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We investigate the implications of a light tetraquark field on chiral symmetry restoration at nonzero

temperature within a simple chirally symmetric model. In order for the chiral phase transition to be

crossover, as shown by lattice QCD studies, a strong mixing between scalar quarkonium and tetraquark

fields is required. This leads to a light (� 0:4 GeV), predominantly tetraquark state, and a heavy

(� 1:2 GeV), predominantly quarkonium state in the vacuum, in accordance with recently advocated

interpretations of spectroscopy data. The mixing even increases with temperature and leads to an

interchange of the roles of the originally heavy, predominantly quarkonium state and the originally light,

predominantly tetraquark state. Then, as expected, the scalar quarkonium is a light state when becoming

degenerate in mass with the pion as chiral symmetry is restored at nonzero temperature.
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I. INTRODUCTION

In the last 30 years, theoretical and experimental work
on the light scalar mesons with mass below �1:8 GeV
initiated an intense debate about their nature. The issue is
that too many scalar resonances have been identified than
can be accommodated in a naive quark-antiquark picture.
For instance, in the scalar-isoscalar channel there are five
states: f0ð600Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ
[1]. In order to explain their nature, quarkonia, tetraquark,
and mesonic molecular assignments, as well as a scalar
glueball state with mass around 1.5 GeV suggested by
lattice studies of quantum chromodynamics (QCD) [2],
have been investigated in a variety of combinations and
mixing patterns [3–6]. Yet, a clear answer to the question
of which resonance should be dominantly identified as a
scalar quarkonium (i.e., quark-antiquark) state is not at
hand.

Nowadays evidence for a full nonet of scalars with mass
below 1 GeV is mounting; these are the already mentioned
isoscalars f0ð600Þ and f0ð980Þ, as well as the isotriplet
a0ð980Þ, and the two isodoublets of K�

0ð800Þ. As proposed
long ago by Jaffe [7], a tetraquark assignment for these
states can explain some puzzling properties, such as the
mass ordering which is reversed compared to the expecta-
tion from a quark-antiquark picture, and the strong cou-
pling of a0ð980Þ and f0ð980Þ to kaons [8]. Within this
context the lightest scalar resonance f0ð600Þ is interpreted
as a tetraquark state 1

2 ½u; d�½ �u; �d�, where the commutator

indicates an antisymmetric flavor (as well as color) con-
figuration of the diquark. Further indications of a non-
quarkonium nature of the scalar states below 1 GeV, and
thus of f0ð600Þ, are obtained from a large-Nc study in the
framework of unitarized chiral perturbation theory [9] and
in the lattice studies of Ref. [10].

If the light scalars are (predominantly) tetraquark states,
the question is how to identify the lightest quarkonium

state �nn ¼ 1=
ffiffiffi
2

p ð �uuþ �ddÞ: the broad resonance f0ð1370Þ
is the first candidate. This assignment is also supported by
the fact that the scalar quarkonia are p-wave states, and
thus expected to lie above 1 GeV together with other
p-wave quarkonia such as axial-vector and tensor mesons.
The two isoscalars of the quarkonia nonet and the scalar
glueball can mix, forming the states f0ð1370Þ, f0ð1500Þ,
and f0ð1710Þ; such scenarios have been discussed in
Refs. [11]. While it is not clear if f0ð1500Þ or f0ð1710Þ
carries the largest glueball amount, all the above cited
works agree in the assignment of a dominant �nn compo-
nent to the resonance f0ð1370Þ.
For Nf massless quark flavors, the QCD Lagrangian

[including effects from the Uð1ÞA anomaly [12]] has a
chiral SUðNfÞr � SUðNfÞl �Uð1ÞV symmetry, V ¼
rþ l. If this symmetry is linearly realized, the mass eigen-
states of QCD come in degenerate pairs, so-called chiral
partners, which have the same quantum numbers except for
parity and G-parity; e.g., the chiral partners of the scalar-
isoscalar meson are the pseudoscalar isotriplet mesons, i.e.,
the pions. The chiral symmetry is spontaneously broken to
SUðNfÞV in the vacuum [13], thus lifting the degeneracy of

the chiral partners and rendering the pions Goldstone
bosons. Since the pion is commonly regarded to be a
quark-antiquark state, and if the resonance f0ð1370Þ is
predominantly a quarkonium state, the latter should be
considered as the chiral partner of the pion, and not
f0ð600Þ, as is usually assumed. Consequently, if the chiral
symmetry of QCD is restored above some critical tempera-
ture Tc, as predicted by lattice QCD calculations [14], the
resonance f0ð1370Þ, and not f0ð600Þ, should become de-
generate in mass with the pion. Clarifying this issue is
important for the interpretation of data from heavy-ion-
collision experiments, whose major goal is to identify
signatures for chiral symmetry restoration at nonzero tem-
perature T.
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The aim of this paper is to take a first step towards
investigating this scenario of chiral symmetry restoration.
We employ the toy model discussed in Ref. [6], which is
the Nf ¼ 2 limit of a more general chiral Lagrangian for

