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In this paper, we discuss the non-Gaussianity originated from the �-vacuum on the cosmic microwave

background anisotropy. For the �-vacuum, there exists a correlation between points in the acausal two

patches of de Sitter spactime. Such kind of correlation can lead to large local form non-Gaussianity in the

�-vacuum. For the single field slow-roll inflationary scenario, the space-time is in a quasi-de Sitter phase

during the inflation. We will show that the �-vacuum in this case will lead to non-Gaussianity with a

distinguished feature, of a large local form and a very different shape.
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I. INTRODUCTION

In the standard hot big bang cosmology, there are several
tough problems, including the flatness, isotropy and homo-
geneity, horizon, and topological defects problems. The
hot big bang theory is unable to answer these problem in a
natural way. Inflation, as an add-on, is remarkably success-
ful in solving these problems. It gives a natural initial
condition for our observed universe [1–3]. Furthermore
the quantum fluctuations during inflation seed wrinkles in
the cosmic microwave background (CMB) and today’s
large scale structure [4–8]. As a result, inflation predicts
a nearly scale invariant Gaussian CMB spectrum, which
has been confirmed very well in the experiments [9].

However, inflation as a successful scenario in the very
early universe has its own difficulties. One of the problems
with inflation is that there are too many inflationary mod-
els, which cannot be distinguished by the scalar power
spectrum and power spectrum index from the CMB obser-
vation. It is essential to find more powerful signatures
which could distinguish various models from each other.
Moreover, inflation has some conceptual problems, the
cosmological singularity problem and Trans-Planckian
physics being two of them. In a sense, the inflation scenario
is not really a fundamental theory. The trouble with it
mainly comes from our ignorance of the physics of the
very early universe, which should be governed by a quan-
tum gravity theory.

The rapid development of precise experiment cosmol-
ogy opens new windows to the very early universe. The
scalar spectral index and its running, the gravitational
wave, non-Gaussianity, and the isocurvature perturbation
in the CMB [9] are among the important probes. These
probes will not only constrain a large amount of inflation
models and make the paradigm more clear, but also shed
light on various other issues beyond the usual inflation
scenario. These issues include the initial conditions of
the inflation model, Trans-Planckian physics, and alterna-
tive models to inflation, etc.

Among the probes, non-Gaussianity is one of the most
important ones. It contains much information: magnitude,
shape, sign, and even running. In principle, it could dis-
tinguish various inflation models. The deviation from the
Gaussian distribution of the CMB in the Wilkinson
Microwave Anisotropy Probe (WMAP) observation is pa-
rametrized by fNL [10],

� ¼ �g þ 3
5fNL�

2
g ; (1)

where � is the curvature perturbation in the uniform den-
sity slices, and the subscript g denotes the Gaussian distri-
bution. In the WMAP five-year data [9], two kinds of non-
Gaussianity, local form and equilateral form, have been
analyzed

� 9< flocalNL < 111 ð95%CLÞ;
� 151< fequilNL < 253 ð95%CLÞ:

(2)

The central value of the local form non-Gaussianity is 51.
If the value of the local form non-Gaussianity is confirmed
by future experiments, such as the Planck satellite, then it
will be a great challenge to many inflation models, includ-
ing the most well-studied single field inflation models.
In fact, the non-Gaussianity in the CMB spectrum may

come from various sources during the evolution. The tem-

perature fluctuation �T
T is the observable in the CMB ob-

servation. During inflation, the quantum fluctuation of the
inflatons �� are generated, and the modes of the fluctua-
tion grow with the exponentially expanding universe. After
the fluctuations leave the horizon, the decoherence effect
makes the quantum fluctuations to be the classical ones. In
the large scale, the physical freedom of scalar perturbation
is curvature perturbation � . If we follow a mode,

Initial condition

ðVacuumÞ ! �� ! � ! �T

T
: (3)

All the transformations are linear at first order, thus the
temperature fluctuations are Gaussian. Meanwhile, any
deviation from linearity in these transformations and the
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changes in the initial condition will influence the final
observable.

(i) Let us first consider the last stage of the transforma-

tion � ! �T
T . The fluctuations in the gravitational

potential on the last scattering surface result in tem-
perature fluctuations in the CMB, which is known as
the Sachs-Wolfe effect. The nonlinear Sachs-Wolfe
effect generates fNL of order one.

(ii) The curvature perturbation � is conserved in the
single field inflation, while in the multiple field
case, the entropy perturbation changes the evolution
of � . It will suppress the perturbation conversion
factor for � in this process. That is why in the
curvaton mechanism [11] and new ekyrotic models
[12] the large local form non-Gaussianity is possible.
(The other important reason for ekyrotic models
generating large non-Gaussianity is that the slow-
roll condition breaks down.)

(iii) The primordial non-Gaussianity, which resides on
the quantum fluctuation of the scalar field [13], can
be from the microphysics deep in the horizon. Since
the observation requires the potential of the inflaton
to be slow roll, the interaction of the inflaton is weak,
and non-Gaussianity is only the order of the slow-
roll parameter fNL �Oð�; �Þ. The picture will
change when the modified gravity and noncanonical
action are considered, such as in ghost inflation [14],
Dirac-Born-Infeld (DBI) inflation [15], and k infla-
tion [16]. The nonlinearity in the action can produce
a large equilateral form non-Gaussianity in the
CMB. On the other hand, the backreaction argument
[13] explains why microphysics in the horizon can-
not have large local form non-Gaussianity.

(iv) The initial condition could be another important
source of non-Gaussianity. One attempt is to con-
sider the thermal vacuum in the inflationary cosmol-
ogy [17], in which the equilateral and local form
non-Gaussianity are both * Oð1Þ in some cases. In
this paper, we will consider one parameter family of
vacuum states, called the �-vacuum, in de Sitter
space-time [18,19] and quasi-de Sitter space-time
in inflation. In these vacua, there are correlations
between points in the acausal two patches of de
Sitter space-time. We will show that the �-vacuum
can induce large local form non-Gaussianity.

