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The analysis of modern cosmological data is becoming an increasingly important task as the amount of

data multiplies. An important goal is to extract geometric information, i.e. the metric of the cosmos, from

observational data. The observer metric is adapted to the reality of observations: information received

along the past null cone, and matter flowing along timelike lines. It provides a potentially very good

candidate for developing a general numerical data reduction program. As a basis for this, we elucidate the

spherically symmetric solution, for which there is to date no single presentation that is complete and

correct. With future numerical implementation in mind, we give a clear presentation of the mathematical

solution in terms of 4 arbitrary functions, the solution algorithm given observational data on the past null

cone, and we argue that the evolution from one null cone to the next necessarily involves integrating down

each null cone.

DOI: 10.1103/PhysRevD.79.043501 PACS numbers: 98.80.�k

I. INTRODUCTION

Cosmology is all about understanding the observed uni-
verse, and since Einstein’s field equations are central to
that endeavour, the primary problem is to determine the
cosmic geometry, i.e. the metric, from observations of its
matter content. A full understanding of the dynamics of the
universe cannot be separated from understanding its ge-
ometry. Historically, it was very difficult to determine
cosmological data with any precision, and the assumption
of a homogenous universe, which allowed a simple metric
form, was entirely sufficient and indeed very fruitful.
Consequently the problem was reduced to one of finding
the best-fit parameter set, rather than determining the
metric. Recent decades have seen a considerable improve-
ment in the quality and quantity of cosmological data,
mapping much more accurately the matter distribution
and the structures that exist. Therefore, relaxing the as-
sumption of homogeneity has become an important task.

The idea of determining the spacetime metric from
observational data was first investigated by Kristian and
Sachs [1], and followed up by Ellis, Stoeger and others in
an important series of papers that constitute the ‘‘observa-
tional cosmology’’ (OC) program [2–14]. In this program,
they introduced observer coordinates based on the past null
cones of a single observer’s worldline, an idea originally
due to Temple [15], because traditional time and space
coordinates are not well adapted to cosmological observa-
tions. They also introduced the ‘‘fluid-ray tetrad’’ [3],
including a set of spin coefficients, and their basic equa-
tions are derived from this formalism. Although a general
form has been given for the observer metric, work has
concentrated on the spherically symmetric case, and to a
lesser extent its perturbations.

There has also been parallel work relating the Lemaı̂tre-
Tolman (LT) metric to observations. One approach uses
low-z series expansions [16,17], and a more general ap-
proach has shown how observational data fully determine
an LT model [18–24]. A slightly different formulation can
be found in [25], and an approach based on the character-
istic initial value formulation of numerical relativity in
[26]. All approaches must ultimately be implemented as
numerical procedures.
In this paper we provide a complementary approach to

the observational metric. In the observational cosmology
papers, the approach to solving the problem has focused on
using the observational data to analytically determine the
metric functions. Here, with an eventual numerical scheme
in mind, our approach emphasizes first the full formal
solution of the field equations for the observer metric,
particularly noting the 4 arbitrary functions that emerge
in the process and how the evolution is determined by
them, and second the algorithm for determining the metric
from observational data, especially showing how the arbi-
trary functions are fixed by the data. The first provides a
better understanding of the geometry and dynamics of the
model, and the second shows the relationship between the
data and the particular characteristics of the solution met-
ric. We also give the explicit transformation between the
OC and LT forms of this metric.
Although spherical symmetry about the observer is a

strong assumption, we regard it as a first step—a useful and
important one—towards the more general case. A proper
understanding of this simpler case is essential for working
with the more general forms of the observer metric. See
[23,24] for a more detailed justification.

II. SPHERICALLY SYMMETRIC OBSERVER
METRIC

We choose coordinates xi ¼ ðw; y; �;�Þ, and we assume
(a) spherical symmetry about the origin, (b) the observer is
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at the origin, and (c) the ð�;�Þ surfaces are orthogonal to
the ðw; yÞ surfaces. We work in geometric units. With
these, the metric is

ds2 ¼ �A2dw2 þ 2ABdwdyþ C2d�2; (1)

where d�2 ¼ d�2 þ sin2�d�2; (2)

A ¼ Aðw; yÞ; B ¼ Bðw; yÞ; C ¼ Cðw; yÞ: (3)

Here C is an areal radius, and the lack of a dy2 term ensures
that the constant w surfaces are null,

dw ¼ 0 ¼ d� ! ds2 ¼ 0: (4)

We further assume that the matter is a zero-pressure perfect
fluid, comoving with the y coordinate,

Tab ¼ �uaub; (5)

where the constant y, �, � curves have timelike tangent
vectors such that

ua ¼ 1

A
�a
w; ua ¼ ð�A; B; 0; 0Þ; uaua ¼ �1:

(6)

Here � is the proper density relative to observers on the
comoving worldlines, ua.

