sK
3
P
i
k3i

þ 5k21ð�k21 þ k22 þ k23Þ
24c2sK

3
P
i
k3i

	 ½KðK þ k3Þ þ k2ðK þ 2k3Þ
 þ perms:

¼ 5k21k
2
2k

2
3

3c2sK
3
P
i
k3i

� 10

3c2s
P
i
k3i

�
3k21k

2
2k

2
3

2c2sK
3
� 1

K

X
i<j

k2i k
2
j

þ 1

2K2

X
i�j

k2i k
3
i þ

1

8

X
i

k3i

�
: (34)

One can check that Eq. (34) coincides with the fNL calcu-
lated in [5] in the case of k-inflation, and in the slow roll
and small speed of sound limits [24]. If one is interested in
a finite speed of sound, one then simply replaces 1=c2s !
ð1=c2s � 1Þ in the second term of Eq. (34).

So far we have assumed that the speed of sound is small.
However, another way of getting large non-Gaussianities is
to make  large. In this case, fNL will be dominated by the
first term in Eq. (31):

lim
jj!1

fNL ¼ 5ð2� bÞk21k22k23
6a4~c2sK

3
P
i
k3i

: (35)

Note that the dependence on the speed of sound is exact in
this case (see [5,24]). Therefore, in this general class of
models, we can parametrize the leading contribution to fNL
by three parameters: cs, , and g. In the next sections we
will see how observations put constraints on these
parameters.

A. The shape of non-Gaussianities

Studying the shape of fNL amounts to calculate how it
depends on the size and shape of the triangle with sides ki.
To get an easier visualization, we will follow [21], and plot
fNL as a function of the two ratios: x2 ¼ k2=k1 and x3 ¼
k3=k1. Note that the dependence of k1 drops out. We will
begin by studying the effects of the Gauss-Bonnet cou-
pling. Therefore we set the extra parameter  ¼ 0 for the
moment.

The shape of fNL for  ¼ g ¼ 0 is shown in Fig. 1. We
normalize fNL so that it is equal to 1 in the equilateral limit
k1 ¼ k2 ¼ k3. However, we respect the sign that follows
from the definition given in the previous section.
Moreover, in order to avoid overcounting configurations,
we set fNL ¼ 0 if x2 and x3 do not obey the inequalities,

1� x2 � x3 � x2. The shape shown in Fig. 1 is what we
expect in usual k-inflation (with  ¼ 0).
If we turn on the Gauss-Bonnet coupling, we get a slight

deformation of this shape. However, it is easy to show that
fNL is bounded even if we take g ! 1. The deformation of
fNL is clearest if we plot the change of the normalized non-
Gaussianity,

�fNL � fnormNL ðgÞ � fnormNL ðg ¼ 0Þ;

where fnormNL means that we have normalized fNL as de-
scribed in the previous paragraph. In Fig. 2 we plot �fNL
for g ¼ 3. In the next section we will see that this value of
g is within the current observational limits. It is interesting
that, for all values of g the deformation of fNL obeys the
bound j�fNLj & 10�2jfNLðg ¼ 0Þj � 10�2=c2s . However,
this is about the same order of magnitude as the contribu-
tions coming from the slow-roll parameters which are
generically of order ��=c2s � jns � 1j=c2s � 10�2=c2s ,
where ns is the scalar tilt. In the most optimistic scenario,
where 1=c2s � 102, these deformations will represent a
change of order j�fNLj �Oð1Þ. This is about the lower
end of the detectability threshold of non-Gaussianities

FIG. 1. The non-Gaussianity parameter fNL as a function of
x2 ¼ k2=k1 and x3 ¼ k3=k1 for g ¼  ¼ 0. We have normalized
fNL so that it is equal to 1 in the equilateral limit k1 ¼ k2 ¼ k3.

FIG. 2. Deformation of fNL due to the Gauss-Bonnet coupling
for g ¼ 3 ( ¼ 0).

CONSTRAINING MODIFIED GRAVITY WITH LARGE NON- . . . PHYSICAL REVIEW D 79, 043520 (2009)

043520-7



[25]. Therefore, we conclude that the Gauss-Bonnet cou-
pling does not produce a measurable deformation of the
shape of fNL from that of k-inflation.