As we know, the standard treatment in the scalar driven
inflation scenario is based on semiclassical gravity, in
which the background is described by classical Einstein
gravity and the perturbations are quantized in the back-
ground. During the slow-roll period, since the evolution of
the background is in a quasi-de Sitter phase, the perturba-
tions could be treated as the quantum field in a de Sitter
space-time. In the expanding background of inflation, the
quantum modes are stretching across the horizon. The
modes observed in the CMB could be in the trans-

Planckian region at the very early time. If the inflation
lasts about 70 e-foldings, the perturbation which we ob-
serve in our horizon, at that time, is deep inside the
horizon. And the wavelength of this perturbation is smaller
than the Planck scale. The semiclassical description is not
applicable for the perturbation. It is necessary to consider
the stringy effect or some other quantum gravity effects on
inflation. The trans-Planckian physics in inflation was first
raised in [20]. As in black hole physics, an efficient way to
count the Trans-Planckian effect is to modify the disper-
sion relations. Various dispersion relations and their physi-
cal implications have been widely studied [21]. Another
way to discuss the trans-Planckian physics is based on the
space-time uncertainty from quantum gravity, such as
string theory. This noncommutative effect will impact the
power spectrum and gravitational waves of the CMB
[22,23] and also modify the non-Gaussianity [24].
There is another attempt to address the trans-Planckian

physics in inflation, first suggested by Danielsson [25]. The
new important ingredient in the discussion is the introduc-
tion of one parameter family of the �-vacuum state in the
inflationary background. In de Sitter space-time, the
Bunch-Davies vacuum is the standard vacuum which is
invariant under the de Sitter space isometry group.
However, due to the absence of the globally defined time-
like Killing vector, the vacuum in de Sitter space-time
cannot be defined uniquely. Similarly, the choice of the
vacuum in the inflationary background is subtle and may
induce observable signature on CMB data. It was argued
that the effective field theory and semiclassical gravity are
applicable from the length of the new physical scale cutoff
to the large scale of the universe. And it was also assumed
that the modes were generated one by one at the Planck
scale or new physics scale� such that the initial conditions
are imposed at a mode-dependent time instead of in the
infinite past. This is the motivation to the introduction of
the �-vacuum in inflation. Its physical implications on
inflation have been intensely studied. The order of the
correction to the power spectrum has been discussed in
[26–35]. For example, in [32] using the method of effective
field theory the authors found that the correction was

�OðH2

�2Þ, and in [31] the authors calculated the correction

of power spectrum when the modes are initially created by
the adiabatic vacuum state, and found that the correction

was �OðH3

�3Þ. The careful analysis of these different cor-

rections can be seen in [34]. For the non-Gaussianity from
the trans-Planckian physics it was first roughly analyzed in
[36], and in [37] its folded form was analyzed in the
effective field theory. In this paper we follow the treatments
in [25,30]. In [30] the authors evaluated the �-vacuum
effect in the general single field inflation background and
found an oscillating dependence on the wave number k for
the power spectrum. The reason is that during inflation the
Hubble scale is not constant, and the coefficient for the
�-vacuum state sensitively relies on k. We will show that
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this k-dependence lead to a distinguished feature of non-
Gaussianity.

This paper is organized as follows: in Sec. II, we first
discuss the vacuum states in de Sitter space, the relation
between the Euclidean vacuum and �-vacuum. Then we
introduce different correlation functions and explain the
property of the antipodal correlation in de Sitter space. In
Secs. III and IV, we review the Lagrangian formalism to
compute the power spectrum and three-point correlation of
the curvature perturbation. Section V is the main result of
this paper. We evaluate the local form and equilateral form
non-Gaussianity for the Euclidean vacuum and �-vacuum
in both de Sitter space-time and inflationary backgrounds.
We also draw the shapes of non-Gaussianity in each case.
Finally, we conclude in Sec. VI.

II. VACUUM STATE IN DE SITTER SPACE

The space-time of inflation is a quasi-de Sitter space-
time, which can be conventionally described by the
Friedmann-Robertson-Walker (FRW) coordinate,

ds2 ¼ dt2 � e2Htdx2; (4)

whereH is the Hubble scale. In this section, to illustrate the
feature of the �-vacuum clearly, we mainly discuss the de
Sitter space in which H is simply a constant. Note that the
metric (4) actually covers only half of the de Sitter space-
time.

The equation of motion for a scalar field in the back-
ground takes the form

€��þ 3H _���r2��þ @V

@��
¼ 0: (5)

The scalar field could be an inflaton, for which the mass of
the scalar field is much less than the Hubble scale m � H.
The complete solution of (5) can be expressed in momen-
tum space [38],

��ð�;xÞk ¼ 1
2�

1=2Hð��Þ3=2eik�x½c1ðkÞHð1Þ
	 ð�k�Þ

þ c2ðkÞHð2Þ
	 ð�k�Þ�; (6)

where � ¼ � 1
aH is the conformal time in de Sitter space,

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
� 12

m2

H2

s
; (7)

and H
ð12Þ
	 are Hankel functions of the first and second kind.

In the limit of � ! �1 for a fixed k, which means that a
mode of the scalar field is deep in the Hubble horizon,

H ð12Þð�k�Þ !
�
� 2

�k�

�
1=2

eð�þÞik�; (8)

up to some constant phase factor.
When a mode is deep in the horizon, the spatial scale is

much smaller than the Hubble scale so that the curvature
effect is negligible and the scalar field is well described by

quantum field theory in Minkowski space. As � ! �1,
we could choose the vacuum as in the flat space and
positive frequency modes from the Hankel function of

the second kind Hð2Þ
	 , i.e. c2ðkÞ ¼ 0. This is called thermal

vacuum or Euclidean vacuum in de Sitter space-time.
The scalar field is quantized by the canonical method,

�� ¼ X
n

ð��nan þ ���
na

y
n Þ; (9)

where n denotes all the quantum numbers of the modes,

and fan; ayn g are the annihilation and creation operators
satisfying the commutative relation

½an; aym� ¼ ð2�Þ3�mn: (10)

The Euclidean vacuum state is defined to be

anj�i ¼ 0: (11)

Let us consider a mode k as � ! �1. The physical
wavelength of the modes is smaller than the Planck scale. It
is natural to set a physical cutoff for momentum pc. When
p > pc, one has to consider the trans-Planckian effect. The
influence of new degrees of freedom and a new physical
law could be effectively encoded in the change of disper-
sion relation [21], space-time noncommutativity [22,23],
or some other ways. When p < pc, the solution of the
Klein-Gorden equation is reliable, and the solution of the
scalar field is the linear combination of ��ð�;xÞ�k in (6). A

new set of modes for the trans-Plankian effect is expressed
as the combination of the Euclidean modes by a
Bogoliubov transformation [18,39] (Mottola-Allen trans-
form),

~��n � N�ð��n þ e����
nÞ; N� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�þ��p ;

(12)

where � is a complex number with Re�< 0 to denote the
rotation of field space, and N� is derived from the
Wronskian condition or the rule of Bogoliubov transfor-
mation. Since

�� ¼ X
n

ð��nan þ ���
na

y
n Þ ¼

X
n

ð~��n~an þ ~���
n~a

y
n Þ;

the equation of ~an can be expressed as

~a n ¼ N�ðan � e�
�
ayn Þ: (13)

Thus the new vacuum called the �-vacuum is defined as
follows:

~a nj�i ¼ 0; (14)

where the �-vacuum is still de Sitter invariant, just like the
Euclidean one. The Bogoliubov transform can be imple-
mented by a unitary transform [19],

~a n ¼ SanSy; (15)
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where

S ¼ exp

�X
n

cðayn Þ2 � �cðanÞ2
�
;

cð�Þ ¼ 1

4

�
ln tanh

�Re�

2

�
e�i Im�:

(16)

The relation between the two vacua is

j�i ¼ Sj�i: (17)

Let us turn to the Green functions which are useful in
studying the power spectrum and non-Gaussianity. There
are several kinds of Green functions, but all of them can be
expressed by the Wightman function.

