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We consider the possibility that astrophysical black holes (BHs) can violate the Kerr bound; i.e., they

can have angular momentum greater than BH mass, J >M. We discuss implications on the BH apparent

shape. Even if the bound is violated by a small amount, the shadow cast by the BH changes significantly

(it is� an order of magnitude smaller) from the case with J � M and can be used as a clear observational

signature in the search for super-spinning BHs. We discuss briefly recent observations in the mm range of

the supermassive BH at the center of the Galaxy, speculating on the possibility that it might violate the

Kerr bound.
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I. INTRODUCTION

Black holes (BHs) are quite strange objects, which are
devoid of a true internal structure and are completely
defined by a few parameters [1,2]. In the case of BHs
which we may possibly find in our Universe, the number
of these parameters reduces to three: the mass M, the
charge Q, and the spin J. In this paper we pay close
attention to the possible spin of the BH while we set Q ¼
0. At present good BH candidates [3] include supermassive
objects (105–109M�) at the center of galaxies and stellar
mass objects (5–20M�) in x-ray binary systems. In both
cases, we can infer their mass from dynamical arguments,
studying the Newtonian orbital motion of stars or gas
around them.1 A challenge today is to measure the spin
of these objects as may be experimentally feasible in the
near future. Here the difficulty is that we need to probe the
spacetime close to the horizon, because spin effects are
absent in Newtonian gravity and are suppressed at small
velocities and large distances.

An important feature is that BHs are expected to respect
the Kerr bound J � M. This is just the condition to have a
horizon. If the Kerr bound were violated, instead of a
rotating BH we would have a naked singularity. To see
this we can examine the four-dimensional Kerr-Neumann
or Reissner-Nördstrom solutions. The position of the hori-
zon is given by the expression [5,6]

RH ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2 � J2

q
; (1)

where Q and J are, respectively, electric charge and angu-
lar momentum of BH. It is clear that in 4D spacetime the
horizon cannot be formed if

M<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ J2

q
: (2)

In the absence of a horizon, there would be naked singu-
larities which are not allowed. Indeed if condition (2) is
fulfilled, the Kerr-Newmann metric makes it possible to
reach the physical singularity at r ¼ 0 from some large r in
finite time without crossing any horizon. One could thus
consider closed timelike curves and violate causality (see
e.g. Sec. 66c of [1] or Ref. [7]). For this reason, usually
some kind of cosmic censorship is assumed and naked
singularities are forbidden [8].
However, it seems reasonable that the singularity at the

center of BHs has actually no physical meaning and it is
just the symptom of the breakdown of classical general
relativity (GR). First, it is difficult to believe that all the
matter can collapse into an infinitesimal volume. Second,
this is usually the kind of pathology which is expected to be
solved at the quantum level. On these general grounds, one
is tempted to argue that actually there is no singularity at
the center and that the Kerr bound may be violated. In
particular, [9] discusses possible origins of the breach of
the Kerr bound in string theory.
One more comment is in order here. Since for J >M

there is no horizon, Robinson’s theorem does not hold [10]
and thus (at least in classical general relativity) the super-
rotating object might not be described by the Kerr metric.
In quantum gravity we simply do not know what happens.
The most promising approach to measure the spin of

BHs is often believed to be the study of emission lines
(notably the fluorescent iron K� at 6.4 keV), where J may
be deduced by fitting the shape of the line [11]. The method
has some weak points. In particular, one has to assume
some emissivity function (usually modeled as a power law
in the radius) and that there is no emission inside the
innermost stable circular orbit (ISCO). Relaxing these
assumptions, one can find quite different results [12].
Another common approach is the x-ray continuum fitting
method, which is also based on the fact that the inner edge

*cosimo.bambi@ipmu.jp
†ktfreese@umich.edu
1It is also possible that a third category of BHs exists,

intermediate mass BHs (103–104M�), but so far we do not
have much information about them and, in particular, there are
no clear measurements of their mass [4].
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of the accretion disk is presumably the ISCO [13–15]. Here
we need to know the distance of the BH candidate, its
mass, and the disk inclination angle, but in a few cases
there are sufficiently reliable estimates of these quantities.
For our purposes, if we want to test the Kerr bound, both
approaches do not look suitable, because there is no clear
difference between a Kerr BH near extremality and one
which violates the Kerr bound by a small amount: the
radius of the ISCO is a continuous function of J, while
we would like to observe some physical quantity which is
discontinuous at J ¼ M.

