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Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil

force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to

derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum

conservation. The thermal power emitted by the spacecraft can be computed from engineering data

obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force

into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the

contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated

Pioneer 10 Doppler data set.
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I. INTRODUCTION

Precision navigation of spacecraft requires a detailed
knowledge of small forces affecting its trajectory. This
includes the recoil force associated with thermal radiation.
It recently became clear that the small force due to the
radiation of waste heat from the spacecraft itself cannot be
ignored [1]. This is especially true in the case of the
Pioneer 10 and 11 spacecraft. A small, anomalous
Doppler residual is present in these spacecrafts’ radio
signal, and it is believed to be caused by an acceleration
of unknown origin [1–3]. Investigations of this anomaly
indicated that its magnitude is comparable to that of the
acceleration due to a thermal recoil force [4–6]. Therefore,
the possibility that the anomalous acceleration is caused by
an anisotropic emission of the heat generated on board of
the spacecraft must be investigated [7].

Surprisingly, there is no established formalism for in-
corporating the thermal recoil force into precision space-
craft navigation.1 In fact, most of the literature is dealing
with energy distribution processes, but not momentum
transfer. As a result, some authors were forced to develop
ad hoc formalisms in order to estimate the effects of the
thermal recoil force on spacecraft trajectories [9–12];
while others (e.g., [3]) only roughly estimate the magni-
tude of this force, but do not precisely determine its direc-
tion and temporal dependence, nor do they provide formal

error estimates. However, this is exactly what we need to
investigate the nature of the Pioneer anomaly.
For navigational purposes, one is interested in the mag-

nitude, direction, and temporal evolution of forces acting
on a spacecraft [13]. For the recoil force due to internally
generated heat these can be estimated using available
knowledge of the spacecraft’s geometry, thermal proper-
ties, and state. The geometry and thermal properties of the
spacecraft (excluding effects of aging) can be established
from design documentation, prelaunch test results, and
calibration experiments performed after launch. The space-
craft’s state, in turn, can be obtained for any given moment
of time from its telemetry, which contains unique data on
the power consumption, thermal status, and physical con-
figuration of the craft [1].
The purpose of this paper is to develop the methods,

tools, and procedures that are needed for the evaluation of
the thermal recoil force as a likely cause of the anomalous
acceleration of the Pioneer 10 and 11 spacecraft. This
investigation of the on-board small forces is performed in
conjunction with the analysis of the Doppler data, allowing
us to show, for the first time, how precision orbit determi-
nation can also be used to estimate a spacecraft’s thermal
properties.
This paper is organized as follows. Our analysis begins

with considering heat conduction and radiation in Sec. II.
We calculate radiation pressure in Sec. III. Next, in Sec. IV,
we explore in detail the resulting recoil force and its
relationship with the amount of heat generated. In Sec. V,
we analyze the accuracy with which the recoil force can be
determined. Next, in Sec. VI, we connect the computation
of the recoil force with orbital analysis. In Sec. VII, we
apply what we learned to simulated Pioneer 10 orbital data.
We present our conclusions in Sec. VIII.

*http://www.vttoth.com/
†turyshev@jpl.nasa.gov
1A closely related topic is that of the reemission of solar

thermal radiation by asteroids and the resulting recoil force,
otherwise known as the Yarkovsky effect [8].

PHYSICAL REVIEW D 79, 043011 (2009)

1550-7998=2009=79(4)=043011(10) 043011-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.043011


II. HEAT CONDUCTION AND RADIATION

Heat flows from internal heat sources to external radiat-
ing surfaces via three mechanisms: convection, conduc-
tion, and radiation. For the purposes of this paper, we
ignore convection within the spacecraft.2

Heat conduction is described by Fourier’s law [14]:

q ¼ �krT; (1)

where q is the heat flux (measured in units of power over
area), T is the temperature, and k is the heat conduction
coefficient. In the general case, k is a tensorial quantity, but
for homogeneous and isotropic materials, k reduces to a
scalar coefficient.3 In general, q, k, and T are all functions
of the coordinates x and time t.

Heat flux also obeys the energy conservation equation

r � q ¼ b� Ch�
@T

@t
; (2)

where b is the volumetric heat release (measured in units of
power density), Ch is the material’s specific heat, and � is
its density.

Equation (2) has general applicability. In many cases of
practical interest the internal heat sources are compact and
pointlike, and their thermal power is known: for instance,
instrumentation boxes within a spacecraft compartment.
Denoting the thermal power of n thermal sources as BiðtÞ
(i ¼ 1 . . . n), we can write

bðx; tÞ ¼ Xn
i¼1

BiðtÞ�3ðx� xiÞ; (3)

where xi is the location of the ith heat source and � is
Dirac’s delta function.

A system is in a steady state if its properties do not
change with time. In particular, this means @T=@t ¼ 0,
which leaves us with

r � q ¼ b: (4)

The heat conducted to a surface element must equal the
heat radiated by that surface element. Therefore, at the
surface,

q ¼ q � a; (5)

where a is the unit normal of the radiating surface element,
and q is the surface element’s radiant intensity.