Nf ¼ 3. This model contains only one tetraquark field in

addition to the scalar quarkonium field and the pions.
Although the other mentioned scalar-isoscalar resonances
f0ð980Þ, f0ð1500Þ, and f0ð1710Þ are not included at the
present stage, this model has all the essential features to
analyze the role of the tetraquark and its mixing with the
quarkonium at nonzero T. To this end we employ the
Cornwall-Jackiw-Tomboulis (CJT) formalism [15] in the
Hartree-Fock approximation [16]. We shall show that, as T
increases, the f0ð1370) becomes lighter and its tetraquark
admixture grows. Within our model calculation, we also
find that, for a large range of parameters, there exists a
certain temperature Ts � Tc above which the state that is
predominantly quarkonium becomes lighter than the state
that is mostly tetraquark. At and above Tc, the state which
is predominantly quarkonium becomes degenerate with the
pion, as expected for chiral symmetry restoration.

II. THE MODEL

We consider the pion triplet ~�, the bare quarkonium field
’ � �nn, and the bare tetraquark field � � 1

2 ½u; d�½ �u; �d�.
The potential defining our model emerges as the SUð2Þr �
SUð2Þl limit of a more general SUð3Þr � SUð3Þl chiral
invariant Lagrangian studied in Ref. [6] and reads explic-
itly

V ¼ �

4
ð’2 þ ~�2 � F2Þ2 � "’þ 1

2
M2

��
2 � g�ð’2 þ ~�2Þ;

(1)

where " parametrizes explicit chiral symmetry breaking by
nonzero quark masses and g, chosen to be � 0, is the
interaction strength of the tetraquark field � [which is a
singlet under SUð2Þr � SUð2Þl] with the quarkonia fields.
As we shall see, g also determines the mixing of the scalar
fields. When g ! 0 a simple linear sigma model for ’ and
~� is left. In fact, the field �, with mass M�, decouples in

this limit. The minimum of the potential (1) is, to order
Oð�Þ, assumed for

’0 ’ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2g2=ð�M2

�Þ
q þ "

2�F2
; �0 ¼ g

M2
�

’2
0; (2)

and ~� ¼ 0. The �nn condensate ’0 is identified with the
pion decay constant f� ¼ 92:4 MeV. Note that the vac-
uum expectation value (vev) �0 is proportional to’

2
0. Thus,

the tetraquark condensate �0 is induced by the spontaneous
symmetry breaking in the quarkonium sector. After shift-
ing the fields ’ ! ’0 þ ’ and � ! �0 þ � and expand-
ing the potential around the minimum, we obtain up to
second order in the fields

V ¼ 1

2
ð�;’Þ M2

� �2g’0

�2g’0 M2
’

 !
�
’

� �
þ 1

2
M2

� ~�2 þ . . . ;

(3)

where M2
’ ¼ ’2

0ð3�� 2g2

M2
�
Þ � �F2, M2

� ¼ "
’0
. The value

M� ¼ 0:139 GeV is used. Because of the off diagonal
terms in the mass matrix in Eq. (3), the fields ’ and �
are not mass eigenstates of the potential V. The latter,
denoted by ðH; SÞ, are obtained after an SOð2Þ rotation of
the fields ð’;�Þ

H
S

� �
¼ cos�0 sin�0

� sin�0 cos�0

� �
�
’

� �
; (4)

where �0 ¼ 1
2 arctan

4g’0

M2
’�M2

�
. The tree-level masses of H

and S are

M2
H ¼ M2

�cos
2�0 þM2

’sin
2�0 � 2g’0 sinð2�0Þ;

M2
S ¼ M2

’cos
2�0 þM2

�sin
2�0 þ 2g’0 sinð2�0Þ:

Assuming ��=4 � �0 � �=4, the state H is then pre-
dominantly tetraquark and S is predominantly quarkonium.
As discussed above, we shall identify the state H with the
resonance f0ð600Þ and the state S with f0ð1370Þ. A natural
choice is then that the pure tetraquark should be lighter
than the pure quarkonium, i.e., M� <M’. Using the fact

that the trace and the determinant of the mass matrices
before and after the SOð2Þ rotation are equal, we obtain
ðM2

S �M2
HÞ2 ¼ ðM2

’ �M2
�Þ2 þ ð4g’0Þ2, implying that for

g > 0 the masses of the states H and S repel each other:
MH <M� <M’ <MS. We also obtain the constraint

jM2
S �M2

Hj � 4g’0.