Let us now turn our attention to the effect of the pa-
rameter . To estimate the biggest possible contribution
from this term, we assume  � 1. Then, we plot the
difference

�fNL � fnormNL ðg ¼ 0;  ! 1Þ � fnormNL ðg ¼ 0;  ¼ 0Þ;
where

fnormNL ðg ¼ 0;  ! 1Þ ¼ 81k21k
2
2k

2
3

K3
P
i
k3i

:

The resulting plot is shown in Fig. 4. We can see that the
deformation due to  is an order of magnitude larger than
the rest of the deformations. Therefore, it is potentially
observable. Although the plot of Fig. 3 is for  ! 1, we
have found that the deformation is of order j�fnormNL j �
Oð10�1Þ for jj * j1� c2s j103.

If a large fNL is observed in the CMB, one could test
whether the dominant effect is a small speed of sound or
large , by looking at the deformation around the basic
shape with g ¼  ¼ 0. However, such test will not put any

constraints on g since we have seen that its effect on the
shape of fNL is negligible. Nevertheless, there is another
effect of the Gauss-Bonnet coupling that we have not
studied so far. In the next section we show that the
Gauss-Bonnet coupling amplifies the spectrum of gravita-
tional waves. We will see that this enhancement allows one
to take a smaller speed of sound, and so in an indirect way,
the Gauss-Bonnet coupling can also lead to an amplifica-
tion of the non-Gaussianities. We will show that current
WMAP data can already put constraints on the value of g.

IV. THE GRAVITATIONALWAVE SPECTRUM

In this section we will study the gravitational wave
spectrum of the Gauss-Bonnet coupling in the slow-roll
limit. We will only consider the quadratic fluctuations.
Similar studies have been done in [26] for a field with
canonical kinetic term. Note that the axion coupling in the
action (1) does affect the gravitational wave spectrum.
However, the effects of this term were understood in
[8,14]. The axion coupling introduces a helicity depen-
dence in the tensor power spectrum. We will ignore this
term in the following.
The Gauss-Bonnet term, however, has a very different

effect. It allows for both a large amplitude of gravitational
waves and large non-Gaussianity. This can be traced back
to the fact that g can be much larger than the slow-roll
parameters. Moreover, as we will show below, a large g
with a fixed tensor/scalar ratio also leads to a smaller value
of the speed of sound.
The quadratic actions for gravitational waves are given

by

S�EH ¼ 1

8

Z
e3�½ _�2

ij � 2ð3H2 þ 2 _HÞ�2
ij � e�2�ðr�ijÞ2
;

S�� ¼ � 1

4

Z
e3�PðX;�Þ�2

ij;

S�GB ¼ 1

8

Z
e3�½g _�2

ij � 2H2ð�1 þ gð2� 2�þ �ÞÞ�2
ij

� e�2�ð�1 þ �gÞðr�ijÞ2
:
In the slow-roll limit, the total quadratic action simpli-

fies to give

S� ¼ 1

8

Z
e3�½ð1þ gÞ _�ij � e�2�ðr�ijÞ2
;

where we have used the equations of motion (4) and (5).
The power spectrum is then easily calculated

h�s
~k
�s0

~k0
i ¼ 2ð1þ gÞ1=2H2

k3
�ss0 ð2
Þ3�ð3Þð ~kþ ~k0Þ

� P �ðkÞ
k3

�ss0 ð2
Þ3�ð3Þð ~kþ ~k0Þ;
where s, s0 labels the two helicities of the graviton. Using
the scalar power spectrum Eq. (24), the tensor/scalar ratio

FIG. 4. Deformation of fNL for  � 1. We have set g ¼ 0 in
this plot.

FIG. 3. Deformation of fNL due to the Gauss-Bonnet coupling
for g ! 1 ( ¼ 0).
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takes the form,

r � P �

P 	

¼ 16~csgð1þ gÞ5=2
ð2þ 3gÞ2 : (36)

In the limit where the Gauss-Bonnet coupling vanishes,
the dominant contribution to rwill come from the slow-roll
parameter � [5]

lim
g!0

r ¼ 16cs�: (37)