In this work we study the apparent shape of a super-
spinning BH and we claim that the observation of its
shadow could be used to test the Kerr bound. The shadow
of the BH is the nonilluminated area seen by an observer if
the BH is in front of a planar light source. In realistic
situations, it is usually unlikely to have a bright source of
this kind. Nevertheless, something very similar to the
shadow can be observed if the BH is surrounded by an
emitting medium (typically the accreting gas) which is
optically thin (and this is always possible for enough
high frequencies). Here an arbitrarily small violation of
the Kerr bound makes the horizon disappear and changes
significantly the apparent shape of the BH: now only the
photons reaching the center of the BH are lost, while all the
others, with turning points at finite distances from the
center (or at distances larger than some scale coming
from new physics), are not captured and can therefore
come back to infinity.

II. KERR BLACK HOLES

In this section we briefly review the study of the appar-
ent shape of a BH which respects the Kerr bound J � M
(for more details, see e.g. Sec. 63 of [1] or Refs. [7,16,17].
Analogous studies of similar objects can be found in
Ref. [18]). As described above, the shape of the BH is
just the boundary of its shadow: if you fire a photon inside
the shape, it is swallowed by the BH; if outside, the photon
is not captured. The geodesics equation for the radial
coordinate r in the Kerr metric in Boyer and Lindquist
coordinates for massless particles is

ðr2 þ J2cos2�Þ2
�
dr

d�

�
2 ¼ R; (3)

where � is the polar angle, � is the affine parameter, and

R ¼ E2r4 þ ðJ2E2 � L2
z �QÞr2

þ 2M½ðJE� LzÞ2 þQ�r� J2Q; (4)

Q ¼ p2
� þ cos2�

�
L2
z

sin2�
� J2E2

�
: (5)

Here E, Lz, and Q are constants of motion and are,
respectively, the energy, the component of the angular
momentum parallel to the spin of the BH, and the so-called

Cartan constant. For our discussion, it is convenient to
introduce the variables � ¼ Lz=E and � ¼ Q=E2, which
are related to the ‘‘celestial coordinates’’ of an observer at
infinity by

x ¼ �

sin�obs
;

y ¼ �ð�þ J2cos2�obs � �2cot2�obsÞ1=2;
(6)

where �obs is the angular coordinate of the observer.
One can think of an effective potential for the photon,

which has a barrier with a maximum, goes to negative
infinity below r ¼ rh, where rh is the horizon, and asymp-
totes to zero at r ! infinity. One can see that there are
three kinds of photon orbits: (i) capture orbits, in which the
photon arrives from infinity with energy larger than the
barrier of the effective potential and then crosses into the
horizon, (ii) scattering orbits, in which the photon arrives
from infinity with energy less than the barrier of the
effective potential and then comes back to infinity, and
(iii) unstable orbits of constant radius (at r ¼ 3M for J ¼
0, the location of the maximum of the effective potential)
which separate the capture and the scattering orbits.2 The
apparent shape of the BH can be found by looking for the
unstable orbits. Every orbit can be characterized by the
constants of motion � and �, and the set of unstable
circular orbits ð�c; �cÞ can be used to plot a closed curve
in the xy plane which represents the apparent shape of the
BH. The latter is larger than the geometrical shape, because
the BH bends light rays and thus the actual cross section is
larger than the geometrical one. The equations determining
the unstable orbits of constant radius are

R ¼ r4 þ ðJ2 � �2
c � �cÞr2 þ 2M½ð�c � JÞ2 þ �c�r

� J2�c ¼ 0;