The radiant intensity, or energy flux, of a radiating
surface is related to its temperature by the Stefan-
Boltzmann law:

qðx; tÞ ¼ ��ðx; t; TÞT4ðx; tÞ; (6)

where � ’ 5:67� 10�8 Wm�2 K�4 is the Stefan-
Boltzmann constant, while the dimensionless coefficient
0 � � � 1 is a physical characteristic of the emitting
surface. This coefficient can vary not only as a function
of location and time, but also as a function of temperature.
We describe radiation by a four-dimensional stress-en-

ergy-momentum tensor that takes the form

T�� ¼ c�2u p

p P

� �
; (7)

where u is the energy density of the radiation field, p is its
momentum density, and P is the radiation pressure tensor.
(T�� is, in fact, the stress-energy-momentum tensor of the
electromagnetic field in a vacuum.)
The stress-energy-momentum tensor obeys the conser-

vation equation

r�T
�� ¼ 0; (8)

where r� denotes covariant differentiation with respect to

the coordinate x�. In three dimensions, this yields the
following conservation equations:

c�2 _u�r � p ¼ 0; (9)

_p�r � P ¼ 0; (10)

where the dot denotes differentiation with respect to time,
i.e., _x ¼ @x=@t.
The energy E in a given volume V is

E ¼
Z

udV (11)

by definition. The power, denoted by Q, is

Q ¼ dE

dt
¼

Z
_udV ¼ c2

Z
r � pdV; (12)

or, after applying Gauss’s theorem,

Q ¼ c2
Z

p � dA ¼ c2
Z

p � adA; (13)

where A represents a surface enclosing the volume V and a
is the unit normal of surface element dAwith area dA, such
that dA ¼ adA.
Comparing with (5) and noting that Q ¼ R

qdA, we
obtain the relationship between radiant intensity and mo-
mentum density at the radiating surface:

qðx; tÞ ¼ c2pðx; tÞ � a: (14)

We describe the radiative flow of energy E using the
intensity4 I, which is the flow of energy across surface
element dA, in a time interval dt, in the solid angle d!

2We note that convection may be significant in the case of
spacecraft that utilize a liquid or gas cooling system or in which
substantial quantities of fuel can flow from one part of the
spacecraft to another.

3A notable case of anisotropic conductivity where k is tenso-
rial is that of multilayer insulation.

4Some textbooks call the quantity I the radiance, and its
integral over a finite surface the (radiant) intensity.
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around direction n:

E ¼
ZZZ

Iðx; t;nÞn � dAd!dt; (15)

or, after differentiating with respect to t,

Q ¼ dE

dt
¼

ZZ
Iðx; t;nÞn � dAd!: (16)

Comparing with (13), we get

p ¼ 1

c2

Z
Iðx; t;nÞnd!: (17)

From (14), then, we obtain

qðx; tÞ ¼
Z

Iðx; t;nÞn � ad!: (18)

A surface is defined as a diffuse or Lambertian emitter if
the intensity I does not depend on the direction of radiation
emanating from a surface element. In this case, we can take
I outside the integral sign and write

qðx; tÞ ¼ Iðx; tÞ
Z

n � ad!: (19)

The integral on the right-hand side should be evaluated
over a hemispherical surface of unit radius centered around
the surface element dA. Parameterizing the integration
surface using spherical coordinates ðr; �; �Þ (with � ¼ 0
at the north pole), we note that d! ¼ sin�d�d� and n �
a ¼ cos�, and the integral reads

Z
n � ad! ¼

Z 2	

0

Z 	=2

0
cos� sin�d�d� ¼ 	; (20)

thus

qðx; tÞ ¼ 	Iðx; tÞ: (21)

Radiation from a surface element dA ¼ dA1 that is
intercepted by a second surface element dA2 at distance
r can be calculated by using, as the solid angle, d! ¼
r�2n � dA2 in (16):

Q1!2 ¼
ZZ Iðx; t;nÞ

r2
n � dA1n � dA2

¼
ZZ Iðx; t;nÞ cos�1 cos�2

r2
dA1dA2; (22)

where �1 and �2, defined by cos�1 ¼ n � dA1=dA1 and
cos�2 ¼ n � dA2=dA2, are the angles between the direc-
tion of heat radiation and the normals of the surface
elements dA1 and dA2, respectively.

If both surfaces are Lambertian emitters, and we take
into account heat flowing in both directions, the heat Q12

exchanged between the two surfaces is

Q12 ¼
ZZ ðq1 � q2Þ cos�1 cos�2

	r2
dA1dA2

¼
ZZ ð�1T4

1 � �2T
4
2Þ cos�1 cos�2
	r2

dA1dA2: (23)

These results describe the radiative exchange of energy.
Next, we turn our attention to momentum exchange.

