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A consistent implementation of quantum gravity is expected to change the familiar notions of space,

time, and the propagation of matter in drastic ways. This will have consequences on very small scales, but

also gives rise to correction terms in evolution equations of modes relevant for observations. In particular,

the evolution of inhomogeneities in the very early Universe should be affected. In this paper consistent

evolution equations for gauge-invariant perturbations in the presence of inverse triad corrections of loop

quantum gravity are derived. Some immediate effects are pointed out, for instance, concerning conser-

vation of power on large scales and nonadiabaticity. It is also emphasized that several critical corrections

can only be seen to arise in a fully consistent treatment where the gauge freedom of canonical gravity is

not fixed before implementing quantum corrections. In particular, metric modes must be allowed to be

inhomogeneous: it is not consistent to assume only matter inhomogeneities on a quantum-corrected

homogeneous background geometry. In this way, stringent consistency conditions arise for possible

quantization ambiguities, which will eventually be further constrained observationally.
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I. INTRODUCTION

General relativity describes the structure and dynamics
of space-time by Einstein’s equation for the space-time
metric, which gives rise to a wide range of phenomena in
cosmology and astrophysics. In several regimes, especially
at high densities, one expects quantum gravity to be crucial
and to provide important correction terms to the classical
equations. By now, canonical quantum gravity in the loop
approach has progressed to the extent that perturbative
calculations for the behavior of inhomogeneities around
Friedmann-Robertson-Walker space-times can be per-
formed at an effective level. This provides cosmological
applications, but by addressing the anomaly problem it also
sheds light on fundamental aspects such as quantum space-
time structure.

The classical equations of motion constitute an over-
determined set, whose consistency is ensured by general

covariance. When attempting to include correction terms
in these equations as they may be suggested by quantum
gravity, the consistency conditions must be respected. Only
an anomaly free quantization, where consistency resulting
from general covariance is preserved, can lead to quantum
equations of motion with the correct number and behavior
of degrees of freedom.
This issue becomes pressing already at the level of

linearized equations as they are used in the cosmology
of the early Universe. Once inhomogeneities are included
as perturbations around an expanding Friedmann-
Robertson-Walker space-time, there are more equations
than unknowns, which requires consistent forms of all
terms in the equations. Without inhomogeneities, consis-
tency is automatically satisfied: there is a single con-
straint, which is always preserved by the evolution it
generates. Quantum corrections to homogeneous models
can therefore be implemented easily as it has been done
often to suggest diverse effects and scenarios [1]. How-
ever, just putting quantum-corrected solutions for a
homogeneous background into classical perturbation
equations in general results in inconsistent equations:
the corrected background equations can no longer be
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compatible with all the terms in the perturbation equations.
Thus, a direct treatment of inhomogeneities and the cor-
rections they acquire in a quantum theory of gravity is
required.

Perturbations around homogeneous models then test
their robustness, demonstrate whether a particular form
of quantum corrections can be realized in a generally
covariant way, and provide consistent sets of equations of
motion whose solutions can be analyzed for the phenome-
nology and potentially observable effects they imply. From
the perspective of canonical quantum gravity, the consis-
tency issue of effective equations has been described in [2],
and it has been demonstrated that there is a correction
expected from loop quantum gravity [3–5], which non-
trivially changes the classical equations in a consistent
way at a perturbative level. (This correction results from
inverse triad operators in Hamiltonians [6,7]. Other ex-
pected corrections from loop quantum gravity, such as
holonomy corrections, have not yet resulted in consistent
equations outside the reduced setting of homogeneous
models.) In this paper, we derive the corresponding
gauge-invariant perturbations and the equations of motion
they satisfy.

Earlier work [8,9] had already led to quantum correc-
tions to Einstein’s equation governing linear cosmological
perturbations. As a result, enhancement effects of quantum
corrections during long cosmic evolution times were sug-
gested based on the observation that superhorizon curva-
ture perturbations were not preserved, unlike classically,
but had a growing mode. Other forms of perturbation
equations were used, for instance, in [10–14]. Such effects
may lead to observable imprints in the cosmic background
radiation even though individual quantum-gravitational
correction terms at sub-Planckian densities are small.
The consideration, however, was restricted to the scalar
mode in the longitudinal gauge, i.e. diagonal metric per-
turbations. While classically this procedure proves to be
equivalent to a non-gauge fixed derivation, it leads to
inconsistencies at the effective level in the presence of
quantum corrections. Specifically, the effective equations
resulting from the quantization of a gauge-fixed system in
general are incompatible with each other, and gauge fixing
eliminates the freedom required to see systematically how
the terms of consistent equations must be arranged. A non-
gauge fixed treatment is thus necessary to evaluate all
consistency conditions and to determine the gauge-
invariant equation of motion for the curvature perturbation.
(Similarly, if one uses only matter perturbations on a
homogeneous gravitational background one is implicitly
using a gauge-fixed treatment. This is in general inconsis-
tent if no care is taken concerning the specific correction
terms and the meaning of matter perturbations in relation
to gauge-invariant quantities. Sometimes a ‘‘separate uni-
verse’’ picture [15–17] is used, arguing that at least for
large-scale modes quantum corrections to the homogene-

ous background equations should be sufficient to deter-
mine the evolution of inhomogeneities. But also here, as
we will see in examples later, not all features will be visible
based solely on homogeneous models without a full con-
sistency analysis once quantum gravity corrections are
included.)
A simple counting shows that the three independent

functions describing scalar (gravity and matter) perturba-
tions are subject to five equations of motion (see Table I).
In general, such a system would be over determined unless
the equations are not independent. In gravity, they can be
split into two types: i) evolution equations of second-order
in time derivatives and ii) constraint equations of lower
order. Constraints restrict the initial data, and if they are
preserved under evolution, the system of equations is con-
sistent. This is guaranteed automatically when equations of
motion are obtained variationally from a covariant action,
and is therefore satisfied for the classical equations. If
quantum corrections are derived in a Hamiltonian ap-
proach, however, consistency is ensured only if the quan-
tization is anomaly free. The consistency of the resulting
equations is thus tightly related to the closure of the con-
straint algebra. While the algebra of the constraints ob-
tained from the classical Einstein-Hilbert action by a
Legendre transformation is closed or, in Dirac’s terms
[18], the Hamiltonian and diffeomorphism constraints are
of first class, this property may not sustain quantization. A
consistent gauge-invariant formulation of quantum-
corrected equations of motion is possible only if the quan-
tization is anomaly free, i.e. if the constraints remain first
class.
As shown in [19,20], standard loop quantization under

very mild assumptions leads to a nonanomalous constraint
algebra for vector and tensor modes. (At the linear level
mode decomposition does not interfere with quantization,
and quantum corrections to scalar, vector and tensor modes
can be studied independently.) In [2] it was analyzed what
types of (nonanomalous) quantum corrections are allowed
for the scalar mode, obtaining the anomaly freedom con-
ditions ensuring a first class system. Once closure of the
constraint algebra is provided, the formulation of gauge-
invariant equations of motion becomes possible, as devel-
oped in this paper.
We start with reviewing the correspondence between the

canonical and covariant equations of motion, then derive
the gauge-invariant variables, and finally obtain the gauge-
invariant quantum-corrected linear Einstein equations. As
we will see, consistency requires certain features of the
corrected perturbation equations and of the gauge-invariant
variables, which could not be seen in gauge-fixed formu-
lations. Several immediate consequences are discussed in
Sec. V and further in the conclusions, which also exhibit
the final quantum-corrected perturbation equations.
Readers interested primarily in applications may turn di-
rectly to these sections.
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II. BASIC VARIABLES AND EQUATIONS

When a classical theory is quantized, the choice of basic
variables often matters. While there are many equivalent
formulations of classical physics, all related to each other
by canonical transformations, such maps are rarely imple-
mentable as exact unitary transformations when quantized.
This gives rise to different inequivalent quantizations of the
same classical theory, and it can even prevent one from
constructing a quantization in a particular classical formu-
lation of the theory: there may be no Hilbert space repre-
sentation where a certain choice of basic classical phase
space variables will become well-defined operators.

In loop quantum gravity [3–5], the principle of back-
ground independence, which requires that well-defined op-
erators do not refer to a metric other than the physical one
to be turned into operators, distinguishes a special class of
basic variables. In field theories such as general relativity,
it is not field values at single points which can become
well-defined operators, but only ‘‘smeared’’ versions ob-
tained after integrating over spatial regions. Such integra-
tions ensure that the operator-valued distributions, which
field values would correspond to, become well-defined op-
erators that can be multiplied to construct composite op-
erators from them. Since the physical fields of canonical
general relativity are spatial tensor fields, they cannot di-
rectly be integrated in a coordinate independent manner.
Moreover, integration measures are not provided automati-
cally because only the physical metric could be used on a
curved manifold, but this metric itself is being turned into
an operator. If one uses connection variables and densitized
vector fields as canonical objects, however, their transfor-
mation properties ensure that they can be integrated over
curves and surfaces, respectively, without requiring any
additional integration measure. The resulting holonomies
and fluxes then become well-defined operators in the quan-
tum representation underlying loop quantum gravity [21].

This representation has characteristic properties that are
implied by the choice of basic fields and their smearing. In
particular, operators for spatial geometry such as the fluxes
themselves or areas and volumes acquire discrete spectra
[22–24]. This, in turn, determines how these basic opera-
tors can appear in composite ones such as Hamiltonians
[6,7,25]. For instance, flux operators having discrete spec-
tra containing the eigenvalue zero do not possess densely
defined inverse operators. Since inverse triad components
appear in Hamiltonians, the lack of a direct quantization
entails quantum corrections in any effective Hamiltonian
(see e.g. [26]), which will then also change the correspond-
ing evolution as well as gauge properties. In this paper, we
derive such equations precisely for corrections resulting
from inverse triad components.