In the Euclidean vacuum, the Wightman function can be
expressed as

GEðx; x0Þ ¼ h�j��ðxÞ��ðx0Þj�i ¼ X
n

��nðxÞ���
nðx0Þ:

(18)

For a distance much smaller than the Hubble scale, GE

takes the form in Minkowski space-time,

GEðx; x0Þ � 1

ðt� t0 � i�Þ2 � j ~x� ~x0j2 : (19)

Near the light cone, the Green function is divergent.
The metric (4) only covers one-half of the whole de

Sitter space-time. To illustrate the character of the
Wightman function for the �-vacuum, we must extend
the analysis to the whole de Sitter space-time. The de
Sitter space-time can be constructed as a hyperboloid in
the five-dimensional flat space-time,

� ðX0Þ2 þ ðX1Þ2 þ ðX2Þ2 þ ðX3Þ2 þ ðX4Þ2 ¼ 1

H2
; (20)

where Xi is the coordinate in the flat five-dimensional
space-time. Thus de Sitter space-time is a maximal sym-
metric space-time with constant curvature, and its symme-
try group is Oð1; 4Þ. Define the antipodal point of X as
XA ¼ �X. In the Euclidean vacuum, the modes of scalar
field can be chosen to obey the rule [18,39],

��nðxAÞ ¼ ���
nðxÞ; (21)

where xA denotes the antipodal point to x in de Sitter space
as in Fig. 1.

In the �-vacuum, the Wightman function takes the form

G�ðx; x0Þ ¼ h�j��ðxÞ��ðx0Þj�i ¼ X
n

~��nðxÞ~���
nðx0Þ:

(22)

With Eqs. (18) and (21), G� is of the form

G�ðx; x0Þ ¼ N2
�½GEðx; x0Þ þ e�þ��

GEðx0; xÞ
þ e�

�
GEðx; x0AÞ þ e�GEðxA; x0Þ�: (23)

The Wightman function has some special properties. First,

the Green function contains singularity at antipodal points
fxA; xg. The singularity cannot be observed because of the
separation by the horizon. Second, the correlation is not
acausal, because when one calculates the retarded (ad-
vanced) Green function below, the correlation from acausal
patches does not exist. Finally, the Wightman function
contains the correlation between points in the two patches
of de Sitter space-time. It brings correction to the power
spectrum. And most importantly, it influences the shape of
non-Gaussianity, which makes it much different from the
Euclidean vacuum.
In order to calculate the power spectrum and non-

Gaussianity from the �-vacuum, it is better to use the
Green functions in momentum space. The power spectrum
of the scalar field can be read from the two-point correlator
in momentum space,

h�j��ðk; �Þ��ðk0; �0Þj�i ¼ ð2�Þ3�ðk� k0Þ ~��kð�Þ
	 ~���

kð�0Þ
¼ ð2�Þ3�ðk� k0ÞN2

�½��kð�Þ
þ e����

kð�Þ�½���
kð�0Þ

þ e�
�
��kð�0Þ�; (24)

where ��k is the mode of scalar field in momentum field.
In the Euclidean vacuum, for the leading order approxima-
tion

��kð�Þ ¼ ð�H�Þ
�
1� i

k�

�
e�ik�ffiffiffiffiffi
2k

p : (25)

When the modes cross the horizon, the quantum fluctuation
is transformed to a classical one, and the curvature pertur-
bation is conserved for large scale. Thus we take the time�
at the horizon crossing time, which is a good approxima-

FIG. 1 (color online). The Penrose diagram of de Sitter space,
where the two blue points are antipodal points in the space. The
left upper part of the diagram is the spatial flat patch for an
observer on the left-hand boundary.
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tion to calculate the power spectrum in the single field case.
For k� � 1,

h�j��ðk; �Þ��ðk0; �0Þj�i � ð2�Þ3�ðk� k0Þ H
2

2k3
N2

�

	 ð1þ e�þ�� � e� � e�
� Þ

¼ ð2�Þ3�ðk� k0Þ 2�
2

k3
PðkÞ:

(26)

Thus the power spectrum of the scalar field can be written
as

P ðkÞ ¼ H2

ð2�Þ2
1þ e�þ�� � 2Re e�

1� e�þ�� : (27)

The leading order correction of the power spectrum comes
from the Re e�. From the Wightman function in coordinate

space, it is easy to see that the contribution is from
GEðx; x0AÞ. Meanwhile, if we use a physical cutoff to set
an initial condition of the modes, the power spectrum
should depend on the cutoff scale �, which could be the
string scale, Planck scale, or others.
Next, let us analyze the retarded Green function to prove

that the antipodal point does not break the causality. The
retarded Green function is defined as

GRðx; x0Þ ¼ i
ðt� t0ÞhVACj½��ðxÞ; ��ðx0Þ�jVACi;
(28)

where


ðtÞ ¼
�
1 t > 0
0 t < 0

: (29)

In the Euclidean vacuum, the retarded Green function in
momentum space takes the form

GREð�; �Þ ¼ ið2�Þ3�ðk� k0Þ
�
0 �< �
���

kð�Þ��kð�Þ � ��kð�Þ���
kð�Þ �> �

: (30)

And in the �-vacuum, the retarded Green function takes the form

GR�ð�; �Þ ¼ ið2�Þ3�ðk� k0Þ
�
0 �< �
~���

kð�Þ ~��kð�Þ � ~��kð�Þ~���
kð�Þ �> �

: (31)

According to Eq. (12), the Green function can be expressed
by the one in the Euclidean vacuum,

GR�ð�; �Þ ¼ N2
�½GREð�; �Þ þ e�þ��

G�
REð�; �Þ�: (32)

From the above equation, the retarded Green function in
the �-vacuum does not contain the correlation from the
two patches of de Sitter space-time, so the causality is kept
in the vacuum.

