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When gauged cosmic strings form in a symmetry-breaking phase transition, the gauge field configu-

ration at the time becomes imprinted in the spatial string distribution by the flux trapping mechanism.

Causality and flux conservation suggest that quantum and thermal gauge field fluctuations give rise to

long-range super-horizon correlations in the string network. Classical field theory simulations in the

Abelian Higgs model confirm this finding. In contrast, the Kibble-Zurek mechanism, which most cosmic

string studies are based on, only gives rise to short-distance, subhorizon correlations. These results may

have implications for cosmology, and it may also be possible to test them in superconductor experiments.
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I. INTRODUCTION

Cosmic strings [1–3] are hypothetical stringlike objects,
which are stable and extremely massive and whose exis-
tence is predicted by many field theory [4] and string
theory models [5] of particle physics. If they exist in
nature, they would have generally been formed in the early
universe in symmetry-breaking phase transitions [1], or in
brane collisions [6] in brane world models.

Cosmic strings are cosmologically interesting, because
their energy density tracks the overall energy density of the
universe [7]. Most other stable objects produced in the
early universe would eventually dominate the energy den-
sity, in clear contradiction with observations, but strings
always contain a small but non-negligible fraction of the
total energy.

Because of this scaling behavior, cosmic strings would
introduce nearly scale invariant density perturbations, and
this made them at first a strong candidate for explaining the
origin of primordial density perturbations. Even the ampli-
tude of the perturbations was consistent with cosmic
strings in typical grand unified theories (GUT). However,
acoustic peaks observed in the cosmic microwave back-
ground [8] and large-scale structure [9] showed that per-
turbations existed on super-horizon scales. This could not
be explained by the cosmic string model and provided the
decisive piece of evidence in favor of inflation.

Because cosmic strings are a fairly generic feature of
unified theories [4], they are still being searched for in
many different ways. If they exist, they would give a
potentially observable contribution to the temperature an-
isotropies of the cosmic microwave background radiation
[10]. They would also radiate gravitational waves and lens
light from distant objects. These effects have been used to
constrain cosmic string models [11–13].

The standard assumption in cosmic string studies is that
the strings are formed by the Kibble-Zurek mechanism
[1,14,15]. In that case, the network would be uncorrelated

at long distances, and the scaling behavior follows natu-
rally. In numerical simulations of cosmic string evolution,
this assumption is introduced in the form of random
(Vachaspati-Vilenkin) initial conditions for the scalar field
[16].
The Kibble-Zurek picture is believed to be an accurate

description of the formation of global cosmic strings [15].
However, global strings have logarithmically confining
long-range interactions, which makes their evolution and
cosmological effects more complicated. The usual picture
of linelike strings with short-range interactions, which
most cosmological studies are based on, applies only to
gauged strings. Furthermore, cosmic strings predicted by
realistic field theory and string theory models tend to be
gauged rather than global [4].
The formation of gauged strings takes place differently

because two fields, the scalar and the gauge field, are
involved. Strings are formed not only by the Kibble-
Zurek mechanism but also when gauge field fluctuations
get trapped during the transition [17]. The predictions of
this flux trapping mechanism have been confirmed in
numerical simulations [15,18,19].
This paper investigates the flux trapping mechanism

and, in particular, the effects it has on the spatial distribu-
tion of strings. It is shown that any preexisting features in
the gauge field configuration become imprinted on the
cosmic string network. If these features extend to super-
horizon scales, which is quite possible in inflationary cos-
mology, they can influence the later evolution of the net-
work and its observable consequences. Furthermore, these
arguments suggest that even if the gauge field is initially in
its vacuum state, the quantum vacuum fluctuations them-
selves give rise to super-horizon long-range correlations in
the string network.

II. SYMMETRY BREAKING AND COSMIC
STRINGS

The simplest model of cosmic strings is the Abelian
Higgs model in which strings correspond to Nielsen-*a.rajantie@imperial.ac.uk
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Olesen vortex lines [20]. This paper will focus on this
model, but the main conclusions are based on general
physical principles and should be applicable much more
broadly. They should even apply to at least certain cases of
cosmic superstring formation in brane inflation models
[5,6].

The Abelian Higgs model consists of a complex scalar�
and a gauge field A�, with the Lagrangian

L gauge ¼ �1
4F��F

�� þ ðD��Þ�D��� Vð�Þ; (1)

whereD� ¼ @� þ ieA� is the covariant derivative, F�� ¼
@�A� � @�A� is the field strength tensor, and e is the

gauge coupling constant. We assume that the potential
Vð�Þ is of the renormalizable form

Vð�Þ ¼ m2���þ �ð���Þ2: (2)

This Lagrangian is invariant under local gauge transforma-
tions,

�ðxÞ ! ei�ðxÞ�ðxÞ; A�ðxÞ ! A�ðxÞ � 1

e
@��ðxÞ;

(3)

where the rotation angle � can depend on the spacetime
position. Physically, the field � describes charged scalar
particles with long-range interactions mediated by the
gauge field. In the cosmological setting, the U(1) gauge
group is not that of electrodynamics, although it has the
same qualitative properties. In this paper, the components
of the field strength tensor F�� will nevertheless be re-

ferred to as ‘‘electric’’ and ‘‘magnetic’’ fields.
In the limit e ! 0, the gauge field decouples, and the

Lagrangian reduces to

L global ¼ @��
�@��� Vð�Þ: (4)

This Lagrangian is only invariant under global phase rota-
tions � ! ei��, where � is constant over the whole
spacetime. Physically, the quanta of � are therefore ‘‘elec-
trically’’ neutral.

In both cases, when m2 is positive, the vacuum state,
given by the minimum of the potential, corresponds to
� ¼ 0. For negative m2, there is a set of degenerate vacua

� ¼ vei�; v2 � �m2

2�
; (5)

parametrized by the complex phase ��< � � �.
Because these vacua are related by a symmetry, they are
all identical. Once the system has chosen a particular
vacuum, its state is no longer invariant under symmetry
transformations, and the symmetry is said to be sponta-
neously broken. In the gauge theory, the covariant deriva-
tive term gives the gauge field a mass m� ¼ ev.

