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In a recent paper [A.G. Aksenov, R. Ruffini, and G.V. Vereshchagin, Phys. Rev. Lett. 99, 125003

(2007).] we considered the approach of nonequilibrium pair plasma towards a thermal equilibrium state

adopting a kinetic treatment and solving numerically the relativistic Boltzmann equations. It was shown

that plasma in the energy range 0.1–10 MeV reaches kinetic equilibrium first, on a time scale tk &

10�14 sec , with detailed balance between binary interactions such as Compton, Bhabha, and Møller

scattering, and pair production and annihilation. Later the electron-positron-photon plasma approaches

thermal equilibrium on a time scale tth & 10�12 sec , with detailed balance for all direct and inverse

reactions. In the present paper we systematically present details of the computational scheme used there,

as well as generalize our treatment, considering proton loading of the pair plasma. When proton loading is

large, protons thermalize first by proton-proton scattering, and then, with the electron-positron-photon

plasma, by proton-electron scattering. In the opposite case of small proton loading, proton-electron

scattering dominates over proton-proton scattering. Thus in all cases the plasma, even with a proton

admixture, reaches a thermal equilibrium configuration on a time scale tth & 10�11 sec . We show that it

is crucial to account for not only binary but also triple direct and inverse interactions between electrons,

positrons, photons, and protons. Several explicit examples are given, and the corresponding time scales for

reaching kinetic and thermal equilibria are determined.

DOI: 10.1103/PhysRevD.79.043008 PACS numbers: 52.27.Ep, 05.20.Dd

I. INTRODUCTION

Electron-positron plasma is of interest in many fields of
physics and astrophysics. In the early Universe [1–4] dur-
ing the lepton era, ultrarelativistic electron-positron pairs
contributed to the matter content of the Universe. In
gamma-ray bursts (GRBs) electron-positron pairs play an
essential role in the dynamics of expansion [5–7].
Indications exist that the pair plasma is present also in
active galactic nuclei [8], in the center of our Galaxy [9],
around hypothetical quark stars [10]. In the laboratory pair
plasma is expected to appear in the fields of ultra intense
lasers [11], where particle production may serve as a
diagnostic tool for high-energy plasma [12].

In many stationary astrophysical sources the pair plasma
is thought to be in thermodynamic equilibrium. A detailed
study of the relevant processes [13–18], radiation mecha-
nisms [19], possible equilibrium configurations [15,20,21],
and spectra [22] in an optically thin pair plasma has been
carried out. Particular attention has been given to colli-
sional relaxation processes [23,24], pair production and
annihilation [25], relativistic bremsstrahlung [26,27], and
double Compton scattering [28,29].

An equilibrium occurs if the sum of all reaction rates
vanishes. For instance, electron-positron pairs are in equi-
librium when the net pair production (annihilation) rate is
zero. This can be achieved in a variety of ways, and the

corresponding condition can be represented as a system of
algebraic equations [30]. However, the main assumption
made in all the above-mentioned works is that electrons,
positrons, and protons (photons) obey, respectively, Fermi-
Dirac (Bose-Einstein) distributions. The latter is shown to
be possible, in principle, in the range of temperatures up to
10 MeV [13,24]. Our main task is to prove that, indepen-
dently of a wide set of initial conditions, thermal equilib-
rium forms when the phase space distribution functions are
recovered during the process of thermalization by two-
body and three-body direct and inverse particle-particle
collisions.
At the same time, in some of the cases mentioned above

the pair plasma can be optically thick. Although moder-
ately thick plasmas have been considered in the literature
[21], a qualitative description [13,20] is only available for
large optical depths. An assumption of thermal equilibrium
is often adopted for rapidly evolving systems such as GRBs
without explicit proof [5–7,31]. Then, a hydrodynamic
approximation is usually applied for both leptons and
photons. However, particles may not be in equilibrium
initially. Moreover, they may not reach equilibrium in
rapidly evolving systems such as the early Universe or
transient events, when the energy is released on a very
short time scale.
In the literature there is no consensus on this point. Some

authors considered thermal equilibrium as the initial state
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prior to expansion [5,7], while others did not [32]. In fact,
the detailed study of the pair plasma equilibrium configu-
rations, performed in [20], cannot answer this question,
because essentially nonequilibrium processes have to be
considered.

Thus, observations provide motivation for theoretical
analysis of physical conditions taking place in nonequilib-
rium optically thick pair plasma. Notice that there is a
substantial difference between ion-electron plasma and
electron-positron plasma. First, the former is collisionless
in a wide range of parameters [33], while collisions are
always essential in the latter. Second, when collisions are
important, the relevant interactions in the former case
include Coulomb scattering of particles, which is usually
described by the classical Rutherford cross section. In
contrast, interactions in the pair plasma are described by
quantum cross sections even if the plasma itself can still be
treated as a classical one.

In [34,35] we clarified the issue of the initial state of the
pair plasma in GRBs sources in the case of pure pair
plasma. Our numerical calculations show that the pair
plasma on a time scale t & 10�12 sec reaches thermal
equilibrium prior to expansion, due to intense binary and
triple collisions. In this paper we present details about the
computational scheme adopted in [34] and turn to a more
general case, the pair plasma loaded with baryons. The
occurrence of the thermalization process and the corre-
sponding time scales is necessary for determining the
dynamics of GRBs. Thermalization time scales t &
10�12 sec are indeed necessary in order to relate the
observed properties of GRBs to the nature of the source;
see e.g. [36].

In the next section we give a qualitative description of
the pair plasma, introducing some relevant parameters. In
Sec. III we discuss pure pair plasma. In Sec. IV pair plasma
with proton loading is discussed. In Sec. V we describe the
computational scheme used in our analysis. In Sec. VI we
present results of our numerical computations. A discus-
sion and conclusions follow in the last section. In
Appendix A relevant conservation laws are recalled. In
Appendix B conditions for kinetic and thermal equilibria
are formulated, and the scheme for the determination of
temperatures and chemical potentials out of number and
energy densities is given. Binary interactions in the pair
plasma such as Compton, Møller, and Bhabha scatterings,
as well as pair creation and annihilation by two photons are
discussed in Appendix C. In Appendix D Compton and
Coulomb scatterings with protons are considered. In
Appendix E three-body radiative variants of the reactions
listed above are given. Cutoff schemes for the numerical
evaluation of emission and absorption coefficients are
presented in Appendix F. In Appendix G mass scaling of
the matrix elements for Coulomb scattering between elec-
trons, positrons, and protons is discussed. In Appendix H
the definitions of matrix elements and cross sections
adopted in the paper are given.

II. QUALITATIVE DESCRIPTION OF THE PAIR
PLASMA

First of all, we specify the domain of parameters char-
acterizing the pair plasma considered in this paper. It is
convenient to use dimensionless parameters usually
adopted for this purpose.
We consider mildly relativistic pair plasma; thus the

average energy per particle � brackets the electron rest
mass energy,

0:1 &
�

mc2
& 10: (1)

The lower boundary is required for significant concentra-
tion of pairs, while the upper boundary is set to avoid
substantial production of other particles such as muons
and neutrinos.
We define the plasma parameter g ¼ ðn�d3Þ�1, where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kBT�

4�e2n�

q
¼ c

!

ffiffiffiffiffiffi
��
p

is the Debye length; kB is

Boltzmann’s constant; e, n�, and T� are the electron
charge, number density and temperature, respectively; c
is the speed of light; �� ¼ kBT�=ðmc2Þ is the dimension-

less temperature; ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2n�=m

p
is the plasma fre-

quency; and m is the electron mass. To ensure the
applicability of the kinetic approach, the plasma parameter
must be small, g� 1. This condition means that the
kinetic energy of particles dominates their potential energy
due to mutual interaction. For the pair plasma considered
in this paper, this condition is satisfied.
Further, the classicality parameter, defined as ß ¼

e2=ð@vrÞ ¼ �=�r, where @ is Planck’s constant, � ¼
e2=ð@cÞ is the fine structure constant and vr ¼ �rc is the
mean relative velocity of particles; see (F12). The condi-
tion ß� 1means that particle collisions can be considered
classically, while for ß� 1 a quantum description is re-
quired. In our case, for both pairs and protons quantum
cross sections are used since ß< 1.
The strength of screening of the Coulomb interactions is

characterized by the Coulomb logarithm � ¼Mdvr=@,
where M is the reduced mass. For electron-electron or
electron-positron scattering the reduced mass is just m=2,
while for electron-proton or positron-proton scattering the
reduced mass is just the proton mass M ’ M; for proton-
proton scattering M ’ M=2. The Coulomb logarithm
varies with the mean particle velocity and Debye length,
and it cannot be set as a constant as is usually done in most
studies of the pair plasma.
Finally, we consider pair plasma with linear dimensions

R exceeding the mean free path of photons l ¼ ðn��Þ�1,
where � is the corresponding total cross section. Thus the
optical depth � ¼ n�R� 1 is large, and interactions be-
tween photons and other particles have to be taken into
account. We discuss these interaction in the next section.
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Note that natural parameters for perturbative expansion
in the problem under consideration are the fine-structure
constant � and the electron-proton mass ratio m=M.

III. PURE PAIR PLASMA

For simplicity, we first consider pure pair plasma com-
posed of electrons e�, positrons eþ, and photons �. We
will turn to a more general case, including protons p, in the
next section. We assume that pairs or photons appear from
some physical process in the region with size R and on a
time scale t < R=c. We further assume that distribution
functions of particles depend neither on spatial coordinates
nor on the direction of momenta. We then have fi ¼
fið�; tÞ; namely, we consider isotropic distribution func-
tions in momentum space for a spatially uniform and
isotropic plasma.

To make sure that the classical kinetic description is
adequate, we estimate the dimensionless degeneracy tem-
perature

�F ¼
��

@

mc

�
2ð3�2n�Þ2=3 þ 1

�
1=2 � 1; (2)

and compare it with the estimated temperature in thermal
equilibrium. With our initial conditions (1) the degeneracy
temperature is always smaller than the temperature in
thermal equilibrium, and therefore we can safely apply
the classical kinetic approach. Besides, since we deal
with an ideal plasma with the plasma parameter g�
10�3, it is enough to consider only one-particle distribution
functions. These conditions justify our computational ap-
proach based on the classical relativistic Boltzmann equa-
tion. At the same time, the right-hand side of the
Boltzmann equation contains collisional integrals as func-
tions of quantum matrix elements, as discussed below and
in Appendixes C, D, and E.