III. ARNOWITT-DESER-MISNER (ADM)
FORMALISM AND CURVATURE PERTURBATION

IN INFLATIONARY BACKGROUND

During inflation, the Hubble radius is changing slowly
and the space-time is not exactly a de Sitter space-time. As
usual, we have slow-roll parameters,

� � � _H

H2
¼

_�2

2H2
’ 1

2

�
V 0

V

�
2
;

� ¼ �
€�

H _�
þ 1

2

_�2

H2
’
�
V 00

V

�
¼ V 00

3H2
:

(33)

The condition �, � � 1 indicates that the velocity and the
acceleration of the inflaton is quite small. Despite the small
deviation from pure de Sitter space-time, one can still
define the �-vacuum. However, the physical implications
of the �-vacuum to the CMB spectrum are very different.
For example, in de Sitter space the power spectrum has a
constant correction with a magnitude of OðH=�Þ [25],

where � is the scale of the new physics, while in infla-
tionary background the correction is dependent of the wave
number k, so that the power spectrum oscillates with k
[30].
For simplicity, we just analyze the single field infla-

tionary models with canonical action. If there exists only
one scalar field in quasi-de Sitter space-time, then there is
just one perturbation freedom �� from the scalar field.
However, there are also four scalar perturbation freedoms
from the metric �g�	. �� and �g�	 do not decouple for

scalar perturbation. Gauge invariance removes two of the
scalar degrees of freedom by time and spatial reparame-
trizaions xi ! xi þ @i�ðt; xÞ and t ! tþ �ðt; xÞ [40]. The
constraints in the action remove two other freedoms. Thus,
there is only one scalar degree of freedom left. Therefore,
we should choose a convenient gauge and discuss the only
physical freedom in the single field inflationary model.
In general, the space-time can be decomposed using the

ADM formalism [41], and the metric takes the form

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; (34)

where hij is the metric of three dimensional spatial slices.

The lapse N and the shift vector Ni contain the freedom of
the scalar perturbation, such as time reparametrization and
spatial reparametrization. With the 3þ 1 decomposition,
the extrinsic curvature of the spatial slice is

Kij ¼ N�0
ij ¼

1

2N
ð _hij �riNj �rjNiÞ; (35)
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where �0
ij is the Christoffel symbol in four dimension

space-time. And the intrinsic curvature of the spatial slices
takes the form:

Rð3Þ ¼ R� KijK
ij � K2; (36)

where

K ¼ Ki
i: (37)

To simplify the action, we introduce another parameter
Eij � NKij, so the standard Einstein-Hilbert action can

be written as

S ¼ 1

2

Z
d4x

ffiffiffi
h

p ½NRð3Þ � 2NVþ N�1ðEijE
ij � E2Þ

þ N�1ð _�� Ni@i�Þ2 � Nhij@i�@j��; (38)

where h ¼ dethij. In the action, there is no time derivative

of N orNi, so they are Lagrangian multipliers which can be
solved directly as the constraint equations.

It is convenient to choose the comoving gauge, in which
the inflaton perturbation vanishes in the spatial slices,

�� ¼ 0; hij ¼ a2e2��ij: (39)

The spatial metric hij is the nonperturbative form [13,42],

and the tensor perturbation is omitted for considering only
scalar perturbation. In this gauge, � is the physical degree
of freedom, which is constant outside the horizon in single
field inflation.

In the comoving gauge, the constraint equation is

ri½N�1ðEi
j � �i

jEÞ� ¼ 0;

Rð3Þ � 2V � N�2ðEijE
ij � E2Þ � N�2 _�2 ¼ 0: (40)

From these constraints and the equations of the back-
ground, the action can be expanded to second order, third
order, and even higher order of � . In order to get the action
order by order, we need to expand the N and Ni first. For
the shift vector Ni, it can always be decomposed as

N i ¼ @ic þ ~Ni; (41)

where @i ~Ni ¼ 0, and c denotes the scalar perturbation of
metric g0i. These Lagrangian multipliers can be decom-
posed in powers of � ,

N ¼ 1þ �1 þ �2 þ � � � ; c ¼ c 1 þ c 2 þ � � � ;
~Ni ¼ ~Nð1Þ

i þ ~Nð2Þ
i þ � � � ; (42)

where the subscript denotes the order, for example �n �
Oð�nÞ. From the constraint equation on Ni (40), we could
get

�1 ¼
_�

H
; @2 ~Nð1Þ

i ¼ 0: (43)

Using the appropriate boundary condition, ~Ni can be set to

0. From the viewpoint of inflationary perturbation, ~Ni

represents the vector perturbation of the metric, which
vanishes in the boundary. From the constraint equation

on N (40), using the equation of Rð3Þ

Rð3Þ ¼ �2a�2e�2� ½ð@�Þ2 þ 2@2��; (44)

and Friedmann equation of the background, the first order
of c is given by

c 1 ¼ � �

H
þ a2

_�2

2H2
@�2 _�: (45)

To get the action to the quadratic order of � , it is enough to
expand N and Ni to the first order of � , because the second
order term in N and Ni will multiply the zero order of the
constraint equation which is zero. With the same reason, to
get the cubic action for � , we do not need to expand the N
andNi to cubic order. The second order expansion of N and
Ni in the cubic action vanish or reduce to total derivatives.
So the action to the quadratic and cubic order of � can be
obtained by substituting N, Ni to the first order into the
action and then expanding the action to the second and
third order of � .
After integrating by parts, the quadratic action of � takes

the form as

S2 ¼ 1

2

Z
d4x

_�2

H2
½a3 _�2 � að@�Þ2�: (46)

To get the field equation and solve the curvature perturba-
tion for different modes, a rescale field is defined as

v � z�; z � a
ffiffiffiffiffiffi
2�

p
: (47)

The equation of motion is

v00
k þ

�
k2 � z00

z

�
vk ¼ 0; (48)

where the prime 0 denotes the derivative with the conformal

time �. Considering the slow-roll condition the expression
of the conformal time is somehow different from the value
in de Sitter space,

d� ¼ dðaHÞ
ðaHÞ2ð1� �Þ : (49)

The conformal time can be written as

� ’ � 1

aHð1� �Þ ’ � 1þ �

aH
: (50)

For the power-law inflation, the conformal time takes an
exact form, � ¼ �1=ðaHÞð1� �Þ. In the field equation,

z00

z
’ 2a2H2

�
1þ 5

2
�� 3

2
�

�
; (51)

so the solution of (48) is the form of Bessel functions,

vk ¼ 1
2ð���Þ1=2½c1ðkÞHð1Þ

	 ð�k�Þ þ c2ðkÞHð2Þ
	 ð�k�Þ�;

(52)
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where

	 ¼ 4
9 þ �� 3�: (53)

The solution is similar to (6). In the case of the single field
inflation, there is only one degree of freedom for the scalar
perturbation, so using scalar field perturbation �� as the
physical freedom or using the curvature perturbation, the
two kinds of descriptions are the same. On the large scale,
the curvature perturbation � is conserved in the single field
case, while the scalar field decays to other fields at the end
of inflation. Thus it is more clear to use � as the physical
freedom to describe the perturbation. The results of the
power spectrum from the two descriptions are the same up
to a factor 2�.

