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We study the evolution of maximally symmetric p-branes with a Sp�i � Ri topology in flat expanding

or collapsing homogeneous and isotropic universes with N þ 1 dimensions (with N � 3, p < N, 0 �
i < p). We find the corresponding equations of motion and compute new analytical solutions for the

trajectories in phase space. For a constant Hubble parameter H and i ¼ 0 we show that all initially static

solutions with a physical radius below a certain critical value r0c are periodic while those with a larger

initial radius become frozen in comoving coordinates at late times. We find a stationary solution with

constant velocity and physical radius rc and compute the root mean square velocity of the periodic

p-brane solutions and the corresponding (average) equation of state of the p-brane gas. We also

investigate the p-brane dynamics for H � constant in models where the evolution of the universe is

driven by a perfect fluid with constant equation of state parameter w ¼ P p=�p and show that a critical

radius rc can still be defined for �1 � w<wc with wc ¼ ð2� NÞ=N. We further show that for w� wc

the critical radius is given approximately by rcH / ðwc � wÞ�c with �c ¼ �1=2 (rcH ! 1 when w !
wc). Finally, we discuss the impact that the large-scale dynamics of the universe can have on the

macroscopic evolution of very small loops.
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I. INTRODUCTION

The formation of topological defect networks is ex-
pected at cosmological phase transitions in the early uni-
verse [1,2]. The cosmological consequences of such phase
transitions can be very diverse depending both on the type
of defects formed and on the evolution of the universe after
the phase transition. For example, it is well-known that the
average domain wall density in an expanding universe
grows with respect to the background density in the radia-
tion and matter eras and consequently domain walls must
necessarily be very light in order not to completely domi-
nate the energy density of the universe [3]. On the other
hand, this late time dominance is a property naturally
associated with the dark energy and domain wall networks
have been proposed as interesting dark energy candidates
[4]. However, a domain wall network would need to have a
very small characteristic length and velocity in order to be
the dark energy. This requirement has recently been shown
not to be fulfilled both in the simplest domain wall models
and in more complex scenarios with junctions [5,6].

There are other topological defects, such as cosmic
strings, which lead to much less dramatic consequences.
A cosmic string network, in the scaling regime, has an
average density that is roughly proportional to the back-
ground density. Consequently standard cosmic strings do
not tend to dominate the energy density of the universe and

they naturally generate a scale-invariant spectrum of den-
sity perturbations on cosmological scales. Although recent
cosmological data, in particular, the cosmic microwave
background anisotropies, rule out cosmic strings as the
main source of density perturbations on large cosmological
scales, a cosmic string contribution at a subdominant level
is all but excluded [7,8]. In fact, the interest in cosmic
strings has recently been revived by fundamental work
suggesting string production at a significant (but subdomi-
nant) level at the end of brane inflation [9].
Cosmic strings and other defects can also be formed

during an inflationary era or in between several periods of
inflation. It is thus crucial to understand their evolution in
such regimes in order to quantify their ability to survive
any inflationary period which might occur after they form
[10,11]. The evolution of circular cosmic string loops and
spherical domain walls in a flat Friedmann-Robertson-
Walker (FRW) universe has previously been studied in
[12] (see also [13]) where the existence of periodic solu-
tions in a de Sitter universe has been demonstrated. Here,
we generalize these results, in particular, by explicitly
computing the phase space trajectories and determining
the critical radius for spherical p-branes in space-times
with an arbitrary number of dimensions. We also study in
detail the more general evolution of maximally symmetric
p-branes with a Sp�i � Ri topology in expanding and

collapsing flat FRW universes.
The outline of this paper is as follows. In Sec. II we

derive the equations of motion for spherically symmetric
p-branes in FRW universes with an arbitrary number of
spatial dimensions. We generalize these results in Sec. III
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to account for maximally symmetric p-branes with a
Sp�i � Ri topology. In Sec. IV we study in detail the

dynamics of p-branes in expanding and collapsing uni-
verses with a constant Hubble parameter H computing, in
particular, the phase space trajectories and the critical
radius rc for spherically symmetric p-branes and discus-
sing p-brane evolution in various limits. In Sec. V we relax
the constant H condition and consider the possibility of a
universe dominated by a dense p-brane gas. We determine
sufficient conditions for the cosmology to have an impact
on the macroscopic dynamics of small spherically sym-
metric p-branes in Sec. VI and we conclude in Sec. VII.