In both models there are linelike stable topological
defect solutions in the broken phase. The solution has the
form (in cylindrical polar coordinates r, ’, z)

�ðr; ’; zÞ ¼ vfðrÞeiNw’; (6)

where Nw is an integer winding number, and fðrÞ is a
function that has to be determined numerically and satisfies
the boundary conditions

fðrÞ !
�
0; as r ! 0;
1; as r ! 1:

(7)

In the gauge theory, the gauge field in the appropriate
gauge is

~A ¼ Nw

er
aðrÞ’̂; (8)

where aðrÞ is a function that has to be determined numeri-
cally and satisfies the same boundary conditions as fðrÞ.
Because the magnetic flux is given by the contour integral

� ¼
I

d~r � ~A ¼ 2�

e
Nw; (9)

the strings carry a quantized magnetic flux. In fact they are
fully analogous to Abrikosov flux tubes in superconductors
[21]. Outside the vortices, the magnetic field decays ex-
ponentially, as a manifestation of the Meissner effect.
In the gauge theory (1), the energy of the string is

localized exponentially on the string, and these gauged
strings behave like idealized Nambu-Goto strings [2,22].
In contrast, energy of a string is not localized in the global
theory (4). The strings have a confining logarithmic inter-
action, and therefore these global strings evolve differently,
and much less is known about their cosmological effects.
If a network of cosmic strings was formed in the early

universe, its later evolution will have produced potentially
observable effects such as gravitational wave emission and
temperature anisotropies in the cosmic microwave back-
ground (CMB) radiation. All the observable effects are
gravitational and depend therefore on the dimensionless
combination G�, where G is Newton’s constant and � is
the string tension, defined as the energy per unit length.
The evolution of the string network is a complicated

nonlinear problem, and even with large-scale numerical
simulations one can follow it only for a relatively short
time [11]. To make predictions, one usually assumes that
the evolution is such that the network scales with the
horizon size [23,24]. As will be discussed in more detail
in Sec. VII, this scaling behavior follows naturally if there
is sufficient energy loss and if the string network is un-
correlated at long distances.
The scaling behavior means that at any time, the net-

work looks statistically the same in units of 1=H. With this
assumption, the total length of the string network inside
one Hubble volume scales as H�1, indicating that the total
energy is ��=H. Dividing by the volume �H�3, we find
the energy density,

���H2 ¼ 8�

3
G��c; (10)
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where �c is the critical energy density. Therefore as long as
the scaling assumption is valid, the strings contribute a
constant fraction of the total energy of the universe and will
never dominate or be negligible. This is why they are
cosmologically more interesting than other topological
defects, i.e., domain walls or monopoles, which tend to
dominate the energy density and overclose the universe.

As a consequence of the scaling, the perturbations gen-
erated by the string network are scale invariant as required
by the observations. However, in the absence of super-
horizon correlations, they would not have the observed
acoustic peaks [25]. The contribution to the density per-
turbations from cosmic string must therefore be subdomi-
nant. This sets an upper limit for the string tension
G� & 10�5.

III. LOCAL STRING DENSITY

To discuss correlations in the string network, Liu and
Mazenko [26] defined the local string density ~� as

~�ð ~xÞ ¼ X
	

Z
ds

d~x	
ds


ð ~x� ~x	ðsÞÞ; (11)

where 	 labels the strings and s is a coordinate along the
string. In the Abelian Higgs model, this can be expressed in
terms of the fields as

~� ¼ ~r� ~q; (12)

where ~q is defined as

~q ¼ 1

2�
ðIm�̂� ~D �̂�e ~AÞ ¼ 1

2�
~r�: (13)

Here � ¼ arg� is the complex phase of the scalar field �

and �̂ ¼ �=j�j ¼ expði�Þ. The local string density is
gauge invariant and sourceless

~r � ~� ¼ 0: (14)

It vanishes outside the strings and has a delta-function peak
tangential to the string at the center of the string.

The two-point string correlation function Gijð ~xÞ is de-

fined as

Gijð ~xÞ ¼ h�ið0Þ�jð ~xÞi: (15)

It is also often useful to consider the Fourier transform of
this,

Gijð ~kÞ ¼
Z

d3xei
~k� ~xGijð ~xÞ; (16)

which gives the momentum space correlation function

h�ið ~kÞ�jð ~k0Þi ¼ Gijð ~kÞð2�Þ3
ð ~kþ ~k0Þ: (17)

Because of rotation invariance and the sourcelessness con-
dition (14), this can be written as

Gijð ~kÞ ¼
�

ij �

kikj

k2

�
GðkÞ; (18)

whereGðkÞ is a scalar and can be obtained from the trace of
Gij,

GðkÞ ¼ 1
2Giið ~kÞ: (19)

Note that the correlator G is not the same as the corre-
lator of the energy-momentum tensor [11,27,28], which is
more commonly discussed and which seeds density per-
turbations. Long-range correlations in one quantity do not
imply long-range correlations in the other. However, as
will be discussed in Sec. VII, long-range correlations in ~�
will affect the time evolution of the network and thereby
also indirectly the density perturbations and other observ-
able signatures.

IV. STRING FORMATION

Cosmic strings were formed in the early universe if a
U(1) symmetry became spontaneously broken in a phase
transition. In the original scenario [1], the transition took
place at a high temperature. To first approximation, the
effects of the temperature are given by an additive
temperature-dependent contribution to the mass parameter
m2, so that the effective mass parameter m2ðTÞ is

m2ðTÞ � m2 þ ð14e2 þ 1
3�ÞT2; (20)

where m2 < 0. At high temperatures,

T > Tc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12m2

3e2 þ 4�

s
; (21)

the effective mass parameter is positive and the symmetry
is restored. When the universe cooled down and the tem-
perature decreased below the critical value, m2ðTÞ became
negative and the symmetry was broken.
In inflationary models, string formation can take place at

the end of inflation, and in this case the temperature is
generally extremely low. In hybrid inflation [29], the field
� is coupled to the inflaton field �, so that the effective
mass is

m2ð�Þ ¼ m2 þ g2�2; (22)

where g is the coupling constant for the�� � interaction.