A. Perturbed variables

To do so, we perform the perturbation analysis of in-
homogeneities in the basic variables underlying loop quan-

tum gravity, such that we will be using primarily a
densitized triad Ea

i instead of the spatial metric qab (sat-
isfying Ea

i E
b
i ¼ qab detq). Moreover, in this canonical set-

ting the remaining componentsN andNa of the space-time
metric

ds2 ¼ �N2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ (1)

will not be dynamical but play the role of Lagrange multi-
pliers of constraints. In fact, their time derivatives do not
appear in the Einstein-Hilbert action, which can be written
in the canonical form

SEH ¼
Z

dt

��
1

8�G

Z
d3x _Ki

aE
a
i

�
�Ggrav½�i�

�Dgrav½Na� �Hgrav½N�
�
; (2)

where Ki
a is conjugate to Ea

i ,

fKi
aðxÞ; Eb

j ðyÞg ¼ 8�G�b
a�

i
j�

3ðx; yÞ; (3)

and related to extrinsic curvature Kab by Ki
a ¼

KabE
b
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp
. The remaining terms are the diffeomor-

phism constraint

Dgrav½Na� ¼ 1

8�G

Z
�
d3xNaðð@aKj

b � @bK
j
aÞEb

j

� Kj
a@bE

b
j Þ (4)

and the Hamiltonian constraint

Hgrav½N� ¼ 1

16�G

Z
�
d3xN

Ea
i E

b
jffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp

� ðFk
ab�

ij
k � 2ð1þ �2ÞK½i

aK
j�
b Þ: (5)

Here,

Fk
ab ¼ 2@½að�þ �KÞkb� þ �ij

kð�þ �KÞiað�þ �KÞjb
is the curvature of the Ashtekar-Barbero connection
[27,28] Ai

a ¼ �i
a þ �Ki

a defined in terms of the spin con-
nection

�i
a ¼ � 1

2
�ijkEb

j

�
@aE

k
b � @bE

k
a þ Ec

kE
l
a@cE

l
b

� Ek
a

@bðdetEÞ
detE

�
(6)

and � is the Barbero-Immirzi parameter [28,29]. These
variables also appear in the Gauss constraint

Ggrav½�i� ¼
Z

d3x�ið@aEa
i þ �ijk�

j
aEa

k þ ��ijkK
j
aEa

kÞ

in (2). This constraint will be solved explicitly by our
parameterization of variables at the linear level, and its
gauge will be fixed by a background triad. We can thus
ignore it from now on.
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For a perturbed metric of the form

ds2 ¼ a2ð�Þð�ð1þ 2�Þd�2 þ 2@aBd�dx
a

þ ðð1� 2c Þ�ab þ 2@a@bEÞdxadxbÞ; (7)

as it describes general scalar perturbations ð�; c ; E; BÞ
around spatially flat Friedmann-Robertson-Walker models
in a general gauge, the background and perturbed triad in

Ea
i ¼ �Ea

i þ �Ea
i (8)

are given by

�E a
i ¼ �p�a

i � a2�a
i ;

�Ea
i ¼ �2 �pc�a

i þ �pð�a
i�� @a@iÞE;

(9)

where � is the Laplace operator on flat space, indices run
from 1 to 3, a is the (background) scale factor and c and E
describe the spatial part of the perturbed metric. (We use
standard notations where E is one of the scalar modes
distinct from the full densitized triad Ea

i . The latter will
always be written with indices such that no confusion
should arise.) The other two scalar metric perturbations
� and B are related to the perturbed lapse function and
shift vector, respectively,

�N ¼ �N�; Na ¼ @aB (10)

and will enter the extrinsic curvature components, also
perturbed as

Ki
a ¼ �Ki

a þ �Ki
a ¼ �k�i

a þ �Ki
a: (11)

This splitting, with the condition that �Ea
i and �Ki

a do not
have homogeneous modes in order to avoid double count-
ing, results in Poisson brackets

f �k; �pg ¼ 8�G

3V0

; f�Ki
aðxÞ; �Eb

j ðyÞg ¼ 8�G�i
j�

b
a�

3ðx� yÞ:
(12)

The homogeneous mode is defined by

�p ¼ 1

3V0

Z
Ea
i �

i
ad

3x; �k ¼ 1

3V0

Z
Ki

a�
a
i d

3x; (13)

where we integrate over a bounded region of coordinate
size V0 ¼

R
d3x, which could be over the whole space if it

is compact, or a sufficiently large region encompassing all
the scales of perturbations of interest. Although V0, which
depends on coordinates as well as the choice we make for
the integration region, enters the definition of variables and
their Poisson structure, particular correction terms for ob-
servables will not depend on its value. Using the homoge-
neous modes, perturbations are defined by (8) and (11).

The specific form of �Ki
a and �Ki

a in relation to time
derivatives of �p and �Ea

i , analogously to the triad fields in
(9), follows from the equations of motion. Before deriving
these relations we thus introduce the quantum corrections

we consider because they have a bearing on the form of
components of Ki

a.

B. Quantum corrections

The Hamiltonian constraint (5) contains a factor of an
inverse determinant of the densitized triad. This inverse
cannot be quantized directly because the integrated deter-
minant itself is quantized to an operator with zero in the
discrete spectrum, precluding the existence of an inverse
operator. Nevertheless, well-defined operators quantizing
(5), including the inverse triad, exist [6,30]. However, the
behavior of expectation values of the operators differs on
small length scales from the classical behavior even in
semiclassical states, which implies the presence of a cor-
rection function � multiplying the Hamiltonian density.
This function must be scalar (of density weight zero) to
ensure the proper behavior of the integral, and it can
depend functionally on all the phase-space variables in
possibly nonlocal ways. Such a general dependence would
make an analysis of the constraint algebra and of equations
of motion intractable, and so we have organized the calcu-
lations in [2] by first assuming a primary correction func-
tion �ðEa

i Þ, which depends only on the triad and does so
only in algebraic form. By itself, this does not produce
anomaly free quantizations, which however do exist if
additional counterterms are added containing new correc-
tion functions whose relation to the primary correction is
fixed by anomaly cancellation. These extra terms can be
interpreted as arising from a more complicated dependence
of � on all the phase-space variables, which is derived
systematically by this process.
Specifically, the quantum-corrected Hamiltonian con-

straint derived in [2] can conveniently be written as

HQ ¼ HQ
grav½ �N� þHQ

grav½�N� þHQ
matt½ �N� þHQ

matt½�N�;
(14)

where the gravitational part is expanded by powers of
inhomogeneities �Ea

i , �K
i
a, and �N as

HQ
grav½ �N� :¼ 1

16�G

Z
d3x �N½ ��H Qð0Þ þ �ð2ÞH Qð0Þ

þ ��H Qð2Þ�;
HQ

grav½�N� :¼ 1

16�G

Z
d3x�N½ ��H Qð1Þ�; (15)

and the matter Hamiltonian reads

HQ
matter½ �N� ¼

Z
�
d3x �N½ð ��H Qð0Þ

� þH Qð0Þ
’ Þ þ ð�ð2ÞH Qð0Þ

�

þ ��H Qð2Þ
� þ �	H Qð2Þ

r þH Qð2Þ
’ Þ�

HQ
matter½�N� ¼

Z
d3x�N½ ��H Qð1Þ

� þH Qð1Þ
’ �: (16)
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In all expansions, a bar is used to denote background quantities while superscripts indicate the inhomogeneous order. The
Hamiltonian densities in the expansions are given by [2]

H Qð0Þ ¼ �6 �k2
ffiffiffiffi
�p

p
; H Qð1Þ ¼ �4ð1þ fÞ �k ffiffiffiffi

�p
p

�c
j�K

j
c � ð1þ gÞ

�k2ffiffiffiffi
�p

p �j
c�Ec

j þ
2ffiffiffiffi
�p

p @c@
j�Ec

j;

H Qð2Þ ¼ ffiffiffiffi
�p

p
�Kj

c�Kk
d�

c
k�

d
j �

ffiffiffiffi
�p

p ð�Kj
c�c

jÞ2 �
2 �kffiffiffiffi
�p

p �Ec
j�K

j
c �

�k2

2 �p3=2
�Ec

j�E
d
k�

k
c�

j
d þ

�k2

4 �p3=2
ð�Ec

j�
j
cÞ2

� ð1þ hÞ �jk

2 �p3=2
ð@c�Ec

jÞð@d�Ed
kÞ (17)

for gravity and by

H Qð0Þ
� ¼ ��2

�’

2 �p3=2
; H Qð0Þ

r ¼ 0; H Qð0Þ
’ ¼ �p3=2Vð �’Þ; H Qð1Þ

� ¼ ð1þ f1Þ ����
�p3=2

� ð1þ f2Þ ��2

2 �p3=2

�j
c�Ec

j

2 �p

H Qð1Þ
r ¼ 0 H Qð1Þ

’ ¼ �p3=2

�
ð1þ f3ÞV;’ð �’Þ�’þ Vð �’Þ�

j
c�Ec

j

2 �p

�

H Qð2Þ
� ¼ ð1þ g1Þ ��

2

2 �p3=2
� ð1þ g2Þ ����

�p3=2

�j
c�Ec

j

2 �p
þ 1

2

��2

�p3=2

�
ð1þ g3Þ

ð�j
c�Ec

jÞ2
8 �p2

þ �k
c�

j
d�E

c
j�E

d
k

4 �p2

�

H Qð2Þ
r ¼ 1

2
ð1þ g5Þ

ffiffiffiffi
�p

p
�ab@a�’@b�’

H Qð2Þ
’ ¼ �p3=2

�
ð1þ g6Þ 12V;’’ð �’Þ�’2 þ V;’ð �’Þ�’

�j
c�Ec

j

2 �p
þ Vð �’Þ

�ð�j
c�Ec

jÞ2
8 �p2

� �k
c�

j
d�E

c
j�E

d
k

4 �p2

��
(18)

for matter.
The �p-dependent functions ��, ��, and �	 are primary

correction functions whose origin is the presence of inverse
triad operators in a constraint operator. Their form can be
computed in isotropic models [30–32] or with certain
gauge assumptions for inhomogeneous states [26,33].
Classically, we have �� ¼ �� ¼ �	 ¼ 1, while there can be
strong deviations from this value for small values of ele-
mentary flux variables, which quantize the densitized triad.
This deep quantum regime is difficult to control, however,
and the derivations in [2] of an anomaly free constraint
algebra are valid for primary correction functions of the
form

��ðaÞ ¼ 1þ c�

�
‘2P
a2

�
n� þ � � � ; (19)

which are perturbative in the Planck length ‘P ¼
ffiffiffiffiffiffiffi
G@

p
, i.e.

n� > 0. Explicit values for coefficients c�, c�, and c	,
which are generically positive such that ��ðaÞ> 1 in per-
turbative regimes, as well as the exponents n�, n�, and n	
can be derived from specific quantizations, but they are
subject to quantization ambiguities [34]. One purpose of
deriving anomaly free versions of the constraints is to
provide consistency conditions among some of these val-
ues, fixing some quantization ambiguities.

For an anomaly free quantization in a gauge-
independent manner, the presence of these primary correc-
tion functions requires counterterms with coefficients f, g,

and h, as well as fi and gi, which also depend on �p in a way
fixed by anomaly cancellation conditions. For the situation
under consideration where the matter sector consists of a
scalar field with a nontrivial potential, we have

2f0 �p ¼ � ��0 �p
��

; (20)

g ¼ �2f; (21)

f1 ¼ f� ��0 �p
3 ��

; (22)

and

@�ð2Þ

@ð�Ea
i Þ
ð�c

j�
a
i � �a

j�
c
i Þ ¼

�0

3p
�Ec

j ; (23)

@�ð2Þ

@ð�Ea
i Þ
ð�c

j�
a
i � �a

j�
c
i Þ ¼

�0

3p
�Ec

j : (24)

Here, and in what follows, primes denote derivatives by �p.
Moreover, we have

�� 2 ¼ �� �	 : (25)

Other consistency conditions will be recalled later from [2]
(also discussed in Appendix B) whenever they are being
used. Classically, all counterterms vanish, e.g. f ¼ f1 ¼
g ¼ 0. With the consistency conditions the system of
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corrected constraints is anomaly free to the perturbative
orders considered, which is linear in inhomogeneities (re-
quiring second-order expansions of the constraints, which
generate linear equations of motion) as well as leading
order in the corrections of (19). The latter assumption of
perturbativity implies that we ignore terms such as ð ���
1Þ2, ðpd ��=dpÞ2, or f2 compared to ��� 1.

With the corrected Hamiltonian, we can derive the equa-

tions of motion it generates. From _�p ¼ f �p;HQ
grav½N�g, for

instance, we obtain the background part �Ki
a ¼ �k�i

a of
extrinsic curvature, where �k is related to the conformal
Hubble parameter by

�� �k ¼ H � _�p

2 �p
: (26)

The choice of the background lapse function �N ¼ a,
used to derive (26), corresponds to the conformal time �
whose derivative we denote by a dot. In general, the total
time derivative of an arbitrary phase-space function is
given by its Poisson bracket withHQ½N� þD½Na� parame-
terized by the total lapse N � �N þ �N and shift Na �
�Na þ �Na. Nonetheless, for a background quantity the
Poisson bracket above, using only HQ½ �N�, coincides with
the conformal (background) time derivative up to the sec-
ond perturbative order.