II. SPHERICAL SYMMETRIC p-BRANES

The space-time trajectory of a p-brane in a N þ
1-dimensional space-time is described by the Nambu-
Goto action

Sp ¼ ��p
Z

dpþ1�
ffiffiffiffiffiffiffiffi��

p
; (1)

where �p is the p-brane tension, �ab ¼ g��x
�
;ax�;b, g�� are

the metric components, and x� ¼ x�ð�aÞ represents the
space-time trajectory of the p-brane (a, b ¼ 0; . . . ; p).

In a N þ 1-dimensional Minkowski space-time, the tra-
jectory of a p-brane with spherical symmetry may be
written, in hyperspherical coordinates, as

xðt; �1; . . . ; �p�1Þ ¼ qðtÞ½cos�1; sin�1 cos�2; sin�1

� sin�2 cos�3; . . . ; sin�1 . . .

� sin�p�2 cos�p�1; sin�1 . . .

� sin�p�1; 0; . . . ; 0�; (2)

where �1; . . . ; �p�2 2 ½0; �� and �p�1 2 ½0; 2�½ and for

simplicity the coordinate system was chosen in order to
make the defect align with the first p-dimensions. The area
of a p-dimensional spherically symmetric p-brane is the
area of a p-dimensional hypersphere,

Sp ¼ ðpþ 1ÞCpþ1jqjp; (3)

where jqj is the physical radius and

Cj ¼ �j=2

�ðj=2þ 1Þ : (4)

The energy of the p-brane is, then, proportional to Sp�,

where v ¼ dq=dt and � ¼ ð1� v2Þ�1=2. It then follows
from energy conservation that

dR

dt
¼ 0;

dv

dt
¼ ð1� v2Þ

�
p�1=ps

R

�
; (5)

where R ¼ jqj�1=p is the invariant radius and s ¼
sgnð�qÞ.

In a flat N þ 1-dimensional Friedmann-Robertson-
Walker universe the energy of the p-brane is no longer

conserved and, consequently, the value of R is expected to
depend on time. Energy-momentum conservation for a
planar p-brane implies that the momentum per comoving
area (that is, the p-dimensional generalization in an N þ
1-dimensional space-time of the concept of the usual two-
dimensional area in a 3þ 1-dimensional space-time) is
proportional to a�1 and consequently the velocity of a

planar p-brane satisfies v� / a�ðpþ1Þ which implies

dv

dt
¼ �ð1� v2Þðpþ 1ÞvH: (6)

The equation of motion for a spherically symmetric
p-brane has an additional curvature term [see Eq. (5)]
and is then given by

dv

dt
¼ ð1� v2Þ

�
p�1=ps

R
� ðpþ 1ÞvH

�
; (7)

so that

dR

dt
¼ HR

�
1� pþ 1

p
v2

�
; (8)

where R is now defined as R ¼ �1=pjrj with r ¼ aq. Note
that, in this case, if H � 0 then R is no longer time-
independent.

III. Sp�1 � R p-BRANES

Let us generalize the results of the previous section for
maximally symmetric p-branes with a Sp�i � Ri topology,

with p < N and 0 � i � p, by allowing a number i of
dimensions to have no curvature and leaving p� i dimen-
sions with spherical symmetry. In this case the area of the
defect (per unit of i-dimensional area of the noncurved
dimensions) is

Sip ¼ ðp� iþ 1ÞCp�iþ1�jqjp�i (9)

and energy-momentum conservation leads to the following
equations of motion:

dv

dt
¼ ð1� v2Þ

�ðp� iÞ�1=ðp�iÞs
R

� ðpþ 1ÞvH
�
; (10)

dR

dt
¼ HR

�
1� pþ 1

p� i
v2

�
; (11)

where the so-called invariant radius R is now given by R ¼
jqj�1=ðp�iÞa. Note that

dr

dt
¼ vþHr; (12)