When the inflaton rolls below the critical value �c ¼
ð�m2=g2Þ1=2, the symmetry gets broken. This transition
not only forms strings but also triggers the end of inflation.
Brane collisions in brane world and string theory models

are effectively very similar to the phase transition in hybrid
inflation [6]. In general, the role of the inflaton is played by
the distance between the branes, and when the branes
collide, they annihilate through tachyon condensation,
which is effectively a symmetry-breaking phase transition.
Whatever the microphysics that causes the symmetry

breaking, it generally forms cosmic strings. There are two
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distinct physical mechanisms that are responsible for this:
the Kibble-Zurek mechanism [1,14] and flux trapping
[15,17].

A. Kibble-Zurek mechanism

The Kibble-Zurek mechanism involves only the scalar
field �, and therefore it operates in both global and gauge
theories. In the gauge theory, it is only part of the dynamics
and becomes dominant if the gauge field can be ignored.

When the symmetry is broken, the scalar field has to
choose one of the possible vacua (5), corresponding to one
particular complex phase �. All values of � are equally
likely because all the vacua are identical. Kibble’s original
observation [1] was that in cosmology, any two points that
are separated by more than the horizon size are causally
disconnected, and they will have to make this choice
independently of each other. After the transition, the uni-
verse will therefore consist of finite regions, which cannot
be larger than the horizon, in each of which the choice
of the vacuum is random, and between which it is
uncorrelated.

If one follows the complex phase around a closed curve
that passes through at least three of these regions, there is a
certain nonzero probability that it changes by a multiple of
2�. In this case, continuity implies that the field has to
vanish somewhere inside the curve, and this corresponds to
the core of the string. According to this argument there
should be roughly one string per correlated region, whose
size is limited by the horizon size.

Zurek [14] showed later that the size of the correlated
regions is generally determined not by the cosmological
horizon size, but by the critical slowing down during the
transition. The correlation length � grows as the critical
temperature is approached, and in an adiabatic transition it
would diverge at the transition point. However, the phase
transition can never be adiabatic. The dynamics of the
system slows down when the transition is approached,
and if the transition takes place in a finite time, the system
cannot stay in equilibrium. Instead of actually diverging,
the correlation length remains finite, freezing out at some

finite value �̂, which determines the size of the correlated
regions. The ultimately upper bound for this is given by
causality, since the correlation length cannot grow faster
than the speed of light. From this argument Zurek was able
to derive a scaling law for the number of defects as a
function of the cooling rate, which has been confirmed in
experiments [15].

Since the complex phase � is only correlated at distances

less than �̂, Eqs. (12) and (13) imply that the same must be
true for the string density ~�. Therefore the correlator must
have a finite range. For instance, Liu and Mazenko find a
Gaussian correlator [26]

Gijð ~xÞ � e� ~x2=2�̂2

: (23)

Whatever the precise form of the correlator, there are no

long-range correlations in a string network formed by the
Kibble-Zurek mechanism.
Furthermore, the integral of the correlator over the

whole space vanishes. It can be expressed as a surface
integral over its boundary,Z

d3xGijð ~xÞ ¼
�
�ið0Þ

Z
d3x�jð ~xÞ

�

¼ 
jkl
Z

d2Skh�ið0Þqlð ~xÞi: (24)

In this integral all points ~x are on the boundary, and
because of the finite correlation length, the correlator
h�ið0Þqlð ~xÞi and therefore the right-hand side of Eq. (24)
vanishes, i.e., Z

d3xGijð ~xÞ ¼ 0: (25)

This indicates a negative correlation between strings: The
winding number of a string is screened by the windings of
nearby strings.
Because of the finite range, the momentum space corre-

lator GðkÞ is analytic in k2 and can be Taylor expanded,

GðkÞ ¼ 2�

k

Z 1

0
dr r sinðkrÞGiiðrÞ

¼ 4�
Z 1

0
dr r2

�
1� k2r2

6

�
GðrÞ þOðk4Þ

� �̂k2 þOðk4Þ: (26)

The constant term cancels because of Eq. (25), and the k2

term has to have this form because �̂ is the only available
dimensionful scale.

B. Flux trapping

In the gauge theory, strings can also form by flux trap-
ping [15,17]. Magnetic fields cannot exist in the broken
phase vacuum, and if a nonzero field is present at the time
of the transition, it must therefore become confined in
strings. The simplest example is a transition in a uniform
magnetic field, which is a common setup for superconduc-
tor experiments. The Meissner effect tries to expel the field
but inside the superconductor it is unable to do that, and
instead it forms a lattice of Abrikosov vortices [21], where
the average density of strings is directly related to the field
strength,

~� ¼ � e

2�
~B: (27)

In the early universe there was no external field, but
there were thermal and quantum fluctuations. Because the
photon is massless in the symmetric phase, these fluctua-
tions can have arbitrarily long wavelengths, or equiva-

lently, arbitrarily low wave numbers ~k. When the system
enters the broken phase, magnetic field modes with wave

number less than the photon mass, j ~kj<m�, are prohib-
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ited. The system tries to suppress these modes to minimize
its energy, but the magnetic flux is conserved as a conse-
quence of the Maxwell equation

@ ~B

@t
þ ~r� ~E ¼ 0: (28)

This means that the net flux through a surface can only
change by a boundary contribution, when magnetic field
lines move across the boundary,

@�

@t
¼ �

I
d~r � ~E: (29)

Because of this, modes with longer wavelengths take more

time to decay. Essentially a mode with wave number ~k
cannot decay in shorter time than what it takes for light to

travel one wavelength � ¼ 1=j ~kj.
A long-wavelength magnetic field mode that has not had

time to decay before the phase transition is completed
remains in the system even though it is now in the broken
phase. As with a uniform field discussed above, this is only
possible if it is confined inside strings. The string density
(averaged over suitable volume) is then locally related to
the magnetic field strength by the same Eq. (27).

This means that long-wavelength fluctuations break up
into strings in the same way as a uniform field. This is
natural because a fluctuation with long enough wavelength
(for instance longer than the cosmological horizon size) is
locally indistinguishable from a uniform field.