III. RADIATION PRESSURE AND THE RECOIL
FORCE

The pressure tensor of radiation is written as [15]

P ðx; tÞ ¼ 1

c

Z
Iðx; t;nÞnnd!; (24)

where uv is the dyadic product of two vectors u and v.
(This form of the pressure tensor coincides with the
Maxwell stress tensor for plane or spherical electromag-
netic waves.) For a Lambertian emitter, once again we can
take I outside the integral sign, yielding

P ðx; tÞ ¼ 1

c
Iðx; tÞ

Z
nnd!: (25)

The recoil force acting on the emitter will be of the same
magnitude, but opposite in sign to the change in momen-
tum in a given volume. It can be written as

F ðtÞ ¼ �
Z

_pdV: (26)

After using (10) and then applying Gauss’s theorem, we get

F ðtÞ ¼ �
Z

r � Pðx; tÞdV ¼ �
Z

Pðx; tÞ � dA: (27)

For a Lambertian emitter, this force then becomes [9–12]

F ðtÞ ¼ � 1

c

Z �
Iðx; tÞ

Z
nn � ad!

�
dA: (28)

The inner integral can be evaluated by making use of the
identity ðabÞ � c ¼ aðb � cÞ:

Z
ðnnÞ � ad! ¼

Z
ða � nÞnd!: (29)

As with (19), we integrate over a hemispherical surface of
unit radius centered around the surface element dA. We set
up a spherical coordinate system ðr;�; �Þ such that � ¼ 0
corresponds to the north pole (that is, the direction of the
surface normal a, and we set up two additional basis
vectors bð� ¼ 	=2; � ¼ 0Þ and cð� ¼ 	=2; � ¼ 	=2Þ
such that n can be expressed as

n ¼ ðn � aÞaþ ðn � bÞbþ ðn � cÞc
¼ cos�aþ sin� cos�bþ sin� sin�c: (30)

To integrate (29), we use a � n ¼ cos� to obtain
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Z
cos�½cos�aþ sin� cos�bþ sin� sin�c�d!

¼
Z 2	

0

Z 	=2

0
cos2� sin�ad�d� ¼ 2	

3
a: (31)

Therefore,

F ðtÞ ¼ � 2

3

1

c

Z
qðx; tÞdA; (32)

indicating that, in the Lambertian case, the radiation pres-
sure is isotropic, and the radiation pressure tensor reduces
to a scalar quantity:

P ðx; tÞ ¼ 2

3

1

c
qðx; tÞI; (33)

where I is the identity tensor.
As described previously, q can be obtained by solving

the heat conduction equations (1) and (2), along with the
radiative heat transfer equation (23) and boundary
conditions.

The surface density of the recoil force that corresponds
to (33), acting on surface element dAwith unit normal a, is

f ðx; tÞ ¼ � 2

3

1

c
qðx; tÞa: (34)

From this, the recoil force can be computed by integra-
tion5:

F ðtÞ ¼
Z

fðx; tÞdA ¼ � 2

3

1

c

Z
qðx; tÞdA: (35)

This result establishes the relationship we sought between
radiated heat and the associated recoil force.

IV. THE RECOIL FORCE AND ITS SOURCES

Heat conduction q inside a heat emitting object and the
radiant intensity q at its exterior surfaces can be obtained
by solving, in the steady state, Eqs. (4) and (5) for the
unknown functions q and q using the known functions a
(representing the emitter’s geometry) and b (the volumetric
heat release inside the emitter), along with appropriate
boundary conditions (e.g., sky temperature). Given con-
stant boundary conditions and an unchanging geometry,
the solution for qðx; tÞ can be obtained in terms of bðx; tÞ.
The recoil force FðtÞ, which is a functional of qðx; tÞ as per
(35), can therefore be expressed as a functional of bðx; tÞ:

F ðtÞ ¼ F½bðx; tÞ�: (36)

In many cases, b can be represented by discrete, compact
heat sources in accordance with (3). As we noted, this is the
case, in particular, for spacecraft containing instrumenta-
tion boxes within its compartment, with telemetered power
readings available for each. In this case, we can write F as a
functional of the n functions BiðtÞ:

F ðtÞ ¼ F½B1ðtÞ; B2ðtÞ; . . . ; BnðtÞ�: (37)

The magnitude and direction of the recoil force are both
functions of time. However, if the emitting object is rotat-
ing, and its rate of rotation is sufficiently high compared to
the rate of change of the recoil force, the time average
vector components of the recoil force that lie in the plane of
rotation will be negligible. The residual recoil force will
always be perpendicular to the plane of rotation, i.e.,
parallel to the rotating object’s spin axis.
To see this, we write the recoil force in the form

F ðtÞ ¼ FkðtÞ þ Rð!tÞ � F?ðtÞ; (38)

where

F kðtÞ ¼ ðFðtÞ � sÞs (39)

is the component of FðtÞ parallel with the spin axis repre-
sented by the unit vector s (which, we assume, remains
constant in time), and