When � ! �1, the Hubble radius is infinite relative to

the modes k, the term z00
z can be omitted, and the gravita-

tional effect is negligible, so vk / e�ik� in the Euclidean
vacuum. On the other hand, when k ! þ1, the contribu-
tion to the vk comes from both the negative and positive
frequency in the �-vacuum,

vk ¼ c1
e�ik�ffiffiffiffiffi
2k

p þ c2
eþik�ffiffiffiffiffi
2k

p : (54)

We may have the question why the equation of motion is
still effective as k ! þ1. At the scale �, the new physics
and some new freedom will emerge. The new physics scale
is set to the Planck scale, string scale, or any other ones. In
this paper, we assume that the new physics scale �>H,
and � is constant. Thus at least on large scales, the field
equation (48) is reliable. There are two functions c1 and c2,
which depend on the new physics. What is the most
important, we can determine the c1ðkÞ, c2ðkÞ from the
boundary condition at k=a ¼ �. In other words, we can
effectively choose the appropriate boundary condition to
take into account new physics, even without knowing its
nature. Whatever the new physics, it is in the short dis-
tance. On the large scale, the solution just contains the new
variable c1 and c2. Information of the new physics will give
a different value of c1 and c2 [43]. This change of initial
condition will eventually show up in the CMB anisotropy.

Considering the modes with wavelength larger than the
new physics scale but smaller than the Hubble radius,

v0
k ¼ �i

ffiffiffi
k

2

s
c1e

�ik� þ i

ffiffiffi
k

2

s
c2e

þik�: (55)

With the limit value of vk (54) and v0
k, and the boundary

condition at k=a ¼ pc ¼ �, c1 and c2 can be determined,

c1 ¼
ffiffiffiffiffi
2k

p
2

eik�c
�
vkð�cÞ þ i

k
v0
kð�cÞ

�
;

c2 ¼
ffiffiffiffiffi
2k

p
2

e�ik�c

�
vkð�cÞ � i

k
v0
kð�cÞ

�
;

(56)

where �c is the time when the k mode is at the boundary,

thus it depends on k, which can be solved by k=a ¼ pc ¼
�. As in [25,30] we set the boundary condition as the wave
function at the scale � only containing an emergent wave,
and at momentum p ¼ pc, the quantum fluctuation of
scalar field takes the form as

d��

dt
¼ �ipc��: (57)

The calculations of �� and � in single field inflation are
similar, so at the boundary

1

a

dðvk=aÞ
d�

¼ �i
k

a2
vk: (58)

With the relation (58) and the expression for c1 and c2 (56),
we could obtain

c1 ¼ 1

2

�
2þ i

�
Ha

k

�
c

� ffiffiffiffiffi
2k

p
eik�cvkð�cÞ;

c2 ¼ � i

2

�
Ha

k

�
c

ffiffiffiffiffi
2k

p
e�ik�cvkð�cÞ;

(59)

where ðHa=kÞc ¼ Hc=pc ¼ Hc=�. Note that in de Sitter
space the Hubble scale H is constant, while in slow-roll
inflation the Hubble radius is changing H ¼ H0a

��. Thus
in slow-roll inflation c1 and c2 are dependent of k.
In order to compare with the situations of de Sitter space,

we require c2=c2 ¼ e� in the �-vacuum. The solution of
the field equation (48) takes the form as (52) up to an
unimportant overall phase factor. Thus the parameter e� is

e� ¼ c2
c1

¼ �e�2ik�c
i

2 �
H þ i

; (60)

from which we know that in de Sitter space e� is indepen-
dent of k, while in slow-roll inflation e� is dependent of k.
The magnitude of e� is

je�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4 �2

H2 þ 1

vuut � H

2�
: (61)

The scalar power spectrum is

P � ¼ k3

2�2

��������
vk

z

��������
2

’ 1

8�2

H2

�

1þ e�þ�� � 2Ree�

1� e�þ�� ð�k�Þ3�2	; (62)

where 	 ¼ 3
2 þ 3�� �. If � 
 H,

Re e� ¼ � 1

4 �2

H2 þ 1
sin

�
2

�

Hð1� �Þ
�

þ 2 �
H

4 �2

H2 þ 1
cos

�
2

�

Hð1� �Þ
�

’ H

2�
cos

�
2

�

Hð1� �Þ
�
; (63)
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where H is the value when the momentum of mode k is pc.

It is clear that �
H depends on k. The exact relation can be

derived from

� ¼ pc ¼ k

að�cÞ ; H ¼ H0a
��; (64)

then

�

H
/ k�: (65)

Therefore, in slow-roll inflation, the correction to the
power spectrum will oscillate with the variable wave num-
ber k. The correction isOðH�Þ, and the correction is likely to
be observed in future experiments.

IV. THREE-POINT CORRELATOR IN EUCLIDEAN
VACUUM

As we discussed in the last section, to get the cubic
action of � we only need to expand the Lagrangian multi-
pliers N and Ni to the first order of � . The cubic action
could be obtained by substituting the N and Ni to the ADM
action and expanding the action to the third order of � .
Then by integrating by parts many times and using some
technique such as field redefinition, the action can be
further simplified. From the cubic action, the three-point
correlator is simply obtained by using the path integral
formalism at the tree level.

Integrating by parts and dropping the total derivatives,
the cubic action can be written as [13]

S3 ¼ 1

2

Z
d4xa3

�
2

a2

_H

H2
�ð@�Þ2 � _�2

_�3

H3

� 4

a4
@2c 1@i�@ic 1 � 3

a4
�@2c 1@

2c 1

þ 1

a4

_�

H
@2c 1@

2c 1 þ 3

a4
�@i@jc 1@i@jc 1

� 1

a4

_�

H
@i@jc 1@i@jc 1

�
: (66)

At first glance, the leading order term in the cubic action is
Oð�0Þ, but after careful integration by parts, all the terms
Oð�0Þ and Oð�1Þ will cancel out, so that the leading order
of the cubic action is Oð�2Þ. If substituting the equation of
c 1 (45), after integration by parts, the action has terms like
€� . It is convenient to use the field equation from the
quadratic action,

�L

��

��������1
¼ a

�
d@2�

dt
þH@2�� �@2�

�
; (67)

where

@2� � a2� _�; (68)

� is the second term in c 1 (45). The final result of the
cubic action is

S3 ¼
Z

d4x½4a5�2H _�2@�2 _� þ 2fð�Þ�L=��j1�; (69)

where

fð�Þ ¼ �2�þ 3�

4
�2 þ 1

2
�@�2ð�@2�Þ þ � � � : (70)

Here we omit the terms in fð�Þ which contains the deriva-
tive of � because � is conserved on the large scale, and any
derivative of � has no contribution. In the cubic action, the
contribution from the fð�Þ terms is obtained from the
redefinition of ��n þ fð�nÞ. With the redefinition