Therefore, we see that a small speed of sound suppresses
the gravitational wave amplitude in this case. However, in

the case of a nonvanishing Gauss-Bonnet coupling, we see
from (36) that g can be relatively large to compensate for a
small speed of sound. In this way one can produce a large
amplitude of gravitational waves and a large value of fNL.
Of course, as we discussed in the previous section, one can
also produce large non-Gaussianities with a large value of
. In this case, the speed of sound does not need to be large.
We nowwant to know if we can constrain the parameters

cs, g, and  using current CMB data. The current limit on
the tensor/scalar ratio is r & 0:20 [2]. Therefore, from
Eq. (36) we see that g cannot be too large without decreas-
ing the value of the speed of sound. The allowed parameter
space for ~cs and g is shown in Fig. 5.
Note that for nontrivial values of the Gauss-Bonnet

coupling (g * 0:1) we need a small speed of sound. This
will in turn translate to large non-Gaussianities. Moreover,
a small value of g will be very hard to disentangle from the
contribution of the slow-roll parameters. Therefore, we see
that the most interesting region is that of a small speed of
sound, and hence large fNL. This is consistent with the
approximations made in the calculation of fNL.
We now want to constrain  and g combining limits on r

and on fNL. To do this, we eliminate ~cs in terms of r and g
using Eq. (36). We can then insert this value into fNL,
Eq. (33), and write the equilateral fNL as a function of r, g,
and . In the equilateral limit, the formula for fNL sim-
plifies to

f
eq
NL ¼ 1

~c22

�
5ð1þ 2gÞ2ð2þ 3gÞ

486ð1þ gÞ3 � 5ð2gþ 1Þðgðgðgð72gþ 379Þ þ 690Þ þ 516Þ þ 136Þ
1296ðgþ 1Þ4ð3gþ 2Þ

�
; (38)

where

~c s ¼ rð2þ 3gÞ2
16gð1þ gÞ5=2 :

Current WMAP bounds on the equilateral non-
Gaussianities are roughly jfeqNLj & 250 [2]. Given these
constraints, we show the allowed parameter space for g
and  in Fig. 6.

One can see a degeneracy point around  � 2where one
can take large values of g. This is due to the fact that we
can have cancellations between the two terms in brackets
in Eq. (38). However, this is a very fine-tuned situation.
Nevertheless, we see that most of the parameter space for g
is quite well constrained by current observations. This is
specially true for models with large jj.

The bound on  is, however, not very good. The absolute
limit comes from taking g ! 0 and using the limit of r
given in Eq. (37). The equilateral fNL simplifies to

lim
g!0

feqNL ¼ 320�2ð4� 51Þ
243r2

: (39)

Since � enters linearly in the scalar tilt, one has that � &
10�2 given current WMAP observations. Using the limit
on equilateral fNL and r given above, one gets a rough
bound

FIG. 5. Observational constraints on g and ~cs. The shaded
region has been ruled out by the observations.

FIG. 6. Observational constraints on g and . The shaded
region has been ruled out by the observations.
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jj & 104: (40)

So far we have concentrated on giving bounds on g and
. However, one can ask if it is possible to break the
degeneracy between these two parameters and put more
precise constraints on a nonzero Gauss-Bonnet coupling.
The most optimistic scenario would be to detect a large fNL
and the deformation due to  described in the previous
section. In this case one would confirm that jj * j1�
c2s j103. This, combined with limits on r (see Figs. 5 and 6)
will put tight constraints on g. Nevertheless, in most mod-
els  is not an independent parameter. In this case we can
put more precise constraints on the Gauss-Bonnet cou-
pling. We illustrate this point in the next section for the
case of DBI inflation.

V. AN EXAMPLE: DBI INFLATION

So far we have discussed the constraints on the Gauss-
Bonnet coupling in a model independent way. However, in
order to break the degeneracy between the parameters g
and we need to consider particular models. In this section
we will study DBI inflation [27]. This is a string-inspired
model where the inflaton encodes the position of a D-brane
on a warped compactification. In this model, the function
PðX;�Þ takes the form

PðX;�Þ ¼ �fð�Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Xfð�Þ

q
þ fð�Þ�1 � Vð�Þ;

(41)

where fð�Þ is related to the warp factor of the
compactification.

Then, it is easy to show from the definition of ,
Eq. (30), that

DBI ¼ 3:

In this model we do not have any degeneracy between the
parameters and we can constrain g directly. In Fig. 7 we
plot the absolute value of the equilateral fNL as a function
of g and the tensor/scalar ratio r. We see that in DBI
inflation, the Gauss-Bonnet coupling is constrained as

gDBI & 3: (42)

Moreover, we see that there is a very interesting region of
parameter space where we can have both large fNL and a
large amplitude of gravitational waves.