We note that the null tangent vector ka within the
constant w surfaces,

ka ¼ �w
a ; ka ¼

�
0;

1

AB
; 0; 0

�
; kaka ¼ 0; (7)

must be geodesic since it represents radial light rays,
karak

b ¼ 0, and in fact, for any KðyÞ, ka ¼ �w
aKðyÞ is

geodesic. Similarly, the dust particles should follow geo-
desics, and uarau

b ¼ 0 leads to the two equations

uw@wu
w ¼ �

�
Aw

A
þ Bw

B
þ Ay

B

�
ðuwÞ2 (8)

0 ¼ A

B

�
Bw

B
þ Ay

B

�
ðuwÞ2; (9)

where Aw ¼ @A=@w, Ay ¼ @A=@y, etc. The second of

these imposes a restriction on the metric functions,

Bw ¼ �Ay; (10)

which reduces the first to ð@wuwÞ=uw ¼ �ð@wAÞ=A, in
agreement with the normalization condition (6).

Near the central worldline there is a spherical origin,
where C ! 0. The origin conditions for this metric, giving
the limiting behaviors of A, B, and C near an origin, have
been presented in several of the observational cosmology
papers.

Solving the EFEs

The Einstein field equations (EFEs) Gab ¼ �Tab �
�gab for this metric are

Gww ¼ 2

A2B2

�
AyCy

AC
þ ByCy

BC
� Cyy

C

�
¼ ��

A2
(11)

Gwy ¼ 2

A2B2

�
Cwy

C
þ CwCy

C2
þ AC2

y

2BC2
þ AyCy

BC
� AB

2C2

�

¼ � �

AB
(12)

Gyy ¼ 2

A2B2

�
AwCw

AC
þ BwCw

BC
� Cww

C
þ AyCw

BC
þ ABwCy

B2C

þ ACwCy

BC2
þ AAyCy

B2C
þ A2C2

y

2B2C2
� A2

2C2

�
¼ � �

B2

(13)

G�� ¼ 1

ABC2

�
2Cwy

C
þAwy

A
þBwy

B
�AwAy

A2
�BwBy

B2

þACyy

BC
þAyy

B
�AyBy

B2
þAyCy

BC
�AByCy

B2C

�
¼� �

C2
;

(14)

where � ¼ 8�, and the conservation equations, rbT
ab ¼

0 are

rbT
wb ¼ �w

A2
þ �

A2

�
2Cw

C
þ 2Bw

B
þ Ay

B

�
¼ 0 (15)

rbT
yb ¼ �ðBw þ AyÞ

AB2
¼ 0: (16)

Not surprisingly, we can obtain (10) directly from (16)
since we do not expect the density to be zero.
From (12) and (13) above we obtain

A2BC

2
Gwy � AB2C

2
Gyy ¼ Cwy

B
� BwCy

B2
þ Cww

A
� AwCw

A2

¼ 0; (17)

where two terms canceled because of (10). This can be
written as

@

@w

�
Cw

A
þ Cy

B

�
¼ 0; (18)

which solves to give

Cw

A
þ Cy

B
¼ WðyÞ; (19)

where WðyÞ is an undetermined function of integration.
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Next, from (19) we have

Cy ¼ B

�
W � Cw

A

�
;

Cwy ¼ Bw

�
W � Cw

A

�
� B

A2
ðACww � AwCwÞ;

(20)

which combine with the Gyy equation (13) to give

�B2C2CwG
yy ¼ C3

w

A2
þ 2CCwCww

A2
� 2CC2

wAw

A3

� CwðW2 � 1Þ ¼ C2Cw�; (21)

where (10) was used again. The solution here is

@

@w

�
CC2

w

A2
� CðW2 � 1Þ � C3�

3

�
¼ 0 (22)

CC2
w

A2
� CðW2 � 1Þ � C3�

3
¼ 2MðyÞ; (23)

where MðyÞ is a second undetermined function of
integration.

Equations (11) and (13) give the same as the y derivative
of (23):

��BW ¼ ðGww þ�gwwÞA2BW � ðGwy þ�gwyÞABCy

¼ � 2CwC
2
y

ABC2
� C3

y

B2C2
þ Cy

C2
� Cy�þ 2ByCwCy

AB2C

� 2CwCyy

ABC
þ 2AyCwCy

A2BC
þ 2ByC

2
y

B3C
� 2CyCwy

ABC

� 2CyCyy

B2C

¼ 2My

C2
; (24)

where (19) and its y derivative were used. Therefore the
density is given by

�� ¼ 2My

C2BW
; (25)

which clearly satisfies (15). Similarly, the Kretschmann
scalar is

K ¼ RabcdRabcd

¼ 48M2

C6
þ 8�2

3
� 32MMy

C5BW
þ 12M2

y

C4B2W2
þ 8�My

3C2BW
:

(26)

The solution (23) can be rewritten as an evolution equa-
tion for C:

Cw

A
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

C
þ fþ�C2

3

s
; (27)

where fðyÞ ¼ W2 � 1 $ W ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
; (28)

and the sign depends on whether C is increasing or de-
creasing with time. In addition, Eqs. (19) and (27) give

Cy

B
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ f
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

C
þ fþ�C2

3

s
: (29)