On the other hand, short-wavelength fluctuations behave
adiabatically and decay, which means that there must be a

critical wave number k̂ separating the two different behav-

iors: Modes with j ~kj * k̂ decay but modes with j ~kj & k̂
become trapped into strings. The critical wave number
depends on the dynamics of the system and is generally
lower for slower transitions. In principle, its precise value
can be calculated for any particular scenario, but that will
not be necessary for the conclusions drawn in this paper.

If there was any feature in the initial magnetic field
configuration that was larger than the critical length scale

1=k̂, this feature would survive the transition and be im-
printed in the cosmic string network. For instance, a region
with a strong uniform magnetic field would create a bunch
of nearly parallel cosmic strings, which would roughly
follow the initial magnetic field lines. Even in the absence
of such specific features, which are unlikely in typical
cosmological models, thermal and quantum fluctuations
lead to nontrivial effects, and as discussed in the next
section.

V. CORRELATIONS FROM FLUX TRAPPING

Because the magnetic field is sourceless, its momentum
space two-point correlation function has the same tensor
structure as Eq. (18),

hBið ~kÞBjð ~k0Þi ¼ GB
ijð ~kÞð2�Þ3
ð ~kþ ~k0Þ; (30)

where

GB
ijð ~kÞ ¼

�

ij �

kikj

k2

�
GBðkÞ; (31)

and GBðkÞ is a scalar function of k ¼ j ~kj. The coordinate
space correlator GB

ijð ~xÞ is given by the Fourier transform

GB
ijð ~xÞ ¼

Z d3k

ð2�Þ3 e
i ~k� ~xGB

ijð ~kÞ: (32)

The conservation of magnetic flux (29) means that the
correlator can only change by a spatial derivative. In
Fourier space, the change in GB is at least quadratic in k,

GB
ijðt; ~kÞ ¼ GB

ijð0; ~kÞ þ ðk2
ij � kikjÞ�ðkÞ: (33)

Once the system enters the broken phase, the long-
wavelength magnetic field modes freeze out as discussed
in Sec. IVB. The final correlation function GB

final will

therefore interpolate between the initial on GB
ini at low

wave number k & k̂ and the equilibrium correlator GB
eq at

high wave number k * k̂.
The precise form of the correlator is not important, but

one obtains a useful approximation by assuming that the
long-distance dynamics are diffusive. Then each Fourier
mode decays as

~Bðt; ~kÞ ¼ ~Bð0; ~kÞe�k2t=4��; (34)

where � is the electric conductivity. At some time t̂ the
dynamics become nonlinear when strings form, and one
can identify

k̂ ¼
ffiffiffiffiffiffiffiffiffiffi
2��

t

s
; (35)

so that the final correlator is

GB
finalðkÞ ¼ GB

iniðkÞe�k2=2k̂2 : (36)

When the dynamics become nonlinear, these magnetic
field fluctuations are turned into cosmic strings. If one
ignores the contribution from the Kibble-Zurek mecha-
nism, so that flux trapping is the only source of strings,
Eq. (27) implies that the string density correlator is simply
given by

GðkÞ ¼ e2

4�2
GB

finalðkÞ ¼
e2

4�2
GB

iniðkÞe�k2=2k̂2 : (37)

To calculate the correlations of strings formed by flux
trapping, one needs to know the spectrum of initial fluctu-
ations GB

ini, which depends on the scenario. The two sim-

plest and most relevant cases, when the field in initially in
vacuum or in thermal equilibrium, are discussed below.
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A. Vacuum fluctuations

The simplest situation is when the gauge field is in its
vacuum state at the time of string formation. This is the
case after a long period of inflation, which would have
wiped out any excitations. Because the gauge field is
conformally invariant, no long-range fluctuations are gen-
erated during inflation [30]. Therefore the expansion of the
universe simply redshifts and dilutes any existing gauge
field configuration, taking it to its vacuum state.

In this case, the symmetry-breaking phase transition can
be thought of as a nonadiabatic change of the vacuum state
of the system. Normally this leads to pair production of
particles, which is often described using Bogoliubov trans-
formations within linear theory with a time-dependent
Hamiltonian. Our case is physically very similar but the
produced excitations are cosmic strings, and because they
are nonlinear objects, the linear approximation is not valid.
In contrast, the physical picture presented in Sec. V, which
is based on causality and conservation laws, should still be
applicable.

It is important to note that even if the universe reheated
between the end of inflation and the phase transition, the
cosmologically relevant modes would still remain at zero
temperature, because they are outside the horizon and can
therefore not be affected by local reheating dynamics.
Therefore the calculations in this section should also apply
to that situation. Furthermore, these calculations are not
restricted to cosmological scenarios but apply generally to
any system at zero temperature.

In the symmetric phase, the vacuum two-point correla-
tion function of the magnetic field can be calculated from
the photon Feynman propagator,

D��
F ðkÞ ¼ � i���

k2 þ i

; (38)

where we have adopted the Feynman gauge. This is un-
affected by the expansion of the universe because the
gauge field is conformally invariant. The equal-time two-
point correlator of the gauge field is

hAið ~kÞAjð ~qÞi ¼ ð2�Þ3
ð ~kþ ~qÞ
Z 1

�1
dk0
2�

Dij
F ðk0; ~kÞ

¼ 
ij

2k
ð2�Þ3
ð ~kþ ~qÞ: (39)

The magnetic field correlator is obtained by calculating the

curl of the gauge field, Bið ~kÞ ¼ i
ijkkjAkð ~kÞ, giving

GBðkÞ ¼ k

2
: (40)

The coordinate space correlator is given by the Fourier
transform of this and has a power-law form

GBðrÞ ¼ � 1

2�2r4
: (41)