As a side remark, we mention that the tree-level decay
width of f0ð600Þ is larger than 300MeVwhen the mass lies
above 0.6 GeVand when the mixing is large. However, we
refrain from a more elaborate study of vacuum properties,
since a realistic description of the latter requires the in-
clusion of other scalar states and of (axial-)vector mesons
[17–19] and we concentrate on the behavior at nonzero T.

III. RESULTS

In order to study chiral symmetry restoration at nonzero
T we employ the CJT-formalism in the Hartree-Fock ap-
proximation; for details see Ref. [16]. As a result, the
masses MHðTÞ, MSðTÞ, M�ðTÞ, and the mixing angle
�ðTÞ become functions of T. Moreover, both scalar-
isoscalar fields attain T-dependent vev’s, ’0 ! ’ðTÞ for
the quarkonium and �0 ! �ðTÞ for the tetraquark state,
respectively, with ’ð0Þ ¼ ’0 and �ð0Þ ¼ �0; see Eq. (2).
We first study the order of the chiral phase transition and

the associated Tc as a function of the model parameters g,
MH � MHð0Þ, and MS � MSð0Þ. Figure 1(a) shows the
phase diagram in the g-MS plane for fixed MH ¼
0:4 GeV which is close to the value of Ref. [20], while
Fig. 1(b) depicts the g-MS plane for fixed MS ¼ 1:2 GeV
which is in the experimentally established range of values
for f0ð1370Þ [1].
One observes in Fig. 1(a) that, in the limit g ! 0 in

which S is a pure quarkonium, the transition is crossover
below a value MS ’ 0:948 GeV and of first order above
this value. The fact that a heavy chiral partner of the pion
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induces a first-order chiral phase transition has been dis-
cussed previously; see e.g. Ref. [18]. This means that, in a
linear sigma model without tetraquark degrees of freedom,
a heavy (i.e., mass larger 1 GeV) chiral partner of the pion
is excluded by lattice QCD calculations [14], which indi-
cate a crossover transition. Including tetraquarks dramati-
cally changes this conclusion: as one observes in Fig. 1(a),
for increasing g the region of crossover transitions extends
towards larger values ofMS. Thus, the scenario outlined in
the Introduction, in whichH � f0ð600Þ and S � f0ð1370Þ,
can accommodate for a crossover transition if g, and thus
the mixing between quarkonium and tetraquark, is suffi-
ciently large. Note that the range of g values for which the
transition is crossover, narrows substantially when MS

increases. Along the line of second-order phase transitions
in Fig. 1(a), Tc sizably decreases for increasing g, for
instance from Tc ’ 241 MeV at g ¼ 0 to Tc ’ 186 MeV
at g ¼ 3 GeV and Tc ’ 173 MeV at g ¼ 4 GeV. We ob-
serve in Fig. 1(b) that a crossover transition occurs only for
small values of MH. The crossover region widens when g
increases. In order to accommodate a value �0:4 GeV
[20], a large value of g is required. Along the line of
second-order transitions, Tc first decreases, and then in-
creases for increasing g. The minimum Tc ’ 145 MeV
occurs for g ’ 2 GeV.

We now study the T-dependence of masses, condensates
[21], and the mixing angle in more detail in the case of
MH ¼ 0:4 GeV and MS ¼ 1:2 GeV (in the range quoted
by Refs. [1,9,20]; a massMH � 0:4 GeV, although leading
to a too small tree-level decay width due to lack of phase
space, allows for a nice illustrative description of the
qualitative features of the nonzero T). Also, we set the
coupling strength g ¼ 3:4 GeV, in order to obtain a cross-
over phase transition in agreement with lattice QCD cal-
culations [14]. These parameter values lead (together with
values ’0 ¼ f� ¼ 92:4 MeV and M� ¼ 0:139 GeV) to
M� ¼ 0:82 GeV, M’ ¼ 0:96 GeV, and � ¼ 52:85.