Similarly, the form of the perturbation �Ki
a can be

deduced from Hamilton’s equation for � _Ea
i . Namely, using

� _Ea
i � f�Ea

i ; H
Q½N� þD½Na�g (27)

along with (9) and (26), we obtain

���Ki
a ¼ ��i

a½ _c þH ðc þ�ð1þ fÞÞ�
þ @a@

i½HE� ðB� _EÞ�; (28)

where the counterterm fð �pÞ appears.
Matter is represented by a scalar field ’ ¼ �’þ �’ with

potential Vð’Þ and its conjugate momentum� ¼ ��þ ��.
As before, we use the equations of motion

_�’ � f �’;HQ½N� þD½Na�g;
� _’ � f�’;HQ½N� þD½Na�g (29)

to express the field momentum as

�� ¼ _�’
�p

��
;

�� ¼ �p

��

�
ð� _’� _�’ð1þ f1Þ�Þð1� g1Þ þ _�’

�Ea
i �

i
a

2 �p

�
:

(30)

Before proceeding to gauge transformations in the next
section we note the relation between the canonical and
covariant equations of motion, summarized in Table I.
There are three background equations, only two of which
are independent, for the two unknown functions: scale
factor að�Þ and matter scalar field �’ð�Þ depending on

the conformal time �. Those are the Friedmann,
Raychaudhuri, and Klein-Gordon equations [26]

H 2 ¼ 8�G

3
��

� _�’2

2 ��
þ �pVð �’Þ

�
; (31)

_H ¼ H 2

�
1þ ��0 �p

��

�
� 4�G

��

��
_�’2

�
1� ��0 �p

3 ��

�
; (32)

€�’þ 2H _�’

�
1� ��0 �p

��

�
þ �� �pV;’ð �’Þ ¼ 0; (33)

where the prime indicates a derivative with respect to �p.
These equations are listed in the left column and corre-
spond to the background Hamiltonian constraint and two
pairs of dynamical (Hamilton’s) equations. Each pair of the
first-order equations is to be combined into a single
second-order equation.
More generally, covariant equations that are less than

second order (with respect to the conformal time deriva-
tive) correspond to constraint equations in the canonical
formalism. They should be viewed as restrictions on the
initial conditions. As mentioned earlier, for consistent and
unambiguous (gauge-invariant) evolution such constraints
must be preserved by the dynamical equations. In the
canonical language, this property of constraints is trans-
lated into the requirement of closure of the constraint
algebra, as it is analyzed for the corrected constraints in
[2]. As a result, relations such as (20)–(23) between the
correction functions have to be satisfied as conditions for
higher-order terms of primary correction functions.

III. GAUGE TRANSFORMATIONS

In classical relativity, it is the Lie derivative that pro-
vides the form of gauge transformations of the fields such
as metric components, corresponding to changes of coor-
dinates. After quantization it is no longer clear what the

TABLE I. Table of correspondence between the background
and perturbed canonical equations and the covariant equations of
general relativity. In the covariant column, the subscripts ‘‘S’’
and ‘‘T’’ stand for spatial and temporal components, respec-
tively. In the canonical framework, equations are of two types:
constraint equations and dynamical (Hamilton’s) equations for
the time derivatives of canonical pairs. Note that both ‘‘SS’’ and
‘‘� _K & � _E’’ equations are tensorial. Indices of �Ki

a and �Ea
i

have been suppressed for simplicity.

Covariant equations Canonical equations

Background Friedmann Background Hamiltonian constraint

Background Raychaudhuri _�k & _�p
Background Klein-Gordon _�’ & _��
Perturbed Einstein T

T Perturbed Hamiltonian constraint

Perturbed Einstein S
T Perturbed diffeomorphism constraint

Perturbed Einstein S
S � _K & � _E

Perturbed Klein-Gordon � _’ & � _�
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analog of these gauge transformations should be, given that
the underlying space-time notion would have to be deter-
mined from the quantum theory itself. In most approaches
to quantum gravity, one does not expect the fundamental
space-time picture to be described by a smooth manifold.
Here, an advantage of the canonical formulation is that
gauge transformations are directly generated as Poisson
brackets of the fields with the constraints. Classically, this
reproduces the formulas obtained by Lie derivatives, and it
can directly be extended to canonical quantum gravity
capturing changes to the quantum space-time structure.
With corrections (14) to the classical constraints (5), it is
not only equations of motion but also the form of gauge
transformations that changes. Thus, gauge-invariant com-
binations of the perturbations take different forms than
they do classically.

However, as we saw not all the space-time metric com-
ponents are dynamical phase-space variables, and only the
gauge transformations for the spatial metric, or Ea

i and K
i
a,

will be determined straightforwardly. In this section we
derive these transformations and show how also the trans-
formations of the remaining components N and Na, or �
and B in the scalar perturbations related to the Lagrange
multipliers, can be obtained.

A. Classical gauge-invariant variables

It is instructive to introduce the canonical derivations
and required notions in the classical case first, after which
we will directly extend the expressions to those including
quantum corrections. (Canonical treatments of classical
perturbations have also been discussed in [38–40].)

In the covariant formulation, gauge transformations con-
stitute local infinitesimal coordinate transformations

x
 ! ~x
 ¼ x
 þ �
ðxÞ;
generated by vector fields �
. In a perturbative setting, the
infinitesimal field �
 will be treated as a first-order pertur-
bation. Under this coordinate transformation any tensor
field receives a correction equal to its Lie derivative along
�
. The part of the transformation relevant for the scalar
mode can be parameterized by two scalar functions �0 and
� such that

�
 ¼ ð�0; @a�Þ;
where a indicates a spatial direction 1, 2, or 3.

There are four (spatial) scalar perturbations in a space-
time metric, �, c , B, and E as they appear in the line
element (7) in conformal time �. These perturbations are
subject to two independent gauge transformations by �0

and �. We now briefly recall how these transformations
follow from changes of coordinates to verify later that the
classical canonical transformations produce the correct
form.

If only �0 is nonzero, the coordinate transformation
changes � to �þ �0, which for d�2 implies, to first order

in �0,

dð�þ �0Þ2 ¼ d�2 þ 2 _�0d�2 þ 2�0;a d�dx
a

and að�Þ2 changes to að�Þ2ð1þ 2 _a�0=aÞ. Inserting this in
(7), we read off the transformation formulas

� � �þ _�0 þH�0; c � c �H�0; (34)

B � B� �0; E � E; (35)

where H ¼ _a=a as in (26).
If only � is nonzero, dxadx

a changes to

dðxa þ �;a Þdðxa þ �;a Þ ¼ dxadx
a þ 2 _�;a d�dx

a

þ 2�;ab dx
adxb;

which yields

� � �; c � c ; B � Bþ _�; E � Eþ �:

(36)

We thus see that B� _E is invariant under � transforma-
tions (or spatial diffeomorphisms) and changes to B� _E�
�0 under �0 transformations. Thus, the Bardeen variables
[41]

� ¼ �þH ðB� _EÞ þ ðB� _EÞ� and

� ¼ c �H ðB� _EÞ (37)

are gauge invariant. For a scalar field ’, the only change is
under �0 and given by �’þ _�’�0. Here,

�’GI ¼ �’þ _�’ðB� _EÞ (38)

is gauge invariant.
In the canonical formulation, gauge transformations are

generated by the Hamiltonian and diffeomorphism con-
straints. The corresponding lapse function and shift vector
to be inserted are also first-order perturbations related to
the infinitesimal vector field �
 via

�N ¼ �N�0; �Na ¼ @a�; (39)

which follow from the metric decomposition (1) in terms
of the spatial metric qab, lapse function N, and shift vector
Na. With first-order smearing functions, the gauge-
generating constraints are at least of second perturbative
order. From now on we will denote the gauge transforma-
tions of a phase-space quantity X as

�½�0;��X � fX;Hð2Þ½ �N�0�g þ fX;Dð2Þ½@a��g; (40)

where

Hð2Þ½�N� ¼ 1

16�G

Z
d3x�N½H ð1Þ

þ 16�GðH ð1Þ
� þH ð1Þ

’ Þ�; (41)

with the Hamiltonian densities given by
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H ð1Þ ¼ �4 �k
ffiffiffiffi
�p

p
�c
j�K

j
c �

�k2ffiffiffiffi
�p

p �j
c�Ec

j þ
2ffiffiffiffi
�p

p @c@
j�Ec

j

(42)

and

H ð1Þ
� ¼ ����

�p3=2
� ��2

2 �p3=2

�j
c�Ec

j

2 �p
H ð1Þ

r ¼ 0

H ð1Þ
’ ¼ �p3=2

�
V;’ð �’Þ�’þ Vð �’Þ�

j
c�Ec

j

2 �p

�
:

(43)

For the diffeomorphism constraint (4), we have the second-
order term

Dð2Þ½�Na� ¼ 1

8�G

Z
�
d3x�Na½ �p@að�d

k�K
k
dÞ � �pð@k�Kk

aÞ
� �k�k

að@d�Ed
kÞ þ 8�Gð ��@a�’Þ�: (44)

In what follows, we perform canonical gauge transforma-
tions on the basic phase variables and demonstrate that this,
too, results in the gauge-invariant combinations (37).

1. Gauge transformations of basic variables

We start by computing gauge transformations of the
basic phase-space variables Ki

a, E
a
i , ’, and �. Using (40)

with the constraints (41) and (44) we obtain

�½�0;���K
i
a ¼ @i@að�0 þ �k�Þ �

�k2

2
�0�

i
a

þ 4�G

�
�pVð �’Þ � _�’2

2

�
�0�

i
a;

�½�0;���E
a
i ¼ 2 �k �p�0�

a
i þ �pð�a

i��� @a@i�Þ;
�½�0;���’ ¼ ��

�p
�0;

�½�0;���� ¼ ����� �p2V 0ð �’Þ�0

(45)

for the basic gravity and matter perturbations. Note that the
background lapse function has again been set to �N ¼ ffiffiffiffi

�p
p

for gauge transformations of a metric in conformal time. It
is also easy to see that when acting upon the background
quantities �k, �p, �’, and �� these gauge transformations will
generate only second-order contributions. Hence, in the
equations of motion the background phase-space variables
can be treated as gauge invariant up to the desired order.