Equation (27) is clearly allied to the LT evolution equation
(A2), except that it contains two unknown functions, C and
A, so it cannot be solved as is. In this paper, where a
function is transformed between coordinates, we write
e.g. Cðw; yÞ ¼ Cðt; rÞ, meaning the two forms have the
same numerical value at any given event, but they do not
have the same functional dependence on their arguments.
To solve (27), we define t along the worldlines of constant
y by

t ¼
Z
const y

Adw ! @

@w
¼ A

@

@t
; (30)

which converts (27) to

Z dC

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
C þ fþ �C2

3

q ¼
Z

dt ¼ t� aðyÞ: (31)

In principle this gives us tðC; yÞ or Cðt; yÞ, and introduces
aðyÞ, the initial t value at each y, as a third free function of
integration. Clearly t is the proper time along each world-
line, and the solutions to (31) are identically those of the LT
metric. When � ¼ 0, the solutions for each of the cases
f > 0, f ¼ 0 and f < 0 are well known, and are often
given parametrically, fCð�; yÞ; tð�; yÞg. However, we do
not yet have a transformation between t and w, since by
(30)

t ¼
Z
const y

Adw $ A ¼ tw; (32)

we must know A to calculate w and vice versa. Now from
(10) we find

Bw ¼ �Ay ¼ �twy ! B ¼ �ty þ �ðyÞ: (33)

The function �ðyÞ reflects a freedom in the definition (30)
of t,

t ! tþ 	ðyÞ; � ! �� 	y; (34)

which we shall remove. We next define

r ¼ rðw; yÞ ¼ y ! rw ¼ 0; ry ¼ 1; (35)

and in the next few equations we use r when it is paired
with t, as in Cr ¼ @rCðt; rÞ, but y when paired withw, as in
Cy ¼ @yCðw; yÞ. By requiring that our t coordinate be

orthogonal1 to r, viz:

1Without this, � � 0 and several subsequent equations contain
large extra terms.
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0 ¼ gabð@atÞð@brÞ ¼
twry þ tyrw

AB
þ tyry

B2

¼ Aþ 0

AB
þ ð�� BÞ

B2
! � ¼ 0; (36)

we reduce the freedom in t to a constant translation, i.e. 	
is a constant, but henceforth we shall drop it from our
equations. Evidently, then, B is the negative of the rate of
variation of proper timewith respect to y down the past null
cone. Even though we know tðC; yÞ, we cannot calculate ty
unless we know how to hold w constant. Now the trans-
formation between Cðw; yÞ and Cðt; rÞ allows us to write

Cy ¼ Ctty þ Crry ¼ �CtBþ Cr; (37)

whereCt � @C=@t andCr � @C=@r. Combining (37) with
(29) leads to

B ¼ Crffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p ; (38)

and since Cðt; rÞ is known, this gives us Bðt; rÞ. Using (33),
(36), and (38), we obtain the differential equation

ty ¼ �Crffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p : (39)

This equation specifies how much t changes for a given y
change, when w is constant, so it may be integrated down
the null cones, i.e. along constant w, from the origin out-
wards, giving tðw; yÞ. The boundary conditions, fixed say at
the origin y ¼ 0, give us a 4th undetermined function,

ðwÞ ¼ tðw; 0Þ. Actually, this fixes the variation of w
with respect to t, as t is fixed by integrating (31). An
obvious choice is w ¼ tjo ¼ 
. Having solved (39), we
can then convert Cðt; rÞ to Cðw; yÞ using
Cðt; rÞ plus tðw; yÞ ! Cðw; yÞ ¼ Cðtðw; yÞ; yÞ; (40)

and we finally determine Aðw; yÞ from (32), and Bðw; yÞ
from (33), or possibly (38). The algorithm for calculating
the model evolution is detailed in section IVF.

Having completed the solution, we see that this metric
has 4 arbitrary functions—fðyÞ, MðyÞ, aðyÞ, and 
ðwÞ—of
which 
ðwÞ represents a freedom to rescale w that is most
naturally set to 
 ¼ w. The physical meanings of f,M, and
a are exactly as in the LT model; they represent two
physical relationships plus a freedom to rescale y.

III. OBSERVABLE QUANTITIES

The primary observables for cosmological sources are
redshift z, angular diameter �, apparent luminosity ‘, and
number density in redshift space n. Associated with each of
�, ‘, and n is a source property, true diameter D, absolute
luminosity L, and mass per source �, that is needed to
relate the observations to the theoretical model. The ob-
servables all depend on redshift z, and since sources evolve
with time, so do the source properties. We assume that the

source properties are known from a combination of obser-
vations and source evolution theories.
Let w0 label the past null cone (PNC) of present day

observations by the central observer at ðt; rÞ ¼ ðt0; 0Þ �
ðw; yÞ ¼ ðw0; 0Þ, and let the evaluation of any quantity

Qðw; yÞ on this PNC be denoted Q̂ ¼ ½Q�^ ¼ Qðw0; yÞ.
We assume that emitters follow comoving worldlines ye,
and the observer is at the central worldline, yo ¼ 0. Let the
evaluation of a quantity at the observer and the emitter be
denoted QoðwÞ ¼ Qðw; 0Þ and QeðwÞ ¼ Qðw; yeÞ, respec-
tively. However, we will often drop the subscript e.
The redshift of comoving sources on that null cone is

given by the ratio of the light oscillation periods T mea-
sured at the observer, o, and the emitter, e,

ð1þ zÞ ¼ To

Te

¼ Âodw

Âedw
! Â ¼ Âo

ð1þ zÞ ; (41)

and we can put Âo ¼ 1 since Âo ¼ Aðw0; 0Þ ¼ @w
jw0
¼ 1

is the natural choice.
The diameter distance of a source is the true diameter D

divided by the angular diameter �, and in a spherical metric
it corresponds to the areal radius evaluated on the PNC, i.e.