S2½��S2½�n� �
Z

d4x2fð�nÞ�L=��j1; (71)

the second terms in the cubic action are canceled. When we
calculate the three-point correlator, both the contributions
coming from the cubic � and the contributions from the
redefinition should be taken into account.
The three-point correlator could be computed using the

path integral formalism in the interaction picture,

h�ðt;k1Þ�ðt;k2Þ�ðt;k3Þitree ¼ i
Z t

t0

dt0h½�ðt;k1Þ�ðt;k2Þ

	 �ðt;k3Þ; L3ðt0Þ�i; (72)

where t0 is some time that the mode is deep inside the
horizon. The integration can be divided into three parts.
The first part is from the period during which the modes are
deep inside the horizon. In this range, the modes oscillate
rapidly, so the contribution is simply zero. In Euclidean
vacuum the value of t0 is set to�1, while in the �-vacuum
the value of t0 is at the boundary for new physics. We
assume that � 
 H, so that t0 in the �-vacuum is also
deep inside the horizon. In both situations, the contribution
from this part is zero. The second part is the region well
outside the horizon. Because the value of � is constant, the
contribution only contains the redefinition of � . The third
region is near the horizon, where we use the solution of the
field equation (52) and compute the three-point correlator
from the path integral.
The leading order contribution to the three-point corre-

lator in the Euclidean vacuum is as follows:

(i) Contribution from _�2@�2 _� . We choose t0 ¼ �1 and
t ¼ 0, which will not influence the final results in the
Euclidean and �-vacuum.

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ �ið2�Þ3�
�X

i

ki

�
�k1ð0Þ�k2ð0Þ

	 �k3ð0Þ
Z 0

�1
d�g

d

d�
��k1ð�Þ

d

d�

	 ��k2ð�Þ@�2 d

d�
�k3ð�Þ þ perms

þ c:c:; (73)

where K ¼ k1 þ k2 þ k3, ’perms’ denotes exchang-
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ing k1, k2, k3, and c.c. represents the complex con-
jugate of the preceding terms. The prefactor g ¼
4a3�2H. The three-point correlator from _�2@�2 _� is

ð2�Þ3�
�X

i

ki

�
H4

24�

1Q
i
k3i

�
k21k

2
2

K

�
þ permsþ c:c:

¼ ð2�Þ7�
�X

i

ki

�
ðP� Þ2 1Q

i
k3i

�

�
1

K

X
i>j

k2i k
2
j

�
: (74)

(ii) The redefinition � � �n þ ð�2�þ 3�=4Þ�2n .
The three-point correlator from this contribution is

ð2�Þ7�
�X

i

ki

�
ðP� Þ2 1Q

i
k3i

�2�þ 3�

8

X
i

k3i : (75)

(iii) The redefinition � � �n þ ð�=2Þ@�2ð�n@2�nÞ.
The three-point correlator from this contribution is

ð2�Þ3�
�X

i

ki

�
H4

24�2
1Q
i
k3i

1

k1k
2
2k

3
3

þ perms

¼ ð2�Þ7�
�X

i

ki

�
ðP� Þ2 1Q

i
k3i

�

8

X
i�j

kik
2
j : (76)

Finally, taking all the contributions into account, we
have the three-point correlator in the Euclidean vacuum
[13],

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ ð2�Þ7�
�X

i

ki

�
ðP� Þ2 1Q

i
k3i

A; (77)

where

A ¼ �
1

K

X
i>j

k2i k
2
j þ

�2�þ 3�

8

X
i

k3i þ
�

8

X
i�j

kik
2
j : (78)

V. NON-GAUSSIANITY IN �-VACUUM

In this section, we analyze the shape of non-Gaussianity
and especially its local form in the �-vacuum. We consider
both the de Sitter space-time and quasi-de Sitter space-time
and show that the local form non-Gaussianity in the quasi-
de Sitter case has a distinctive feature.

The power spectrum and bispectrum are defined as

h�ðk1Þ�ðk2Þi � ð2�Þ3�ðk1 þ k2Þ 2�
2

k31
P� ðk1Þ; (79)

h�ðk1Þ�ðk2Þ�ðk1Þi � ð2�Þ3�ðk1 þ k2

þ k3ÞB� ðk1; k2; k3Þ: (80)

Non-Gaussianity measures the deviation of the CMB

power spectrum from the Gaussian distribution,

� ¼ �g þ 3
5fNLð�2g � h�2giÞ; (81)

in which fNL characterizes the size of non-Gaussianity:

6

5
fNL ¼

Q
i
k3iP

i
k3i

B�

4�4P2�
: (82)

In the Euclidean vacuum, the three-point correlator is
given by (77) and (78), so that the parameter of non-
Gaussianity is given by

fNL ¼ 10

3

1P
i
k3i

A: (83)

The calculation of the three-point correlator in the above
section can be extended to the �-vacuum. One can simply
plug the value of �k for the �-vacuum into Eq. (73) to
evaluate the three-point correlator. To distinguish �’s in

different vacua, we use ~�k to denote its value in the
�-vacuum,

h~�ðk1Þ~�ðk2Þ~�ðk3Þi ¼ ð2�Þ7�
�X

i

ki

�
ðP� 0 Þ2 1Q

i
k3i

A0:

(84)

Note that P� is different in the two backgrounds, and it will
give small correction toA0.A0 also contains two parts. In
de Sitter space,

A0ðdsÞ ¼ N6
�ð1þ 4Reðe�ÞÞAðk1; k2; k3Þ þ ~AðdsÞ;

~AðdsÞ ¼ N3
� Reðe�Þ½Að�k1; k2; k3Þ þAðk1;�k2; k3Þ

þAðk1; k2;�k3Þ � 3Aðk1; k2; k3Þ�; (85)

where Aðk1; k2; k3Þ is defined in Eq. (78) and we neglect the
higher order contribution from the slow-roll parameter and
Re e�. In de Sitter space, Re e� is independent of k, and

N� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�þ��p

� 1. In the discussion below the
value of N� is set to 1, and 4Reðe�ÞAðk1; k2; k3Þ is the
next order contribution to the first part of A0, so we will
also neglect it. In quasi-de Sitter space-time,

A0ðqÞ ¼ Aðk1; k2; k3Þ þ ~AðqÞ;
~AðqÞ ¼ ½Reðe�k1ÞAð�k1; k2; k3Þ þ Reðe�k2ÞAðk1;�k2; k3Þ

þ Reðe�k3ÞAðk1; k2;�k3Þ � ½Reðe�k1Þ þ Reðe�k2Þ
þ Reðe�k3Þ�Aðk1; k2; k3Þ�; (86)

where the index k1, k2, k3 of e
� denotes its dependence of

the wave number and the upper index (q) denotes quasi-de
Sitter for short. The value of Reðe�Þ (63) sensitively de-
pends on the variable k, since �=H 
 1.
There are two forms of non-Gaussianity which are of

particular importance in the data analysis of the WMAP.
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One is the equilateral form and the other is the local form
non-Gaussianity. The equilateral form requires k1 � k2 �
k3, and the three momentum vector composes an equi-
lateral triangle. In this case, in the Euclidean vacuum and
�-vacuum, fNL are the same in the leading order approxi-
mation,

f
equil
NL ’ 10

9

�
23

8
�� 3

4
�

�
: (87)

In both cases, the equilateral form non-Gaussianity fNL �
Oð�; �Þ.