The perturbative treatment introduces a subtlety in the
interpretation of transformations: In the unperturbed case,
the gauge transformation of a phase space function
XðK;E;’; �Þ generated by the diffeomorphism constraint
acts as a Lie derivative

fX;D½�a�g ¼ L ~�X (46)

along the vector field �a. At the same time, the diffeo-
morphism transformation of the perturbations is given by
the � part of (45), i.e. f�X;D½�a�g ¼ �½0;���X, whereas the

barred quantities remain intact at the linear level
f �X;D½�a�g ¼ Oð2Þ. For a scalar field, these Poisson brack-
ets can directly be identified as Lie derivatives of back-
ground quantities and perturbations

L ~� �’ ¼ �a@a �’ ¼ 0; L ~��’ ¼ �a@a�’ ¼ Oð2Þ:
However, if one computes the Lie derivatives of perturba-
tive terms of a tensorial object, or even of a scalar of
nonzero density weight, one can notice that they do not
coincide with the � part of (45). For instance,

L ~� �� ¼ �a@a ��þ ��@a�
a ¼ ��@a�

a

L ~�
�� ¼ �a@a��þ ��@a�

a ¼ Oð2Þ;
while

�½0;�� �� ¼ 0; �½0;���� ¼ ���� ¼ ��@a�
a

for �a ¼ @a�. Similar discrepancies occur for the triad and
extrinsic curvature.
Nevertheless, gauge transformations are related to the

Lie derivative. As shown in Appendix A of [2], up to a
higher perturbative order we have

f �X;D½�a�g ¼ ½L ~�
X�ð0Þ; f�X;Dð2Þ½�a�g ¼ ½L ~�

X�ð1Þ
(47)

for the background and perturbed parts of X, respectively.
(As explained in more detail in [2], the second Poisson
bracket takes into account the fact that perturbations �X do
not contain zero modes.) These two equations above are
consistent with the Lie derivative of the full variable X

f �X þ �X;D½�a�g ¼ L ~�ð �X þ �XÞ:
Individual terms in this expansion, when computed ei-

ther via (46) or via (40), do not agree in general because

ðL ~�XÞð0Þ may not equal L ~�ðXð0ÞÞ ¼ L ~�
�X: While the

�-gauge transformation of an unperturbed variable is
equivalent to taking a Lie derivative, the perturbation
procedure breaks this equivalence. For instance, the Lie
derivative of a background quantity (being linear) contrib-
utes to the gauge transformation of its perturbation, not of
the background quantity itself. At the same time, the Lie
derivative of a linear perturbation (being at least a qua-
dratic quantity and hence neglected here) contributes to the
backreaction on the background. Their zero- and first-order
parts of the Lie derivative do contribute to the diffeomor-
phism transformation, with combined contribution equal to
the diffeomorphism transformation of the full variable,
although in a rather mixed way. When combined to �X þ
�X, conventional transformations are obtained.

2. Transformation of the lapse function and shift vector

In the covariant formulation, the lapse function and shift
vector are merely components of the space-time metric,
and hence subject to coordinate (gauge) transformations in
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the same way as any other metric component. In the
Hamiltonian framework, on the other hand, lapse and shift
act as Lagrange multipliers and are not phase-space vari-
ables. Therefore, unlike e.g. triad components, their gauge
transformations cannot be directly obtained as Poisson
brackets (40) (which would always give zero) with the
gauge-generating constraints. Nevertheless, there exists
an indirect procedure [42].

A coordinate change causes a change in the space-time
foliation by spatial slices, and thus the induced Ea

i and Ki
a

change according to their gauge transformations. Since the
slicing is determined by lapse and shift they, too, must
change. Lapse and shift not only determine the slicing but
also, as in (27) and (29), equations of motion, which triad
and extrinsic curvature have to satisfy as one moves from
one slice to the next. Consistency of equations of motion
for the gauge-transformed canonical variables thus re-
quires certain transformations of the lapse and shift:
They have to change such that they generate the correct
equations of motion for the transformed Ea

i and Ki
a, on

which a canonical gauge transformation has been applied.
In this way, gauge transformations for N and Na result
unambiguously, even though these are not phase-space
variables.

Hamilton’s equations such as (27) have a time derivative
of a phase-space variable on their left-hand side, while the
right-hand side depends on phase-space variables and the
Lagrange multipliers. Thus, performing a gauge transfor-
mation on both sides of the equations one can obtain the
transformations of �N and �Na. The nontrivial part of this
recipe is the gauge transformation of the left-hand side, as a
time derivative of a phase space variable is not itself a
phase-space variable, and hence its Poisson bracket with
constraints is not defined. Furthermore, a gauge transfor-
mation does not, in general, commute with taking time
derivatives, that is the gauge transformation of a time
derivative is not merely given by the time derivative of
the gauge transformation.

Nevertheless, the gauge transformation of a time deriva-
tive can be computed with the help of

Lemma 1: For an arbitrary linear phase-space function
�X, the commutator between its gauge transformation and
its time derivative is given (up to second-order terms) by a
single gauge transformation

�½�0;��ð� _XÞ � ð�½�0;���XÞ� ¼ �½0;�0��X: (48)

Proof: Using the definition of the gauge transformation
(40) and time derivative (27) via the Poisson bracket, by
virtue of the Jacobi identity we obtain

�½�0;��ð� _XÞ � ð�½�0;���XÞ�
¼ ff�X;H½N� þD½Na�g; H½ �N�0� þD½@a��g

� ff�X;H½ �N�0� þD½@a��g; H½N� þD½Na�gg
¼ f�X; fH½N� þD½Na�; H½ �N�0� þD½@a��gg: (49)

The inner Poisson bracket can be computed using the
constraint algebra. In perturbative form, we have [2]

fH½N� þD½Na�; H½ �N�0� þD½@a��g

¼ D

�
1

�p
ðN@að �N�0Þ � �N�0@

aNÞ
�
�H½@a�@aN�

þH½Na@að �N�0Þ� þD½@c�@cNa � Nc@c@
a��: (50)

Most of these constraint terms are at least of second order,
and constraints whose Lagrange multiplier is quadratic will
not affect the (leading) linear part of the gauge transforma-
tion of �X. Therefore, the only relevant contribution comes

from the first part of the first term, D½ �N�p @að �N�0Þ�, which is

equivalent to a single diffeomorphism transformation with
the (linear part of the) shift vector given by

�N

�p
@að �N�0Þ ¼ @a�0 þOð2Þ:

The commutator then reads as

�½�0;��ð� _XÞ � ð�½�0;���XÞ� ¼ f�X;D½@a�0�g � �½0;�0��X:

which is (48).
The last equation implies that diffeomorphism invariant

canonical variables do have commuting time derivative
and gauge transformation. Moreover, the leading diffeo-
morphism term originates from the Poisson bracket of the
two Hamiltonian constraints on the left-hand side of (50).
Therefore, taking a time derivative commutes (up to qua-
dratic terms) with a diffeomorphism transformation. This
can also be seen from the absence of � on the right-hand
side of (48). In other words, gauge transformations that do
not involve the Hamiltonian constraint (i.e. such that �0 ¼
0) commute with taking time derivatives.
For later convenience we write out gauge-transformed

time derivatives for a number of phase space variables:

�½�0;��ð _c Þ ¼ ð�½�0;��c Þ�
�½�0;��ð _EÞ ¼ ð�½�0;��EÞ� þ �0

�½�0;��ð� _’Þ ¼ ð�½�0;���’Þ�
�½�0;��ð� _�Þ ¼ ð�½�0;����Þ� þ ���0;

(51)

where the gauge transformations of the triad components,
following from (45) by comparison with (9), are given by

�½�0;��c ¼ �H�0; �½�0;��E ¼ �: (52)

We now have all the ingredients to obtain the transforma-
tions of lapse and shift perturbations, which (for the scalar
mode and in conformal time) are expressed as in (10).
Writing the perturbation of extrinsic curvature using the
equation of motion

� _Ea
i � f�Ea

i ; H
ð2Þ½�N� þDð2Þ½�Na�g

for the perturbed triad and the expression H ¼ _a=a ¼
_�p=2 �p for the Hubble parameter, we obtain
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�Ki
a ¼ ��i

a½ _c þH ðc þ�Þ� þ @a@
i½HE� ðB� _EÞ�:

(53)

Performing a gauge transformation of the left-hand side
according to (45) and comparing to the gauge transforma-
tion of the right-hand side using (51) and (52) yields the
desired transformation of the Lagrange multipliers.
Specifically, the diagonal part provides the transformed
lapse perturbation

�½�0;��� ¼ _�0 þH�0; (54)

whereas the off-diagonal part implies

�½�0;��ðB� _EÞ ¼ ��0: (55)

Thus, the transformations of lapse and shift are indeed
determined by gauge transformations of the phase-space
variables through the dynamical equations of motion.

Gauge-invariant combinations are then obtained from
the gauge transformations, which reproduces the Bardeen
variables (37). Note that, as follows from (55), the quantity
B� _E is diffeomorphism invariant. According to
Lemma 1, the gauge transformation of its time derivative
is then given simply by the time derivative of its gauge
transformation. Consequently, the last term in the �-Eq.
(37) gauge transforms as

�½�0;��fðB� _EÞ�g ¼ f�½�0;��ðB� _EÞg� ¼ � _�0;

which along with the second term of � compensates the
gauge dependence of �.

We have determined gauge transformations of lapse and
shift by making sure that the form of equations of motion
for Ea

i and K
i
a is invariant. Here, we used the basic fact that

changing the lapse function and shift vector leads to a
different space-time metric decomposition and hence a
different form of the triad and extrinsic curvature as well
as their evolution. A different slicing of space-time also
affects the matter variables, e.g. the definition of the field
momentum. Gauge transformations of the matter variables
will induce transformations of N and Na through
Hamilton’s equations for ’ and � as they did for gravita-
tional phase space variables. We must therefore ensure that
the transformations of the lapse and shift generated in this
way be consistent with those obtained in (54) and (55).
Taking the gauge transformation of the left-hand side of the
equation of motion

� _’ � f�’;Hð2Þ½N� þDð2Þ½Na�g

¼ �N

�p3=2

�
��� ��

ð�Ea
i �

i
aÞ

2 �p

�
þ �N

�p3=2
�

¼ ��

�p
þ ��

�p
ð3c ��Eþ�Þ (56)

according to (45) and (51), and comparing it with the
transformation of the right-hand side, yields the transfor-

mation of the lapse perturbation, �½�0;��� ¼ _�0 þH�0,

which agrees with Eq. (54). Repeating the procedure for
the momentum equation

� _� � f��;Hð2Þ½N� þDð2Þ½Na�g

¼ �N

� ffiffiffiffi
�p

p
��’� �p3=2

�
V;’’�’þ V;’

ð�Ea
i �

i
aÞ

2 �p

��

¼ �p��’� �p2ðV;’’�’� V;’ð3c � �Eþ�ÞÞ
þ ���B; (57)

results in �½�0;��B ¼ _�. The latter along with (51) and (52),

implying

�½�0;�� _E ¼ ð�½�0;��EÞ� þ �0 ¼ _�þ �0;

reproduces the correct gauge transformation (55). Thus, a
fixed transformation of lapse and shift provides the correct
gauge transformation of both gravity and matter phase-
space variables. This is a further consistency property
ensured by the first class nature of constraints.
For matter fields, the gauge-invariant density and scalar

field perturbations are

��GI ¼ ��þ _��’ðB� _EÞ; �’GI ¼ �’þ _�’ðB� _EÞ:
(58)

It is convenient for cosmological applications to intro-
duce the gauge-invariant quantities

R ¼ �þH
�
�’GI

_�’

�
¼ c þH

�
�’
_�’

�
; (59)

�  ¼ �þH
�
��GI

_��’

�
¼ c þH

��
_��’

; (60)

and

R 2 ¼ ��H
�
�’GI

_�’

�
�

�
�’GI

_�’

��

¼ ��H
�
�’
_�’

�
�

�
�’
_�’

��
: (61)

The following points are worth noting regarding the above
three gauge-invariant quantities: (i) R provides informa-
tion about the nature of the long wavelength perturbations,
i.e. when the perturbations have left the Hubble radius.