So far we have assumed that the slow-roll parameters are
very small compared to any other scale in the problem.
This will translate in some constraints on the potentials V,
V1, and f. In the slow-roll limit, the equations of motion (4)
and (5) reduce to

_�2

H2
¼ csg; (43)

1

fð�Þ
�
1

cs
� 1

�
þ Vð�Þ ¼ 3H2ð1þ gÞ; (44)

where

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Xf

p
: (45)

To solve these equations, one first solves for _� from
Eq. (43) and substitute it on Eq. (44). This gives a
Hubble parameter that is a function of the scalar field H ¼
Hð�Þ. We then substitute this back in (43) to solve for� as
a function of time. We will not do this in detail, since we
are only interested in deriving general conditions on the
potentials.

In the limit of a small speed of sound, one has _�2 �
1=ð2fÞ. One can then show that

H2ð�Þ � Vð�Þ
3þ 2gð�Þ ; (46)

gð�Þ � 8V0
1ð�ÞHð�Þffiffiffiffiffiffiffiffiffiffiffi
fð�Þp ; (47)

csð�Þ � 1

8V 0
1ð�ÞH3ð�Þ ffiffiffiffiffiffiffiffiffiffiffi

fð�Þp : (48)

From Eqs. (46) and (47), we see that H obeys a cubic
equation. However, we do not need to solve this equation
explicitly to derive the slow-roll conditions. Using
Eqs. (46)–(48) along with (8) and (9), one can derive the
following relations between the slow-roll parameters:

� � � V0ð�Þ
2Vð�Þ

_�

H
þ g

3þ 2g

_g

Hg
; (49)

_g

Hg
¼ V 00

1 ð�Þ
V0
1ð�Þ

_�

H
� �þ �; (50)

FIG. 7. Equilateral fNL for DBI inflation, as a function of the
tensor/scalar ratio r and the Gauss-Bonnet coupling strength g.
The observationally allowed region is for r & 0:20 and jfeqNLj &
250.
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� � � f0ð�Þ
fð�Þ

_�

H
; (51)

_cs
Hcs

� �
_�

H

�
V 00
1 ð�Þ

V0
1ð�Þ þ

f0ð�Þ
2fð�Þ

�
þ 3�: (52)

Our results have assumed that all slow-roll parameters

are much smaller than _�=H. Therefore, to be consistent we
should impose the conditions:

f0ð�Þ
fð�Þ � 1;

V00
1 ð�Þ

V0
1ð�Þ � 1;

V0ð�Þ
Vð�Þ � 1;

V 00ð�Þ
Vð�Þ � 1;

(53)

where the last condition follows from _�=ðH�Þ � 1.
For an AdS throat, the warp factor is fð�Þ ¼ =�4,

where  is the ‘t Hooft coupling of the dual gauge theory,
and  � 1 [27]. Therefore, the first condition in (53) gives
� � 1. In other words, the D3-brane must be in the UV
region of the AdS throat. Note that this is still consistent
with the bounds studied in [27], so that one can ignore the
backreaction on the geometry.

If we want to be in the interesting window of large fNL
and observable gravitational waves, we need g�Oð1Þ. In
general, this condition will require a very steep potential
V1. In fact, using Eq. (36) for the tensor/scalar ratio, along

with Eq. (43) for _�, one can show that in this regime
V 0
1ð�Þ � 1010. Since, for the AdS throat, one is interested

in � � 1, one could perhaps realize such large value of
V 0
1ð�Þ with a power-law potential V1ð�Þ ��n. Note that

the slow-roll conditions in (53) will automatically be sat-
isfied for large values of�. Whether such a scenario can be
realized in a controlled string theory construction is be-
yond the scope of this paper.

The reader might be curious if the DBI model of Eq. (41)
can lead to a reheating and subsequent radiation/matter
dominated phase. As we pointed out above, the inflationary
phase will only be supported for large values of the inflaton
� � 1, that is, in the UV. Looking at Eq. (47), and con-
sidering the example of a power-law potential V1 ��n,
and an AdS throat, fð�Þ � 1=�4, we see that as the value
of the inflaton decreases, so does the Gauss-Bonnet cou-
pling gð�Þ. This will make the higher derivative correc-
tions less important in the IR. By virtue of Eq. (43), we see

that _�=H will also decrease, effectively increasing the
speed of sound. Eventually, in the IR, the effective action
will reduce to the usual one

PðX;�Þ � 1
2
_�2 � Vð�Þ þ � � � : (54)

This means that the inflaton will be driven to the bottom of
the Vð�Þ potential which we assume to be at � ¼ 0. This
will end inflation. Furthermore, reheating will proceed as
usual by the oscillations at the bottom of the potential.