This means that the quantum vacuum fluctuations of the
magnetic field are correlated over infinitely long distances.
It is important to understand that the nonzero spacelike

two-point function (41) does not indicate superluminal
signal propagation and violate causality. It describes how
the field fluctuations are correlated, not how they propa-
gate. In cosmology, one would normally argue that nothing
can be correlated over more than the particle horizon.
However, the way inflation solves the horizon problem is
precisely by making the particle horizon larger than the
currently observable universe. The power-law form (41)
should therefore be valid at all observable scales.
In the broken phase, the Higgs mechanism makes the

field massive and the vacuum two-point function is

GBðkÞ ¼ k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q ; (42)

where m� is the photon mass. The coordinate space corre-

lation function can be obtained by taking the Fourier trans-
form of this,

GBðrÞ ¼ m2
�

4�2r2

��
m�rþ 2

m�r

�
K1ðm�rÞ þ K0ðm�rÞ

�
;

(43)

where K� is the modified Bessel function of the second
kind. The asymptotic long-distance behavior is exponen-
tially decaying,

GBðrÞ � � 21=2

8�3=2

m5=2
�

r3=2
e�m�r: (44)

In an adiabatic transition, the correlator would change
from Eq. (40) to Eq. (42), and the long-range correlations
would disappear. However, as was discussed in Sec. IVB,
this cannot happen in a finite time. Instead, flux conserva-
tion suggests that the longest wavelengths must freeze out
and retain their original amplitude (40). This is much
higher than the amplitude of vacuum fluctuations in the
broken phase (42), and therefore the transition has turned
the quantum vacuum fluctuation into a classical magnetic
field.
According to Eq. (36), the frozen-out magnetic field

correlator after the transition is

GB
finalðkÞ ¼

k

2
e�k2=2k̂2 ; (45)

where the broken phase vacuum contribution (42) has been
dropped because m� is generally larger than the scales that

are relevant here. By causality, the critical wave number ~k

has to be greater than the Hubble rate jk̂j * H. The coor-
dinate space correlator is obtained by Fourier transforming
this,
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GB
finalðrÞ ¼

k̂4

4�2

�
1þ

ffiffiffiffi
�

2

r �
1

rk̂
� rk̂

�
erfi

�
rk̂ffiffiffi
2

p
�
e�r2k̂2=2

�
;

(46)

where erfi is the imaginary error integral. Unsurprisingly,
since the long-distance modes are unchanged, the long-
distance asymptotic behavior remains the same as before
the transition

GB
finalðrÞ � � 1

2�2r4
: (47)

According to Eq. (37), these correlations are imprinted
in the string network. Including the contribution from the
Kibble-Zurek mechanism (26), Eq. (45) predicts that the
string density correlator should behave at low wave num-
bers as

GðkÞ ¼ e2k

8�2
þ �̂k2 þOðk3Þ: (48)

Similarly, Eq. (47) implies that the asymptotic long-range
correlator in coordinate space is

GðrÞ � � e2

8�4r4
: (49)

The strings are therefore correlated even on super-horizon
scales, even if the initial state was empty vacuum.

B. Thermal fluctuations

The correlations are even stronger if the long-
wavelength modes of the gauge field were initially not in
vacuum. Reheating or any other post-inflationary phe-
nomena cannot create these conditions, because by cau-
sality they can only affect sub-horizon modes. However, if
inflation lasted only the 50 or 60 e-foldings required to
solve the horizon and flatness problems, preinflationary
field fluctuations would have been imprinted in the cosmic
strings. In some models, trans-Planckian physics or phe-
nomena taking place during inflation can also take the
gauge field away from its vacuum state.

For concreteness, let us assume that before the start of
inflation, sub-horizon magnetic field modes were in ther-
mal equilibrium at temperature Tini. During inflation, these
comoving modes left the horizon and their temperature was
redshifted down to T ¼ e�NTini, where N � 50 is the
number of e-foldings. Today, the wavelength of these
modes is comparable to the horizon size, and they are
therefore in the observable range.

At the time of string formation, at the end of inflation,
the relevant long-wavelength field modes were therefore in
thermal equilibrium at temperature T. The equal-time
finite-temperature gauge field correlator in the Feynman
gauge is

hAið ~kÞAjð ~k0Þi ¼ 
ijð2�Þ3
ð ~kþ ~k0Þ 1
2k

coth
k

2T
: (50)

This gives the magnetic field correlator in momentum
space,

GBðkÞ ¼ k

2
coth

k

2T
; (51)

and, through a Fourier transform, in coordinate space,

GB
ijð ~xÞ ¼

�

ij � 3

xixj

r2

�
� T2

4r2

�
1� coth2�Tr� coth�Tr

�Tr

�

þ
�

ij �

xixj

r2

�
��T3

2r
coth�Trð1� coth2�TrÞ;

(52)

where r ¼ j ~xj. The long-distance behavior is obtained by
taking r ! 1,

GB
ijð ~xÞ !

�

ij � 3

xixj

r2

��
� T

4�r3

�
: (53)

Taking the low wave number limit of Eq. (51) and using
Eq. (37), one finds the prediction for the string density
correlator,

GðkÞ � e2T

4�2
þ �̂k2 þOðk4Þ: (54)

In coordinate space, Eq. (53) implies that the long-distance
correlator is

Gijð ~xÞ !
�

ij � 3

xixj

r2

��
� e2T

16�3r3

�
: (55)

This is traceless, indicating that GðrÞ ¼ Gii=2 decays ex-
ponentially and is therefore not a particularly useful quan-
tity for discussing the correlations. Nevertheless, even the
trace behaves very differently from the Kibble-Zurek case
because winding number is not screened,

Z
d3xGð ~xÞ ¼ lim

k!0
GðkÞ ¼ e2T

4�2
� 0; (56)

which should be compared with Eq. (25).
Comparison of Eq. (55) with Eq. (49) shows that the

correlator decays more slowly than at zero temperature.
Because the cosmologically relevant distance scales are
extremely long, this means that even a very low nonzero
temperature can have significant effects.

VI. SIMULATIONS

Predictions of the Kibble-Zurek mechanism and flux
trapping have been tested and confirmed in numerical
simulations [17–19,31,32]. Unfortunately these tests are
limited to classical field theory, because there are no good
ways of simulating nonequilibrium dynamics in quantum
field theories, except in the simplest models [33]. For
example, the two-particle irreducible effective action for-
malism [34], which is a promising tool for perturbative
nonequilibrium processes, fails to incorporate topological
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defects [35]. Interestingly, it is possible to test these effects
experimentally in condensed matter systems which as
superfluids and superconductors [36–44], are, of course,
fully quantum mechanical. So far, the emphasis has been
on determining the number of strings, and the tests of
spatial correlations have so far been limited to short-
distance effects [15,45,46].