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
r

R

�
2ðp�iÞ

s
: (13)

These equations clearly show that there is an asymmetry
between the collapse and the expansion of the p-brane.
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This asymmetry is clearly seen in Fig. 1 which is discussed
in detail in the following section. Note that if the universe
is expanding then there is a damping term which always
contributes to decrease jvj. On the other hand, the curva-
ture term may act to increase or decrease jvj depending on
whether the p-brane is collapsing or expanding. It is also
very interesting to realize that we may write the Hubble
parameter as a function of the two loop parameters R and v
as

H ¼ d lnR

dt

�
1� pþ 1

p� i
v2

��1
: (14)

What this equation clearly shows is that we could, in
principle, infer the dynamics of the universe by looking
at the dynamics of a single p-brane.

Note that the equations of motion (10) and (11) are
invariant with respect to the transformation q ! �q and
t ! �t. This implies that the phase space trajectories in
expanding and collapsing universes related by the trans-
formation H ! �H are identical. However, the transfor-
mation t ! �t implies that the direction in which the
trajectories are traversed is reversed.

IV. p-BRANE DYNAMICS (H ¼ constant)

We have determined the ðr; vÞ trajectories in phase space
in the case of spherically symmetric p-branes (i ¼ 0).
Integrating Eqs. (10) and (11) we have

�rpð1þ vHrÞ ¼ k; (15)

where � ¼ ð1� v2Þ�1=2 and k is a constant. A stationary
solution of Eqs. (10) and (11) with fixed critical velocity
( _v ¼ 0) and physical radius ( _r ¼ 0), respectively vc and
rc, is characterized by

v2
c ¼ H2r2c ¼ p� i

pþ 1
: (16)

This solution describes a p-brane standing still against the
Hubble expansion or contraction. If i ¼ 0 then v2

c ¼
p=ðpþ 1Þ and we may easily find that value of k corre-

sponding to the stationary solution is given by k ¼ kc ¼
jHj�ppp=2ðpþ 1Þ�ðpþ1Þ=2. Trajectories with k > kc will
approach the line defined by v ¼ �ðHrÞ�1 when jrj !
1 (so that v ! 0 in this limit). On the other hand all
periodic trajectories have k < kc. Note that the reverse is
not true since there is an infinite number of nonperiodic
trajectories with k < kc. This is clearly shown in Fig. 1
where spherical domain wall trajectories with p ¼ 2 and
i ¼ 0 are represented in phase space. The trajectories with
k < kc are represented by a solid line and the dashed lines
represent trajectories with k > kc which start at one of the
critical points defined by v ¼ �Hr ¼ �1 and end at ðr ¼
1; v ¼ 0Þ in an expanding universe (or vice versa in a
collapsing universe). Note that even the periodic trajecto-
ries, for k < kc, are asymmetric. This is a direct result of
the asymmetry of the equations of motion (12) and (13)
discussed in Sec. III.
We may also compute a critical (initial) radius r0c corre-

sponding to an initially static p-brane solution (v0 ¼ 0)
with k ¼ kc (in an expanding universe it will asymptote to
the stationary solution when t ! 1). This critical radius is
given by

r0c ¼ jHj�1p1=2ðpþ 1Þ�ðpþ1Þ=ð2pÞ: (17)

In the case of circular cosmic string loops (p ¼ 1) and

spherical domain walls (p ¼ 2) r0c ¼ jHj�1=2 and r0c ¼
21=23�3=4jHj�1 respectively. We recover the critical radius
r0c for a circular cosmic string loop but the critical radius r0c
for a spherical domain wall is slightly smaller (by about
10%) than the approximate solution given in Ref. [12]. For
larger initially static spherically symmetric p-branes with
jr0j> r0c the motion is not periodic and, ifH > 0, the brane
eventually freezes in comoving coordinates. Specifically,
the p-brane will asymptotically behave as

q ¼ const()R / a; v / a�1: (18)