A. Comments on the Lyth bound

We have seen that a Gauss-Bonnet coupling enhances
the amplitude of gravitational waves. It was shown in [17]
that, in the context of slow-roll inflation, an observable
amplitude of gravitational waves would require an ultra-
Planckian displacement of the inflaton. This is known as
the Lyth bound. Quite generally, we can write the bound as

��> j _�=Hj�N ; (55)

where�N is the number of e-foldings in which the scales
of interest in the CMB today exit their horizon. This is
usually taken as �N � 4:6 [17]. Using Eqs. (36) and (43)
in (55), one can write the Lyth bound in terms of the tensor/
scalar ratio and the Gauss-Bonnet coupling:

�� * 0:36183
3gþ 2

ðgþ 1Þ3=4ðgð6gþ 7Þ þ 2Þ1=4
ffiffiffiffiffiffiffiffiffi
r

0:07

r

! 0:693566

g1=4

ffiffiffiffiffiffiffiffiffi
r

0:07

r
; (56)

where in the last step we have shown the limit of large g.
Moreover, r � 0:07 is considered to be the lowest limit of
detectability for gravitational waves [17].
We can see from Eq. (56) that one can, in principle,

violate the Lyth bound if we have a large Gauss-Bonnet
coupling. However, a large value of g with fixed r requires
a very small speed of sound [see Eq. (36)]. We have seen
that current WMAP limits on fNL already constrain the
value of the Gauss-Bonnet coupling to Eq. (42). With this
value we get �� * 0:5, which is roughly the same bound
as in slow-roll inflation. Nevertheless, if we are working
with an AdS throat, we need � � 1 and so ��=� � 1.
So we see that the fractional change in the scalar field is
very small. This means that, in order to make CMB pre-
dictions within this class of models, we only need to know
the potentials in the large� limit. It would be interesting to
see whether one can violate the bound in some other model
with a Gauss-Bonnet coupling which allows �� 1.

VI. CONCLUSION

In this article we have studied WMAP constraints on
modifications of gravity due to a Gauss-Bonnet coupling in
single-field inflation. This is the most general modification
of gravity that leads to second order equations of motion,
and that also affects the spectrum of scalar fluctuations. We
showed that in the slow-roll limit, and for a very general
class of models with action (1), a large fNL can be written
in terms of three parameters: cs, , and g, the Gauss-
Bonnet coupling.
We found that the Gauss-Bonnet term has little effect on

the shape of non-Gaussianities, but it amplifies the tensor
power spectrum. Thus, given current limits on the tensor/
scalar ratio r, we found that large values of the Gauss-
Bonnet coupling would require small values of the speed of
sound, and hence large non-Gaussianities. Using current
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WMAP limits on r and fNL we were able to constrain the
parameter space of such models.

To give better constraints on g we studied a particular
model: DBI inflation. In this case we obtained a precise
bound on this coupling, Eq. (42). Moreover, we saw that in
this model, a nonzero Gauss-Bonnet couplings leads to an
interesting observational window with both large non-
Gaussianities and a large amplitude of gravitational waves.
We also studied how the conditions for the smallness of the
slow-roll parameters translate to constraints on the scalar
potentials. Possible violations of the Lyth bound were also
studied. We found that the bound can be violated for large
values of g. However, for DBI inflation one has an obser-
vational restriction of g & 3, and so the bound is roughly
�� * 0:5. Nevertheless, we found that for an AdS throat
the fractional change in the scalar field is very small:
��=� � 1. It would be interesting to study the higher-
curvature corrections to the DBI action, to see if one can
realize a Gauss-Bonnet driven inflation in a controlled way.
Some of these corrections were derived in [28].

Another interesting aspect of the Gauss-Bonnet term is
that scalar fluctuations can exist in a de Sitter background.
Moreover, they have a relativistic dispersion relation, un-
like ghost inflation [18]. This matches with the new

de Sitter limit found in [7] using the effective action of
the scalar fluctuations. One might wonder if there are other
de Sitter limits of inflation. In [7], it was argued that the
answer is negative as any such limits will not make sense as
an effective field theory for the fluctuations. However, the
authors of [7] only considered models with 1 scalar degree
of freedom. If we ask about other modifications of gravity,
it is well known that one needs to add more degrees of
freedom to the theory. It would be interesting to put con-
straints in other types of modified gravity using large non-
Gaussianities.
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