F?ðtÞ ¼ R�1ð!t0ÞðFðtÞ � FkðtÞÞ (40)

is a perpendicular component of FðtÞ in a corotating refer-
ence frame, while Rð�Þ is a tensor representing a rotation
by the angle �.
Ignoring forces other than the recoil force, the position

of the rotating object as a function of time can be calcu-
lated as

x ðtÞ ¼ xðt0Þ þ _xðt0Þðt� t0Þ þ
ZZ 1

m
FðtÞd2t; (41)

where xðt0Þ is the position, _xðt0Þ the velocity of the object
at some time t ¼ t0. We assume that the object’s mass, m,
remains constant in time. We denote the displacement of
the object as a result of the recoil force as �x ¼ xðtÞ �
x0 � v0t. Therefore,

�x ¼ 1

m

ZZ
ðFkðtÞ þ Rð!tÞ � F?ðtÞÞd2t: (42)

The displacement due to Fk is entirely along the spin axis.

To calculate the displacement due to the perpendicular
component, we assume that it is well approximated by a
linear function of time:

F?ðtÞ ¼ F0 þ _F?t; (43)

where _F? is constant. Thereafter, noting that
R
Rð!tÞdt ¼

!�1Rð!t� 	=2Þ, we calculate the double integral for n

5Knowing the recoil force surface density also allows us to
compute the torque acting on the emitter. The torque surface
density is � ¼ ðx� x0Þ � f, where x0 is the location of the
emitter’s center of gravity. The total torque T, then, can be
written as

T ðtÞ ¼
Z
ðx� x0Þ � fðx; tÞdA

¼ � 2

3

1

c

Z
qðx; tÞðx� x0Þ � dA:
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full revolutions over a time period�t ¼ 2	n=! and obtain

�x? ¼ 1

!2m
Rð!t0 � 	Þ � _F?�t; (44)

describing an arithmetic spiral. In three dimensions, then,
the motion of the object is described by a helix of widening
radius around the object’s original axis of rotation. The
growth of the width of the helix is governed by _F?. If F?
remains nearly constant in time, _F? ’ 0 and the object’s
spin axis returns to its original position after every full
revolution with no cumulative displacement in the perpen-
dicular direction. Therefore, ignoring a constant F? intro-
duces only a small periodic error and no cumulative error
in the calculations, and ignoring F? in the case when _F? is
nonvanishing but small and approximately constant only
introduces a small cumulative error. This means that in the
case of a spinning object, the recoil force (37) can be
expressed as

F ðtÞ ¼ Fk½B1ðtÞ; B2ðtÞ; . . . ; BnðtÞ�s: (45)

Without loss of generality, Fk can be expanded in the

form of a Taylor series in the Bi. For the purposes of the
present paper, it is sufficient to keep only linear terms.
With this in mind, and noting that Fkð0; . . . ; 0Þ ¼ 0, we can
write

FkðtÞ ¼ 1

c

Xn
i¼1


iBiðtÞ; (46)

where the dimensionless coefficients 
i are given by


i ¼ c
@Fk½BiðtÞ�
@BiðtÞ : (47)

The factors 
i are determined by the geometry and optical
properties of the emitter and are expected to remain con-
stant so long as the emitter’s geometry and optical proper-
ties do not change.

For any given heat source, the principle of conservation
of energy dictates that �1 � 
i � 1. The coefficient is
zero if heat from that particular source is emitted isotropi-
cally, resulting in no net recoil force. Therefore, these
factors determine the efficiency with which each heat
source contributes to the object’s acceleration.

V. APPLICATION AND ERROR ANALYSIS

The formalism that we obtained can be employed in a
direct calculation of the recoil force using conventional
numerical methods of heat transfer. Together, Eqs. (1) and
(2) are two first-order differential equations in two un-
known functions q and T that describe heat conduction
inside materials, while (23) represents additional constraint
equations describing radiatively coupled surface elements.

A specific solution can be obtained if the material prop-
erties (represented by k and �, as well asCh and �) and heat

sources (represented by b) are known, and appropriate
boundary conditions are given.
One such boundary condition is the steady-state condi-

tion @T=@t ¼ 0, in which case we replace (2) with (4). For
a heat emitting object situated in empty space, another
boundary condition can be specified in the form if the
sky temperature (i.e., the microwave background radiation
temperature) to which the object’s exterior surfaces are
radiatively coupled. A practical difficulty arises if the
object has facing surfaces (i.e., surfaces that are radiatively
coupled to one another), but these situations are dealt with
easily using standard finite element or ray-tracing numeri-
cal codes.
It should be noted that in this case, a solution is fully

specified when the volumetric heat release bðx; tÞ is
known, even as no temperature values inside the emitting
object are given. When spacecraft telemetry provides both
power and temperature measurements, these data together
represent a redundant data set that can be used to verify and
validate thermal models. Laborious but, in principle,
straightforward application of these equations can lead to
a temperature map of the exterior surfaces of an emitter.
When this temperature map is known, the recoil force can
be computed directly using Eq. (35).
An alternative to evaluating the vector-valued integral