@R
@r

¼ 4r3 þ 2ðJ2 � �2
c � �cÞrþ 2M½ð�c � JÞ2 þ �c�

¼ 0: (7)

In the case of Schwarzschild BH (J ¼ 0), the solution is

�cð�cÞ ¼ 27M2 � �2
c; (8)

so the apparent image of the BH is a circle of radiusffiffiffiffiffiffi
27

p
M � 5:20M (Fig. 1, top left panel). In the more gen-

eral case with J � 0, one finds

2In the simplest case of J ¼ 0, the effective potential for
massless particles has a maximum at r ¼ 3M, the location of
the unstable orbit (there is no minimum of this potential). For
J � 0, the picture is qualitatively the same, but a little more
complex, because the spin breaks the spherical symmetry of the
system. In particular, the effective potential is different for
particles with angular momentum parallel or antiparallel to the
BH spin.
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�c ¼ Mðr2 � J2Þ � rðr2 � 2Mrþ J2Þ
Jðr�MÞ ;

�c ¼ 4J2Mr3 � r4ðr� 3MÞ2
J2ðr�MÞ2 ;

(9)

where r is the radius of the unstable orbit. The apparent
shape of a BH J ¼ 0:999M is reported in Fig. 1 for an
observer on the equatorial plane (top right panel) and for
one with angular coordinate �obs ¼ 60� (bottom panel).
The two figures are different, even if it is not very evident.

The main feature of the shape of rotating BHs is the
asymmetry along the spin axis, because of the different

effective potential for photons orbiting around the BH in
one or the other direction. The radius of the unstable
circular orbit is smaller for photons with angular momen-
tum parallel to the BH spin and that slightly flattens the BH
shadow on one side. The effect is maximal for the observer
on the equatorial plane, �obs ¼ 90�. As �obs ! 0� (or
180�), the BH shape reduces to a circle of radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð0Þ þ J2

p
, where �cð0Þ is the value of �c for �c ¼ 0.

One can thus find that the radius of the circle is a little

smaller than
ffiffiffiffiffiffi
27

p
M and decreases as the spin increases. For

example, when J ¼ 0:999M the radius is about 4:83M.

III. SUPER-SPINNING BLACK HOLES

If the BH violates the Kerr bound and thus has J >M,
the picture of photon orbits changes. In particular, it is not
true that there are unstable orbits of constant radius sepa-
rating the capture and the scattering trajectories. The ap-
parent shape of the BH can now be found looking for the
set of points ð�s; �sÞ for which there is no turning point
(and no circular orbits), that is, when Eq. (7) has no
solution for real and positive r. In classical general rela-
tivity, one generally avoids this super-spinning case be-
cause (as discussed previously) there is no horizon. Or, one
can treat this case by extending the spacetime to include
regions with negative value of the radial coordinate r. Then
when J >M, there are photon orbits with a turning point at
r < 0 and thus carry information from ‘‘another universe’’
before coming back to infinity [1].
Here, instead, in a possible extension of GR we believe

that it is more reasonable to expect that such photons are
captured by the object replacing the singularity. Here we
require that the turning point is at r > 0 (or even at r > R,
where R is some new distance, see below) because we are
assuming that the region of high curvature is modified by
quantum effects, but we do not know how. For given �s,
one can solve Eq. (7) to find �s as a function of r:

�s ¼ 2JMr� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2M2r2 � ½r4 þ ðJ2 � �sÞr2 þ 2MðJ2 þ �sÞr� J2�s�ð4Mr� r2Þp

2Mr� r2
: (10)