To test the predictions in Sec. V, I carried out a set of
classical field theory simulations of the gauge theory (1).
The simulations are perfectly conventional, describing the
field evolution of the Abelian Higgs model in expanding
space. The only difference from usual cosmic string simu-
lations are the initial conditions, which were calculated
from the actual thermal equilibrium or vacuum state of the
quantum field theory, rather than imposing the usual ad hoc
random phase initial conditions [16].

A. Nonzero temperature

The first set of simulations focused on the thermal case
discussed in Sec. VB. They were carried out on a 2563

lattice with comoving lattice spacing 
x ¼ 1. The scalar
coupling constant was � ¼ 1, and for the gauge coupling
two different values e ¼ 0:1 and e ¼ 0:5 were used.

Initially, the system was prepared in classical thermal
equilibrium at temperature T ¼ 0:5, corresponding to the
canonical ensemble p / expð��HÞ. This was done with a
Monte Carlo algorithm, more details of which can be found
in Ref. [47].

The fields were then evolved according to the classical
equations of motion. This was done in conformal time �
defined by d� ¼ dt=aðtÞ, where a is the scale factor. In

terms of rescaled fields ~� ¼ a� and ~Ei ¼ �@�Ai, the
equations of motion are

@2� ~� ¼ ~D2 ~�� ðm2a2 � @2�a=aÞ ~�� 2�j ~�j2 ~�;

@� ~Ei ¼ @jFij þ 2e Im ~��Di
~�;

@i ~Ei ¼ 2e Im ~��@� ~�:

(57)

The universe was assumed to be radiation dominated, so
that a ¼ 1þHini�, where Hini ¼ 0:1 is the initial Hubble
rate, and consequently @2�a=a ¼ 0. The only direct effect
of the expansion is therefore the growth of the mass term.
These equations were discretized with constant conformal
time step 
� ¼ 0:05.

To allow a meaningful comparison between the two
values of e, the mass parameter m2 was set to m2 ¼
�0:285 for e ¼ 0:5 and to m2 ¼ �0:225 for e ¼ 0:1, so
that in both cases the transition to the broken phase took

place near a � ffiffiffi
2

p
.

The local string density was measured at scale factor
a ¼ 2 using the gauge-invariant lattice winding number
[48], and the two-point correlation function GðkÞ was
calculated. The results are shown as diamonds in Fig. 1.

Because at a ¼ 2 the temperature is still fairly high, T ¼
0:25, thermal fluctuations are present especially at short

distance. They should not affect the long-distance behav-
ior, but to confirm this, the circles in Fig. 1 show the same
data after cooling the system by gradient flow. This re-
moves the fluctuations and makes sure that the strings can
really be thought of as classical solutions.
The solid lines show the predicted contribution from flux

trapping,

GðkÞ ¼ e2T

4�2
; (58)

which seems to describe the asymptotic behavior correctly.
The dashed and dotted lines show the predicted long-

distance behavior (54), with Kibble-Zurek correlation

length �̂ determined as the best fit to the data at k < 0:1.
Without cooling, its value was

�̂ ¼
�
0:226	 0:016; for e ¼ 0:5;
0:127	 0:003; for e ¼ 0:1;

(59)

and after gradient flow

�̂ ¼
�
0:61	 0:01; for e ¼ 0:5;
0:66	 0:01; for e ¼ 0:1:

(60)

As one would expect, the correlation length grows during
cooling, as the field becomes more ordered, but the long-

distance behavior is unchanged. Note that having �̂ less
than one does not pose a problem for the lattice discretiza-

tion, because �̂ is not the actual correlation length but only
a fit parameter that is proportional to it.
The agreement of these predictions with the data at long

distances (low k) is remarkable. This supports the calcu-
lations in Sec. V and suggests that the contributions from

0.01 0.1 1
k

10
-4

10
-3

10
-2

G
(k

)

FIG. 1. The string density correlator GðkÞ measured at the end
of the simulation with thermal initial conditions. The empty and
filled diamonds correspond to the data for e ¼ 0:5 and e ¼ 0:1,
respectively, and the circles are the corresponding data after
cooling by gradient flow. The two solid lines show the flux
trapping prediction (58) for e ¼ 0:5 (upper) and e ¼ 0:1 (lower).
The dashed and dotted lines include an additive contribution �̂k2,
as predicted by the Kibble-Zurek mechanism (54).
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the two mechanisms are additive to a good approximation.
One can therefore consider the two mechanisms to be
essentially independent of each other.

In Fig. 1 there appears to be a discrepancy between the
prediction (54) and the data at short distances, as the
measured correlator turns down at high k. However, this
does not indicate any conflict between the theory and the
data because Eq. (54) is only the asymptotic long-range
form, and a drop at high k is to be expected.

B. Vacuum

The second set of simulations tested the zero-
temperature case discussed in Sec. VA. Following an
approach that is widely used in studies of inflationary
preheating [49–51], quantum fluctuations were modeled
with a Gaussian ensemble of classical fluctuations with the
same two-point function. This should be a reasonable
approximation to model quantum dynamics by classical
fluctuations with the same initial two-point correlation
function [49]: At linear level, which should be a reasonably
good approximation at early times, the classical and quan-
tum dynamics are identical, and at late times, the occupa-
tion numbers of the relevant modes are high and therefore
classical approximation should again be valid.

Because the predicted correlations are weaker in the
vacuum case than at nonzero temperature, larger lattices
are needed. To save memory and computing power, an
elongated lattice of size 128� 128� 32 768 was used
and the correlations were measured in the long direction.
Because even the shorter directions are longer than the
light-crossing time, the shape of the lattice should not
affect the measured correlations in any way.