(35) along the nontrivial exterior geometry of the emitter is
the use of a control volume technique [7]. The anisotropy
of thermal emissions can be determined by surrounding the
object with an infinite control volume, which is approxi-
mated by a sufficiently large fictitious spherical surface
centered around the emitter that is used to intercept all
radiated heat coming from the emitter (see discussion of a
similar approach involving pixel arrays in [16])). The
recoil force is computed by evaluating the integral (35)
along the surface of this sphere. These calculations can be
carried out using standard thermal modeling tools6 that
have been used successfully for the design and operations
of many missions at the Jet Propulsion Laboratory (JPL).
How accurately can the thermal recoil force be deter-

mined? It always has been recognized that accurate com-
putation of this force is a difficult task. Computing the total
amount of heat emitted by a spacecraft is straightforward:
if the thermal power of internal heat sources is known and
the spacecraft is in a steady state, the amount of heat it
radiates must equal the generated heat.
The recoil force, however, depends not only on the total

amount of heat radiated by the spacecraft, but on the
differences in heat radiated in different directions. These,
in turn, are calculated using detailed knowledge of the
spacecraft’s geometry and material properties, which
may be poorly known.

6For instance, Thermal Desktop, the Thermal Radiation
Analysis System (TRASYS), and Systems Improved
Numerical Differencing Analyzer (SINDA) [7,10].
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Considering the force model (46), we note that once a
comprehensive numerical model is available, it needs to be
evaluated only a modest number of times in order to obtain
the efficiency factors 
i through Eq. (47). Additional
evaluations can be used to determine the error of this
homogeneous and linear approximation, which we denote
with �model. If we assume that sources of error are inde-
pendent and not correlated, the error of the recoil force
estimate (46) can then be written as

�2
FðtÞ ¼

1

c2
Xn
i¼1

ð�2

i
B2
i ðtÞ þ 
2

i �
2
Bi
ðtÞÞ þ �2

model; (48)

where uncertainties in the knowledge of BiðtÞ are repre-
sented by the standard deviations �Bi

ðtÞ, and uncertainties

in the calculation of 
i are represented by the standard
deviations �
i

.

For spacecraft, the values of BiðtÞ are either measured
values from telemetry, or nominal values from design
documentation. In the former case, �Bi

ðtÞ can be obtained

by considering sensor sensitivity and telemetry resolution.
In the latter case, uncertainties may be available from
design documentation, or may be inferred, e.g., by compar-
ing nominal power consumption with measured values of
available electrical power.

The values of the �
i
are the most difficult to estimate.

These values must be developed on a case-by-case basis,
accounting for uncertainties in the knowledge of the space-
craft’s geometry, material properties, and physical configu-
ration, as well as the effects of aging on these.

VI. ORBIT DETERMINATION

The position of a distant spacecraft is rarely observed
directly. Instead, the spacecraft’s position is inferred from
radio-metric observables, notably radio-metric Doppler
and range measurements. The expected values of these
measurements can be computed if the spacecraft’s position
and velocity are known. Not including general relativistic
corrections [13,17], the spacecraft’s equation of motion
can be written in the general form

€r ¼ Xl
j¼1

GMj

rj � r

jrj � rj3 þ
1

m

X
k

Fk; (49)

where r is the position of the spacecraft, G is Newton’s
gravitational constant, Mj are the masses, and rj are the

positions of bodies that influence the spacecraft’s position
gravitationally (these would typically include all major
solar system bodies and any smaller bodies that are suffi-
ciently near the spacecraft to affect its orbit), m is the
spacecraft’s mass, and Fk are any nongravitational forces
acting on the spacecraft.

Once the orbit of the spacecraft is known, the expected
values of radio-metric observables can be calculated by
taking into account signal propagation in the solar system

environment, atmospheric effects, antenna locations, the
relative motion of antennae and spacecraft, and other ef-
fects such as the spacecraft’s spin that can influence the
signal.
Equation (49) is a second-order differential equation in

r. To obtain a specific solution of such an equation, one
needs suitable initial conditions, which can be specified in
the form of the initial state vector that consists of rðt0Þ and
_rðt0Þ at some time t ¼ t0. The purpose of the orbit deter-
mination effort is to find initial conditions for which the
difference between computed and observed radio-metric
values, i.e., the residual, is minimized.
The small forces model in (49) may be parameterized. If

the parameter values are unknown, the orbit determination
exercise can be used to find these along with the initial state
vector.
As an example, solar pressure may be represented as a

force acting on the spacecraft, modeling the spacecraft’s
geometry, with given solar absorptance, specular, and dif-
fuse reflectivity coefficients of its surfaces. These coeffi-
cients may not be known in advance accurately, but they
can be determined along with the orbital initial conditions
through minimizing the residuals of radio-metric observ-
ables by simultaneous adjustment of the initial state vector
and the solar pressure coefficients.
Precision orbit determination requires the repeated