The local form non-Gaussianity requires that one of
ki � the other two k. For instance, �k1 þ k2 þ k3 � k3.
The three momentum vectors compose an isosceles tri-
angle, k1 ¼ k2 
 k3. The mode k3 exits the horizon
much earlier than the other two modes. In Euclidean
vacuum, if we take the limit k1 ¼ k2 
 k3, then

flocalNL ¼ 5
3ð3�� �Þ ¼ 5

6ð1� nsÞ; (88)

where ns is the spectral index,

ns � 1 ¼ dInP�
dInk

: (89)

In Euclidean vacuum, P� ’ H2=8�2�, and ns � 1 ¼ 2��
6�. This means that the local form non-Gaussianity in the
Euclidean vacuum is the same order of � and �.

The local form non-Gaussianity in the Euclidean vac-
uum can be estimated by the backreaction method [13].
The mode k3 leaves the horizon earlier than the other two
modes. The effect from the mode k3 is rescaling the
background space-time. The scale factor changes aðtÞ !
aðtÞe�3 � aðtÞð1þ �3Þ, so that the coordinates change ac-
cordingly �x ¼ �3x, where �3 is the amplitude of the k3
modes. The backreaction of the background will impact the
modes deep in the horizon. The wave number decreases
�k ¼ ��3k, and the modes will leave the horizon earlier,

�k ¼ �a �H ¼ aH�tH: (90)

According to the equation �a ¼ aH�t, we get the relation
�t ¼ ��3=H. From the definition of fNL (81), the local
form non-Gaussianity is

flocalNL ¼ 5

3

��

�2g
¼ 5

3

�t d�dt
�2g

¼ 5

3

��3
H

d�
dInkH

�2g
’ 5

6
ð1� nsÞ;

(91)

where the last equation uses the definition of the power
index ns. The backreaction method gives the same result as
the one obtained in the direct way, but this method could be
applied to other models. It indicates that the microphysics
from the inflaton cannot have large local form non-
Gaussianity in the Euclidean vacuum. Even if the action
is in noncanonical form, such as DBI inflation [15] and K
inflation [16], the local form non-Gaussianity is still 1� ns
up to an order one constant.

However, it is a totally different story in the �-vacuum.
First, we consider the situation of de Sitter space-time,
where Re e� is independent of k. The non-Gaussianity
parameter fNL contains the contributions from A and
~AðdsÞ. The contributions from A are the same as in the
Euclidean vacuum, which is omitted for conciseness.

Thus fNL from ~AðdsÞ is

~fNL ¼ Reðe�Þ 10
3

1P
i
k3i

�
��2�þ 3�

8

X
i

k3i �
�

8

X
i�j

kik
2
j

þ �
X
i<j

k2i k
2
j

�
1

�k1 þ k2 þ k3
þ 1

k1 � k2 þ k3

þ 1

k1 þ k2 � k3
� 3

k1 þ k2 þ k3

��
: (92)

If we take the local form limit k3 � k1 � k2, �k1 þ k2 þ
k3 � k3, then

flocalNL ’ 10

3
Reðe�Þ� k2

k3
: (93)

Although the prefactor Reðe�Þ is a small quantity�Oð� H
�Þ,

k2=k3 can be a huge number in the CMB window, say
kmax=kmin � 106 for WMAP data, so that flocalNL could be of
order one or even larger in the �-vacuum.
Second, we consider the local form non-Gaussianity in

inflationary background, where e� strongly depends on k.
The local form non-Gaussianity takes the form as

flocalNL ’ 5

3
½Reðe�k1Þ þ Reðe�k2Þ��

k2
k3

’ 10

3
Reðe�k2Þ�

k2
k3

’ 5

3

H

�
cos

�
2

�

Hð1� �Þ
�
�
k2
k3

: (94)

Similar to de Sitter space-time, flocalNL is linear in � k2
k3
such

that a large local form non-Gaussianity is possible.
However, since Reðe�Þ is k dependent, flocalNL has a distinc-
tive feature.
As a example, take � to be 1017 Gev which is the

phenomenological string scale, Hðk3Þ ¼ 1015 Gev, the
slow-roll parameter � ¼ 0:01, k3 ¼ 1 (with unit
0:002 Mpc�1), and 1 < k2 & 106. In Fig. 2, we draw the
local form non-Gaussianity: the light gray (red) line rep-
resents the one in de Sitter space-time, while the dark gray
(blue) one represents the one in inflationary background.
Obviously, the local form non-Gaussianity in two cases are
different. Especially in the inflationary background,
Reðe�k2Þ is oscillating with mode k, as shown in Fig. 3.

The possible largeness of the local form non-
Gaussianity in the �-vacuum seems to violate the bound
set by the backreaction argument. Why is the backreaction
method not applicable in the �-vacuum? Generally speak-
ing, the correlation from two patches of de Sitter space-
time makes it so that the backreaction cannot give the
whole effect of non-Gaussianity. In the �-vacuum the
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FRW metric cannot describe the physics completely, and
we must extend the space to the whole de Sitter space. It is
clearer to see the correlation in space coordinates. For
instance, one point x1 is far outside the horizon, and the
other two points x2, x3 are deep in the horizon. In the whole
de Sitter space, the antipodal point x1A is approaching the
points x2, x3 deep in the horizon. When x1A is near the light
cone of x2 or x3, there is divergence in the tree-level three-
point correlator.

If we carefully analyze fNL in the �-vacuum (92), we
will find that there is also divergence for the folded form
non-Gaussianity [44]. Therefore, it is interesting to deter-
mine the shape of non-Gaussianity, which has the potential
to distinguish different inflationary models if data analysis
is accurate enough [45].