Relativistic Boltzmann equations [37,38] in the spheri-
cally symmetric case for which the original code is de-
signed [39] are

1

c

@fi
@t
þ �i

�
	
@fi
@r
þ 1�	2

r

@fi
@	

�
�rU@fi

@p

¼X
q

ð
q
i � �q

i fiÞ; (3)

where 	 ¼ cos#, # is the angle between the radius vector
r from the origin and the particle momentum p, U is a
potential due to an external force, �i ¼ vi=c are particles
velocities, fið�; tÞ are their distribution functions, the index
i denotes the type of particle, � is its energy, and 
q

i and �
q
i

are the emission and the absorption coefficients for the
production of a particle of type ‘‘i’’ via the physical process
labeled by q. This is a coupled system of partial-
integrodifferential equations. For homogeneous and iso-
tropic distribution functions of electrons, positrons, and
photons, (3) reduces to

1

c

@fi
@t
¼X

q

ð
q
i � �q

i fiÞ; (4)

which is a coupled system of integrodifferential equations.
In (4) we also explicitly neglected the Vlasov term, de-
scribing the collisionless interaction of particles in the
mean field, since the energy density of fluctuations of the
electromagnetic field is many orders of magnitude smaller
than the energy density of particles [40].
Therefore, the left-hand side of the Boltzmann equation

is reduced to the partial derivative of the distribution
function with respect to time. The right-hand side contains
collisional integrals, representing interactions between
electrons, positrons, and photons.
As an example of a collisional integral, we consider the

absorption coefficient for Compton scattering which is
given by

�csf� ¼
Z

dk0dpdp0Wk0;p0;k;pf�ðk; tÞf�ðp; tÞ; (5)

where p and k are momenta of the electron (positron) and
the photon, respectively, dp ¼ d��do�2���=c3, dk0 ¼
d�0��02� do0�=c3, and the transition function Wk0;p0;k;p is re-

lated to the transition probability differential dwk0;p0;k;p per

unit time as

Wk0;p0;k;pdk
0dp0 � Vdwk0;p0;k;p: (6)

The differential probability dwk0;p0;k;p ¼ wk0;p0;k;pdk
0dp0

is given by (C3) in Appendix C.
Given the momentum conservation, one can perform

one integration over dp0 in (5) as

Z
dp0�ðkþ p� k0 � p0Þ ! 1; (7)

but it is necessary to take into account the momentum
conservation in the next integration over dk0, so we have

Z
d�0��ð�� þ �� � �0� � �0�Þ

¼
Z

dð�0� þ �0�Þ
1

j@ð�0� þ �0�Þ=@�0�j
� �ð�� þ �� � �0� � �0�Þ

! 1

j@ð�0� þ �0�Þ=@�0�j
� Jcs; (8)

where the Jacobian of the transformation is

Jcs ¼ 1

1� �0�b0� � b0�
; (9)

and bi ¼ pi=p, b0i ¼ p0i=p0, b0� ¼ ð����b� þ ��b� �
�0�b0�Þ=ð�0��0�Þ.
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Finally, for the absorption coefficient we have

�csf� ¼ �
Z

do0�dp
�0�jMfij2@2c2
16�����0�

Jcsf�ðk; tÞf�ðp; tÞ;
(10)

where the matrix element here is dimensionless. This in-
tegral is evaluated numerically, as described in
Appendix C.

For all binary interactions we use exact QED matrix
elements which can be found in the standard textbooks, e.g.
in [41–43], and are given in Appendix C.

In order to account for the charge screening, we intro-
duced the minimal scattering angles following [44]; see
Appendix F. This allows us to apply the same scheme for
the computation of emission and absorption coefficients
for Coulomb scattering, while many treatments in the
literature use the Fokker-Planck approximation; see e.g.
[45].

For such a dense plasma, collisional integrals in (2)
should include not only binary interactions, having order
�2 in Feynmann diagrams, but also triple ones, having
order �3 [41]. As an example of triple interactions, con-
sider relativistic bremsstrahlung,

e1 þ e2 $ e01 þ e02 þ �0: (11)

For the time derivative, for instance, of the distribution
function f2 in the direct and inverse reactions (11), one has

_f 2 ¼
Z

dp1dp
0
1dp

0
2dk

0½Wp0
1
;p0

2
;k0;p1;p2

f01f02f0k

�Wp1;p2;p
0
1
;p0

2
;k0f1f2	

¼
Z

dp1dp
0
1dp

0
2dk

0 c
6
@
3

ð2�Þ2
�ð4ÞðPf � PiÞjMfij2

25�1�2�
0
1�
0
2�
0
�

�
�
f01f

0
2f
0
k �

1

ð2�@Þ3 f1f2
�
; (12)

where

dp1dp2Wp0
1
;p0

2
;k0;p1;p2

� V2dw1;

dp01dp02dk0Wp1;p2;p
0
1
;p0

2
;k0 � Vdw2;

and dw1 and dw2 are given by (H3) for the inverse and
direct processes (11), respectively. The matrix element
here has dimensions of length squared; see Appendix H.

In the case of the distribution functions (15), see below,
we have multipliers proportional to

Fi ¼ exp
i

�i
; (13)

called fugacities, in front of the integrals. The calculation
of emission and absorption coefficients is then reduced to
the well-known thermal equilibrium case [30]. In fact,
since reaction rates of triple interactions are � times
smaller than binary reaction rates, we expect that binary

reactions come into detailed balance first. Only when
binary reactions are all balanced, do triple interactions
become important. In addition, when binary reactions
come into balance, distribution functions already acquire
the form (15). Although there is no principal difficulty in
computations using exact matrix elements for triple reac-
tions as well, our simplified scheme allows for much faster
numerical computation. The corresponding reaction rates
for triple interactions are given in Appendix E.
We consider all possible binary and triple interactions

between electrons, positrons, and photons, as summarized
in Table I.
Each of the above-mentioned reactions is characterized

by the corresponding time scale and optical depth. For
Compton scattering of an electron, for instance, we have

tcs ¼ 1

�Tn�c
; �cs ¼ �Tn�R; (14)

where �T ¼ 8�
3 �2ð @mcÞ2 is the Thomson cross section.

There are two time scales in our problem that characterize
the condition of detailed balance between direct and in-
verse reactions, tcs for binary interactions and ��1tcs for
triple interactions, respectively.
We choose arbitrary initial distribution functions and

find a common development. At a certain time tk the
distribution functions always evolve in a functional form
over the entire energy range, and depend only on two
parameters. We find, in fact, for the distribution functions
the expressions

fið"Þ ¼ 2

ð2�@Þ3 exp

�
�"� i

�i

�
; (15)

with chemical potential i � ’i

mc2
and temperature �i �

kBTi

mec
2 , where " � �

mec
2 is the energy of the particle. Such a

configuration corresponds to a kinetic equilibrium
[2,45,46] in which particles acquire a common temperature
and nonzero chemical potentials. At the same time, we
found that triple interactions become essential for t > tk,
after the establishment of kinetic equilibrium. In a strict
mathematical sense, the sufficient condition for reaching
thermal equilibrium is when each direct reaction is exactly
balanced with its inverse. Therefore, in principle, not only
triple interactions, but also four-particle interactions, five-
particle interactions, etc. have to be accounted for in
Eq. (4). The time scale for reaching thermal equilibrium
will then be determined by the slowest reaction which is
not balanced with its inverse. We stress, however, that the
necessary condition is the detailed balance, at least in triple
interactions, since binary reactions do not change chemical
potentials.
Notice that a method similar to ours was applied in [45]

in order to compute spectra of particles in kinetic equilib-
rium. However, although the approach was similar, the
computation was never carried out in order to actually
observe thermal equilibrium being reached.
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Finally, it is worth mentioning the physical meaning of
the chemical potential k in kinetic equilibrium entering
the formula (15). In the case of pure pair plasma a nonzero
chemical potential represents deviation from thermal equi-
librium through the relation

k ¼ � lnðnk=nthÞ; (16)

where nth are concentrations of particles in thermal
equilibrium.

IV. PROTON LOADING

So far, we dealt with leptons having the same mass but
opposite charges. In that case the condition of electric
neutrality is identically fulfilled. We described electrons
and positrons with the same distribution function. The
situation becomes more complicated when an admixture
of protons is allowed. Since charge neutrality

n� ¼ nþ þ np (17)

is required, the number of electrons is not equal to the
number of protons. In such a case a new dimensionless
parameter, the baryonic loading B, can be introduced as

B ¼ NMc2

E
¼ npMc2

�r

; (18)

where N and np are the number and the concentration of

protons, and E and �r ¼ �� þ �þ þ �� are radiative en-

ergy and energy density, respectively. Since in relativistic
plasma, electrons and positrons move at almost the speed
of light, both photons and pairs in thermal equilibrium
behave as a relativistic fluid with an equation of state pr ’
�r=3. At the same time, protons are relatively cold parti-
cles in the energy range (1), with negligible pressure and a
dustlike equation of state p ’ 0. In this way, by introducing
parameter B, we distinguish a radiation-dominated plasma
(B< 1) from a matter-dominated (B> 1) plasma. For
electrically neutral plasmas there exists an upper limit on
the parameter B defined by (18), which is B 
 M=m.

In the range of energies (1) the radiative energy density
can be approximated as �r � n�mc2, and then we have
np � n�B m

M for concentrations. If protons and electrons

are at the same temperature, then from the equality of the

kinetic energy of a proton �k;p ¼ Mv2
p

2 and the one of an

electron �k;� �mc2, we have
vp

c �
ffiffiffiffi
m
M

p
; therefore protons

are indeed nonrelativistic.
In the presence of protons additional binary reactions

consist of Coulomb collisions between electrons (posi-
trons) and protons, scattering of protons on protons, and
Compton scattering of protons. Additional triple reactions
are radiative variants of these reactions; see Table II and
Appendix D.
Protons can be thermalized first by proton-proton colli-

sions and then by electron/positron-proton collisions, or
alternatively just by the latter mechanism, depending on
the corresponding time scales. The rate of proton-proton

collisions is a factor
ffiffiffiffi
m
M

p np
n�
� BðmMÞ3=2 smaller than the rate

of electron-electron collisions; see (D15). The rate of
proton-electron/positron collisions is a factor �

Mc2
� m

M

smaller than the one of electron-electron collisions; see

(D11). Therefore, for B>
ffiffiffiffi
m
M

p
proton-proton collisions are

faster, while for B<
ffiffiffiffi
m
M

p
proton-electron/positron ones

predominate.