If H < 0 then all solutions with jr0j> r0c will asymptote
the critical point defined by v ¼ �Hr ¼ �1 when t ! 1.
Periodic solutions with jr0j< r0c satisfy hdðlnRÞ=dti ¼ 0

and consequently it follows from Eq. (10) with i ¼ 0 that

hv2i ¼ p

pþ 1
; (19)

FIG. 1 (color online). Representation of the trajectories of
spherical domain walls (p ¼ 2, i ¼ 0) in phase space. The
critical points marked with red (closed) dots represent the critical
stationary solution defined in Eq. (16) and the yellow (open) dots
correspond to the critical points defined by v ¼ �Hr ¼ �1.
The solid lines correspond to trajectories of spherical domain
walls with k < kc (those with jrj< rc describe periodic trajec-
tories in phase space). The dashed lines correspond to trajecto-
ries with k > kc which start at the one of the critical points
defined by v ¼ �Hr ¼ �1 and end at ðr ¼ 1; v ¼ 0Þ in an
expanding universe (or vice versa in a collapsing universe).
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where the brackets denote a time average over one period.
Note that the rms velocity approaches unity in the p ! 1
limit. On the other hand, the energy density �p in subcrit-

ical isolated spherically symmetric p-branes should evolve
as matter (�p / a�NÞ. Since the p-brane equation of state

is w 	 P p=�p ¼ ððpþ 1Þhv2i � pÞ=N then hv2i ¼
p=ðpþ 1Þ [14,15] is required in order that w ¼ 0.

If i � 0 there are no longer periodic solutions. This can
easily be seen in the limit where RjHj 
 1. In this limit the
Hubble damping term has a very small impact on the
dynamics of the p-brane on time scales �R and conse-
quently the dynamics of the p-brane is quasiperiodic.
Hence, from Eq. (10) we see that the evolution of the
velocity is essentially the same for all branes with the
same value of p� i. In particular

hv2i ¼ p� i

p� iþ 1
; (20)

which only depends on p� i. We may then write Eq. (11)
as

dR

dt
¼ HR

�
1� p� iþ 1

p� i
v2 � i

p� i
v2

�
: (21)

Taking the average of the right-hand side of (10) over one
quasiperiod, one obtains

dhRi
dt

¼ HhRi
�
1� p� iþ 1

p� i
hv2i � i

p� i
hv2i

�
(22)

¼ �HhRi i

p� iþ 1
; (23)

so that

hRi / expð	1HtÞ; (24)

with 	1 ¼ �i=ðp� iþ 1Þ. Hence, if i � 0 and the uni-
verse is expanding then the p-brane radius shrinks over
cosmological time scales (the opposite occurs ifH < 0). In
Fig. 2 we confirm the above results by comparing the
evolution of the invariant radius R computed numerically
with the analytical macroscopic solution given by Eq. (24)
and we find a good agreement between them.

V. p-BRANE DYNAMICS (H � constant)

We shall now discuss the case in which the universe is
expanding and the Hubble parameter is no longer time-
independent. For simplicity we shall assume that the dy-
namics of the universe is driven by a fluid with w ¼
constant � �1 so that a / jtj
 with 
 ¼ 2=ðNðwþ 1ÞÞ.
We identify t ¼ 0 either with the big bang (for w>�1) or
with the big rip (forw<�1). Ifw>�1 the Hubble radius
H�1 increases with time but for �1<w<wc with wc ¼
ð2� NÞ=N (so that 
> 1) the comoving Hubble radius
(H�1=a) decreases with time and consequently it is still
possible to find a critical radius,rc associated with a solu-
tion that has v ! vc � 0 when t ! 1. By requiring that
_v ¼ 0 and €v ¼ 0 asymptotically at late times and using
Eq. (10) we find that

ðrcHÞ2 ¼ p� i

pþ 1





� 1
; (25)

v2
c ¼ 
� 1




p� i

pþ 1
: (26)