Again, the field evolution is given by Eq. (57), but
because the initial state is in vacuum, the expansion alone
would not cause a transition in the full quantum theory. It is
therefore necessary to have some mechanism that changes
the effective mass term, such as coupling to the inflaton
field in hybrid inflation. For simplicity, the scale factor was
set to a constant, a ¼ 1, and the mass term had linear time
dependence

m2ð�Þ ¼ m2
ini � c�: (61)

The mass term was initially set to m2
ini ¼ 1, and it was

quenched at the rate c ¼ 0:2 for time �� ¼ 10, so that the
final mass term was m2

final ¼ �1.
The string density correlator measured immediately

after this quench is shown in Fig. 2(a), and the same
measurement after gradient flow cooling in Fig. 2(b).
Because of the anisotropic lattice shape, the correlator
was only measured in the long (z) direction, i.e., the
measured quantity was

GðkÞ ¼ 1
2ðGxxðkẑÞ þGyyðkẑÞÞ: (62)

The solid lines show the asymptotic prediction from flux
trapping only,

GðkÞ ¼
�
e

2�

�
2 k

2
; (63)

and again they agree with the measured asymptotic
behavior.
The dashed lines show the predicted long-wavelength

correlator (48), which includes contributions from both
flux trapping and the Kibble-Zurek mechanism. Imme-
diately after the quench [Fig. 2(a)], the best-fit values of

the Kibble-Zurek fit parameter �̂ were

�̂ ¼
�
0:154	 0:002; for e ¼ 0:4;
0:131	 0:003; for e ¼ 0:1;

(64)

and after gradient flow [Fig. 2(b)],

�̂ ¼
�
0:812	 0:010; for e ¼ 0:4;
0:605	 0:020; for e ¼ 0:1:

(65)
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FIG. 2. The string density correlator GðkÞ measured with vac-
uum initial conditions (a) at the end of the quench and (b) after
gradient flow cooling. The empty and filled circles correspond to
the data for e ¼ 0:4 and e ¼ 0:1, respectively. The two solid
lines show the asymptotic behavior predicted by flux trapping
(63) for e ¼ 0:4 (upper) and e ¼ 0:1 (lower). The two dashed
lines include an additive contribution �̂k2, as predicted by the
Kibble-Zurek mechanism (48).
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As in the thermal case, the Kibble-Zurek correlation length
grows during gradient flow as the system gets more ordered
and the smallest string loops disappear, but the long-range
asymptotic behavior remains unchanged and is correctly
predicted by the flux trapping mechanism.

VII. COSMOLOGY

Most calculations of cosmological effects of cosmic
strings rely on scaling. The strings were formed in the
very early universe and one needs to know their whole
cosmological evolution. Because of the vast time and
length scales involved, it is impossible to calculate this in
detail. However, it is believed that the statistical properties
of the string network scale in such a way that, relative to
the horizon size, they look the same at all times [7].

By considering the string density correlator GðkÞ, one
can see that this is natural if the strings were formed by the
Kibble-Zurek mechanism. At low k, the correlator grows as
k2, and at some scale it turns down and falls as 1=k. If we
label the position of the maximum by kmax, we can ap-
proximate the correlator by

GðkÞ �
�
�̂k2; for k & kmax;
�̂k3max=k; for k * kmax:

(66)

Expressing this in units of H, one has

Gð�Þ=H �
� ðH�̂Þ�2; for � & kmax=H;
ðH�̂Þðkmax=HÞ3=�; for � * kmax=H;

(67)

where � ¼ k=H.

Because of causality, the correlation length �̂ cannot
grow faster than the horizon size 1=H. Assuming that it

saturates this bound, the first coefficient H�̂ is constant.
As the string network evolves, its loses energy by radiat-

ing it into other degrees of freedom. Because of this, string
loops shrink and eventually annihilate. This suppressed the
string density correlator, but because this process can only
take place on subhorizon scales, it only affects high wave
numbers k * H. Again, if one assumes that this energy
loss is efficient so that no power accumulates at high k, one
concludes that the peak of the correlator moves as kmax /
H. In Hubble units, the correlator (67) would therefore
remain unchanged, which means that the network scales.

The introduction of the thermal flux trapping contribu-
tion clearly violates this scaling. Equation (67) becomes

Gð�Þ=H �
� e2Tsas
4�2aH

þ ðH�̂Þ�2; for � & kmax=H;

ðH�̂Þðkmax=HÞ3=�; for � * kmax=H;

(68)

where Ts and as are the temperature and the scale factor at
the time the strings formed. The extra term grows as
/ 1=aH as the universe expands, ruling out a scaling

solution. Eventually, when aH � e2Tsas, it starts to have
a significant impact even on sub-horizon scales.
On the other hand, zero-temperature quantum vacuum

fluctuations are still compatible with scaling. When their
contribution is included, Eq. (67) becomes

Gð�Þ=H �
� e2

8�2 �þ ðH�̂Þ�2; for � & kmax=H;

ðH�̂Þðkmax=HÞ3=�; for � * kmax=H;

(69)

where the coefficient of the extra term is automatically
constant. This suggests that the vacuum fluctuations do not
rule out scaling but modify the scaling solution. While this
does not exclude the possibility of observable effects, it
means that they would necessarily be quite subtle.
The effects of the scaling violation (68) in the thermal

case can be seen by considering the number of ‘‘infinite’’
strings. In the cosmic string terminology, this means strings
that extend through the whole Hubble volume. The number
of infinite strings at any time can be estimated by calculat-
ing the average string density in the Hubble volume,

~� avg � 3

4�R3

Z
j ~xj<R

d3x ~�ðxÞ; (70)

where R ¼ 1=H is the horizon size. Its typical value is
given by the square root of the variance,

�rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
h ~�2

avgi
q

� 3

4�R3

�Z
j ~xj;j ~yj<R

d3xd3y2Gð ~x� ~yÞ
�
1=2

¼ 3

�R3

�Z 1

0

dk

k4
ðkR coskR� sinkRÞ2GðkÞ

�
1=2

� 1

�

�Z 1=R

0
dkk2GðkÞ

�
1=2

; (71)

where the contribution from k > 1=R ¼ H has been
ignored because it is the same as from the Kibble-Zurek
mechanism and therefore small. Substituting Eq. (58) and
ignoring numerical factors of order one, one finds that the
average string number density in the observable universe is
typically

�rms �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2TsasH

3

a

s
: (72)

This is due to strings that cross the horizon, because the net
contribution from any loop that is fully inside the observ-
able universe is zero. It is possible to construct a distribu-
tion of small loops that would reproduce Eq. (72) as a
surface contribution, but Eq. (71) indicates that it arises
from long-wavelength modes with k < 1=R. The most
natural interpretation is therefore that it is given by infinite
strings that extend through the whole observable universe.
The typical number of infinite strings Nrms is then obtained
by multiplying the density by the cross-sectional area
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�R2 � 1=H2 of the observable universe,

Nrms � �rms=H
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Tsas
aH

s
: (73)

As the universe expands, this number grows. There would,
therefore, be more and more infinite strings.