V. THE DISCRETIZATION PROCEDURE AND THE
COMPUTATIONAL SCHEME

In order to solve Eqs. (4) we use a finite difference
method by introducing a computational grid in the phase
space to represent the distribution functions and to com-
pute collisional integrals following [39]. Our goal is to

TABLE II. Microphysical processes in the pair plasma involv-
ing protons.

Binary interactions Radiative and pair producing variants

Coulomb scattering Bremsstrahlung

p1p2 ! p01p02 p1p2 $ p01p02�
pe� ! p0e�0 pe� $ p0e�0�

pe�1 $ p0e�01 e�e�
Single Compton Double Compton

p�! p0�0 p�$ p0�0�00
p�$ p0e�e�

TABLE I. Microphysical processes in the pair plasma.

Binary interactions Radiative and pair producing variants

Møller and Bhabha Bremsstrahlung

e�1 e
�
2 ! e�01 e�02 e�1 e

�
2 $ e�01 e�02 �

e�e� ! e�0e�0 e�e� $ e�0e�0�
Single Compton Double Compton

e��! e��0 e��$ e�0�0�00
Pair production and annihilation Radiative pair production and three-photon annihilation

��0 $ e�e� ��0 $ e�e��00
e�e� $ ��0�00
e��$ e�0e�e�00
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construct a scheme implementing energy, baryon number,
and electric charge conservation laws; see Appendix A. For
this reason we prefer to use in the code, instead of distri-
bution functions fi, the spectral energy densities

Eið�iÞ ¼ 4��3i �ifi
c3

; (19)

where �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðmic

2=�iÞ2
p

, in the phase space �i. Then

�ifiðp; tÞdrdp ¼ 4��3�ifi
c3

drd�i ¼ Eidrd�i (20)

is the energy in the volume of the phase space drdp. The
number density of particles of type ‘‘i’’ is given by

ni ¼
Z

fidp ¼
Z Ei

�i
d�i; dni ¼ fidp; (21)

while the corresponding energy density is

�i ¼
Z

�ifidp ¼
Z

Eid�i:

We can rewrite the Boltzmann equations (4) in the form

1

c

@Ei

@t
¼X

q

ð~
q
i � �q

i EiÞ; (22)

where ~
q
i ¼ ð4��3i �i=c

3Þ
q
i .

We introduced the computational grid for phase space
f�i; 	;�g, where 	 ¼ cos#, #, and � are angles between
the radius vector r and the particle momentum p. The zone
boundaries are �i;!�1=2,	k�1=2,�l�1=2 for 1 
 ! 
 !max,

1 
 k 
 kmax, 1 
 l 
 lmax. The length of the ith interval
is ��i;! � �i;!þ1=2 � �i;!�1=2. On the finite grid the func-

tions (19) become

Ei;! � 1

��i;!

Z
��i;!

d�Eið�Þ: (23)

Now we can replace the collisional integrals in (22) by
the corresponding sums.

After this procedure we get the set of ordinary differen-
tial equations (ODE’s), instead of the system of partial
differential equations for the quantities Ei;! to be solved.

There are several characteristic times for different pro-
cesses in the problem, and therefore our system of differ-
ential equations is stiff. Under these conditions eigenvalues
of the Jacobi matrix differ significantly, and the real parts
of the eigenvalues are negative. We use Gear’s method [47]
to integrate ODE’s numerically. This high-order implicit
method was developed for the solution of stiff ODE’s.

In our method the exact energy conservation law is
satisfied. For binary interactions the particle number con-
servation law is satisfied, as we adopt interpolation of grid
functions Ei;! inside the energy intervals.

VI. NUMERICAL RESULTS

In what follows we consider in detail three specific
cases. In the first two cases our grid consists of 60 energy
intervals and 16� 32 intervals for two angles # and �
characterizing the direction of the particle momentum. In
the third case we have 40 energy intervals.

A. Case I

We take the following initial conditions: flat initial
spectral densities Eið�iÞ ¼ const and total energy density
� ¼ 1024 erg=cm3. Plasma is composed of photons with a
small amount of electron-positron pairs; the ratio between
energy densities in photons and in electron-positron pairs
� ¼ ��=�� ¼ 10�5. The baryonic loading parameterB ¼
10�3, corresponding to �p ¼ 2:7� 1018 erg=cm3.

The energy density in each component of plasma
changes, as can be seen from Fig. 1, keeping constant the
total energy density shown by the dotted line in Fig. 1, as
the energy conservation requires. As early as at 10�23 sec
the energy starts to be redistributed between electrons and
positrons on the one hand, and between electrons and
photons on the other hand, essentially by the pair-creation
process. This leads to equipartition of energies between
these particles at 3� 10�15 sec . Concentrations of pairs
and photons equalize at 10�14 sec , as can be seen from
Fig. 2. From this moment, temperatures and chemical
potentials of electrons, positrons, and photons tend to be
equal (see Figs. 3 and 4, respectively), and this corresponds
to the approach to kinetic equilibrium.
This is a quasiequilibrium state since the total number of

particles is still approximately conserved, as can be seen

FIG. 1 (color online). Dependence on time of energy densities
of electrons (green), positrons (red), photons (black), and protons
(blue) for initial conditions I. The total energy density is shown
by the dotted black line. Interaction between pairs and photons
operates on very short time scales up to 10�23 sec . The quasie-
quilibrium state is established at tk ’ 10�14 sec which corre-
sponds to kinetic equilibrium for pairs and photons. Protons start
to interact with them as late as at tth ’ 10�13 sec .

A. G. AKSENOV, R. RUFFINI, AND G.V. VERESHCHAGIN PHYSICAL REVIEW D 79, 043008 (2009)

043008-6



from Fig. 2, and triple interactions are not yet efficient. At
the moment t1 ¼ 4� 10�14 sec , shown by the vertical
line on the left in Figs. 3 and 4, the temperature of the
photons and pairs is �k ’ 1:5, while the chemical potentials
of these particles are k ’ �7. The concentration of pro-
tons is so small that their energy density is not affected by
the presence of other components; also, proton-proton
collisions are inefficient. In other words, protons do not
interact yet and their spectra are not yet of equilibrium
form; see Fig. 5. The temperature of the protons starts to

change only at 10�13 sec , when proton-electron Coulomb
scattering becomes efficient.
As can be seen from Fig. 4, the chemical potentials of

electrons, positrons, and photons have evolved by that time
due to triple interactions. Since the chemical potentials of
electrons, positrons, and photons were negative, the parti-
cles were deficient with respect to the thermal state. This
caused the total number of these particles to increase and,
consequently, the temperature to decrease. The chemical
potential of photons reaches zero at t2 ¼ 10�12 sec ,
shown by the vertical line on the right in Figs. 3 and 4,
which means that electrons, positrons, and photons are now
in thermal equilibrium. However, protons are not yet in
equilibrium with other particles since their spectra are not
thermal, as shown in the lower part of Fig. 5.
Finally, the proton component thermalizes with other

particles at 4� 10�12 sec , and from that moment, plasma
is characterized by a unique temperature, �th ’ 0:48, as
Fig. 3 clearly shows. Protons have the final chemical
potential p ’ �12:8.
This state is characterized by the thermal distribution of

all particles, as can be seen from Fig. 6. There, the initial
flat density as well as the final spectral density are shown
together with fits of particle spectra with the values of the
common temperature and the corresponding chemical po-
tentials in thermal equilibrium.

B. Case II

We take the following initial conditions: power-law
spectral densities Eið�iÞ for protons, electrons, and posi-
trons with initial energy densities �p¼2:8�1022 erg=cm3,

FIG. 3 (color online). Dependence on time of dimensionless
temperatures of electrons (green), positrons (red), photons
(black), and protons (blue) for initial conditions I. The tempera-
ture for pairs and photons acquires physical meaning only in
kinetic equilibrium at tk ’ 10�14 sec . Protons are cooled by the
pair-photon plasma and acquire a common temperature with the
plasma as late as at tth ’ 4� 10�12 sec .

FIG. 4 (color online). Dependence on time of the dimension-
less chemical potential of electrons (green), positrons (red),
photons (black), and protons (blue) for initial conditions I. The
chemical potential for pairs and photons acquires physical mean-
ing only in kinetic equilibrium at tk ’ 10�14 sec , while for
protons this happens at tth ’ 4� 10�12 sec . At this time the
chemical potential of photons has evolved to zero and thermal
equilibrium has already been reached.

FIG. 2 (color online). Dependence on time of concentrations
of electrons (green), positrons (red), photons (black), and protons
(blue) for initial conditions I. The total number density is shown
by the dotted black line. In this case kinetic equilibrium between
electrons, positrons, and photons is reached at tk ’ 10�14 sec .
Protons join thermal equilibrium with other particles at tth ’
4� 10�12 sec .
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�� ¼ 1:5� 1024 erg=cm3, �þ ¼ 1:5� 1021 erg=cm3, re-
spectively. We have chosen a flat spectral density for
photons with �� ¼ 2:8� 1024 erg=cm3. The initial bar-

yonic loading parameter is set to B ¼ 608, corresponding
to a matter-dominated plasma, unlike the previous case.