More precisely, _R vanishes in the long wavelength limit if
the perturbations are adiabatic [44,45]. (ii)  refers to the
three-curvature perturbations on uniform density hyper-
surfaces. As R,  is also conserved in the large scales
and quantifies the large angular scale temperature anisot-
ropies in the cosmic microwave background. In the slow-
roll limit, the two gauge-invariant quantities are identical,
and either of them can be used to quantify the primordial
perturbations. (iii) Unlike  and R, the Bardeen potential
� evolves in time from Hubble exit until the re-entry
during matter/radiation era. More precisely, during infla-
tion, at the super-Hubble scales,
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� ’ �sr ) � ’ �srjAj; (62)

where �sr is the slow-roll parameter, which is much less
than unity and jAj is the value of  at the super-Hubble
scales. However, at horizon re-entry, ��  . (iv) R (and
also ) is linearly related to the Mukhanov-Sasaki variable
Q, which is useful for studying the quantization of pertur-
bations. (v) Unlike R and  , R2 is not often used in the
study of cosmological perturbations. (vi) In the quantum-
corrected version of the perturbation equations, all the
above quantities acquire nontrivial quantum corrections,
which we will discuss in the rest of the paper. This also
affects the conservation of power at large scales.

For the classical gauge transformations we thus produce
the well-known gauge-invariant quantities (37), but we
have now done so in a way that is entirely canonical.
These methods therefore generalize directly to the case
of equations and gauge transformations, which are cor-
rected by effects from quantum gravity even in quantum
regimes where no underlying smooth space-time picture
exists.

B. Inclusion of quantum corrections

With quantum gravity effects, both the equations of
motion and gauge transformations are governed by the
quantum-corrected Hamiltonian constraint HQ in (14),
including all the counterterms and the diffeomorphism
constraint (44), which remains unaffected. Recall also
that the terms�0p, �0p as well as the counterterm functions
are leading order quantum effects (not to be confused with
perturbative order). From now on we neglect all higher
order quantum corrections, such as ð�0Þ2p2, f2, �0pf, etc.
Moreover, also in the background Eqs. (31)–(33) the
quantum-corrected terms must be used for consistency.

Gauge transformations are generated by the quantum-
corrected constraints with the lapse function and shift
vector parameterized by the infinitesimal vector field �
 ¼
ð�0; @

a�Þ as

�N ¼ �N�0; �Na ¼ @a�: (63)

The gauge transformation of the triad perturbation taking
into account the counterterms can be computed using the
Poisson bracket

�½�0;��E
a
i � f�Ea

i ; H
Qð2Þ½ �N�0� þDð2Þ½@a��g

¼ 2 �� �k �p�0ð1þ fÞ�a
i þ �pð�a

i��� @a@i�Þ
(64)

from which the transformations for c and E follow

�½�0;��c ¼ �H�0ð1þ fÞ; �½�0;��E ¼ �: (65)

The gauge-transformed extrinsic curvature yields

�½�0;��ð�Ki
aÞ ¼ @i@aðH�þ ��2�0Þ �

�
1

2
H 2�0ð1þ gÞ

� 4�G�0 ��

�
�pVð �’Þ � _�’2

2 ��
ð1þ f2Þ

��
�i
a:

(66)

We compare this equation with the gauge transformation of
(28), eliminating the potential term using the background
Raychaudhuri Eq. (32). By virtue of the anomaly freedom
condition (22) along with [2]

f2 ¼ 2f1; (67)

the off-diagonal part results in

�½�0;��ðB� _EÞ ¼ � ��2�0; (68)

whereas the diagonal part yields

�½�0;��� ¼ _�0 þH�0

�
1þ 2f0 �pþ ��0 �p

��

�
: (69)

Remarkably, the anomaly cancellation condition (20) im-
plies that the last two terms inside the parenthesis mutually
cancel, hence quantum-corrected transformation of the
lapse perturbation is equivalent to the classical one (54).
Finally, the matter perturbation transforms as

�½�0;���’ ¼ _�’ð1þ f1Þ�0: (70)

The four metric perturbations can be combined into two
gauge-invariant quantum-corrected potentials

� ¼ c �H ð1þ fÞB� _E

��2

� ¼ �þ
�
B� _E

��2

�� þH
B� _E

��2
:

(71)

Similarly, the gauge-invariant matter variables are

�’GI ¼ �’þ _�’ð1þ f1ÞB� _E

��2
: (72)

Note that when omitting the quantum corrections in Eqs.
(71) and (72) one recovers the classical results (37). From
the corrected gauge-invariant expressions, one can directly
see that the combination

R ¼ c þH
_�’

1þ f

1þ f1
�’ ¼ �þH

_�’

1þ f

1þ f1
�’GI;

(73)

which does not refer to the nontrace perturbations E and B,
is gauge invariant. Also, the explicit �� dependence drops
out, showing that this particular perturbation is quantum
corrected only because we were required to include coun-
terterms f and f1 in addition to the primary correction
function ��. Similarly the other curvature perturbation is
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R 2 ¼ ��H
�’
_�’

1

1þ f1
�

�
�’

_�’ð1þ f1Þ
��

¼ ��H
�’GI

_�’

1

1þ f1
�

�
�’GI

_�’ð1þ f1Þ
��
; (74)

which does not refer to ��, either. (A generalization of the
perturbation  to quantum-corrected equations requires a
general derivation of ��GI, which will be done elsewhere.)

IV. GAUGE-INVARIANT EQUATIONS OF MOTION

We can now formulate the perturbed equations of mo-
tion purely in terms of the gauge-invariant variables de-
rived in the previous section. The following auxiliary
relations will be useful:

�Ea
i ¼ �2 �p��a

i � 2H �pð1þ fÞB� _E

��2
�a
i

þ �pð�a
i�� @a@iÞE

���Ki
a ¼ ��i

að _�þH ð�þ�ð1þ fÞÞÞ

� �i
a

B� _E

��2

�
_H ð1þ fÞ �H 2 ��0 �p

��

�

þ @a@
iðHE� ðB� _EÞÞ; (75)

where the first line of each equation contains only gauge-
invariant terms.

A. Diffeomorphism constraint equation

Varying the diffeomorphism constraint (4) with respect
to the shift perturbation yields the diffeomorphism con-
straint equation (the space-time component of Einstein’s
equation):

0 ¼ 8�G�
�D½Nc�
�ð�NcÞ

¼ �pð@cð ���Ki
a�

a
i Þ � @kð ���Kk

cÞÞ � �� �k @d�E
d
k�

k
c

þ 8�G �� ��@c�’: (76)

Using the gauge-invariant variables defined in (71) and
(72), it can be rewritten as

@c

�
_�þH ð1þfÞ��4�G

��

��
_’�’GI

�
þðguage termsÞ¼0;

(77)

where the ‘‘gauge terms’’ are

2
B� _E

��
@c

�
� _H ð1þ fÞ þH 2

�
1þ fþ ��0 �p

��

�

� 4�G
��

��
_’2ð1þ f1Þ

�
: (78)

After eliminating the _H term using the background
Raychaudhuri Eq. (32) the expression inside the square
brackets of (78) becomes

4�G
��

��
_�’2

�
f� f1 � ��0 �p

3 ��

�
;

which is equal to zero by virtue of the anomaly freedom
condition (22). Thus, all gauge dependent terms vanish and
the diffeomorphism constraint equation takes the form

@cð _�þH ð1þ fÞ�Þ ¼ 4�G
��

��
_’@c�’

GI: (79)

Note that classically the right-hand side is nothing but the
gauge-invariant space-time component of the perturbed
matter stress-energy tensor �4�Ga2�TT

S .

B. Hamiltonian constraint equation

As seen explicitly for the diffeomorphism constraint, for
constraints which are part of a closed system, i.e. which
result from an anomaly free quantization, gauge invariance
of the equations of motion is guaranteed and showing that
the gauge dependent terms of a given equation do vanish is
in general a rather tedious, although straightforward, ex-
ercise. (Although here we use this statement only at the
perturbative level, it holds true in general. Without pertur-
bations, however, it is more complicated to derive a con-
sistent deformation of the classical system.) We leave out
such explicit demonstrations in this and the following
sections.
The Hamiltonian constraint equation is obtained by

variation with respect to the lapse perturbation

�HQ½N�
�ð�NÞ ¼ 1

16�G

�
�4 �� �k

ffiffiffiffi
�p

p ð1þ fÞ�Ki
a�

a
i

� �� �k2ffiffiffiffi
�p

p ð1þ gÞ�Ea
i �

i
a þ 2 ��ffiffiffiffi

�p
p @a@

i�Ei
a

�

þ �� ����

�p3=2
ð1þ f1Þ

�
�
�� ��2

2 �p3=2
ð1þ f2Þ � �p3=2Vð’Þ

�
�Ea

i �
i
a

2 �p

þ �p3=2V;’ð �’Þð1þ f3Þ�’ ¼ 0; (80)

where

f3 ¼ 3

2 �p3=2

Z
d �p �p1=2f (81)

can be obtained from (B8).
Multiplying both sides by ��=

ffiffiffiffi
�p

p
again allows one to

replace the background extrinsic curvature with the Hubble
rate. Then eliminating the field momentum and its pertur-
bation using (30) and the auxiliary expressions (75) along
with the anomaly freedom conditions of [2] to reduce the
number of counterterm functions, one arrives at the gauge-
invariant Hamilton constraint equation (or perturbed
Friedmann equation)
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�ð ��2�Þ � 3H ð1þ fÞ½ _�þH�ð1þ fÞ�
¼ 4�G

��

��
ð1þ f3Þ½ _�’� _’GI � _�’2ð1þ f1Þ�

þ �� �pV;’ð �’Þ�’GI�: (82)

Again, the right-hand side is nothing but the time-time
component of the perturbed stress-energy tensor, which
now includes quantum corrections.

C. Hamilton’s equations

As mentioned before, each pair of Hamilton’s equations
for configuration variables and momenta can be combined
into a single second-order equation. We illustrate the pro-
cedure starting with the matter field. The time derivative of
the momentum perturbation can be first computed using
the Poisson bracket

� _� ¼ f��;H½N� þD½Na�g
¼ ��@a�N

a � �N �p3=2V;’ð �’Þð1þ f3Þ
þ �N

� ffiffiffiffi
�p

p
�	ð1þ g5Þ��’� �p3=2V;’’ð �’Þð1þ g6Þ�’

� �p3=2V;’ð �’Þ�E
a
i �

i
a

2 �p

�
; (83)

and then compared to the time derivative of the right-hand
side of Eq. (30), which will include second time derivatives
of the scalar field. With the help of the background equa-
tions and anomaly cancellations conditions, the Klein-
Gordon equation can be cast in the gauge-invariant form

� €’GI þ 2H� _’GI

�
1� ��0 �p

��
� g01 �p

�
� �� �	ð1� f3Þ��’GI

þ �� �pV;’’ ð �’Þ�’GI þ 2 �� �pV;’ ð �’Þð1þ f1Þ�
� _�’½ð1þ f1Þ _�þ 3ð1þ g1Þ _�� � 2H _�’ðf03 �pÞ� ¼ 0:

(84)

Similarly, one arrives at the spatial components of
Einstein’s equation. Taking the time derivative of Eq.
(28) and noting that

ð ���Ki
aÞ� � ��� _Ki

a þ �Ki
a
_�� ¼ �� _Ki

a þ 2H ���Ki
a

�
��0 �p
��

�
;

one can substitute the time derivative of the extrinsic
curvature perturbation using the Poisson bracket