D

�
¼ dD ¼ Ĉe: (42)

Similarly, if the absolute luminosity of a source is L, the
apparent luminosity is ‘ (or m and ~m the apparent and
absolute magnitude), and d10 is 10 parsecs, then the lumi-
nosity distance is

dL ¼
ffiffiffiffi
L

‘

s
d10 ¼ 10ðm� ~mÞ=5d10: (43)

By the reciprocity theorem [27–29], dL may be converted
to dD using z.

dD ¼ dLð1þ zÞ2: (44)

In redshift space, ðz; �; �Þ, let nðzÞ be the density of
sources, that is the number per steradian per unit redshift
interval.2 Suppose that there are dN sources in solid angle
d! ¼ sin�d�d� between redshift z and zþ dz, and that
�ðzÞ is the mean mass per source,3 then the mass in that
volume element of redshift space is

dM ¼ �dN ¼ �nd!dz: (45)

The proper 3-volume enclosing these sources at the time of
emission, as measured by comoving observers ua, is
spanned by

dxa1 ¼ �a
ydy; dxa2 ¼ �a

�d�; dxa3 ¼ �a
�d�; (46)

and evaluates to

2Thus this n is different from the n used in the OC programme,
which is number density on a constant time slice, see Sec. V.

3For a treatment with a variety of source types, see [20].

CHARLES HELLABYAND ALNADHIEF H.A. ALFEDEEL PHYSICAL REVIEW D 79, 043501 (2009)

043501-4



d3v ¼ �abcdu
adxb1dx

c
2dx

d
3 ¼

ffiffiffiffiffiffi
jgj

q
�0123u

0dx11dx
2
2dx

3
3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j � A2B2C4sin2�j

q
1

A
dyd�d�

¼ BC2 sin�d�d�dy ¼ BC2d!dy; (47)

so that the mass in this fluid element is

dM ¼ �BC2d!dy: (48)

Clearly we have the following relationship between n and
�̂,

�n ¼ �̂ B̂ Ĉ2 dy

dz
: (49)

The apparent horizon is where C is maximum on any
given constant w cone,

Cy ¼ 0: (50)

Now if the metric (1) is to be regular, and the density (25)
and Kretschmann scalar (26) finite at such a point, then B
must be nonzero. This would need the upper sign in (29)—
that is, the local matter-shells are expanding, _C> 0—andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M

C
þ fþ�C2

3

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

! 6Mþ�C3 � 3C ¼ 0; (51)

along this locus. When � ¼ 0 this simplifies to C ¼ 2M.
As shown in [21,24], this locus has considerable observa-
tional significance. See also [13].

IV. DETERMINING THE SOLUTION FROM
OBSERVATIONAL DATA

Given the above observational data on the past null cone,

that is ÂðzÞ, ĈðzÞ, and �nðzÞ, the solution process must
determine the arbitrary functions f,M, a, and 
. Knowing
these enables all spacetime quantities to be calculated and
evolved, via the results of Sec. II A. We envisage a nu-
merical solution, so the emphasis here is on laying out a
solution algorithm, rather than on formal integrals and
functional dependence.

A. Gauge choices

The observational data must determine the physical
properties of the model, but cannot restrict the coordinate
freedoms. Therefore we will have to make some gauge
choices in order to effect the solution. First, we set w ¼ t
along the central worldline, which implies


ðwÞ ¼ w ! Aðw; 0Þ ¼ twðw; 0Þ ¼ 1

! Âo ¼ 1 ! Â ¼ 1

ð1þ zÞ : (52)

Second, we need to set the freedom in the y coordinate. We
consider two options below. The ‘‘LT’’ option specifies

t̂ y ¼ �1 ! B̂ ¼ 1; (53)

as in many LT approaches. The OC papers choose
Aðw0; yÞ ¼ Bðw0; yÞ on the PNC, so in the ‘‘OC’’ option
we choose

B̂ ¼ Â ¼ 1

ð1þ zÞ ! t̂y ¼ �1

ð1þ zÞ : (54)

B. DE for yðzÞ
The coordinate y is of course not observable, but we

have to determine it first. We define

’ ¼ dy

dz
; (55)

and along the PNC we rewrite our equations in terms of z
derivatives rather than y derivatives; for any quantity
Qðw; yÞ,

Qy ¼ Qz

’
and Qyy ¼ Qzz

’2
�Qz’z

’3
: (56)

Evaluating (11) on the PNC, and using (49), we find

ÂzĈz

Â Ĉ
þ B̂zĈz

B̂ Ĉ
� Ĉzz

Ĉ
þ Ĉz’z

Ĉ’
� ��nB̂’