As in case I, the most rapid reaction is electron-positron
pair creation, which starts to change the energy density of
positrons at 10�20 sec ; see Fig. 7. Initially, most energy is
in the photons, followed by electrons and protons. In the
course of the evolution the energy gets redistributed in such
a way that in the final state most of the energy is transferred
first to the electrons, then to the protons and the photons,
and finally to the positrons. In Fig. 8 one can see that
number densities of electrons and protons are almost equal
with the heavy proton loading chosen. Concentrations of

particles remain almost the same during the evolution
towards thermal equilibrium.
Temperatures and chemical potentials of particles are

shown in Figs. 9 and 10 respectively. Kinetic equilibrium is
established at around 8� 10�15 sec , marked by the ver-
tical line. The temperature of pairs and photons at that
moment is �k ’ 0:53, while the chemical potentials of
these particles are � ’ 1, þ ’ �0:9, � ’ 0:1. Notice

that chemical potentials of electrons and positrons are
almost equal in magnitude and opposite in kinetic equilib-
rium; see Fig. 10. At this moment, protons are not yet in
equilibrium with the rest of plasma but have already estab-
lished kinetic equilibrium with themselves with the tem-
perature �p ’ 0:18 and the chemical potential p ’ �2.
The common temperature is reached at the moment
10�13 sec , which corresponds to thermal equilibrium.
The final value of the temperature is �th ’ 0:47, while
chemical potentials are � ’ �1, p ’ �4:7.

FIG. 5 (color online). Spectral density as a function of particle
energy for electrons (green), positrons (red), photons (black),
and protons (blue) for initial conditions I at intermediate time
moments t1 ¼ 4� 10�14 sec (upper figure) and t2 ¼ 10�12 sec
(lower figure). Fits of the spectra with chemical potentials and
temperatures corresponding to the thermal equilibrium state are
also shown by yellow (electrons and positrons), grey (photons),
and light blue (protons) thick lines. The upper figure shows the
spectra when kinetic equilibrium is established for the first time
between electrons, positrons, and photons, while the lower figure
shows the spectra at thermal equilibrium between these particles.
In both figures protons are not yet in equilibrium, neither with
themselves nor with other particles.

FIG. 7 (color online). Dependence on time of energy densities
for initial conditions II. Colors are the same as in case I. Protons
start to interact with other particles as late as at t ’ 10�16 sec .

FIG. 6 (color online). The spectral density as a function of
particle energy is shown as before at initial and final moments of
the computations. The final photon spectrum is a blackbody one.
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The contribution of the protons to the total energy
density increased over the course of time (see Fig. 7),
causing an increase in the baryonic loading parameter,
which reached the value B ¼ 780 in thermal equilibrium.

Since the concentration of protons is chosen to be large,
proton-proton collisions become more important than
proton-electron/positron collisions, in contrast to case I.
In fact, the protons reach the equilibrium temperature al-
ready at 10�16 sec , while they start to interact with elec-
trons and positrons only at 10�15 sec . Initial and final
spectra of all particles are presented in Fig. 11.

C. Case III

We take the following initial conditions: the initial ratio
between concentrations of electrons and protons is & ¼
np=n� ¼ 10�3. The total energy density is chosen in such

a way that the final temperature in thermal equilibrium is
�th ¼ 2. We set up a flat initial spectrum for photons
E�ð�iÞ ¼ const, and power-law spectra for the pairs

E�ð��Þ / ½�� �mc2	�2 and protons Epð�pÞ /
½�p �Mc2	�4. Finally, the ratio of initial and final con-

centrations of positrons is chosen to be nþ ¼ 10�1nthþ.
Given these initial conditions the baryon loading parameter
is B ¼ 0:2.
The initial conditions are chosen in order to get larger

temperatures in thermal equilibrium than in the previous
cases. Unlike case II, the spectrum of protons is chosen to

FIG. 10 (color online). Dependence on time of the dimension-
less chemical potential for initial conditions II. Colors are the
same as in case I. The chemical potential of the photons is almost
zero in kinetic equilibrium. The chemical potentials of electrons
and positrons are almost equal and opposite in kinetic equilib-
rium, to maintain electric neutrality.

FIG. 9 (color online). Dependence on time of dimensionless
temperature for initial conditions II. Colors are the same as in
case I. The pair-photon plasma heats protons. Protons join
thermal equilibrium at tth ’ 10�13 sec .

FIG. 8 (color online). Dependence on time of concentrations
for initial conditions II. Colors are the same as in case I.

FIG. 11 (color online). Initial and final spectral densities as a
function of particle energy for initial conditions II. Fits of the
final spectra with chemical potentials and temperatures are also
shown.
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be steeper than the spectrum of pairs in order to make them
colder in kinetic equilibrium.

Equipartition of energies between pairs and photons
occurs earlier than in case I, at around 10�17 sec (see
Fig. 12), since now concentrations of particles are higher.
Concentrations of pairs and photons equalize at 3�
10�17 sec ; see Fig. 13. As in case I, from this moment
temperatures and chemical potentials of electrons, posi-
trons, and photons tend to be equal (see Figs. 14 and 15,
respectively), leading to kinetic equilibrium at around tk ’
10�16 sec .

At the moment tk, shown by the vertical line on the left
in Figs. 14 and 15, the temperature of photons and pairs is
�k ’ 2:2, the chemical potential of these particles is k ’
�1:1, while the temperature of protons, having a well-
established spectrum by this time, is just �p ’ 0:09.

Thermal equilibrium is reached in the electron-positron-
photon plasma at around tth ’ 4� 10�15 sec , shown by

the vertical line on the right of Figs. 14 and 15. Only at 4�
10�14 sec do all the particles reach a common temperature
equal to �th ’ 2, while the chemical potential of protons is
p ’ �33. Initial as well as final spectra are shown in

Fig. 16.
Since chemical potentials and temperatures approach

their values in thermal equilibrium exponentially, i.e.
� expð�t=�ch:eqÞ, we determined the relaxation time con-

stant �ch:eq for each of the cases considered from

�ch:eq ¼ lim
t!1

�
ðFðtÞ � Fð1ÞÞ

�
dF

dt

��1�
; (24)

where the fugacity for a given sort of particle is given by
(13). Our results are presented in Table III.

FIG. 13 (color online). Dependence on time of concentrations
for initial conditions III. Colors are the same as in case I.

FIG. 15 (color online). Dependence on time of the dimension-
less chemical potential for initial conditions III. Colors are the
same as in case I. The chemical potentials equalize at tk ’
10�16 sec .

FIG. 14 (color online). Dependence on time of the dimension-
less temperature for initial conditions III. Colors are the same as
in case I. Pairs and photons acquire the temperature at tk ’
10�16 sec .

FIG. 12 (color online). Dependence on time of energy den-
sities for initial conditions III. Colors are the same as in case I.
Protons start to interact with other particles at about 10�17 sec .
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VII. DISCUSSION AND CONCLUSIONS

Results presented above clearly show the existence of
two types of equilibrium: kinetic and thermal. Kinetic
equilibrium in pair-photon plasma occurs when Ehlers
[46] balance conditions (B2), (B5), and (B8) are satisfied
so that pair-creation, Compton, and Bhabha/Møller scat-
tering processes all come into detailed balance. The
electron-positron-photon plasma is then described by com-
mon temperature and nonzero chemical potentials which
are given by (B19)–(B22). Protons at this stage may or may
not have yet established equilibrium with the spectrum
(15), depending on the value of the baryon loading parame-
ter B. When B is small, as in case I, proton-proton colli-
sions are inefficient since the rate (D15) is much smaller
than (D11), and the proton spectrum is shaped by the
proton-electron/positron collisions, reaching an equilib-
rium form at a time scale given by (D11), when other
particles are already in thermal equilibrium. When B is
large, as in case II, protons have established their equilib-
rium temperature at a time scale given by (D15), prior to
the moment when kinetic equilibrium in the pair-photon
plasma is established.

As we have seen, the final spectra are completely in-
sensitive to the initial spectra, which are chosen to be flat as
in case I, power-law as in case II, or thermal ones.

The meaning of nonzero chemical potentials in kinetic
equilibrium can be understood as follows. The existence of

a non-null chemical potential for photons indicates the
departure of the distribution function from the one corre-
sponding to the thermal equilibrium. Negative values of the
chemical potential generate an increase in the number of
particles in order to approach the one corresponding to the
thermal equilibrium state. Positive values of the chemical
potential lead to the opposite effect, decreasing the number
of particles. Then, since the total number of particles
increases (or decreases), the energy is shared between a
larger (or smaller) number of particles and the temperature
decreases (or increases). Clearly, as thermal equilibrium is
approached, the chemical potential of photons tends to
zero, while the chemical potentials of electrons and posi-
trons are given by (B23), to guarantee an overall charge
neutrality.
One of the basic assumptions in this work is that triple

interactions are slower than binary ones, allowing one to
use reaction rates for triple interactions in kinetic equilib-
rium, explicitly depending solely on temperature, chemical
potentials, and concentrations of particles. For pure
electron-positron plasma in the range of energies of interest
(1), there is a hierarchy of relevant time scales: binary
interactions are clearly faster than triple ones. However,
when protons are also present, the proton-proton time scale
may be shorter or longer than the corresponding binary
interaction time scales for the pure pair plasma. This
violates our assumption and therefore leads to a loss of
quantitative accuracy, although still keeping qualitative
results valid. In order to overcome this difficulty and
produce quantitatively precise results, exact QED matrix
elements must be used for the calculation of emission and
absorption coefficients.
Notice that there is some discrepancy between our final

spectra and their thermal fits for high energy. This is due to
poor energy resolution with the adopted grid. The result
converges with higher resolutions, but it is limited by the
available computer memory. In addition, the code is quite
time-consuming, and the processor time increases with the
number of operations as a third power of the number of
energy intervals.
In order to resolve proton-electron/positron scattering,

the number of energy intervals should be increased as
M=m compared to the case of pure pair plasma. Even using
an inhomogeneous energy grid with uniform energy steps
to the peak of the spectrum d�=d" and decreasing energy
steps as "�1 for higher energies, we have obtained accept-
able results with about 103 intervals for this reaction. Using
such a fine grid is impossible in practice. On the other
hand, a small parameterm=M expansion can be adopted. In
this way we have introduced the mass scaling, described in
Appendix G, which gives quite good accuracy for about
102 intervals in energy with an inhomogeneous grid, as
described above. Finally, it is important to stress that our
code allows for the solution of the Boltzmann equations for
long time intervals, with time scales which may differ by

FIG. 16 (color online). Initial and final spectral densities as a
function of particle energy for initial conditions III. The spec-
trum of protons is chosen to be steeper than the one of electrons
and positrons. Fits of the final spectra with chemical potentials
and temperatures are also shown.