evaluation of (49) a large number of times. Therefore, it
is essential that the forces Fk can be computed with as little
computational overhead as possible. In the case of the
thermal recoil force, this precludes the possibility of eval-
uating a comprehensive thermal model multiple times at
every point along the spacecraft’s orbit. However, after the
coefficients 
i have been determined by evaluating the
comprehensive thermal model a limited number of times,
the thermal recoil force (45) can be incorporated easily into
the orbit determination process.
In a more innovative approach, we can treat the coef-

ficients 
i as unknown parameters, and use the orbit deter-
mination program to determine their values, along with the
initial state vector and other parameters. This approach is
especially notable because it is applicable even when no
detailed thermal model for a spacecraft is available. When
a detailed thermal model is present, agreement between the
two methods validates that model and the hypothesis that
no additional forces of unknown origin act on the space-
craft. Conversely, if the two calculations are in significant
disagreement, that can be a strong indication that an
anomalous force of unknown origin is present.
So long as the amount of heat generated by on-board

components is known and the spacecraft’s geometric and
optical properties are not changing with time, one can
make the assumption that the on-board generated recoil
force is well modeled by (46) and that no other unknown
forces affect the spacecraft, and then proceed to verify this
model and at the same time determine the values of 
i by
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fitting to the orbital data. Conversely, even when a detailed
thermal model is available, independent determination of
the 
i from orbital data alone offers a robust way to verify
the results of the thermal model and help confirm or reject
any hypotheses concerning the presence of additional
forces of unknown origin.

VII. THE CASE OF THE PIONEER ANOMALY

We have applied the methods that we developed in the
previous sections to the study of the Pioneer anomaly [3].

Pioneer 10 and 11, launched in March 1972 and
April 1973, respectively, were the first man-made objects
to travel to the outer regions of the solar system and
beyond. After flying by Jupiter (and, in the case of
Pioneer 11, Saturn), the spacecraft continued on hyperbolic
escape trajectories, while they were being tracked by
NASA’s Deep Space Network system of radio tracking
stations. Pioneer 11 remained operational until 1995,
although precision navigation of this spacecraft ended in
1990 due to on-board failures. Pioneer 10 was operating as
late as 2003, and precision Doppler measurements were
received from this spacecraft until the end of its mission.7

The Pioneer spacecraft [18] were spin stabilized. Their
spin axis, coinciding with the antenna axis, was pointed
towards the Earth to ensure continuous communication.
Spin stabilization meant that trajectory correction maneu-
vers were infrequent; most of the time late in their mis-
sions, Pioneer 10 and 11 were flying undisturbed. Because
of this, the twin Pioneers were considered a reliable plat-
form for precision gravitational measurements, searching
for a planet beyond Pluto, and for gravitational waves.

While neither ‘‘planet X’’ nor gravitational waves were
detected, there remained an unexplained residual between
calculated and observed Doppler data [2,3]. This residual
can be eliminated by assuming that a constant acceleration
of unknown origin pushes the spacecraft towards the Sun.
The magnitude of this acceleration is

aP ¼ ð8:74� 1:33Þ � 10�10 m=s2: (50)

A possible origin of this approximately constant accel-
eration could be a thermal recoil force. Electrical power on
board the Pioneer spacecraft was generated by low-
efficiency RTGs (radioisotope thermoelectric generators)
that produced waste heat in excess of 2 kW [1] throughout
the mission. Electrical equipment on board the spacecraft
produced an additional �100 W of heat (see Fig. 1). This
heat was radiated away by the spacecraft in a complex
pattern, as determined by the spacecraft’s geometry and
material properties. A small anisotropy, less than 2% in
magnitude, would be sufficient to provide the necessary
force to yield the anomalous acceleration (50).

The RTGs are mounted on the Pioneer spacecraft at the
end of booms that are approximately 3 m in length. The

RTGs are compact objects. This suggests that the recoil
force due to RTG heat may be modeled accurately as a
homogeneous linear function of the RTG heat, in accor-
dancewith the discussion in Sec. IV. Further, although each
spacecraft has four RTGs, they are mounted symmetrically
and their temporal behavior is nearly identical; therefore,
they can be treated as a single heat source.
Electrical heat is produced inside the spacecraft body.

Most of this body is covered by multilayer thermal insu-
lation, resulting in small exterior temperature differences.
This implies that the recoil force due to electrically gen-
erated heat can also be a homogeneous linear function of
the electrical heat, and further, the possibility that any
particular distribution of heat sources inside the spacecraft
body can be neglected, only their total thermal output must
be considered.
Additional heat sources on board the spacecraft include