For �s ¼ 0, there are no solutions for �s in the interval
ð�ð6 cosh�þ cosh3�ÞM; JÞ, where cosh3� ¼ J=M, for
any r > 0. On the other hand, for �s > 0, �s can have
any value. The apparent image of a BH with J ¼ 1:001M
for an observer on the equatorial plane is shown in Fig. 2,
top left panel. Since we are assuming that classical general
relativity breaks down (our basic ingredient to consider the
possibility of violation of the Kerr bound), but we do not
know what the spacetime near the former singularity could
be, we may make the following proposal. One may imag-
ine that quantum gravity effects replace the singularity
with something larger, say a core of radius R; we then

demand that the radius of the turning point of photon orbits
is larger than this distance R. We may require that only
photons with turning point at r > R can really come back
to infinity and be detected by the observer. In this case, as R
increases, the photon capture cross section would also
increase. Figure 2 shows the case R ¼ 0 (top left panel),
R ¼ 0:01M (top right panel), and R ¼ 0:10M (bottom
panel). Even if such a proposal could sound crazy in
standard general relativity, it is likely the simplest way to
parametrize new physics.
Quantum gravity effects are presumably important in the

region where the spacetime curvature approaches the
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FIG. 1 (color online). Apparent shape for Schwarzschild black
hole (top left panel) and Kerr black hole with a ¼ J=M ¼ 0:999
(respecting the Kerr bound) for an observer with angular coor-
dinate �obs ¼ 90� (top right panel) and �obs ¼ 60� (bottom
panel). The unit of length of the coordinate axes is M.
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Planck scale; i.e., very close to the center of the BH. Thus
the radius R is likely to be very small, i.e., close to 0. The
case R ¼ 0:01M is still conservative, since the curvature of
the spacetime for astrophysical BHs is still tiny (in Planck
units) at the distance 0:01M from the center. The shape of
the BH (the cross section for capture) is still very small.
The purpose of considering several values of R is just to
show some (reasonable?) alternatives. Moreover, we do not
know if a sphere is the best choice for the shape of this
boundary, especially given the extreme rotation of the
object. For example, an oblate spheroid could be a reason-
able possibility. For an oblate spheroid, the apparent shape
of the BH would be something in between the two spheri-
cal cases with R equal, respectively, to the length of the
major and minor axes. However, probably only a signifi-
cant deviation from spherical symmetry could be distin-
guished observationally.

Let us now study the BH shape for an observer not on the
equatorial plane. Using Eq. (6), it is easy to see how the
shape changes. The case �obs ¼ 60� is reported in Fig. 3.
The shape in the top left panel is for the case of photons
which can have a turning point arbitrarily close to the
origin r ¼ 0. The photons inside the curves have �s < 0
and cannot be seen by observers on the equatorial plane
[indeed Eq. (6) would provide imaginary value of y]. The
apparent shape of the BH is an ellipse with semiaxis along
the x direction equal to J and semiaxis along the y direction
equal to Jj cos�obsj. For �obs ! 0� (or 180�), the system

looks spherically symmetric and the ellipse reduces to a
circle of radius J.
If we demand that only photons with a turning point at

radii larger than some finite value R can come back to
infinity, the BH shadow for observers with �obs � 90� is of
the kind shown in the top right and bottom panels of Fig. 3.
As expected, the shape is larger than the case with R ¼ 0,
but still much smaller than the one of BHs respecting the
Kerr bound. For observers with angular coordinate �obs ¼
0� or 180�, the BH shadow reduces to a circle of radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sð0Þ þ J2

p
. For R ¼ 0:01M and R ¼ 0:10M, one finds

respectively 1:018M and 1:123M.