TABLE III. Relaxation time constant for cases I–III.

I II III

��;�ch:eq, sec 2:2� 10�13 1:8� 10�14 9:5� 10�16
�pch:eq, sec 6� 10�13 1:8� 10�14 5:5� 10�15
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up to 10 orders of magnitude, from electron-positron cre-
ation and annihilation processes up to proton-electron/
positron scattering (see Fig. 2), unlike approaches based
on Monte Carlo techniques [45]. This gives us the possi-
bility to follow the thermalization process until we reach a
steady solution, i.e. thermal equilibrium.

The assumption of the constancy of the energy density is
only valid if the following three conditions are satisfied:

(i) Plasma is optically thick for photons. This leads to
the constraint on the spatial dimensions R0 �
ðnth�TÞ�1 � 10�5 cm.

(ii) Neutrinos are not produced. This gives the constraint
on the temperature �� 7� 102.

(iii) Plasma does not expand. Given tdyn ¼ ð1R dR
dt Þ�1 �

tth, this leads to R0 � 10�2 cm.
To summarize, we have considered the evolution of

initially nonequilibrium optically thick electron-positron-
photon plasma with proton loading up to a thermal equi-
librium on a time scale tth & 10�11 sec . Starting from
arbitrary initial conditions we obtain kinetic equilibrium,
on a time scale tk & 10�14 sec , from first principles,
solving numerically the relativistic Boltzmann equation
with collisional integrals computed from exact QED ma-
trix elements.

The general theoretical framework presented here can be
further applied by considering thermalization of different
relativistic particles predicted by extensions of the standard
model of particle physics with the lepton plasma in the
early Universe. The occurrence of the thermalization pro-
cess of electron-positron plasma in GRBs on a much
shorter time scale than the characteristic acceleration
time [48] is crucial. Such acceleration time scales are
indeed sharply bounded (shorter than 103 sec in the labo-
ratory frame). Determination of thermalization time scales
as functions of the relevant parameters is important for
high-energy plasma physics [49,50]. Finally, these results
can, in principle, be tested in laboratory experiments aimed
at the generation of electron-positron pairs.
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APPENDIX A: CONSERVATION LAWS

Conservation laws consist of baryon number, charge,
and energy conservations. In addition, in binary reactions
the particle number is conserved.

The energy conservation law can be rewritten for the
spectral density,

d

dt

X
i

�i ¼ 0 or
d

dt

X
i;!

Yi;! ¼ 0; (A1)

where

Yi;! ¼
Z �i;!þ��i;!=2

�i;!���i;!=2
Eid�: (A2)

The particle conservation law in binary reactions gives

d

dt

X
i

ni ¼ 0 or
d

dt

X
i;!

Yi;!

�i;!
¼ 0: (A3)

Since baryonic number is conserved, the number density of
protons is a constant,

dnp
dt
¼ 0: (A4)

For the electrically neutral plasma considered in this paper,
charge conservation implies (17).

APPENDIX B: DETERMINATION OF
TEMPERATURE AND CHEMICAL POTENTIALS

IN KINETIC EQUILIBRIUM

Consider distribution functions for photons and pairs in
the most general form (15). If one supposes that the reac-
tion rate for the Bhabha scattering vanishes, i.e. there is
equilibrium with respect to the reaction

eþ þ e� $ þeþ0 þ e�0; (B1)

then the corresponding condition can be written in the
following way:

fþð1� fþ0Þf�ð1� f�0Þ ¼ fþ0ð1� fþÞf�0ð1þ f�Þ;
(B2)

where the Bose-Einstein enhancement and the Pauli block-
ing factors are included for generality; it can be shown that
electrons and positrons have the same temperature,

�þ ¼ �� � ��; (B3)

and that they have arbitrary chemical potentials. With (B3)
an analogous consideration for the Compton scattering,

e� þ �$ þe�0 þ �0; (B4)

gives

f�ð1� f�0Þf�ð1þ f�
0Þ ¼ f�0ð1� f�Þf�0ð1þ f�Þ;

(B5)

and leads to the equality of temperatures of pairs and
photons,

�� ¼ �� � �k; (B6)

with arbitrary chemical potentials. If, in addition, the re-
action rate in the pair-creation and annihilation process

e� þ e� $ �þ �0 (B7)

vanishes too, i.e. there is equilibrium with respect to pair
production and annihilation, with the corresponding con-
dition
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fþf�ð1þ f�Þð1þ f�
0Þ ¼ f�f�

0ð1� fþÞð1� f�Þ;
(B8)

it turns out that chemical potentials of pairs and photons
also satisfy the following condition:

þ þ � ¼ 2�: (B9)

However, since, generally speaking, � � 0, the condition

(B9) does not imply þ ¼ �. These conditions were
applied for the first time by Ehlers in [46] (see also [51]),
and we will call (B2), (B5), and (B8) the Ehlers balance
conditions.

Analogous conditions for the detailed balance condi-
tions in different reactions lead to relations between tem-
peratures and chemical potentials as summarized in
Table IV.

The time scales of pair production and annihilation
processes as well as Compton scattering are nearly equal
in the range of energies of interest and are given by (14).
Therefore, kinetic equilibrium is first established simulta-
neously for electrons, positrons, and photons. They reach
the same temperature, but with chemical potentials differ-
ent from zero. Later on, the temperatures of this electron-
positron-photon plasma and the one of protons reach a
common value.

In order to find temperatures and chemical potentials, we
have to implement the following constraints: energy con-
servation (A1), particle number conservation (A3), charge
conservation (17), and the condition for the chemical po-
tentials (B9).

Given (15) we have for photons

��

n�mc2
¼ 3��; n� ¼ 1

V0

exp

�
�

��

�
2�3�; (B10)

for pairs

��
n�mc2

¼ j2ð��Þ; n� ¼ 1

V0

exp

�
�
��

�
j1ð��Þ;

(B11)

and for protons

�p

Mnpc
2 ¼ 1þ 3

2

m

M
�p; (B12)

np ¼ 1

V0

ffiffiffiffi
�

2

r �
M

m

�
3=2

exp

�
p � M

m

�p

�
�3=2p ; (B13)

where we assumed that protons are nonrelativistic; we
denoted the Compton volume by

V0 ¼ 1

8�

�
2�@

mc

�
3
; (B14)

and functions j1 and j2 are defined as

j1ð�Þ ¼ �K2ð��1Þ !
� ffiffiffi

�
2

p
e�ð1=�Þ�3=2 �! 0

2�3 �! 1; (B15)

j2ð�Þ ¼ 3K3ð��1Þ þ K1ð��1Þ
4K2ð��1Þ

!
�
1þ 3�

2 �! 0
3� �! 1:

(B16)

For pure electron-positron-photon plasma in kinetic
equilibrium, summing up energy densities in (B10) and
(B11) and using (B3), (B6), and (B9), we obtain

X
eþ;e�;�

�i ¼ 2mc2

V0

exp

�
k

�k

�
½3�4 þ j1ð�kÞj2ð�kÞ	; (B17)

and analogously for number densities we get

X
eþ;e�;�

ni ¼ 2

V0

exp

�
k

�k

�
½�3k þ j1ð�kÞ	: (B18)

From (B17) and (B18) two unknowns, k and �k, can be
found.
When protons are present, in most cases the electron-

positron-photon plasma reaches kinetic equilibrium first,
while protons join the plasma later. In that case, the tem-
perature of protons �p is different from the rest of the

particles, so while �þ ¼ �� ¼ �� ¼ �k, �p � �k.

Then, summing up energy densities in (B10) and (B11)
we obtain

X
eþ;e�;�

�i ¼ mc2

V0

��
1� npV0

j1ð�kÞ exp
�
�þ

�k

��
1=2

6�4k exp

�
þ
�k

�

þ
�
2j1ð�kÞ exp

�
þ
�k

�
� npV0

�
j2ð�kÞ

�
; (B19)

and analogously for number densities we get

X
eþ;e�;�

ni ¼ 1

V0

��
1� npV0

j1ð�kÞ exp
�
�þ

�k

��
1=2

6�4k exp

�
þ
�k

�

þ 2j1ð�kÞ exp
�
þ
�k

��
: (B20)

From (B19) and (B20) two unknowns, þ and �k, can be
found. Then the rest of the chemical potentials are obtained
from

exp

�
�
�k

�
¼ exp

�
þ
�k

�
þ npV0

j1ð�kÞ ; (B21)

TABLE IV. Relations between the parameters of equilibrium
distribution functions fulfilling detailed balance conditions for
the reactions shown in Table I.

Interaction Parameters

I eþe� scattering �þ ¼ ��, 8 þ; �
II e�p scattering �p ¼ ��, 8 �; p

III e�� scattering �� ¼ ��, 8 �; �
IV Pair production þ þ � ¼ 2�, if �� ¼ ��
V Tripe interactions �, � ¼ 0, if �� ¼ ��

THERMALIZATION OF THE MILDLY RELATIVISTIC PLASMA PHYSICAL REVIEW D 79, 043008 (2009)

043008-13



exp

�
�

�k

�
¼ exp

�
þ
�k

��
1þ npV0

j1ð�kÞ exp
�
�þ

�k

��
1=2

:

(B22)

The temperature and chemical potential of protons can be
found separately from (B12) and (B13).

In thermal equilibrium � vanishes and one has

� ¼ �karcsinh

�
npV0

2j1ð�kÞ
�
; þ ¼ ��; (B23)

which both reduce to � ¼ þ ¼ 0 for np ¼ 0. At the

same time, for np > 0 one always has � > 0 and þ < 0

in thermal equilibrium. The chemical potential of protons
in thermal equilibrium is determined from (B13) for �k ¼
�th, where �th is the temperature in thermal equilibrium.