Today, with a ¼ 1 and H ¼ H0, the number of infinite
strings would be

N0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Tsas
H0

s
: (74)

Had the relevant long-distance gauge field modes been in
thermal equilibrium at the time of string formation, their

temperature would have been Ts ¼ Tc � g�1=3
� TCMB=as,

where g� � 100 is the number of relativistic degrees of
freedom at that time and TCMB � 2:7 K is the temperature
of the cosmic microwave background radiation. In this
case the number of infinite strings today would be huge,

N0 � ðTCMB=H0Þ1=2 � 1014, in massive conflict with
observations.

In inflationary cosmology, the long-wavelength super-
horizon modes would not have been in thermal equilibrium
at the time of string formation, as was discussed in
Sec. VB. Instead, their temperature would be Ts ¼
e�NTini, where N is the number of e-foldings and Tini is
the preinflationary temperature. Therefore we can write
Eq. (74) as

N0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Tiniaini

H0

s
; (75)

where aini ¼ e�Nas is the scale factor at the start of in-
flation. In order for inflation to solve the horizon problem,
the comoving horizon size at the start of inflation must
have been larger than today, i.e., Hiniaini <H0. If this
bound is saturated, one finds

N0 �
ffiffiffiffiffiffiffiffiffiffiffiffi
e2Tini

Hini

s
: (76)

In order to have inflation, the temperature Tini cannot have
been so high that is would have dominated the energy
density. This gives a bound

H2
ini *

g�T4
ini

M2
Pl

; (77)

where g� is the number of degrees of freedom and MPl ¼
ð8�GÞ�1=2 is the reduced Planck mass. This bound is
saturated if the temperature was initially even higher and
inflation started when radiation became subdominant. In
this case, one finds

N0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2MPl

g1=2� Tini

vuut : (78)

This can be as high as a dozen for GUT scale inflation, and
in low-energy inflationary models it can be much higher.
The presence of these infinite strings may affect the

evolutions of the string network and have indirect observ-
able consequences. Their contribution to the total energy
density would be

�inf � �N0

3M2
Pl

; (79)

which can be significant if N0 is large. Furthermore, they
would single out a preferred direction, that of ~�avg in

Eq. (70), thereby breaking the isotropy of the universe. It
may also be possible to observe them directly, and count
them, using the Kaiser-Stebbins effect [10], which creates
discontinuities in the temperature of the cosmic
background.

VIII. CONCLUSIONS

The results in this paper show that gauged cosmic string
formation is dominated by the trapping of gauge magnetic
flux at long distances, and the gauge field configuration
becomes imprinted in the string network. Because of the
preceding period of inflation and the masslessness of the
gauge field, this can give rise to correlations over massively
super-horizon scales at the time of string formation and can
therefore have potentially observable consequences.
The detailed form of the string correlations was calcu-

lated for thermal and vacuum initial states, corresponding
to different cosmological scenarios. The correlations are
stronger in the former case, but they are also present in the
latter, cosmologically more realistic case, which describes
a phase transition following a long period of inflation. In
that case, these correlations are not generated by inflation,
and the findings are therefore not in conflict with the well-
known result [30] that inflation does not generate long-
range magnetic fields. Instead, the correlations are a prop-
erty of the vacuum quantum fluctuations, which are turned
into physical string excitations by the phase transition. The
role of inflation is simply to remove all other fluctuations,
thermal or otherwise, which would lead to stronger corre-
lations. The vacuum result is therefore not specific to
inflationary cosmology and can be seen as a general lower
bound given by the uncertainty principle.
The results were confirmed by classical lattice field

theory simulations. Although this is a widely used ap-
proach, its validity in the zero-temperature case is uncer-
tain, because the whole effect originates in vacuum
fluctuations are is therefore fully quantum mechanical.
Interestingly, the predictions can also be tested in super-
conductor experiments [44], which are obviously fully
quantum mechanical and therefore avoid this potential
pitfall completely.
The calculations in this paper were carried out in the

Abelian Higgs model, as is the case with essentially all
studies of cosmic strings. The qualitatively new behavior is
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therefore not a consequence of adding new degrees of
freedom or modifying the microscopic theory in other
ways. Instead, it arises because instead of imposing
ad hoc initial conditions, the fields are set to be in their
thermal equilibrium or quantum vacuum state. Because the
arguments used were based on general physical principles,
the results should also generalize to essentially any model
of local cosmic strings that carry a gauge flux, including
cosmic superstrings formed in brane collisions.

The observational effects of these correlations are not
yet known. It was shown that sufficiently strong thermal
fluctuations will violate the usual scaling assumption, and
even at zero temperature, the precise scaling solution
would have to change. This may well affect the cosmic
string contribution to the CMB power spectrum. There may
also be totally new effects. For instance, one can speculate
whether the preferred direction of the infinite strings pro-
duced by flux trapping could be observed. Also, the differ-

ence between string networks in different Hubble volumes
are not random, as in the conventional pictures, but corre-
lated over infinite distances. Since they influence the ex-
pansions of the universe locally in each Hubble volume,
they can give rise to potentially observable density pertur-
bations. Determining these signatures will require large-
scale numerical simulations of the string network evolu-
tion. A key lesson from this paper is that the usual random
phase initial conditions, which are a concrete realization of
the Kibble-Zurek mechanism, are insufficient and, instead,
full quantum or thermal initial conditions should be used.
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