2Ĉ2
¼ 0; (57)

which, upon substituting for Âz=Â from (41), leads to

’z ¼ ’

�
1

ð1þ zÞ �
B̂z

B̂
þ Ĉzz

Ĉz

þ ��nB̂’

2ĈĈz

�
; (58)

where all derivatives are now total derivatives along the
PNC.
At this point we must fix the gauge in order to freeze out

the coordinate freedom. The two options given above each
convert (58) to an ODE for ’ðyÞ completely in terms of
observables:

OC : ð’1Þz ¼ ’1

�
2

ð1þ zÞ þ
Ĉzz

Ĉz

þ ��n’1

2ð1þ zÞĈĈz

�
(59)

LT : ð’2Þz ¼ ’2

�
1

ð1þ zÞ þ
Ĉzz

Ĉz

þ ��n’2

2ĈĈz

�
: (60)

Integrating (59) or (60) followed by (55) yields ’iðzÞ and

yiðzÞ ¼
Z z

0
’iðzÞdz: (61)

This allows us to convert between functions of z and
functions of y on the PNC.

C. DE for MðzÞ and WðzÞ
From (25) on the PNC and (58) we obtain

Mz ¼ ��nW

2
; (62)
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where W is found by putting (29) on the PNC,

W ¼ B̂’

2Ĉz

�
1� 2M

Ĉ
��Ĉ2

3

�
þ Ĉz

2B̂’
: (63)

The two gauge choices give

OC : W ¼ ’1

2Ĉzð1þ zÞ
�
1� 2M

Ĉ
��Ĉ2

3

�
þ Ĉzð1þ zÞ

2’1

(64)

LT : W ¼ ’2

2Ĉz

�
1� 2M

Ĉ
��Ĉ2

3

�
þ Ĉz

2’2

: (65)

Together (62) and (64) or (65) constitute an ODE for MðzÞ
that also generates WðzÞ. Note that (64) requires ’1 from
(59) and (65) requires ’2 from (60). Technically, this is a
first order linear inhomogeneous ODE forM, so the formal
solution is well known. In practice, the two integrals
involved would both have to be done numerically, so it is
less work to solve the ODE directly in parallel with (58)
and (55), using say a Runge-Kutta method.

D. Obtaining aðzÞ
From (33) and (36) on the PNC we get

t̂ z ¼ �’B̂; (66)

which, in the OC and LT gauges, simplifies to the ODEs

OC : t̂z ¼ �’1

ð1þ zÞ (67)

LT : t̂z ¼ �’2; (68)

thus giving the worldline proper time, t̂ðzÞ or t̂ðyÞ, on the
PNC. The appropriate ’i must be used in each equation.
From (31) on the PNC, we write

Z Ĉ

0

dC

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
C þ fþ �C2

3

q ¼ 
; (69)

where f is given in (28) and 
 is the proper time from the
bang to the PNC along the matter worldlines, and after
performing the integral at each z, we calculate

aðzÞ ¼ t̂ðzÞ � 
ðzÞ: (70)

We now haveM,W ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
, and a, and we have also

used up the freedom to rescale y by directly or indirectly
fixing ty. The only undetermined function is 
ðwÞ, though
we have already fixed Âo ¼ twðwo; 0Þ ¼ 1, and we should
extend this to


 ¼ w: (71)

E. Evolving off the PNC

In principle, no amount of data on the PNC is sufficient
to determine the future evolution of any part of the space-
time, because new information can arrive along succeeding
incoming light rays. But since we have already assumed a
dust equation of state, in order to get the arbitrary func-
tions, it is not unreasonable to expect the worldlines con-
tinue their dust evolution into the future. This same
assumption is tacitly made when fitting a Robertson-
Walker model to observational data.
Away from the PNC, z is no longer a useful variable, and

we should rather use y. Also, the gauge choices do not give
B off the PNC, so gauge-specific equations such as (59) or
(68) are not applicable. One may determine the full evo-
lution of C using the algorithm below, based on the solu-
tion of Sec. II A. In addition, (11) together with (25)
provides a cross-check on the calculated propagation of
the metric components.
The remaining question is whether, given that we have

initial data for Ĉ, B̂ and Â on the PNC, there is a better way
to evolve C than integrating over the entire ðt; rÞ domain
twice, first calculating Cðt; rÞ and then finding tðw; yÞ and
converting to Cðw; yÞ. Can we integrate directly with re-
spect to w, giving Cðw; yÞ straight off? This would be
especially important if there were detectable time evolu-
tion in cosmological observables. The key difficulty is that
we do not know any of A, B, or C away from the PNC and
the central worldline, and though we have direct evolution
equations for Bw and Cw, there is none for Aw.
Once the arbitrary functionsW,M, and a are known, the

observational data plus the gauge choices give us all of A,
B, and C on an initial constant w null cone, w0. For clarity
of argument, consider Euler integration. Evolution equa-
tions for C and B follow from (10) and (27),

Ciþ1 ¼ Ci þ ðCwÞidw; Cw ¼ AV;

V ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

C
þW2 � 1þ�C2

3

s
;