APPENDIX C: BINARY INTERACTIONS

1. Compton scattering, �e� ! �0e�0

The time evolution of the distribution functions of pho-
tons and pair particles due to Compton scattering may be
described by [33,52]

�
@f�ðk; tÞ

@t

�
�e�!�0e�0

¼
Z

dk0dpdp0Vwk0;p0;k;p½f�ðk0; tÞ

� f�ðp0; tÞ � f�ðk; tÞf�ðp; tÞ	;
(C1)

�
@f�ðp; tÞ

@t

�
�e�!�0e�0

¼
Z

dkdk0dp0Vwk0;p0;k;p½f�ðk0; tÞ

� f�ðp0; tÞ � f�ðk; tÞf�ðp; tÞ	;
(C2)

where

wk0;p0;k;p ¼ @
2c6

ð2�Þ2V �ð�� � �� � �0� � �0�Þ

� �ðkþ p� k0 � p0Þ jMfij2
16�����0��0�

(C3)

is the probability of the process,

jMfij2 ¼ 26�2�2

�
m2c2

s�m2c2
þ m2c2

u�m2c2
þ

�
m2c2

s�m2c2

þ m2c2

u�m2c2

�
2 � 1

4

�
s�m2c2

u�m2c2
þ u�m2c2

s�m2c2

��

(C4)

is the square of the matrix element, s ¼ ðpþ kÞ2 and u ¼
ðp� k0Þ2 are invariants, k ¼ ð��=cÞð1; e�Þ and p ¼
ð��=cÞð1; ��e�Þ are energy-momentum four-vectors of
photons and electrons, respectively, dp ¼
d��do�2���=c3, dk0 ¼ d�0��02� do0�=c3, and do ¼ d	d�.

The energies of the photon and the positron (electron)
after the scattering are

�0� ¼
����ð1� ��b� � b�Þ

��ð1� ��b� � b0�Þ þ ��ð1� b� � b0�Þ ;

�0� ¼ �� þ �� � �0�;
(C5)

bi ¼ pi=p, b0i ¼ p0i=p0, b0� ¼ ð����b� þ ��b� �
�0�b0�Þ=ð�0��0�Þ.
For photons, the absorption coefficient (10) in the

Boltzmann equations (4) is

��e�!�0e�0
� f� ¼ � 1

c

�
@f�
@t

�
abs

�e�!�0e�0

¼
Z

dn�do0�Jcs
�0�jMfij2@2c2
16�����0�

f�; (C6)

where dni ¼ d�idoi�
2
i �ifi=c

3 ¼ d�idoiEi=ð2��iÞ.
From Eqs. (C1) and (C6), we can write the absorption

coefficient for the photon energy density E� averaged over

the �, 	 grid with zone numbers ! and k as

ð�EÞ�e�!�0e�0
�;! � 1

���;!

Z
��2���;!

d��d	�ð�EÞ�e
�!�0e�0

�

¼ 1

���;!

Z
��2���;!

dn�dn�do0�Jcs

� �0�jMfij2@2c2
16���0�

; (C7)

where the Jacobian of the transformation is

Jcs ¼
�0��0�

����ð1� ��b� � b�Þ : (C8)

Similar integrations can be performed for the other terms
of Eqs. (C1) and (C2), and we obtain


�e�!�0e�0
�;! ¼ 1

���;!

Z
�0�2���;!

dn�dn�do0�Jcs

� �02� jMfij2@2c2
16�����0�

; (C9)


�e�!�0e�0
�;! ¼ 1

���;!

Z
�0�2���;!

dn�dn�do0�Jcs

� �0�jMfij2@2c2
16����

; (C10)

ð�EÞ�e�!�0e�0
�;! ¼ 1

���;!

Z
��2���;!

dn�dn�do0�Jcs

� �0�jMfij2@2c2
16���

0�
: (C11)
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In order to perform integrals (C7)–(C11) numerically
over� (0 
 � 
 2�), we introduce a uniform grid�l�1=2
with 1 
 l 
 lmax and ��l ¼ ð�lþ1=2 ��l�1=2Þ=2 ¼
2�=lmax. We assume that any function of � in Eqs. (C7)–
(C9) in the interval ��j is equal to its value at � ¼ �j ¼
ð�l�1=2 þ�lþ1=2Þ=2. It is necessary to integrate over �
only once at the beginning of the calculations. The number
of intervals of the � grid depends on the average energy of
particles and is typically taken as lmax ¼ 2kmax ¼ 64.

2. Pair creation and annihilation, �1�2
! e�eþ

The rates of change of the distribution function due to
pair creation and annihilation are

�@f�j
ðki; tÞ
@t

�
�1�2!e�eþ

¼ �
Z

dkjdp�dpþVwp�;pþ;k1;k2

� f�1
ðk1; tÞf�2

ðk2; tÞ; (C12)

�
@f�i
ðki; tÞ
@t

�
e�eþ!�1�2

¼
Z

dkjdp�dpþVwk1;k2;p�;pþ

� f�ðp�; tÞfþðpþ; tÞ; (C13)

for i ¼ 1, j ¼ 2, and for j ¼ 1, i ¼ 2.�
@f�ðp�; tÞ

@t

�
�1�2!e�eþ

¼
Z

dp�dk1dk2Vwp�;pþ;k1;k2

� f�ðk1; tÞf�ðk2; tÞ; (C14)

�
@f�ðp�; tÞ

@t

�
e�eþ!�1�2

¼ �
Z

dp�dk1dk2Vwk1;k2;p�;pþ

� f�ðp�; tÞfþðpþ; tÞ; (C15)

where

wp�;pþ;k1;k2
¼ @

2c6

ð2�Þ2V �ð�� þ �þ � �1 � �2Þ

� �ðp� þ pþ � k1 � k2Þ
jMfij2

16���þ�1�2
:

(C16)

Here, the matrix element jMfij2 is given by Eq. (C4) with

the new invariants s ¼ ðp� � k1Þ2 and u ¼ ðp� � k2Þ2; see
[41].
The energies of photons created via annihilation of an

e� pair are

�1ðb1Þ ¼ m2c4 þ ���þð1� ���þb� � bþÞ
��ð1� ��b� � b1Þ þ �þð1� �þbþ � b1Þ ;

�2ðb1Þ ¼ �� þ �þ � �1;

(C17)

while the energies of pair particles created by two photons
are found from

��ðb�Þ ¼ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC
p

A
;

�þðb�Þ ¼ �1 þ �2 � ��;
(C18)

where A ¼ ð�1 þ �2Þ2 � ½ð�1b1 þ �2b2Þ � b�	2, B ¼
ð�1 þ �2Þ�1�2ð1� b1 � b2Þ, C ¼ m2

ec
4½ð�1b1 þ �2b2Þ �

b�	2 þ �21�
2
2ð1� b1 � b2Þ2. Only one root in Eq. (C18)

has to be chosen. Energy-momentum conservation gives

k 1 þ k2 � p� ¼ pþ: (C19)

Taking the square from the energy part, we have

�21 þ �22 þ �2� þ 2�1�2 � 2�1�� � 2�2�� ¼ �2þ; (C20)

and taking the square from the momentum part, we get

�21 þ �22 þ �2��2� þ 2�1�2b1 � b2 � 2�1����b1�b�
� 2�2����b2�b� ¼ ð�þ�þÞ2: (C21)

There are no additional roots because of the arbitrary eþ,

�1�2ð1� b1 � b2Þ � �1��ð1� ��b1 � b�Þ � �2��ð1� �b2 � b�Þ ¼ 0;

����ð�1b1 þ �2b2Þ � b� ¼ ��ð�1 þ �2Þ � �1�2ð1� b1 � b2Þ: (C22)

Eliminating � we obtain

�21�
2
2ð1� b1 � b2Þ2 � 2�1�2ð1� b1 � b2Þð�1 þ �2Þ�� þ fð�1 þ �2Þ2 � ½ð�1b1 þ �2b2Þ � b�	2g�2�
¼ ½ð�1b1 þ �2b2Þ � b�	ð�m2Þ: (C23)

Therefore, the condition to be checked reads
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����½ð�1b1þ�2b2Þ �b�	2
¼ ½��ð�1þ�2Þ� ð�1�2Þð1�b1 �b2Þ	
� ½ð�1b1þ �2b2Þ �b�	� 0: (C24)

Finally, integration of Eqs. (C12)–(C15) yields


e�eþ!�1�2
�;! ¼ 1

���;!

�Z
�12���;!

d2n�Jca
�21jMfij2@2c2
16���þ�2

þ
Z
�22���;!

d2n�Jca
�1jMfij2@2c2
16���þ

�
;

(C25)

ð�EÞe�eþ!�1�2
e;! ¼ 1

��e;!

�Z
��2��e;!

d2n�Jca
�1jMfij2@2c2

16�þ�2

þ
Z
�þ2��e;!

d2n�Jca
�1jMfij2@2c2

16���2

�
;

(C26)

ð�EÞ�1�2!e�eþ
�;! ¼ 1

���;!

�Z
�12���;!

d2n�Jca
����jMfij2@2c2

16�2�þ

þ
Z
�22���;!

d2n�Jca
����jMfij2@2c2

16�1�þ

�
;

(C27)


�1�2!e�eþ
e;! ¼ 1

��e;!