� _Ki
a ¼ f�Ki

a; H½N� þD½Nb�g:
The resulting expression will contain second-order correc-

tion functions �ð2Þ and �ð2Þ related to the background ones,
�� and ��, by the conditions (23) for anomaly freedom.
Taking the trace of each equation and substituting it back

into the left-hand side, one obtains

@�ð2Þ

@ð�Ea
i Þ

¼ ��0�Ec
j

6 �p
ð�j

c�i
a � 2�i

c�
j
aÞ

@�ð2Þ

@ð�Ea
i Þ

¼ ��0�Ec
j

6 �p
ð�j

c�i
a � 2�i

c�
j
aÞ;

(85)

whose gauge-invariant parts read

�
@�ð2Þ

@ð�Ea
i Þ
�
GI ¼ � ��0

3
��i

a;

�
@�ð2Þ

@ð�Ea
i Þ
�
GI ¼ � ��0

3
��i

a:

(86)

The combined second-order equation naturally decouples
into two independent equations by taking diagonal and off-
diagonal terms. After a tedious but rather straightforward
computation, taking into account the background equations
of motion together with the anomaly freedom conditions,
the former equation takes the form

€�þH
�
2 _�

�
1� ��0 �p

��

�
þ _�ð1þ fÞ

�

þ
�

_H þ 2H 2

�
1þ f0 �p� ��0 �p

��

��
�ð1þ fÞ

¼ 4�G
��

��
½ _’� _’GI � �p ��V;’ð �’Þ�’GI�: (87)

In the absence of anisotropic stress in the matter sector,
which is the case for the scalar field, the gauge-invariant
part of the off-diagonal equation reads as

@a@
ið ��2ð���ð1þ hÞÞ ¼ 0; (88)

which implies � ¼ �ð1þ hÞ, replacing the classical rela-
tion � ¼ � [46]. Here, h is a counterterm correction,
which has to satisfy

h ¼ �fþ 2
��0 �p
��

: (89)

V. QUALITATIVE PROPERTIES OF THE SCALAR
PERTURBATIONS

In this section, we discuss salient properties of the scalar
perturbations including inverse triad corrections from loop
quantum gravity. For now, we do not compute the power
spectrum since this would involve reducing the perturba-
tion Eqs. (79), (82), (84), and (87) into a single differential
equation in terms of the Mukhanov-Sasaki variable.
Instead, we will focus on aspects of the classical matter
perturbations in an effective quantum space-time. In par-
ticular, we show that (i) the speed of scalar perturbations is
less than unity and can in fact be much smaller, and (ii) the
scalar perturbations are not purely adiabatic and have a
small entropic contribution arising from the quantum
correction.
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A. Speed of perturbations

Using the relation � ¼ ð1þ hÞ� [47], the perturbation
Eqs. (79), (82), and (87) lead to

_�þH ð1þ fÞð1þ hÞ� ¼ 4�G
��

��
_’�’GI; (90)

��2ð1þ hÞ��� 3H ð1þ fÞ½ _�þH ð1þ fÞð1þ hÞ��
¼ 4�G

��

��
ð1þ f3Þ½ _�’� _’GI � _�’2ð1þ f1Þ�

þ �� �pV;’ð �’Þ�’GI�; (91)

€�þH
�
2

�
1� ��0 �p

��

�
_�þ ð1þ fÞð1þ hÞ _�

�

þ
�

_H þ 2H 2

�
1þ f0 �p� ��0 �p

��

�
þH

_h

ð1þ hÞ
�

� ð1þ fÞð1þ hÞ�
¼ 4�G

��

��
½ _’� _’GI � �p ��V;’ð �’Þ�’GI�; (92)

respectively. Dividing (91) by 1þ f3 and subtracting the
result from Eq. (92) leads to

€�� ��2 1þ h

1þ f3
��þH

�
2

�
1� ��0 �p

��

�
þ ð1þ fÞð1þ hÞ þ 3

1þ f

1þ f3

�
_�þ

��
H

_h

1þ h
þ _H þ 2H 2

�
1þ f0 �p� ��0 �p

��

��

� ð1þ fÞð1þ hÞ þH 2ð1þ hÞ
�
3
ð1þ fÞ2
1þ f3

� 1þ ��0 �p= ��
1� ��0 �p=ð3 ��Þ ð1þ f1Þ

�
þ _H

ð1þ f1Þð1þ hÞ
1� ��0 �p=ð3 ��Þ

�
�

¼ �8�G �� �pV; �’�’
GI: (93)

Replacing V; �’ and �’ using the Klein-Gordon Eq. (33) and the diffeomorphism constraint (90), we obtain a second-order
partial differential equation for �

€�� c2s��þ
�
2H

�
1þ 3

2

f� f3
1þ f3

þ 2
��0

��
�pþ ��0

��
�pf

�
� 2

€�’
_�’

�
_�þ

�
H

� _h

1þ h
� 2

€�’
_�’

�
ð1þ fÞ

þ _H
�

1þ f1
½1� ��0 �p=ð3 ��Þ� þ ð1þ fÞ

�
þH 2

�
3
ð1þ fÞ2
1þ f3

þ 2

�
1þ f0 �p� ��0 �p

��

�
ð1þ fÞ

� ð1þ ��0 �p= ��Þ
ð1� ��0 �p=ð3 ��ÞÞ ð1þ f1Þ � 4

�
1� ��0

��
�p

�
ð1þ fÞ

��
ð1þ hÞ� ¼ 0; (94)

where the second term shows the speed of perturbations

c2s ¼ ��2 1þ h

1þ f3
: (95)

Equations (94) and (95) constitute one of the main results
of this paper, which has the following implications:

(i) In the perturbative regime analyzed here, we have
��> 1 such that there is a danger of the speed of
sound becoming superluminal. However, as in the
context of gravitational waves in [20], one must
compare the propagation speed not with the classical
speed of light (which is one) but with the physical
speed of light of electromagnetic fields in the same
effective quantum space-time. Since the Maxwell
Hamiltonian is subject to quantum gravity correc-
tions, too, [7,48] the physical speed of light can
differ from the classical one. In fact, for an anomaly
free coupling of the Maxwell field to gravity it must
be larger than 1 by a factor which equals ��2 as shown
in [20]. The speed of perturbations derived here is
superluminal compared to the physical speed of light
only if the remaining factor ð1þ hÞ=ð1þ f3Þ in (95)
is larger than 1. Using Eqs. (81) and (89) it is easy to
show that, in the perturbative regime considered here

(where ��0 is negative), we have ð1þ hÞ=ð1þ f3Þ �
1þ h� f3 < 1 for a large range of parameters.
Thus, in the perturbative regime, the speed of scalar
perturbations is indeed less than unity. Again, one
can see the importance of consistency conditions for
the counterterms. (Although such a scenario arises in
the case of noncanonical scalar field inflationary
models [49], classically it is not possible for canoni-
cal scalar field inflation. Holonomy corrections,
which have been used in [14] without ensuring con-
sistency and anomaly freedom, have been claimed to
lead to a speed of sound much larger than unity and
even divergent in some phases. This may indicate the
inconsistency of the perturbation equations used
there.)

(ii) From the corrected diffeomorphism constraint Eq.
(90) one learns that in the absence of matter fields,
the metric perturbation decays more slowly com-
pared to the classical case. Assuming that �� is a
slowly varying function, the metric perturbations
decay as

� / 1

að1þfÞð1þhÞ : (96)
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According to (89), fþ h ¼ 2 ��0p= ��< 0 (and fh is
subdominant compared to fþ h in the regime con-
sidered here). Hence, the decay should happen more
slowly, implying that the inverse triad corrections
enhance metric perturbations.

(iii) In the long wavelength limit, the second term in Eq.
(94) can be neglected and the perturbations can be
treated to be independent of the wave-number jkj.
Assuming that �� is a slowly varying function, the
Bardeen potential is given by

� / �sra
ð3=3�2n�Þ�ð1=2Þ; (97)

where the constant of proportionality is determined
by the choice of quantum state defined at the initial
epoch of inflation [44]. Comparing this expression
with the corresponding classical Eq. (62) suggests
that the primordial perturbations have a different
behavior compared to their classical counterpart.
For 0< n� < 3=2, the quantum perturbations en-
hance the primordial perturbations compared to the
classical one. For n� > 3=2, the perturbations decay
and will lead to tiny primordial perturbations. This
suggests that quantifying the primordial perturba-
tions can, in principle, constrain the value of n� >
3=2. We will discuss the implications of this in a
future publication.

(iv) Note that in arriving at the above perturbation equa-
tion, we have not used the perturbed Klein-Gordon
Eq. (84). To obtain the primordial power spectrum,
we would need to consider the combined evolution
of the scalar and the metric perturbations �’GI and
�.

B. Isocurvature perturbations

For canonical scalar fields in the classical theory, R is
conserved on large scales implying that the perturbations
are adiabatic. It can be shown [44] that

_R class ¼ H
4�G _�’2

��!k!0
0: (98)

Thus, on these scales R is conserved. However, quantum
effects modify this and lead to small entropic perturba-
tions. Taking a time derivative of Eq. (59) and using the
diffeomorphism constraint (90) leads to

_R ¼ _�þ 1þ f

1þ f1

��

��

�
€�þ

�
H ð1þ fÞð1þ hÞ

þ
_H

H
� 2

€�’
_�’

�
_�þ 2ð1þ fÞð1þ hÞ

�
_H �H

€�’
_�’

�
�

þH ðð1þ fÞð1þ hÞÞ��
�

H
4�G _�’2

þ
� ð1þ fÞ ��
ð1þ f1Þ ��

��

� ð _�þH ð1þ fÞð1þ hÞ�Þ H
4�G _�’2

: (99)

Equations (33) and (94) in the long wavelength limit imply

_R ’ 1þ f

1þ f1

��

��

��
3 ��0 �p
��

� 4 ��0 �p
��

� 3
f� f3
1þ f3

�
_�

� _hð1þ fÞ�
�

H 2

4�G _�’2
(100)

from which we infer that R is not conserved on large
scales. Thus, perturbations generated during a single scalar
field epoch are no longer purely adiabatic—perturbations
contain a small entropic contribution. Although such an
effect has been seen earlier in a class of Lorentz violating
models [50], our example here is the first to show that the
primordial perturbations from inflation are not purely adia-
batic and always contain a small entropic perturbation.
(Note that anomaly freedom of our equations [2] ensures
that there are no violations of Lorentz symmetry, although
the specific form of symmetries can be quantum corrected.)

VI. DISCUSSION

Effective constraints lead to quantum corrections in
equations of motion as well as in gauge transformations.
Applied to general relativity, it is not only the dynamics but
also the underlying space-time structure and the notion of
covariance that are affected by quantum corrections. In [2]
it was shown that the full constraint algebra, i.e. the set of
structure functions, of canonical quantum gravity changes
when quantum corrections of a loop quantization are in-
cluded. While no gauge freedom is destroyed in the anom-
aly free quantization used, the algebra is not the classical
hypersurface deformation algebra as originally derived by
Dirac for classical general relativity. The quantum-
corrected equations used are generally covariant, but the
symmetry type of the underlying covariance is quantum
corrected. A determination of the full gauge algebra of
quantum gravity would require going beyond the leading
perturbative order, which is not available so far. But the
results of [2] show that quantum corrections in the algebra
must arise. In particular, this implies that terms in an
effective action of canonical quantum gravity cannot be
simply of higher curvature form. There must be additional
effects such as nonlocal terms or noncommutative mani-
fold structures.
In [2] as well as in this paper only the inverse triad type

of quantum corrections due to the effects of [6,7] is con-
sidered. There are additional quantum corrections, one due
to the use of holonomies and a generic one due to quantum
backreaction of fluctuations, correlations, and higher mo-
ments of a quantum state [51]. For these corrections no
anomaly free version for perturbative inhomogeneities has
been found yet, which indicates that there are severe con-
sistency restrictions especially for holonomy corrections.
(Quantum backreaction is generic, such that the existence
of consistent deformations is guaranteed by the work on
effective gravity, e.g. in [52,53].) Despite this incomplete
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status of quantum gravity corrections, the different struc-
tures of the three types of corrections shows that it is not
possible to cancel corrections from one type, such as the
inverse triad corrections used here, by corrections of the
other types. Thus, corrections of the form discussed here
must be present in any cosmological perturbation theory
based on loop quantum gravity.