(72)

Biþ1 ¼ Bi þ ðBwÞidw; Bw ¼ �Ay; (73)

but the difficulty is finding an evolution equation for A. For
example, (19), in the form

Aiþ1 ¼ ðCwÞiþ1

W � ðCyÞiþ1=Biþ1

¼ Aiþ1Viþ1

W � ðCyÞiþ1=Biþ1

; (74)

does not help because Aiþ1 cancels out. The yy EFE
contains Aw, but as soon as we substitute Cww ¼ AwV þ
AVw, then Aw vanishes from the equation. The best we can
do is to put Bw ¼ �Ay and Cw ¼ AV and Cww ¼ AwV þ
AVw in thewy EFE, to obtain an expression for Ay=A that is

free of w derivatives; but this requires an integration along
constant w, and is at least as much work as solving (39).
Similarly the �� EFE gives an expression for @wðAy=AÞ.
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Combining (27) and (29) with (10) eliminates A and B,
but leads to a second order nonlinear PDE for C that
depends only on M, f (or W), and their y derivatives.
This would also require a double numerical integration
over the ðw; yÞ space. We have not been able to cast it in
a simpler form, and we do not regard it as a better alter-
native, so we do not write it out here.

Evidently there is no direct integration off the PNC
along the constant y worldlines, though it should be pos-
sible to program the numerical integration as a single
sweep across the spacetime.

F. The algorithm

The procedure for obtaining the observer metric from
observational data may be presented as a two-part algo-
rithm, the first for obtaining the undetermined functions
from the data, and the second for calculating the model
evolution from the functions. The arbitrary functions M,
W ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

, and a are obtained as follows:
(i) Assume the following observational data for a large

number of sources on the PNC: redshift z, apparent
luminosity ‘ and absolute luminosity L, (and/or
angular diameter � and true diameter D), number
density of sources in redshift space n and mass per
source �. From these calculate diameter distance

Ĉ ¼ dDðzÞ using (42) and (43), and redshift space
mass density �nðzÞ.

(ii) Make a gauge choice, as in Sec. IV, which fixes B̂
and t̂y.

(iii) Integrate down the PNC one of Eqs. (58)/(59)/(60),
as appropriate to the gauge choice, which gives ’ðzÞ,
then integrate ’ðzÞ as in (61) to produce yðzÞ ! zðyÞ.

(iv) Integrate (62) with the appropriate choice of (63)/
(64)/(65) down the PNC to calculate MðzÞ and
WðzÞ ! MðyÞ and WðyÞ.

(v) Integrate the relevant choice of (66)/(67)/(68) to give
the time on the PNC t̂ðzÞ; integrate (69) along each
constant y worldline, producing 
ðzÞ the proper time
from bang to null cone; then calculate the bang time
aðzÞ from (70) ! t̂ðyÞ and aðyÞ.

Having found the 3 arbitrary functions, the evolution of the
model is determined as follows:

(i) Use Eq. (31) and integrate up and down each matter
worldline to evaluate tðC; rÞ ! Cðt; rÞ everywhere
(r ¼ y). Initial conditions are provided on the PNC

by ĈðzðyÞÞ and t̂ðyÞ. In practice, this could be done in
the same step as the 
 integration above.

(ii) Choose the gauge function 
ðwÞ ¼ tðw; 0Þ to fix w
all along the central worldline.

(iii) KnowingCðt; rÞ, calculateCr everywhere; and hence
find Bðt; rÞ everywhere from (38).

(iv) From each w on the central worldline, integrate Eq.
(39) to trace the ðt; yÞ locus of its past null cone,
allocating each point the same w, thus obtaining
wðt; yÞ ! tðw; yÞ.

(v) Calculate Cðw; tÞ ¼ Cðtðw; yÞ; yÞ and Bðw; tÞ ¼
Bðtðw; yÞ; yÞ everywhere, as shown in (40).

(vi) Differentiate tðw; yÞ to find Aðw; yÞ according to (32).
The above steps are written for clarity rather than nu-

merical efficiency. In coding it, certain steps may be com-
bined. As explained in [23,24], the neighborhoods of the
origin, the bang, parabolic worldlines, and the maximum in
dD require special numerical treatment.

V. RELATIONSHIP TO OTHER WORK

This solution must obviously be a version of the LT
metric, so it would be useful to see the transformation.
We give this in appendix A.
We here compare the present paper with earlier work,

particularly noting any differences, and we give the con-
version between the different notations that have been
used.
The notation for coordinates, ðw; y; �;�Þ; and metric

functions A, B, C is common to all the papers, as are those
for the redshift z and the primary PNC w0. In the OC
papers, the w and y partial derivatives are written _C ¼
@wC ¼ Cw, C

0 ¼ @yC ¼ Cy, etc.