�Z
��2��e;!

d2n�Jca
�2���jMfij2@2c2

16�1�2�þ

þ
Z
�þ2��e;!

d2n�Jca
����jMfij2@2c2

16�1�2

�
;

(C28)

where d2n� ¼ dn�dnþdo1, d2n� ¼ dn�1
dn�2

do�,
dn� ¼ d��do��2���f�, dn�1;2

¼ d�1;2do1;2�
2
1;2f�1;2

,

and the Jacobian is

Jca ¼ �þ��
ð�þ þ ��Þ�� � ð�1b1 þ �2b2Þ � b� : (C29)

3. Møller scattering of electrons and positrons,
e�1 e

�
2 ! e�01 e�02

The time evolution of the distribution functions of elec-
trons (or positrons) is described by

�
@fiðpi; tÞ

@t

�
e1e2!e0

1
e0
2

¼
Z

dpjdp
0
1dp

0
2Vwp01;p

0
2;p1;p2

½f1ðp01; tÞ

� f2ðp02; tÞ � f1ðp1; tÞf2ðp2; tÞ	;
(C30)

with i ¼ 1, j ¼ 2, and with j ¼ 1, i ¼ 2, and where

wp0
1
;p0

2
;p1;p2

¼ @
2c6

ð2�Þ2V �ð�1þ �2� �01� �02Þ

��ðp1þ p2� p01� p02Þ
jMfij2

16�1�2�
0
1�
0
2

; (C31)

jMfij2 ¼ 26�2�2

�
1

t2

�
s2 þ u2

2
þ 4m2c2ðt�m2c2Þ

�

þ 1

u2

�
s2 þ t2

2
þ 4m2c2ðu�m2c2Þ

�

þ 4

tu

�
s

2
�m2c2

��
s

2
� 3m2c2

��
; (C32)

with s ¼ ðp1 þ p2Þ2 ¼ 2ðm2c2 þ p1p2Þ, t ¼ ðp1 � p01Þ2 ¼
2ðm2c2 � p1p

0
1Þ, and u ¼ ðp1 � p02Þ2 ¼ 2ðm2c2 � p1p

0
2Þ

[41].
The energies of final-state particles are given by (C18)

with new coefficients ~A ¼ ð�1 þ �2Þ2 � ð�1�1b1 � b01 þ
�2�2b2 � b01Þ2, ~B ¼ ð�1 þ �2Þ½m2c4 þ �1�2ð1�
�1�2b1b2Þ	, and ~C ¼ m2c4ð�1�1b1 � b01 þ �2�2b2 �
b01Þ2 þ ½m2c4 þ �1�2ð1� �1�2b1 � b2Þ	2. The condition
to be checked is

½�01ð�1 þ �2Þ �m2c4 � ð�1�2Þð1� �1�2b1 � b2Þ	
� ½ð�1�1b1 þ �2�2b2Þ � b01	 � 0:

(C33)

Integration of Eqs. (C30), similar to the case of Compton
scattering in Sec. C 1, yields



e1e2!e0

1
e0
2

e;! ¼ 1

��e;!

�Z
�012��e;!

d2nJms

�021 �01jMfij2@2c2
16�1�2�

0
2

þ
Z
�0
2
2��e;!

d2nJms

�01�01jMfij2@2c2
16�1�2

�
;

(C34)

ð�EÞe1e2!e0
1
e0
2

e;! ¼ 1

��e;!

�Z
�12��e;!

d2nJms

�01�
0
1jMfij2@2c2
16�2�

0
2

þ
Z
�22��e;!

d2nJms

�01�01jMfij2@2c2
16�1�

0
2

�
;

(C35)

where d2n ¼ dn1dn2do
0
1, dn1;2 ¼ d�1;2do1;2�

2
1;2�1;2f1;2,

and the Jacobian is

Jms ¼ �02�
0
2

ð�01 þ �02Þ�01 � ð�1�1b1 þ �2�2b2Þ � b01
: (C36)

4. Bhabha scattering of electrons on positrons,
e�eþ ! e�0eþ0

The time evolution of the distribution functions of elec-
trons and positrons due to Bhabha scattering is described
by
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�
@f�ðp�; tÞ

@t

�
e�eþ!e�0eþ0

¼
Z

dp�dp0�dp0þVwp0�;p0þ;p�;pþ

� ½f�ðp0�; tÞfþðp0þ; tÞ
� f�ðp�; tÞfþðpþ; tÞ	; (C37)

where

wp0�;p0þ;p�;pþ ¼
@
2c6

ð2�Þ2V �ð�� þ �þ � �0� � �0þÞ

� �ðp� þ pþ � p0� � p0þÞ
jMfij2

16���þ�0��0þ
;

(C38)

and jMfij is given by Eq. (C32), but the invariants are s ¼
ðp� � p0þÞ2, t ¼ ðpþ � p0þÞ2, and u ¼ ðp� þ pþÞ2. The
final energies �0�, �0þ are functions of the outgoing particle
directions in a way similar to that in Sec. C 3; see also [41].

Integration of Eqs. (C37) yields


e�eþ!e�0eþ0�;! ¼ 1

���;!

�Z
�0�2��e;!

d2n0�Jbs

� �02��0�jMfij2@2c2
16���þ�0þ

þ
Z
�0þ2��e;!

d2n0�Jbs

� �0��0�jMfij2@2c2
16���þ

�
; (C39)

ð�EÞe�eþ!e�0eþ0�;! ¼ 1

���;!

�Z
��2��e;!

d2n0�Jbs

� �0��0�jMfij2@2c2
16�þ�0þ

þ
Z
�þ2��e;!

d2n0�Jbs

� �0��0�jMfij2@2c2
16���0þ

�
; (C40)

where d2n0� ¼ dn�dnþdo0�, dn� ¼ d��do��2���f�,
and the Jacobian is

Jbs ¼ �0þ�0þ
ð�0� þ �0þÞ�0� � ð����b� þ �þ�þbþÞ � b0� :

(C41)

Analogously to the case of pair creation and annihilation
in Sec. C 2, the energies of final-state particles are given by

(C18) with the coefficients �A ¼ ð�� þ �þÞ2 � ð����b� �
b0� þ �þ�þbþ � b0�Þ2, �B ¼ ð�� þ �þÞ½m2c4 þ
���þð1� ���þb� � bþÞ	, �C ¼ ½m2c4 þ ���þð1�
���þb� � bþÞ	2 þm2c4½����b� � b0� þ �þ�þbþ �
b0�	2. In order to select the correct root, one has to check
the condition (C33), changing the subscripts 1! �, 2!
þ.

APPENDIX D: BINARY REACTIONS WITH
PROTONS

1. Compton scattering on protons, �p! �0p0

The rate for this process t�1�p compared to the rate of

Compton scattering of electrons t�1�e is much longer,

t�1�p ¼
np
n�

�
��
Mc2

�
2
t�1�e ; � � mc2: (D1)

Moreover, it is longer than any time scale for binary and
triple reactions considered in this paper, and thus we ex-
clude this reaction from the computations.

2. Electron-proton and positron-proton scattering,
e�p! e0�p0

The time evolution of the distribution functions of elec-
trons due to ep! e0p0 is described by

�
@f�ðp; tÞ

@t

�
ep!e0p0

¼
Z

dqdp0dq0Vwp0;q0;p;q½f�ðp0; tÞ

� fpðq0; tÞ � f�ðp; tÞfpðq; tÞ	; (D2)

�
@fpðq; tÞ

@t

�
ep!e0p0

¼
Z

dpdp0dq0Vwp0;q0;p;q½f�ðp0; tÞ

� fpðq0; tÞ � f�ðp; tÞfpðq; tÞ	; (D3)

where

wp0;q0;p;q ¼ @
2c6

ð2�Þ2V �ð�e þ �p � �0e � �0pÞ

� �ðpþ q� p0 � q0Þ jMfij2
16�e�p�

0
e�
0
p

; (D4)

jMfij2 ¼ 26�2�2 1

t2

�
1

2
ðs2 þ u2Þ þ ðm2c2 þM2c2Þ

� ð2t�m2c2 �M2c2Þ
�
: (D5)

The invariants are s ¼ ðpþ qÞ2 ¼ m2c2 þM2c2 þ 2p � q,
t ¼ ðp� p0Þ2 ¼ 2ðm2c2 � p � p0Þ ¼ 2ðM2c2 � q � q0Þ and
u ¼ ðp� q0Þ2 ¼ m2c2 þM2c2 � 2p � q0, sþ tþ u ¼
2ðm2c2 þM2c2Þ. The energies of the particles after the
interaction are given by (C18) with �A ¼ ð�� þ �pÞ2 �
½ð����b� þ �p�pbpÞ � b0�	2, �B ¼ ð�� þ �pÞ�
½m2c4 þ ���pð1� ���pb� � bpÞ	, �C¼m2c4fð����b� �
b0�þ�p�pbp �b0�Þ2þ½m2c4þ���pð1����pb��bpÞ	g2.
The correct root is selected by the condition (C33) with the
substitutions 1! �, 2! p.
Absorption and emission coefficients for this reaction

are
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ð�EÞep�;! ¼
1

���;!

Z
��2���;!

dn�dnpdo0�Jep

� �02��0���jMfij2@2c2
16���p�0��0p

; (D6)

ð�EÞepp;! ¼ 1

��p;!

Z
�p2��p;!

dn�dnpdo0�Jep

� �02��0��pjMfij2@2c2
16���p�0��0p

; (D7)


ep
�;! ¼

1

���;!

Z
�0�2���;!

dn�dnpdo0�Jep

� �02��0��0�jMfij2@2c2
16���p�0��0p

; (D8)


ep
p;! ¼ 1

��p;!

Z
�0p2��p;!

dn�dnpdo0�Jep

� �02��0��0pjMfij2@2c2
16���p�0��0p

; (D9)

where dni ¼ d�idoi�
2
i �ifi, i ¼ �, p, and the Jacobian is

Jep ¼
�0p�0p

ð�0� þ �0pÞ�0� � ð�p�pbp þ ����b�Þ � b0�
:

(D10)

The rate for proton-electron (proton-positron) scattering
is

t�1ep  �

Mc2
t�1ee ; �� � �p: (D11)

3. Proton-proton scattering, p1p2 ! p01p
0
2

This reaction is similar to e1e2 ! e01e
0
2, described in

Sec. C 3. The time evolution of the distribution functions
of electrons is described by

�
@fiðpi; tÞ

@t

�
p1p2!p0

1
p0
2

¼
Z

dqjdq
0
1dq

0
2Vwq0

1
;q0

2
;q1;q2
½f1ðq01; tÞ

� f2ðq02; tÞ � f1ðq1; tÞf2ðq2; tÞ	;
(D12)

with j ¼ 3� i, and where

wq0
1
;q0

2
;q1;q2

¼ @
2c6

ð2�Þ2V �ð�1þ �2� �01� �02Þ

��ðq1þ q2� q01� q02Þ
jMfij2

16�1�2�
0
1�
0
2

; (D13)

jMfij2 ¼ 26�2�2

�
1

t2

�
s2 þ u2

2
þ 4M2c2ðt�M2c2Þ

�

þ 1

u2

�
s2 þ t2

2
þ 4M2c2ðu�M2c2Þ

�

þ 4

tu

�
s

2
�M2c2

��
s

2
� 3M2c2

��
; (D14)

and the invariants are s ¼ ðq1 þ q2Þ2 ¼ 2ðM2c2 þ q1 �
q2Þ, t ¼ ðq1 � q01Þ2 ¼ 2ðM2c2 � q1 � q01Þ, and u ¼ ðq1 �
q02Þ2 ¼ 2ðM2c2 � q1q

0
2Þ.