We see that in the 
 ! 1 limit vc ! 0 and

rcH / ð
� 1Þ�c / ðwc � wÞ�c ! 1: (27)

The value of the critical exponent, �c is equal to�1=2 and
is independent of i, p, and N.
The critical radius defined above no longer exists for

w<�1 or w>wc. If w>wc then 
< 1 and conse-
quently the comoving Hubble radius H�1=a is an increas-
ing function of time. This means that all p-branes (even
those that are initially very large) will eventually come
inside the Hubble sphere so that at late times, when r 

H�1, the p-brane will oscillate quasiperiodically. If w<
�1 then 
> 1 and the Hubble radius decreases with
increasing physical time. Consequently, any initial quasi-
periodical p-brane trajectory (with r 
 H�1) will even-
tually freeze in comoving coordinates (with r � H�1).
The analysis of the collapsing case is trivial and follows

directly from the q ! �q and t ! �t duality described in
Sec. III. In this case, if w<wc then the comoving Hubble
radius jHj�1=a increases with time (if w<�1 then jHj�1

is also an increasing function of time). Hence, all p-branes
will eventually come inside the horizon and will oscillate
quasiperiodically when RjHj becomes much smaller than
unity. On the other hand, if w>wc then the comoving
Hubble radius jHj�1=a decreases with time and so all
p-branes will eventually have a physical radius much

FIG. 2 (color online). Time evolution of the invariant radius R
of a domain wall with cylindrical symmetry with R0H ¼ 0:002
(solid line) and the predicted evolution of hRi (dashed line).
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larger than jHj�1 and asymptotically the physical radius

becomes jrj / a so that �v / a�ðpþ1Þ. Consequently, as
the universe collapses (a ! 0) the p-branes become ultra-
relativistic while staying effectively frozen in comoving
coordinates. This result has been demonstrated in
Refs. [16,17] for defect networks in 3þ 1 dimensions
but remains valid when we consider the dynamics of defect
networks in contracting FRW universes with an arbitrary
number of spatial dimensions as long as w>wc.

An interesting case is that of a flat expanding universe
dominated by a dense brane gas with average density �p

and average pressure P p. The Einstein equations for an

N þ 1 FRW universe are given by

€a

a
¼ � 8�GNþ1

NðN � 1Þ ððN � 2Þ�p þ NP pÞ; (28)

�
_a

a

�
2 ¼ 16�GNþ1

NðN � 1Þ�p; (29)

where GNþ1 is the N þ 1-dimensional Newton constant. If
we assume a constant equation of state for the brane gas
given by w 	 P p=�p ¼ ððpþ 1Þhv2i � pÞ=N (see pre-

vious section) then the dynamics of the evolution of the
scale factor with physical time is given by a / t
 with


 ¼ 2

Nð1þ wÞ ¼
2

N � pþ ðpþ 1Þhv2i : (30)

In order to accelerate the universe one needs 
> 1 or
equivalently w<wc ¼ ð2� NÞ=N and consequently

hv2i< 2� N þ p

pþ 1
: (31)

Here, the brackets denote an average over the brane gas
network. We see that accelerated expansion is possible
only if N ¼ pþ 1 and in that case one would need hv2i<
N�1 for inflation to take place.

V. CAN COSMOLOGY HAVE AN IMPACT ON THE
DYNAMICSOF SMALLCOSMIC STRING LOOPS ?

In Sec. IV we have shown that if i � 0 then the cosmol-
ogy has an impact on p-brane dynamics over cosmological
time scales, even if RjHj 
 1. However, we have shown
that if H ¼ constant then the macroscopic evolution of
subcritical spherically symmetric p-branes (i ¼ 0) is not
influenced by the cosmology (hRi ¼ constant). In this
section we ask whether or not there are cosmological
models with a Hubble parameter HðtÞ in which the macro-
scopic dynamics of small spherically symmetric p-branes
can be affected by the large-scale evolution of the universe.