Concerning [4], we note there is a factor of �missing on
the right of their Eqs. (13), or it has been absorbed into the
definitions of�,�0, and p. We will assume the latter. They
use a completeness factor F—the fraction of sources that
are actually counted. Whereas survey completeness is a
significant concern, in our paper we have assumed it has
been corrected for. (The effect of systematic errors was
investigated in [24].) Combining our (15) and (16) gives

�w

�
¼ �

�
2Cw

C
þ Bw

B

�
! � ¼ ��ðyÞ

C2B
; �� ¼ 2My

�W

(75)

which is (21a) in [4]. As noted in [8], Eq. (30) of [4] does
not hold, so their Eqs. (34)–(45) are incorrect.
In [8], they effectively obtain orthogonality of the con-

stant t and y surfaces in their (13) by comparing the matter
flow lines in the LTand OC metrics. Their variableN�ðyÞ is
never interpreted—it is 8� times the total gravitational
mass M within shell y, divided by the mean galaxy mass.
Since M contains both the integrated rest mass and the
curvature, N� is not proportional to the number of galaxies
(except near the center). Item 4 in the corrigenda is mis-
leading; to get that solution, put u ¼ F� v into v2 þ
2uv ¼ 1�mN�=C, multiply through by C, rearrange,
differentiate with respect to y, and use the derivative of
(27), giving

ð2CvFÞ0 þmFN0 ¼ ðCv2 þ CÞ0; (76)

which can be evaluated on the PNC and integrated to give
F. Note the prime in their paper (and in this paragraph) is
@=@y while w is held constant. This must be remembered
when taking the prime derivatives on the right of their (29),
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where functions are expressed in terms of t, y, and parame-
ter �. In fact, we recommend integrating the negative of the
left-hand side of (29), to get the null cone path tðyÞ, and
then determining T rather than T0. Thus the derivative of
the parametric solution, which includes calculating �0, is
not needed. There seem to be some oddly placed factors of
4�: if their (17) and the equation below their (10) are
correct, then their � is 4� times the density. Also their
(17) and (27) imply their mN� is ourM, whereas their (25)
implies it is our 2M. We will assume the latter, as their
equations involving � do not play a significant role.
Otherwise that paper (with corrigenda) is basically correct,
though a little circuitous, and the propagation of the solu-
tion off the observer’s PNC in observer coordinates is not
discussed.

In [11], � and �0 also contain absorbed factors of �.
The function of integration lðyÞ in their (47) corresponds to
�ðyÞ in our (33), but, without the orthogonality condition,
they have not set it to zero. In steps 2 and 3 of their
integration procedure, they argue that Aðw; yÞ must have
the same functional form as Aðw0; yÞ, though they ac-
knowledge that this does not mean simple replacement of
w0 by w. In their FLRW example, they use the central
conditions plus homogeneity to obtain 1 ! w=w0 in the
formula for A. Unfortunately, we cannot see how this can
be implemented in general, away from the origin, when we
are not assuming homogeneity.

Table I summarizes the correspondence between the
different notations.

VI. CONCLUSIONS

We have presented two methods of solving the spherical
observer metric; first a formal solution of the EFEs in terms
of arbitrary functions, and second a procedure for deter-
mining the arbitrary functions and the metric evolution

from observational data. Both are given in a clear, step
by step manner. We have been precise about where the
gauge choices are made, and have considered two possible
sets. Our main aim was to be able to lay out a solution
algorithm that could be coded for numerical implementa-
tion. This naturally divides into to two distinct stages:
determining the arbitrary functions from given observatio-
nal data, and determining the spacetime evolution from
known arbitrary functions. These are given in Sec. IV. The
understanding thus gained will be useful for generaliza-
tions away from spherical symmetry.
We emphasize that, if we are given observational data,

then they fix the arbitrary functions, and we are only free to
make the gauge choices that pin down the coordinate
freedoms. On the other hand, if we choose all the arbitrary
functions, then the observational relations are already
fixed, and there is no room to fit observations. We find
previous solution methods have not so clearly distin-
guished the two, and can be hard to follow. We also find
those methods were sometimes ambiguous about the func-
tional dependence of their solution functions, especially
when extending the solution off the PNC, so that it was not
always apparent how to proceed with calculations.
The OC papers all start from the fluid-ray tetrad equa-

tions, though a number of different solution methods and
notations are used. Our main contribution is in clarifying
how the model evolution is to be calculated. Although the
error in [4] was corrected in [8], the latter does not really
address model evolution, and the method suggested in
[9,11] may not be practicable. Also, unlike [8,9] our
method does not need to refer to a known equivalent metric
to restrict the solution.
In the formal solution, our approach has a lot in common

with previous approaches up to (33), but thereafter, up to
the final solution (40), it is new. In the solution from
observations, our method is similar to others in
Secs. IVB and to some extent IVD where yðzÞ and aðzÞ
are found, but differs in Secs. IVC and IVE where MðzÞ
and WðzÞ are found and the evolution off the PNC is
discussed. In particular, the demonstration that the evolu-
tion from one constant w null cone to the next necessarily
involves an integration down the null cone at each step, is
new. The orthogonality condition leading to � ¼ 0 is
important for the solution from scratch, but up to now
has only been obtained indirectly by comparing with the
LT metric.
The available data on galaxy observations only extends

to a finite redshift z. This is well suited to the algorithms
presented here, which involve integrations along the null
cones outwards from the center, and integrations along the
constant y worldlines. The LT functions are fully deter-
mined within the range of reliable data. Even if quite large
scale inhomogeneity is discovered, it is still possible the
cosmos approaches homogeneity on even larger scales.