For the rate we have

t�1pp 
ffiffiffiffiffi
m

M

r
np
n�

t�1ee ; vp 
ffiffiffiffiffi
m

M

r
v�; v�  c:

(D15)

APPENDIX E: THREE-BODY PROCESSES

We adopt emission coefficients for triple interactions
from [30].
The bremsstrahlung is


e�e�!e�e��
� ¼ ðn2þ þ n2�Þ 163

�c

"

�
e2

mc2

�
2
ln

�
4�ð11:2

þ 10:4�2Þ �
"

� 3
5

ffiffiffi
2
p

�þ 2�2

expð1=�ÞK2ð1=�Þ ; (E1)


e�eþ!e�eþ�
� ¼ nþn�

16

3

2�c

"

�
e2

mc2

�
2
ln

�
4�ð1þ10:4�2Þ�

"

�

�
ffiffiffi
2
p þ2�þ2�2

expð1=�ÞK2ð1=�Þ ; (E2)


pe�!p0e�0�
� ¼ ðnþ þ n�Þnp 163

�c

"

�
e2

mc2

�
2

� ln

�
4�ð1þ 3:42�Þ �

"

�
1þ 2�þ 2�2

expð1=�ÞK2ð1=�Þ ;
(E3)

where � ¼ e�0:5772, and K2ð1=�Þ is the modified Bessel
function of the second kind of order 2.
The double Compton scattering is


e��!e�0�0�00
� ¼ ðnþ þ n�Þn� 1283

�c

"

�
e2

mc2

�
2

� �2

1þ 13:91�þ 11:05�2 þ 19:92�3
:

(E4)
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The three-photon annihilation is


e�e�!��0�00
� ¼ nþn��c

�
e2

mc2

�
2 1

"

�
4
� ð2ln22��þ �2

6 � 1
2Þ

4�þ 1
�2
ð2ln22��þ �2

6 � 1
2Þ
; (E5)

where we have joined two limiting approximations given
by [30].
The radiative pair production is


��0!�00e�e�
e ¼ 
e�e�!��0�00

�
n2�

nþn�

�
K2ð1=�Þ
2�2

�
2
: (E6)

The electron-photon pair production is



e�1 �!e�01 e�e�
� ¼

� ðnþ þ n�Þn��cð e2mc2
Þ2 expð� 2

�Þ16:1�0:541 � 
 2

ðnþ þ n�Þn��cð e2mc2
Þ2ð569 ln2��� 8

27Þ 1
1þ0:5=� � > 2:

(E7)

The proton-photon pair production is


p�!p0e�e�
� ¼

�
npn��cð e2mc2

Þ2 expð� 2
�Þ 1

1þ0:9� � 
 1:252 77

npn��cð e2mc2
Þ2½289 ðln2��þ 1:7Þ � 92

27	 � > 1:252 77:
(E8)

We use the absorption coefficient for three-body pro-
cesses written as

�3p
� ¼ 
3p

� =Eeq
� ; (E9)

where 
3p
� is the sum of the emission coefficients of

photons in the three-particle processes, E
eq
� ¼

2��3f
eq
� =c3, where f

eq
� is given by (15).

From Eq. (22), the law of energy conservation in the
three-body processes is

Z X
i

ð
3p
i � �

3p
i EiÞd	d� ¼ 0: (E10)

For exact conservation of energy in these processes we
introduce the following coefficients of emission and ab-
sorption for electrons:

�
3p
e ¼

Rð
3p
� � �

3p
� E�Þd�d	R

Eed�d	
; 


3p
e ¼ 0;

Z
ð
3p

� � �
3p
� E�Þd�d	 > 0;

(E11)

or



3p
e

Ee

¼ �
Rð
3p

� � �
3p
� E�Þd�d	R

Eed�d	
; �3p

e ¼ 0;

Z
ð
3p

� � �3p
� E�Þd�d	< 0:

(E12)

APPENDIX F: CUTOFF IN COULOMB
SCATTERING

Denote quantities in the center-of-mass (CM) framewith
the index 0 and with a prime after the interaction. Suppose
we have two particles with masses m1 and m2. The change
of the angle of the first particle in the CM system is

�10 ¼ arccosðb10 � b010Þ; (F1)

the numerical grid size is��g, and the minimal angle at the

scattering is �min.
By definition, in the CM frame

p 10 þ p20 ¼ 0; (F2)

where

p i0 ¼ pi þ
�
ð�� 1ÞðNpiÞ � �

V

c

�i
c

�
N; i ¼ 1; 2;

(F3)

and

�i ¼ �ð�i0 þ Vpi0Þ: (F4)

Then for the velocity of the CM frame we have

V

c
¼ c

p1 þ p2

�1 þ �2
; N ¼ V

V
; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðVcÞ2
q :

(F5)

By definition,

b 10 ¼ b20; b010 ¼ b020; (F6)

and then

jp10j ¼ jp20j ¼ p0 � 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�210 �m2

1c
4

q
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�220 �m2

2c
4

q
;

(F7)

where

�10 ¼ ð�1 þ �2Þ2 � �2ðm2
2 �m2

1Þc4
2ð�1 þ �2Þ� ; (F8)

�20 ¼ ð�1 þ �2Þ2 þ �2ðm2
2 �m2

1Þc4
2ð�1 þ �2Þ� : (F9)

Haug [44] gives the minimal scattering angle in the center-
of-mass system as follows:
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�min ¼ 2@

McD

�r

ð�r þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�r � 1Þp ; (F10)

where M, as above, is the reduced mass, the maximum
impact parameter (neglecting the effect of protons) is

D ¼ c2

!

p0

�10
; (F11)

and the invariant Lorentz factor of relative motion (e.g.
[44]) is

�r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðvr

c Þ2
q ¼ �1�2 � p1p2c

2

m1m2c
4

: (F12)

In the CM frame we finally obtain

tmin ¼ 2

�
ðmcÞ2 �

�
�10
c

�
2ð1� �2

10 cos�minÞ
�
:

Since it is invariant, we then replace t in the denominator

of jMfij2 in (C32) by the value t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2min=t

2
q

to implement

the cutoff scheme. Considering the scattering of identical
particles we remove the case of exchange of particles as
well as scattering on small angles; in other words, we
change u in the denominator of jMfij2 in (C32), (D5), and

(D14) by the value u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2min=u

2
q

.

APPENDIX G: MASS SCALING FOR THE
PROTON-ELECTRON/POSITRON REACTION

Since the proton mass is larger than electron mass-
energy M� m, �, then for the CM frame

V  p1 þ p2

M
; �  1; J1  1; (G1)

�01 � �1  Vðe001 � e01Þp0 / 1

M
; (G2)

and also

s2

c4
 M4 þ 4mM3 þ 6m2M2; (G3)

u2

c4
 M4 � 4mM3 þ 6m2M2; (G4)

jMfij2 / 1

t2
ð6m2 � 2tÞM2; (G5)

while

t ¼ �2m
2�2

e0ð1� ee0e
0
e0Þ

1� �2
e0

¼ �2m
2�2

eð1� eee
0
eÞ

1� �2
e

½1þOðM�1Þ	 (G6)

for small angles.

This leads to the following scaling for the reaction rate:


ep
e! � ð�EÞepe! /

Z ð�0e � �eÞjMfij2
�e�p�

0
e�
0
p

/ 1

M:
(G7)

We can therefore calculate 
ep0
e! , ð�EÞep0

e! for a pseudo-
particle with mass M0 � m, � instead of M and obtain


ep
e!  M0

M

ep0
e! ; (G8)

ð�EÞepe!  M0

M
ð�EÞep0

e! : (G9)

For such purposes we selected the mass of this pseudo-
particle as M0 ¼ 20m.

APPENDIX H: THE DEFINITION OF MATRIX
ELEMENTS

Following [41] we define the scattering matrix, which is
composed of real and imaginary parts,

Sfi ¼ �fi þ ið2�@Þ4�ð4Þðpf � piÞTfi; (H1)

where �fi is the unity matrix, �ð4Þ stands for the four-

momentum conservation, and the elements of Tfi are scat-

tering amplitudes.
The transition probability of a given process per unit

time is then

wfi ¼ cð2�@Þ4�ð4Þðpf � piÞjTfij2V; (H2)

where V is the normalization volume.
For a process involving a outgoing particles and b

incoming particles, the differential probability per unit
time is defined as

dw ¼ cð2�@Þ4�ð4Þðpf � piÞjMfij2V �
�Y

b

@c

2�bV

�

�
�Y

a

dp0a
ð2�@Þ3

@c

2�0a

�
; (H3)

where p0a and �0a are, respectively, momenta and energies
of outgoing particles, �b are energies of particles before the
interaction, Mfi are the corresponding matrix elements,

�ð4Þ stands for energy-momentum conservation, and V is
the normalization volume. The matrix elements are related
to the scattering amplitudes by

Mfi ¼
�Y

b

@c

2�bV

��Y
a

@c

2�0aV

�
Tfi: (H4)

For a binary process with two incoming and two out-
going particles, it is convenient to introduce the differential
cross section. In fact, the differential probability for in-
coming particles with four-momenta p1 and p2, energies �1
and �2, and masses m1 and m2, respectively, is just the
product of the differential cross section and the flux den-
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sity,

dw ¼ jd�; (H5)

where

j ¼ cI

�1�2V
; (H6)

I ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2 �m1m2c

2
q

: (H7)

In the CM reference frame the relation between the cross
section and jMfij2 acquires the simplest form if the cross

section does not depend on the azimuth of p01 relative to p1;
then,

d� ¼ @
2c4

64�
jMfij2 dtI ; (H8)

t ¼ ðp1 � p2Þ2; (H9)

dt ¼ 2jp1jjp01jd cos#; (H10)

where # is the angle between p1 and p01.
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