12 small (1 W) radioisotope heater units (RHUs) and the
propulsion system. The former can be ignored due to their
geometry; most of the heat produced by the RHUs is
radiated in a direction perpendicular to the spin axis [19].
Heat generated by the propulsion system, in turn, can be
ignored as these events are transient, and any thermal recoil
force due to propulsion system heating is masked by un-
certainties in the modeling of the maneuvers.
Further, as the Pioneer spacecraft are spinning, we only

need to consider the recoil force in the spin axis direction,
according to Sec. IV.
Temperatures inside the spacecraft are nearly constant,

changing only on the time scale of years. Therefore, the
spacecraft is accurately described by a steady-state model.
Using recently recovered documentation [1], a highly

detailed finite element model incorporating �3000 nodes
and 2600 plate elements, using 3:4� 106 radiation con-
ductors and�7000 linear conductors has been constructed
[7]. Temperatures and power readings from telemetry were
used as a redundant data set to establish boundary con-
ditions. Analysis of this model is presently under way and
results will be reported when they become available.
This model will also be used to validate the assumptions

leading to (46), notably by verifying that the resulting
recoil force is indeed a homogeneous linear functional of
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FIG. 1 (color online). RTG heat (red þ) and electrical heat
(green �), measured in W, on board Pioneer 10, from telemetry
[1,7].

7Only Doppler; Pioneer 10 and 11 had no range observable.
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the RTG and electrical heat:

F ðtÞ ¼ 1

c
ð
rBrðtÞ þ 
eBeðtÞÞs; (51)

where 
r and 
e are the efficiency factors associated with
RTG thermal power BrðtÞ and electrical power BeðtÞ. As
before, s is a unit vector pointing in the spin axis direction.

The discrepancy between the linear model (51) and a
comprehensive thermal model can be evaluated to yield an
estimate of �model. We have not yet computed the �model

numerically.
The value of BeðtÞ is available from telemetry (Fig. 1).

Uncertainties in this value are due primarily to two factors.
First, telemetry has limited resolution (analog sensor read-
ings are telemetered after conversion to 6-bit binary val-
ues). Second, for some instruments on board, only their
nominal power consumption is known, telemetry provides
only their on/off state, not their actual power level. Taking
all these uncertainties into account, we calculate

�Be
¼ 1:8 W: (52)

The total power of the RTGs is known precisely from
prelaunch documentation. The physics of the radioactive
decay of the 238Pu fuel is well understood. The amount of
power removed from the RTGs in the form of electrical
energy is telemetered to the ground, and thus the time
dependence of the RTG thermal power BrðtÞ is known.
The primary source of uncertainty in the calculation of
BrðtÞ is the limited resolution of this telemetry. This un-
certainty is calculated as

�Br
¼ 1:1 W: (53)

We note that �Be
and �Br

are anticorrelated; if the

electrical heat is overestimated, the RTG heat is under-
estimated using the same telemetry, and vice versa.
Treating the two sources of error as uncorrelated, therefore,
yields a conservative error estimate.

Additional temperature information is available in the
telemetry stream, measured by sensors located at various
points around the spacecraft. These temperature readings
offer redundant information about the thermal state of the
spacecraft that can be used to verify and validate thermal
models.

The effort to develop a comprehensive thermal model of
the Pioneer 10 and 11 spacecraft is ongoing. This effort is
expected to determine an estimate for 
e and 
r. A naive
analytical model of the spacecraft, verified by a simple ray-
tracing computational model, suggests that the values must
be approximately


e ’ 0:36; 
r ’ 0:010; (54)

albeit the relative error on these figures may be a high as
100% or more, due to the simplicity of the models that
were used to obtain them. Nevertheless, we use these
figures as typical figures in the present analysis.

We have recently developed a precision orbit determi-
nation program [20] that can process Pioneer 10 and 11
Doppler data. It uses the latest JPL ephemerides (DE-414)
to determine the position of solar system bodies. The
program models spacecraft orbits using relativistic equa-
tions of motion. It accurately models signal propagation by
taking into account, for instance, the Shapiro time delay
and effects of the troposphere and solar plasma on the radio
signal. This program has been used successfully to confirm
the existence of the Pioneer anomaly [20]. The program
also has the capability to utilize spacecraft telemetry and
model on-board generated thermal recoil forces (46).
An effort to recover all available Pioneer 10 and 11 data

is presently ongoing [1,7]. Before we apply our method to
this soon complete data set, it was essential to demonstrate
the viability of our method. Notably, we would like to
know if it is possible, in principle, to distinguish between
a constant sunward acceleration and a thermal recoil force.
For this purpose, we built simulated sets of Pioneer 10
Doppler data. In one particular simulation, we used the
following fictitious values of a constant acceleration term
a0 and thermal coefficients 
e and 
r:

a0 ¼ 2� 10�10 m=s2; (55)


e ¼ 0:3; (56)


r ¼ 0:015; (57)

consistent with (54).
Furthermore, the simulation utilized actual Pioneer 10

telemetry to model the internal heat of the spacecraft. The
simulated data set ran from 1987 to 1998 and contained
13 534 Doppler data points. To make the simulation real-
istic, Gaussian random noise with � ¼ 5 mHz was added
to the Doppler data. Additionally, a sinusoidal diurnal term
and a sinusoidal annual term, both with a peak-to-peak
amplitude of 10 mHz, were added to the signal, to simulate
possible mismodeling, by effects such as those of the
atmosphere on the signal and of the dynamics of the solar
system.
Position values rounded to the nearest 1000 km and