If we consider the evolution of p-branes with RjHj 
 1
in a flat FRW universe then Eqs. (10) and (11) imply that
the impact of the cosmology on brane dynamics is very
small on a time scale & R. Also since, for H ¼ constant,
the trajectory of a spherically symmetric p-brane is peri-

odic, the effect of the cosmology averages to zero on each
period of brane motion. We will now assume that H is no
longer a constant and is given by HðtÞ ¼ H0 þ �HðtÞ
whereH0 > 0 is a constant and j�Hj<H0. For simplicity,
in this section, we consider only the case of a circular
cosmic string loop in 3þ 1 dimensions (N ¼ 3, p ¼ 1,
i ¼ 0). The generalization of our analysis for N, p, and i
arbitrary is straightforward. If we take �H ¼ H1ð1�
2v2ð!tþ �ÞÞ, where v is the microscopic velocity of the
loop,! represents the angular frequency of oscillation and
� is a constant phase, then Eq. (11) becomes

dR

dt
¼ Rð1� 2v2ð!tÞÞðH0 þH1ð1� 2v2ð!tþ �ÞÞÞ:

(32)

The evolution of the loop during one quasiperiod is hardly
affected by the cosmological expansion and consequently
the Minkowski space solution given by

r ¼ r0 cos

�
t

r0

�
; (33)

v ¼ � sin

�
t

r0

�
(34)

is still a very good approximation, in the RH 
 1 limit, on
time scales 
 H�1. Taking into account that 1� 2v2 ¼
cosð2t=r0Þ and averaging the right-hand side of Eq. (32)
over one period one obtains the equation that describes the
macroscopic evolution of circular loop

dhRi
dt

¼ H1

2
cosð2�ÞhRi; (35)

so that

hRi / expð	2H1tÞ; (36)

FIG. 3 (color online). Time evolution of the invariant radius R
of a circular cosmic string loop for HðtÞ ¼ H0 þH1ð1� 2v2ðtÞÞ
(solid line) and the expected evolution of the mean value of R
(dashed line). We have taken H0 ¼ 2H1 and R0H0 ¼ 0:002.
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with 	2 ¼ cosð2�Þ=2. We clearly see that the evolution of
the universe may have an impact on the macroscopic
evolution of cosmic string loops over cosmological time
scales, even if they are very small. To illustrate this we
solved numerically the equations of motion for a cosmic
string loop. In Fig. 3, we plot the results for the time
evolution of the invariant radius of a loop with initial radius
R0H0 ¼ 0:002 and for a Hubble parameter parametrized
by H0 ¼ 2H1 and � ¼ 0. As expected this cosmology has
indeed an impact on the evolution of the invariant radius R,
making its mean value increase after each period by the
predicted amount. Of course, this is only valid in special
cases, and in general such an effect is expected to be very
small.

V. CONCLUSIONS

In this paper we studied the dynamics of special p-brane
configurations in expanding and collapsing FRWuniverses
with an arbitrary number of dimensions. We have shown
that, in the case of spherically symmetric p-branes and a
constant Hubble parameter, there are essentially two types
of trajectories, closed periodic trajectories and open trajec-
tories. We have obtained new analytical solutions for the
trajectories in phase space and computed the correspond-
ing critical points as well as the root mean square velocity
of the periodic p-brane solutions. We have shown that if
i � 0 the solutions are no longer periodic with the p-brane

radius evolving over cosmological time scales, even if
RjHj 
 1.
We have also investigated the case where H � constant

and we have found that for�1 � w<wc with wc ¼ ð2�
NÞ=N a critical radius may still be defined. In the w ! wc

limit we found that rcH / ðwc � wÞ�c with �c ¼ �1=2.
We also considered the special case of a flat FRW universe
dominated by a dense brane gas and determined the re-
quired conditions for accelerated expansion to take place.
Finally, we discussed the impact that the large-scale dy-
namics of the universe can have on the macroscopic evo-
lution of very small loops showing that there are situations
in which the evolution of the universe as a whole may
affect the macroscopic p-brane dynamics over cosmologi-
cal time scales.
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