Given the anomaly freedom of the constraints, it is
possible to construct gauge-invariant variables and recast
the equations of motion in an entirely gauge-invariant
manner. Here, this analysis was done for the perturbative
constraints of [2], incorporating inverse triad corrections of
loop quantum gravity in a way which, to leading orders, is
anomaly free. The final Eqs. (79), (82), (84), (87), and (88)

@cð _�þH ð1þ fÞ�Þ ¼ 4�G
��

��
_’@c�’

GI; (101)

�ð ��2�Þ � 3H ð1þ fÞ½ _�þH�ð1þ fÞ�
¼ 4�G

��

��
ð1þ f3Þ½ _�’� _’GI � _�’2ð1þ f1Þ�

þ �� �pV;’ð �’Þ�’GI�; (102)

€�þH
�
2 _�

�
1� ��0 �p

��

�
þ _�ð1þ fÞ

�

þ ½ _H þ 2H 2

�
1þ f0 �p� ��0 �p

��

��
�ð1þ fÞ

¼ 4�G
��

��
½ _’� _’GI � �p ��V;’ð �’Þ�’GI�; (103)

@a@
ið ��2ð���ð1þ hÞÞÞ ¼ 0; (104)

� €’GI þ 2H� _’GI

�
1� ��0 �p

��
� g01 �p

�
� ��2ð1� f3Þ��’GI

þ �� �pV;’’ ð �’Þ�’GI þ 2 �� �pV;’ ð �’Þð1þ f1Þ�
� _�’½ð1þ f1Þ _�þ 3ð1þ g1Þ _�� � 2H _�’ðf03 �pÞ� ¼ 0;

(105)

collected here from the last two sections are manifestly
gauge invariant and reproduce the classical perturbed
Einstein’s equation if one omits the quantum corrections.
Besides gauge invariance, there is also a consistency issue
that arises since, on general grounds, there are three un-
known scalar functions subject to five equations.
Moreover, Eqs. (101) and (104) can be used to eliminate
two of these functions in terms of just one, say �, which
should satisfy the three remaining equations.

Another perspective on closure of the equations of mo-
tion is given by considering that the Klein-Gordon Eq.
(105) is not independent. In the covariant formalism, it
results from the energy conservation equation for the mat-
ter field: r
T


� ¼ 0, the counterpart of the Bianchi iden-

tity of the gravitational sector. The latter equation is

automatically satisfied by construction of the Einstein
tensor. For this reason, the Klein-Gordon equation can be
expressed in terms of the other equations and their deriva-
tives. In the canonical formulation such an argument,
referring to the Bianchi identity, is not available, especially
at the effective level, for it is a priori not clear what kind of
action might correspond to the quantum-corrected con-
straints. Nonetheless, one can use the form of the Bianchi
identity as guidance to explicitly check the redundancy of
the Klein-Gordon equation. (This has not yet been done
explicitly; here an effective anisotropic stress term might
be required since Eq. (104) would be used.) In addition, the
Hamiltonian constraint equation is indeed a constraint,
which restricts initial data, rather than a dynamical equa-
tion as it does not contain second-order time derivatives. If
the constraint is also preserved dynamically it does not
break the consistency of the equations of motion.
In the canonical setting, this is realized if the constraints

are first class, which is the case in the situation at hand to
the orders considered. In fact, closure of the constraint
algebra guarantees both gauge invariance of the equations
of motion derived here and their consistency. In one of the
equations, specifically in the diffeomorphism constraint
Eq. (77), we have explicitly shown that all gauge-
dependent terms mutually cancel. Similar straightforward
but tedious calculations for the other equations can be
performed, but for brevity we did not present them here.
Given the closure of the constraint algebra, such an explicit
demonstration of vanishing of the gauge terms becomes
unnecessary, although it may still serve as an independent
consistency check.
In the light of this, one can arrive at the final gauge-

invariant equations of motion using the following shortcut.
After computing the time derivative for the corresponding
conjugate momentum using the Poisson bracket, it is pos-
sible to keep only the gauge-invariant parts of the variables,
dropping all the gauge terms (B, E and ð�’GI � �’Þ in our
case). Although setting B ¼ 0 ¼ E in the metric would
amount to the longitudinal gauge, this procedure is not
equivalent to fixing the longitudinal gauge prior to deriving
the equations of motion. By doing so, one would lose
variational equations by off-diagonal metric components
and thus control on the off-diagonal spatial Einstein equa-
tion.Without that equation, the relationship between� and
� would remain undetermined and one could only ‘‘bor-
row’’ the relation between � and � from the classical
picture. The latter has proven to be incorrect at the effec-
tive level, as can be seen from Eq. (88). Also effects of
counterterms, required for anomaly freedom, could not be
seen in a gauge-fixed analysis, which in general makes
such effective equations inconsistent. The same remarks
apply to other gauge choices, such as uniform gauge.
Terms that arise from a complete treatment of all gauge

properties, but which could not be seen in a gauge-fixed
analysis, do have physical implications. As an example, we
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can derive an evolution equation for curvature perturba-
tions by subtracting Eq. (82) divided by 1þ f3 from Eq.
(87) in such a way that matter perturbations are canceled
for a stiff fluid presented by the free scalar in the case
Vð’Þ ¼ 0

€���ð�2�Þ
1þ f3

þH
��

2

�
1��0p

�

�
þ 3

1þ f

1þ f3

�
_�

þ ð1þ fÞ _�
�
þ

�
_H
2� �0p

3�

1� �0p
3�

þH 2

�
2

�
1þ f0p��0p

�

�

þ 3
ð1þ fÞ2
1þ f3

� 1þ �0p
�

1� �0p
3�

��
�¼ 0: (106)

This equation is similar to (94), but more special because it
was derived assuming a stiff fluid. For long-wave length
modes one can ignore the Laplacian of � and arrive at an
ordinary differential equation in time for only� if we also
use the relation � ¼ �ð1þ hÞ. The classical equation
would then be solved by a decaying function �ð�Þ as
well as a constant mode because the scale factor for the

stiff fluid case satisfies the classical equation _H þ
2H 2 ¼ 0, which makes the coefficient of � in the evolu-
tion equation vanish. This conservation of power on large
scales [45] can be demonstrated for any perfect fluid by
eliminating stress-energy components from the gauge-
invariant equations. It can also be shown to be a direct
consequence of the classical conservation law.

With quantum corrections, however, the coefficient of�
does not cancel exactly and the constant mode disappears.
First, the background equation is now corrected to

_H ¼ �2H 2

�
1� 1

2

ð �� ��Þ0 �p
�� ��

�
; (107)

which follows from a combination of (31) and (32) in the
case of a vanishing potential. With this, and using our
perturbativity assumptions on the correction functions,
the coefficient of � in (106) is

H 2

�
2f0 �pþ 6f� 3f3 � ��0 �p

��
þ 5

3

��0 �p
��

�
; (108)

which does not have to vanish even if the anomaly can-
cellation conditions are used. This confirms the conclu-
sions of [8], which initially were based on a gauge-fixed
treatment in the longitudinal gauge. However, here the
signs of the correction terms are different (for instance,
f0 < 0, while f > 0) such that it depends on the regime
whether power is enhanced or suppressed.

The gauge-invariant equations of motion can now be
used to describe evolution of the curvature perturbations,
e.g. during cosmological inflation. The small quantum
corrections accumulated during a sufficiently long infla-
tionary phase may potentially lead to detectable imprints
on the surface of last scattering and be observed in the
cosmic microwave background.
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APPENDIX A: GAUGE-INVARIANT EQUATIONS
OF MOTION

In this appendix we present the determination of gauge-
invariant equations of motion, done in the main text in the
presence of quantum corrections, for the classical canoni-
cal theory. Resulting equations can be seen to agree with
[44].
As we have seen earlier, the background phase-space

variables as well as the background lapse and shift remain
unchanged under the infinitesimal gauge transformations
(up to the second order). Therefore, the equations of mo-
tion governing them are also gauge invariant. In the per-
turbed context, both the canonical fields and the Lagrange
multipliers gauge transform in a nontrivial way, and equa-
tions of motion should be formulated for the gauge-
invariant variables. Here, we systematically derive the
background and perturbed canonical equations of motion
of classical linearized gravity. We also discuss the equiva-
lence of the canonical system of equations and Einstein’s
equation.

1. Background equations

Since the background shift vector is zero, the back-
ground diffeomorphism constraint is identically satisfied.
Therefore, background equations are generated only by the
background Hamiltonian constraint

Hð0Þ½ �N� ¼ V0
�N

�
� 3

ffiffiffiffi
�p

p �k2

8�G
þ ��2

2 �p3=2
þ �p3=2Vð �’Þ

�
; (A1)

where �k and �p are the background (diagonal) components
of the extrinsic curvature and triad, respectively, �’ and ��
are the background matter field and its conjugate momen-
tum. (The parameter V0 ¼

R
d3x is again the coordinate

volume of space or of a compact region in which the
perturbations are introduced.) The background lapse �N ¼
a � ffiffiffiffi

�p
p

corresponds to the conformal time.
The Hamiltonian (A1) gives rise to the constraint equa-

tion

0 ¼ @Hð0Þ½ �N�
@ �N

¼ V0

�
� 3

ffiffiffiffi
�p

p �k2

8�G
þ ��2

2 �p3=2
þ �p3=2Vð �’Þ

�

(A2)
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and two pairs of Hamilton’s equations of motion

_�k ¼ f �k;Hð0Þ½ �N�g

¼ � �N �k2

2
ffiffiffiffi
�p

p þ 4�G �N

�
� ��2

�p5=2
þ ffiffiffiffi

�p
p

Vð �’Þ
�
; (A3)

_�p ¼ f �p;Hð0Þ½ �N�g ¼ 2 �N
ffiffiffiffi
�p

p
�k (A4)

for the gravitational variables and

_�’ ¼ f �’;Hð0Þ½ �N�g ¼ �N ��

�p3=2
; (A5)

_�� ¼ f ��;Hð0Þ½ �N�g ¼ � �N �p3=2V;’ð �’Þ (A6)

for the matter field. Note that the lapse �N ¼ ffiffiffiffi
�p

p
should be

fixed consistently after computing the Poisson brackets.
Then, as follows from Eq. (A4), the background extrinsic
curvature is nothing but the conformal Hubble parameter

�k ¼ _�p

2 �p
� _a

a
¼: H ; (A7)

whereas the field momentum is given by

�� ¼ �p _�’ : (A8)

Using the two relations above in (A2) yields the Friedmann
equation

H 2 ¼ 8�G

3

� _�’2

2
þ �pVð �’Þ

�
; (A9)

whose right-hand side is proportional to the background
matter energy density. The gravitational Eq. (A3) should be
recognized as the Raychaudhuri equation

_H ¼ H 2 � 4�G _�’2; (A10)

written in conformal time. Finally, combining the matter
Hamilton’s equations into a single second-order equation
results in the Klein-Gordon equation

€�’þ 2H _�’þ �pV;’ð �’Þ ¼ 0: (A11)

The unusual factor of 2 (instead of the standard one, 3) in
the second term is again due to the choice of conformal
time.