In [18] it was shown that any reasonable ĈðzÞ and �nðzÞ
derived from observations could be fitted by an LT model

TABLE I. Correspondence between different OC notations.

Here In [4] In [8] In [11]

Ĉ r0 dA r0
� M 4�m m
� �

�
�
4�

�
�

�
� n n n
��n

Ĉ2 M0F M0J

n
FM0r

2
0

�M
N0ðdy=dzÞ

4�

JM0r
2
0

�m

� �� ¼ 2My

W �0 �0

M �!0
mN�
2 �!0

� M
C3 ! !

8�M
� N�
W W F W
f �kf2

a �T
� l

 Aðw; 0Þ Aðw; 0Þ
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with zero�. While this is true for nearly all z, [21] pointed
out that the maximum in the diameter distance is an
exception. The properties of this particular locus allow
the mass M to be calculated independently of (62). With
perfect observations, this cross-check would allow a deter-
mination of �. In practice, with real observations, there
would be systematic errors, and as shown in [23,24] this
cross-check may instead be used to detect and correct for
systematic errors. Thus, one would need more than the
observations considered here to distinguish nonzero �
from inhomogeneity.
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APPENDIX: THE TRANSFORMATION OF LT TO
NULL-COMOVING COORDINATES

The Lemaı̂tre-Tolman (LT) metric is [30,31]

ds2 ¼ �dt2 þ ðR0Þ2
1þ f

dr2 þ R2d�2; (A1)

where R ¼ Rðt; rÞ and R0 ¼ @R=@r. It depends on 3 arbi-
trary functions, f ¼ fðrÞ, M ¼ MðrÞ and a ¼ aðrÞ. The
matter is comoving and has zero pressure. The evolution
equation is

_R 2 ¼ 2M

R
þ fþ�R2

3
; (A2)

where _R ¼ @R=@r, and the density is given by

�� ¼ 2M0

R2R0 : (A3)

The arbitrary functions each have a physical meaning; f
gives the deviation of the constant t 3-spaces from flatness,
and also gives twice the energy per unit mass of the dust
particles;M gives the gravitational mass within the comov-
ing shells of constant r, and a gives the local time of the big
bang on each constant r worldline.

We propose the transformation

t ¼ tðw; yÞ; r ¼ y

! J ¼ @ðt; rÞ
@ðw; yÞ ¼

tw ty

rw ry

 !
¼ tw ty

0 1

 !
; (A4)

which retains y as a comoving coordinate, so the metric
becomes

ds2 ¼ �ðtwdwþ tydyÞ2 þ ðR0Þ2
1þ f

ðrwdwþ rydyÞ2

þ R2d�2 (A5)

¼ �t2wdw
2 � 2twtydwdyþ

�
�t2y þ ðR0Þ2

1þ f

�
dy2

þ R2d�2: (A6)

We want w to be a coming null coordinate, i.e. dw ¼ 0 ¼
d� ¼ d� must give ds ¼ 0, which leads to

gyy ¼ 0 ! ty ¼ �R0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p (A7)

! ds2 ¼ �t2wdw
2 þ 2tw

R0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p dwdyþ R2d�2;

(A8)

where the sign choice is because, on the past null cone
(PNC), t must decrease as r ¼ y increases. Equation (A7)
is a PDE for tðw; yÞ, and its solution will introduce a
function of w, 
ðwÞ.
Applying this transformation to the LT evolution equa-

tion (A2)

Rw ¼ _Rtw þ R0rw ¼ _Rtw; (A9)

we find the new evolution equation in the new coordinates,

Rw ¼ �tw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

R
þ fþ�R2

3

s
: (A10)

Similarly, by transforming Ry we obtain

Ry ¼ _Rty þ R0ry ¼ � _R

�
R0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
�
þ R0 (A11)

! R0 ¼ Ry

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R þ fþ �R2

3

q �
; (A12)

where (A10) was used. The metric now becomes

ds2 ¼ �t2wdw
2 þ 2Rytw

ð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R þ fþ �R2

3

q
Þ
dwdy

þ R2d�2: (A13)

Up to this point tðw; yÞ contains an undetermined function
ofw, obtained when integrating (A7). We now specify that,
at the origin, y ¼ r ¼ 0, w is the observer’s proper time,
w ¼ t, i.e.

tðw; 0Þ ¼ w; wðt; 0Þ ¼ t;

twðw; 0Þ ¼ 1; wtðt; 0Þ ¼ 1:
(A14)

and this will fix the function of integration introduced in
solving (A7).
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Comparing (1) and (A13), it is clear that

A ¼ tw; B ¼ �ty ¼
Ry

ð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R þ fþ �R2

3

q
Þ
:

(A15)

in agreement with (32) and (29).

The matter tensor transforms to

~T ab ¼ TcdðJ�1ÞacðJ�1Þbd ¼ �=t2w 0
0 0

� �
;

~Tab ¼ TcdJ
c
aJ

d
b ¼ �t2w �twty

�twty �t2y

 !
:

(A16)
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