IV. OBSERVATIONAL CONSEQUENCES

Quantum gravity effects may resolve BH singularities
and in the process allow for violations of the Kerr bound,
i.e., allow for super-spinning BH with J >M. We have
shown that a BH violating the Kerr bound has no event
horizon and has a very different apparent shape, i.e. cross
section for capturing photons. Yet corrections to the space-
time structure are likely to be negligible for astrophysical
BHs, because the curvature approaches the Planck scale
only in the very central region. We would like to stress that
super-spinning BHs cannot be created by spinning up BHs
with J <M: on the basis of the third law of BH thermo-
dynamics, there are no physical processes capable of trans-
forming a BH with J <M into an extremal one in a finite
number of steps. So, super-spinning BHs must be born as
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FIG. 2 (color online). Apparent shape of a black hole with a ¼
J=M ¼ 1:001 for an observer on the equatorial plane. Here we
demand that the distance of the turning point of photon orbit
from the center is larger than 0 (top left panel), 0.01 (top right
panel), and 0.10 (bottom panel). The unit of length of the
coordinate axes is M.
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FIG. 3 (color online). Apparent shape of a black hole with a ¼
J=M ¼ 1:001. Here we demand that the distance of the turning
point of photon orbit from the center is larger than 0 (top left
panel), 0.01 (top right panel), and 0.10 (bottom panel). The unit
of length of the coordinate axes is M.
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super-spinning BHs. That would violate the cosmic censor-
ship conjecture, but there are some known examples which
look physically reasonable and where it is indeed possible
to create a naked singularity from the gravitational collapse
of matter, see e.g. Sec. 5.7.1 of [2] and references therein.
For example, in 2þ 1 dimensions where the study of
gravitational collapse is more tractable, recent results
show that, under general initial conditions, the collapse
of a shell with pressure can form a naked singularity and
that, in general, angular momentum does not prevent the
violation of the cosmic censorship conjecture [19].

The possibility of testing the Kerr bound J � M is
particularly intriguing for two important reasons. First,
even though there are not yet reliable measurements of
the BH spin, several indications suggest that astrophysical
BHs typically have high spins. For example, in Ref. [20]
the authors find J=M > 0:93 for the AGN MCG-6-30-15,
while the authors of Ref. [21] suggest J=M > 0:8–0:9 for
the stellar mass BH in the x-ray source GX 339-4. Based on
the x-ray continuum fitting method, the lower limit on J=M
of the BH candidate in the x-ray source GSR 1915+105 has
been estimated to be 0.98 in Ref. [14]. The second impor-
tant point is that observations in the mm range are now
reaching resolutions smaller than the expected angular size
of the BH at the center of the Galaxy [22]. Another
promising candidate is the supermassive BH in the center
of the galaxy M87, which is about 2000 times more distant,
but 1000 times more massive; thus its expected angular
size is only a factor 0.5 smaller than the one of the BH in
our own Galaxy.

If a BH is in front of a light planar source, a distant
observer sees its shadow, a nonilluminated area with
boundary equal to the BH apparent shape. However, the
region blocked by the BH is not likely to be completely
dark. The BH is likely to be accreting from a disk which
emits radiation itself. Hence, the part of the disk in front of
the BH prevents the BH region from looking completely
black; instead, if one is looking in the direction of the BH,
one is likely to see a region of reduced illumination rather
than a completely dark one. The observer can then see a
less illuminated area which has the same form of the
shadow. The boundary of this area is not as well defined
as the one of the shadow: particles tend to pile up near the
last stable orbits. Particles sink to the BH because they lose
angular momentum and thus their barrier decreases. This is
not a fast process and so matter accumulates around stable
orbits and there is the possibility of relevant photon emis-
sion, which can somehow compensate the attenuation due
to photon redshift.

The rotation of the accreting matter which emits radia-
tion introduces an additional source of uncertainty, de-
forming this darker image in a way that Schwarzschild or
slow rotating BHs may be interpreted as BHs with higher
spin value. In the case of super-spinning BHs, basically all
the emitted photons can reach the observer at infinity, at

least in principle. Photons which are emitted at distances of
order M are strongly redshifted if the quantity J=M is
slightly larger than 1, but at the same time they presumably
orbit around the BH several times, since the orbits are
stable, thus increasing the intensity of the flux.
The possibility of observing the shape of the BH at the

center of the Galaxy was first discussed in [23]. The shape
should in principle be observable at submillimeter wave-
lengths. Yet, if the spin is below the Kerr bound, measure-
ments of the shape will not definitively determine the spin.
The size of the BH shadow turns out to be roughly 10M,
regardless of the value of the spin, and even if the accretion
gas were optically thick and geometrically thin [24]. The
measurement of J may instead be achievable through more
sophisticated multiwavelength studies of the BH image
and of its polarization [25]. Although a precise determi-
nation of the spin may be difficult, it may be much easier to
distinguish whether the spin is above or below the Kerr
bound. If the BH violates the Kerr bound, the apparent
shape of the BH would be much smaller than 10M, for any
angular coordinate of the observer. For example, if �obs ¼
0� or 180�, the shadow of a Kerr BH is a circle of radius in
the range 5:20–4:83M; whereas a BH slightly in violation
of the Kerr bound (J=M a little larger than 1) has a shadow
which is a circle of radius about 1M.
We conclude this section with a speculation on the