2. Perturbed equations

Perturbed equations of motion are generated by (the
second-order part of) both Hamiltonian and diffeomor-
phism constraints. Using the background and perturbed
lapse function, the gravitational Hamiltonian constraint
can be written as

Hð2Þ
grav½N� ¼ 1

16�G

Z
d3x½ �NH ð2Þ þ �NH ð1Þ�; (A12)

with the first- and second-order parts of the Hamiltonian

density given by (42) and

H ð2Þ ¼ ffiffiffiffi
�p

p
�Kj

c�Kk
d�

c
k�

d
j �

ffiffiffiffi
�p

p ð�Kj
c�c

jÞ2 �
2 �kffiffiffiffi
�p

p �Ec
j�K

j
c

�
�k2

2 �p3=2
�Ec

j�E
d
k�

k
c�

j
d þ

�k2

4 �p3=2
ð�Ec

j�
j
cÞ2

� �jk

2 �p3=2
ð@c�Ec

jÞð@d�Ed
kÞ; (A13)

respectively. The second-order part of the diffeomorphism
constraint reads as

Dð2Þ
grav½Na� ¼ 1

8�G

Z
�
d3x�Nc½ �p@cð�d

k�K
k
dÞ � �pð@k�Kk

cÞ
� �k�k

cð@d�Ed
kÞ�: (A14)

In the matter sector, we similarly have the Hamiltonian
constraint

Hð2Þ
matter½N� ¼

Z
�
d3x½ �NðH ð2Þ

� þH ð2Þ
r þH ð2Þ

’ Þ

þ �NðH ð1Þ
� þH ð1Þ

’ Þ�; (A15)

with the densities (43) and

H ð2Þ
� ¼ 1

2

��2

�p3=2
� ����

�p3=2

�j
c�Ec

j

2 �p
þ 1

2

��2

�p3=2

�ð�j
c�Ec

jÞ2
8 �p2

þ �k
c�

j
d�E

c
j�E

d
k

4 �p2

�
;

H ð2Þ
r ¼ 1

2

ffiffiffiffi
�p

p
�ab@a�’@b�’;

H ð2Þ
’ ¼ 1

2
�p3=2V;’’ð �’Þ�’2 þ �p3=2V;’ð �’Þ�’

�j
c�Ec

j

2 �p

þ �p3=2Vð �’Þ
�ð�j

c�Ec
jÞ2

8 �p2
� �k

c�
j
d�E

c
j�E

d
k

4 �p2

�
;

(A16)

along with the diffeomorphism constraint

Dð2Þ
matter½Na� ¼

Z
�
d3x�Nc ��@c�’: (A17)

In the expressions above, the triad perturbation has the
form (9), whereas the perturbations of lapse and shift are
given by (10).
Below we formulate the perturbed equations of motion

purely in terms of the gauge-invariant variables. The equa-
tions, as before, are of two types:
(i) Constraint equations, i.e. the Hamiltonian and

Diffeomorphism constraints and
(ii) Dynamical (Hamilton’s) equations.

The latter are those for the matter variables (one second-
order equation) and for the gravitational variables (two
independent second-order equations: diagonal and off-
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diagonal). The following auxiliary relation will be useful
for deriving gauge-invariant equations:

�Ea
i ¼ �2 �p��a

i � 2H �pðB� _EÞ�a
i þ �pð�a

i�� @a@iÞE
�Ki

a ¼ ��i
a½ _�þH ð�þ�Þ� � �i

a
_H ðB� _EÞ

þ @a@
i½HE� ðB� _EÞ�; (A18)

where the first line of each equation contains only gauge-
invariant terms.

a. Diffeomorphism constraint equation

Varying the smeared diffeomorphism constraint with
respect to the shift perturbation yields the diffeomorphism
constraint equation (the space-time Einstein equation):

0 ¼ 8�G
�D½�Nc�
�ð�NcÞ

¼ �pð@cð�Ki
a�

a
i Þ � @kð�Kk

cÞÞ � �k@d�E
d
k�

k
c

þ 8�G ��@c�’: (A19)

Using the gauge-invariant variables defined in (37) and
(58), this equation can be rewritten as

@c½ _�þH�� 4�G _�’�’GI� þ ðgauge termsÞ ¼ 0;

(A20)

where the ‘‘gauge terms’’ are

2ðB� _EÞ@c½� _H þH 2 � 4�G _�’2�:
The expression inside the square brackets is nothing but the
background Raychaudhuri Eq. (A10). Thus, all gauge-
dependent terms vanish and the diffeomorphism constraint
equation takes the form

@c½ _�þH�� ¼ 4�G _�’@c�’
GI; (A21)

whose right-hand side should be recognized as the gauge-
invariant space-time component of the perturbed matter
stress-energy tensor �4�Ga2�TT

S .

b. Hamiltonian constraint equation

The Hamiltonian constraint equation is obtained by
variation with respect to the lapse perturbation

�H

�ð�NÞ ¼
1

16�G

�
�4 �k

ffiffiffiffi
�p

p ð�Ki
a�

a
i Þ �

�k2ffiffiffiffi
�p

p �Ea
i �

i
a

þ 2ffiffiffiffi
�p

p @a@
i�Ei

a

�
þ ����

�p3=2
�

�
��2

2 �p3=2
� �p3=2Vð �’Þ

�

� �Ea
i �

i
a

2 �p
þ �p3=2V;’ð �’Þ�’ ¼ 0: (A22)

Dividing both sides by
ffiffiffiffi
�p

p
allows one to replace the

background extrinsic curvature with the Hubble rate.
Then eliminating the field momentum and its perturbation
in terms of the time derivatives of the scalar field [see (56)]

and using the auxiliary expressions (A18), one arrives at
the gauge-invariant Hamilton constraint equation (per-
turbed Friedmann equation)

��� 3H ½ _�þH�� ¼ 4�G½ _�’� _’GI � _�’2�

þ �pV;’ð �’Þ�’GI�: (A23)

Again, the right-hand side is nothing but the time-time
component of the perturbed stress-energy tensor.

c. Hamilton’s equations

The perturbed dynamical matter equations are computed
using the Poisson bracket, giving rise to (56) and (58).
Expressing �� from the first equation and substituting into
the second one, with the help of the background equations,
the Klein-Gordon equation can be cast in the gauge-
invariant form

� €’GI þ 2H� _’GI ���’GI þ �pV;’’ ð �’Þ�’GI

þ 2 �pV;’ ð �’Þ�� _�’ð _�þ 3 _�Þ ¼ 0: (A24)

Similarly, one can arrive at the spatial Einstein equations.
The first-order equations are given by

� _Ki
a � f�Ki

a; H
ð2Þ½N� þDð2Þ½Na�g

¼ �N

�p3=2

�
� �k �p�Ki

a �
�k2

2
�Ed

k�
i
d�

k
a þ

�k2

4
�Ed

k�
k
d�

i
a

þ �ik

2
@a@d�E

d
k

�
þ �N �k2

2
ffiffiffiffi
�p

p �i
a � 1ffiffiffiffi

�p
p @a@

i�N

þ 8�G
�Hð2Þ

m ½N�
�ð�Ea

i Þ
; (A25)

� _Ea
i � f�Ea

i ; H
ð2Þ½N� þDð2Þ½Na�g

¼ �Nffiffiffiffi
�p

p ½ �p�Kj
c�c

i �
a
j � �pð�Kj

c�c
jÞ�a

i � �Ea
i �

þ 2�N �k
ffiffiffiffi
�p

p
�a
i þ �pð�a

i @c�N
c � @i�N

aÞ: (A26)

The combined second-order equation naturally decouples
into two independent equations: diagonal and off-diagonal.
After a tedious but rather straightforward computation,
taking into account the background equations of motion,
the former equation takes the form

€�þH ð2 _�þ _�Þ þ ð _H þ 2H 2Þ�
¼ 4�Gð _�’� _’GI � �pV;’ð’Þ�’GIÞ: (A27)

In the absence of anisotropic stress in the matter sector,
which is the case for the scalar field, the gauge-invariant
part of the off-diagonal equation reads as

@a@
i½���� ¼ 0; (A28)

which implies � ¼ � for the Bardeen potentials.
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APPENDIX B: ANOMALY CANCELLATION
CONDITIONS

In this appendix, we summarize the set of anomaly
cancellation conditions containing counterterm coeffi-
cients. These conditions, in turn, determine the coefficients
in terms of primary quantum correction functions �, �, and
	, and they impose restrictions on the primary corrections.
We note from the expressions of quantum-corrected
Hamiltonian densities (17) and (18) that there are three
such functions ðf; g; hÞ in the gravitational sector, six
ðf1; f2; g1; g2; g3; g5Þ in the kinetic sector, and two
ðf3; g6Þ in the potential sector of scalar matter. Thus, for
the system under consideration we have a total of 11
initially undetermined functions contained in the counter-
terms. These free functions are constrained by anomaly
cancellation.

Invariance of counterterms under diffeomorphisms [2]
led to four conditions

g ¼ �2f; f2 ¼ 2f1; g2 ¼ g1;

g3 ¼ 2g2 ¼ 2g1
(B1)

among these coefficients. These equations trivially lead to
the solutions for g, f2, g2, and g3, leaving seven functions
to be determined. Cancellation of anomaly terms from the
Poisson bracket between Hamiltonian constraints led to
two independent conditions (G’

1 ¼ 0, G’
2 ¼ 0 of [2])

from the gravitational sector. These two conditions along
with the Eq. (B1) imply that

h ¼ �fþ 2
��0 �p
��

; (B2)

2 �pf0 ¼ � ��0 �p
��

: (B3)

These two equations explicitly solve f and h in terms of the
primary correction function �. In particular, for the given

form of �� ¼ 1þ c�ð‘2P= �pÞn� þ � � � , (B3) has the solution

f ¼ 1

2n�

��0 �p
��

: (B4)

Thus, there are only five remaining functions that need to
be determined. Three of the matter anomaly cancellation
conditions (D1 ¼ 0, D2 ¼ 0, B’

4 ¼ 0 of [2]) lead to

g5 ¼ �f1; g6 ¼ �g1; f3 ¼ f1 � g1; (B5)

whereas another two conditions (B’
1 ¼ 0, B’

2 ¼ 0 of [2])
solve f1 and g1 explicitly as

f1 ¼ f� ��0 �p
3 ��

; (B6)

g1 ¼ ��0 �p
3 ��

� ��0 �p
��

þ 2

9

�
��0 �p
��

�0
p: (B7)

At this stage all counterterms coefficients have been de-
termined. There is one remaining anomaly cancellation
condition from the matter sector, D4 ¼ 0 of [2], which
implies that

2 �pf03 þ 3f3 � 3f ¼ 0 (B8)

and thus requires the primary correction functions to sat-
isfy

��0 �p
��

þ �p

3

�
��0 �p
��

�0 � ��0 �p
��

� �p

9

�
��0 �p
��

�0 þ 2 �p2

9

�
��0 �p
��

�00 ¼ 0:

(B9)

Independent of the counterterms and the requirement (B9),
we also have the relation ��2 ¼ �� �	 to be satisfied by the
primary correction functions. Thus, anomaly freedom of
the constraint algebra severely restricts the allowed form of
primary quantum corrections functions, but it does permit
nontrivial forms of quantum corrections.
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