velocities rounded to the nearest m/s were used as the
initial state vector (this is the typical magnitude of error
we observe when we use Pioneer ephemeris data from JPL
Horizons On-Line Ephemeris System [21] for initial con-
ditions). We used initial values of a0 ¼ 1� 10�10 m=s2,

e ¼ 0, and 
r ¼ 0. Though we have the capability to deal
with maneuvers in the actual data, for the purposes of this
exercise we did not simulate maneuvers. The resulting
prefit residuals are shown in Fig. 2.
The goal of this simulation was to demonstrate that even

in the presence of noisy data, a constant acceleration term
and acceleration due to thermal radiation can be clearly
distinguished. Despite the presence of noise, our orbit
determination algorithm successfully recovered the values
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of

a0 ¼ ð2:1107� 0:0170Þ � 10�10 m=s2; (58)


e ¼ 0:292 50� 0:002 54; (59)


r ¼ 0:014 856� 0:000 081: (60)

The post-fit residuals are shown in Fig. 3. The root mean
square residual of this solution is 5.84 mHz, which corre-
sponds to the noise that was added to this simulated data
set.

Furthermore, the cross-correlation between a0, 
e, and

r remains small. This can be seen by visual inspection of
the relevant elements of the covariance matrix, shown in
Table I. We note that, after normalizing using the values of
a0, 
r, and 
e, the diagonal elements of the covariance
matrix dominate.

These results indicate that the approach we presented is
feasible. It is possible, in principle, to distinguish a con-
stant acceleration from time-varying acceleration due to
thermal radiation using Doppler data alone, even when the
data has a moderate amount of noise. Nonetheless, it is
imperative to reduce the noise in the data as much as
possible, for example, by carefully modeling small effects
such as those of the atmosphere and solar plasma on the
spacecraft’s radio signal, or small accelerations due to fuel
leaks and maneuver uncertainties.
Once an improved thermal model becomes available, it

can be used to verify the linear hypothesis expressed in
(46), which forms the basis of the approach we present
here. The thermal model may also be used to quantify the
error margins on 
e and 
r. On the other hand, analysis of
recently recovered Doppler data can confirm if the orbital
behavior of the Pioneer spacecraft remained consistent
throughout their missions, and may also help reduce the
error margins on any residual acceleration that remains
after accounting for the thermal recoil force.

VIII. CONCLUSIONS

An object that emits heat experiences a recoil force due
to radiation pressure. In this paper, we developed the basic
equations that can be used to estimate the magnitude of this
recoil force and relate the recoil force to the amount of heat
produced internally. We have been able to show how, under
specific circumstances, the recoil force can be modeled as
an homogeneous linear function of the power of discrete
internal power sources. When this approach is applicable,
the linear relationship can be readily incorporated into
orbit determination efforts.
To analyze the trajectory of Pioneer 10 and 11, we

developed orbit determination software that estimates the
thermal recoil force acting on the spacecraft. Our software
uses telemetry information as it calculates the thermal
power of on-board heat sources as functions of time.
A comprehensive thermal model, presently under devel-

opment, will allow us to verify the key assumptions behind
our modeling, most notably the assertion that the thermal
recoil force is accurately modeled as a linear, homogene-
ous function of electrical heat and heat from the radioiso-
tope thermoelectric generators.
Using a simulated Doppler data set and actual

Pioneer 10 telemetry, we demonstrated that it is possible
in principle to distinguish acceleration due thermal radia-
tion from a constant sunward acceleration term.
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FIG. 3. Post-fit residuals of the simulated Pioneer 10 data set
after the values of a0, 
e, and 
r along with the initial state
vector were fitted successfully.

TABLE I. Covariance matrix elements for a0, 
r, and 
e.

a0 
r 
e

a0 2:91� 10�24 �2:15� 10�19 �2:95� 10�15


r �2:15� 10�19 6:51� 10�9 �1:20� 10�7


e �2:95� 10�15 �1:20� 10�7 6:45� 10�6
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FIG. 2. Simulated Pioneer 10 Doppler prefit residuals.
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Newly recovered Doppler data are now available as a
result of an extensive data recovery effort [1,7]. This will
allow us to extend our analysis and verify whether or not
the thermal recoil force can account for the anomalous
acceleration of Pioneer 10 and 11. These results will be
published elsewhere when they become available.

We emphasize that the approach presented here, notably
the direct utilization of flight telemetry in precision space-
craft navigation codes, has never been attempted before.
The approach we describe is applicable not only to the case
of Pioneer 10 and 11, but also to the case of present and
future spacecraft. One mission, in particular, that may
benefit from this approach is New Horizons, on its way
towards an encounter with Pluto in 2015. While presently
not used for gravitational research, such investigations
could be conducted during its multiyear cruise. If such an
investigation is undertaken, it will require accurate esti-
mates of the thermal recoil force due to the waste heat
produced by New Horizons’ RTG and electrical
equipment.
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