possible value for the spin of the BH at the center of our
Galaxy. In Ref. [22], the authors reported the observation at
the wavelength of 1.3 mm of the radio source Sgr A	,
which is coincident with the position of the BH candidate
at the level of 10 mas [26]. In fact it is not clear whether the
radio source is exactly centered on the BH [27] or some-
what shifted away from it [28]. Modeling Sgr A	 as a
circular Gaussian brightness distribution, the authors of
Ref. [22] find that the intrinsic diameter of the radio source
is 37þ16

�10 �as at 3�. However, in classical GR, if Sgr A	
were a spherically symmetric photosphere centered on the
BH, one would expect a much larger diameter: the mini-
mum apparent diameter would range from 10:4M corre-
sponding to 52 �as for a nonspinning BH (J ¼ 0), to 9M
corresponding to 45 �as for a BH spinning at the Kerr
bound (J ¼ M) and �obs ¼ 90�. Although the current data
are not yet capable of absolute confirmation of such a
measurement, its implications would be interesting. One
possibility is that the radio source is not perfectly centered
at the BH. A second possibility is that the radio emission
region is indeed a photosphere centered on the BH, but the
BH violates the Kerr bound and thus the emission region
may have a small apparent size as discussed in this paper,
even smaller than 45 �as. Independent measurements of
the spin of the BH candidate in the Galactic center could be
possible in the near future, for example, by observing
signatures of time variable structure [29]. Here the idea is
that the observed periodicity is due to hot spots orbiting the
BH at a few gravitational radii: if that is correct, the fastest
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one could be associated with the orbital period at the ISCO,
which depends on the BH spin and is much shorter for a
fast-rotating Kerr BH than for a Schwarzschild BH.

Because of its very low quiescent luminosity in the near
IR, it has been argued that the BH candidate in the Galactic
center cannot be an object with a hard surface and must
have an event horizon [30,31]. Our proposal may be an
alternative possibility: an object with neither a solid sur-
face like a star nor an event horizon like a true BH.

V. SUMMARYAND CONCLUSIONS

In classical general relativity, BH spinning more rapidly
than the Kerr bound, i.e., spinning with J >M, would
imply the existence of a naked singularity and the violation
of causality. However, if quantum gravity effects can re-
solve the singularity, causality can be restored and we do
not need the Kerr bound. Then super-spinning black holes
may exist.

In this paper we have discussed how we may observa-
tionally identify a black hole which violates the Kerr
bound. The key point is the absence of the horizon, which
leads to a very different apparent shape for the black hole.
By shape we mean essentially the cross section for captur-
ing photons. If the black hole is surrounded by accreting
gas which is optically thin, as we believe is the case for the
black hole at the center of the Galaxy for submillimeter

wavelengths, we can presumably see something similar to
the black hole shadow. For the standard J � M, the precise
measurement of the black hole spin is difficult because the
image size is always about 10M. On the other hand, the
observational difference between BH with J <M and with
J >M should be quite dramatic. The test of the Kerr bound
can instead be relatively easy, because we have just to be
able to distinguish an image of apparent size about 10M
(for the case where the Kerr bound is satisfied) from one of
about 2M (where the Kerr bound is violated). A more
detailed study of the picture is necessary; in particular,
the black hole image has to be evaluated in a more realistic
framework, assuming some astrophysical model for the
emitting region surrounding the black hole. This will be
the subject of another work.
The possible violation of the Kerr bound does not strictly

imply the breakdown of classical general relativity, since
the theory does not require J � M, but is surely something
which would be unexpected in the standard framework and
which demands new physics.
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