The definition of the shape is

A

k1k2k3
: (95)

We divide A into several parts. We use the subscripts � and
� to denote the parts proportional to � or�. In any case, we
always have the contribution without including the mod-
ifications from the �-vacuum:

A � ¼ �

�
1

K

X
i>j

k2i k
2
j þ

3

8

X
i

k3i þ
1

8

X
i�j

kik
2
j

�
; (96)

A � ¼ �

��1

4

X
i

k3i

�
; (97)

which has been discussed in [13]. The modifications in de
Sitter space-time are

~AðdsÞ
� ¼ �Reðe�Þ

�
� 3

8

X
i

k3i �
1

8

X
i�j

kik
2
j

þX
i<j

k2i k
2
j

�
1

�k1 þ k2 þ k3
þ 1

k1 � k2 þ k3

þ 1

k1 þ k2 � k3
� 3

k1 þ k2 þ k3

��
; (98)

~A ðdsÞ
� ¼ �Reðe�Þ

�
1

4

X
i

k3i

�
: (99)

The modifications in the quasi-de Sitter case are
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FIG. 2 (color online). The light gray (red) line represents flocalNL
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FIG. 4 (color online). A�=k1k2k3. This is the shape for the
Euclidean vacuum proportional to �. With the shape of
A�=k1k2k3, they give the leading contribution for the �-vacuum.
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��
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~A ðqÞ
� ¼ �½Reðe�k1Þ þ Reðe�k2Þ þ Reðe�k3Þ�

�
1

12

X
i

k3i

�
;

(101)

which are very different from the de Sitter space-time case.
It is more illustrative to draw the shapes of non-

Gaussianity in various cases. Since ~AðdsÞ
� and ~AðqÞ

� are

small numbers relative to A�, we will not draw their

shapes. In Figs. 4 and 5 we draw the shapes of non-
Gaussianity in the Euclidean vacuum. In Fig. 6, we draw

the shape of ~AðdsÞ
� , and in Figs. 7 and 8 we draw the shape

of ~AðqÞ
� . In all the figures, we use the following conven-

tion: k3 ¼ 1, the x-axis is k1=k3, the y-axis is k2=k3, and the
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FIG. 5 (color online). jA�j=k1k2k3. This is the shape for the
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0
0.2

0.4
0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0
0.2

0.4
0.6

0.8

FIG. 8 (color online). j ~AðqÞ
� j=k1k2k3. This is the local

�-vacuum shape proportional to � for inflationary space. The
local form is large and oscillating.

WEI XUE AND BIN CHEN PHYSICAL REVIEW D 79, 043518 (2009)

043518-12



value of the z-axis is A=k1k2k3 up to a slow-roll parame-
ter. The x� y plane diagonal from (0, 1) to (1, 0) denotes
the folded form, i.e. k1 þ k2 ¼ k3. From the shapes of non-
Gaussianity in the Euclidean vacuum, the folded form is
finite, except the points (0, 1) and (1, 0). In contrast, the
shapes of non-Gaussianity in the �-vacuum, the folded
form is divergent. What is more, the fNL for the folded
form in the �-vacuum is divergent as shown in Eq. (92).

The local form non-Gaussianity in the shape is near the
point (0, 1) and (1, 0). Figure 7 reflects the oscillating
character in inflationary background.

VI. DISCUSSION

In this paper, we studied the physical implication of the
�-vacuum on the CMB non-Gaussianity. We found that the
�-vacuum may lead to large local form non-Gaussianity,
and its signature is distinct. In de Sitter space-time, the
local form is large which is proportional to k2=k3, and in
the inflationary background, the local form could still be
large but there is oscillating character for fNL. Another
distinctive feature of the �-vacuum is that it leads to a
divergent folded form non-Gaussianity. To illustrate the
picture more clearly, we drew the shapes for different
vacua and different backgrounds. We found that all of these
figures have a dramatically different feature. For the de
Sitter space-time the local form is large, and for the infla-
tionary space-time the local form is not only large, but also
oscillating. These are different from the standard slow-roll
inflation, where the local form is proportional to the spec-
tral index of scalar perturbation.

The observational feature from our study is different
from [36] which only considered the �-vacuum correction
from the de Sitter background. And even though our study
has some overlaps with the one in [37], our method and
main results are different. In [37], they used the effective
field theory (EFT) method during inflation. Since the en-
ergy scale of inflation is very high, from the point of view
of the EFT, some higher order derivative terms will be not
negligible, and the correction to the non-Gaussianity origi-
nates from the stronger interaction at the beginning of the
inflation. Comparing with trans-Planckian physics from
the �-vacua, the EFT method could be another branch in
inflationary cosmology. Our treatment focused on the in-
fluence of the fluctuation vacuum, while the EFT empha-
sized the action. From the view of experiments, due to
different motivation, the final prediction of the observation
is not the same. Reference [37] analyzed the folded form
non-Gaussianities, which has not been analyzed in the
WMAP5 yet. In our study, we concluded that the trans-
Planckian effect would enhance the local form non-
Gaussianities, which is the essential part of the WMAP
data analysis.

There are various interesting issues to address on the
implication of the �-vacuum on inflation. First of all, the
loop effect in the �-vacuum is still an open question.

Steven Weinberg has given a wonderful discussion about
the loop effect in inflationary correlators [46–48]. In the
�-vacuum the problem is focused on how to renormalize
the scalar perturbation in the loop diagram. In some papers,
it has been argued that the �-vacuum is not well defined in
de Sitter space due to the divergence [49,50]. However, in
[51] using the Schwinger-Keldysh formalism, a consistent
renormalization method has been constructed to deal with
the divergence. The other discussion on this issue can be
found in [52]. It would be interesting to understand the
loop effect and its physical implications in the �-vacuum.
Second, the non-Gaussianity in the �-vacuum is sensi-

tively dependent of the initial condition. In the case of
single field inflation with higher derivative terms, the
sound speed cs is not one. For example, in the DBI inflation
[15] and K inflation [16], the Lagrangian is not canonical,
and the sound speed cs � 1 in some situations. The sound
horizon csH

�1 may be smaller than the length scale of new
physics. In this case, the initial condition at the new physics
scale is chosen in the place larger than the sound Hubble
scale. From the calculation of the non-Gaussianity, we
know that in the path integral formalism the near horizon
crossing region impacts the results of non-Gaussianity. The
divergence of the non-Gaussianity in the �-vacuum may
not exist as pointed out in the paper [36]. This situation also
appears in some special trans-Planckian physics, such as
noncommutative inflation [23], in the IR region the effec-
tive string scale is smaller than the Hubble scale.
Third, the different initial condition of the �-vacuum

will dramatically change the correction of the power spec-
trum [31,32], thus it predicts different non-Gaussianity.
Meanwhile, the trans-Planckian dispersion relation and
noncommutative geometry will also give a different pre-
diction for non-Gaussianity.
Fourth, it is also interesting to consider the physical

implication of the �-vacuum in other inflationary models.
One class of them is the multiple field inflation [53]. It has
some very different signatures from the single field infla-
tion: it has a non-negligible gravitational wave and large
local form non-Gaussianity [54–58]. Another class of in-
flation models is inspired by string theory. In particular,
DBI inflation is a very remarkable scenario. It may give
large equilateral non-Gaussianity but no local form non-
Gaussianity. It is worthwhile to discuss the �-vacuum
effect in these inflationary models.
Finally, it could be expected that the trispectrum of the

CMB from the �-vacuum is different from the one in the
Euclidean vacuum. A more careful investigation would be
valuable.
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