The condensates ’ðTÞ and �ðTÞ are shown in Fig. 2(a).
The quark condensate ’ðTÞ drops at Tc and then ap-

proaches zero, signaling the restoration of chiral symmetry.
The tetraquark condensate �ðTÞ first drops together with
’ðTÞ, but increases above Tc: this is due to the fact that in
the equation determining �ðTÞ, the growth of the S and H
tadpole contributions with T has to be balanced by an
increase of �ðTÞ; this could be different if we include
additional terms ��4 in the potential (1). In any case,
the increase of �ðTÞ affects the behavior of the masses or
of other physical quantities only slightly. Note that the field
� is a singlet under chiral transformations in the Nf ¼ 2

case and therefore the nonzero value of the condensate
does not imply a breaking of chiral symmetry at high T.
The T-dependent masses MHðTÞ, MSðTÞ, M�ðTÞ of the

particles H, S, and � are shown in Fig. 2(b). The solid line
corresponds to MSðTÞ, the mass of the state which is
predominantly quarkonium [j�ðTÞj<�=4], and the dotted
line toMHðTÞ, the mass of the state which is predominantly
tetraquark. At Ts ’ 160 MeV, both masses behave discon-
tinuously and the states interchange their roles: for T < Ts,
the state S is the heavier scalar and H the lighter one, and
for T > Ts, the state S is lighter than H. Above Ts the state
S becomes degenerate with the pions as in the sigma model
without tetraquark. Note that, before becoming degenerate
with the pion, the thermal mass of the lightest state (iden-
tified with H for T � Ts and with S above it) slightly
decreases; see Ref. [19] for comparison.
In Fig. 2(c), the mixing angle �ðTÞ is plotted. At Ts, �ðTÞ

is discontinuous, which leads to the discontinuity in the
masses noted above: it jumps suddenly from �=4 to -�=4,
limT!T	

s
�ðTÞ ¼ 
 �

4 . At Ts the mixing is maximal: the two

physical states H and S have the same amount (50%) of
quarkonium and tetraquark. Note that, at Ts, the field’ and
� are degenerate in mass, which explains the maximal
value of the mixing angle. As a last remark we note that
the relative magnitude of Ts and Tc (Ts < Tc as in our
example or vice versa) depends on the choice of the

FIG. 1. Order of the phase transition as a function of the
parameters of the model. The forbidden area violates the con-
straint jM2

S �M2
Hj � 4g’0. On the border line between the first-

order and the crossover transitions a second-order phase tran-
sition is realized.

FIG. 2. Condensates (panel a), masses (panel b), and mixing
angle (panel c) as functions of T.
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parameters. When increasing the mixing strength g the
temperature Ts decreases faster than Tc, thus realizing
the ordering Ts < Tc in which the jump occurs at smaller
temperatures than chiral symmetry restoration.

IV. CONCLUSIONS

In this paper, we proposed a novel scenario for chiral
symmetry restoration at nonzero T, in which two scalar-
isoscalar states, a tetraquark and bare quarkonium field, are
considered. The mixing of the latter two generates two
physical states which can be associated with the reso-
nances f0ð600Þ and f0ð1370Þ. When the tetraquark mass
is smaller than the quarkonium mass, as supported by
various spectroscopic studies in the vacuum, the state
f0ð600Þ is predominantly tetraquark and f0ð1370Þ is pre-
dominantly quarkonium. This scenario has been studied by
employing a simple model which includes only these two
scalar resonances and the pion triplet.

A remarkable aspect of our results is that the tetraquark-
quarkonium mixing generates a softer first-order phase
transition or, depending on the coupling strength, even a
crossover transition. While in the standard linear sigma
model (g ¼ 0) a heavy chiral partner of the pion (with
mass exceeding 1 GeV) always leads to a first-order phase
transition, this is not necessarily the case when tetraquark-
quarkonium mixing is considered: for sufficiently large
coupling strength g, the chiral transition is crossover, just
like in lattice QCD studies [14]. We also demonstrated that

the mixing between quarkonium and tetraquark states in-
creases with increasing temperature, and, in most cases,
reaches its maximal value of 45� at a temperature Ts where
the physical states consist of an equal amount of quark-
onium and tetraquark. For T > Ts the physical states in-
terchange their roles: the lighter state is predominantly
quarkonium and the heavier predominantly tetraquark.
Further increasing T leads to the standard scenario of chiral
symmetry restoration, where the scalar quarkonium be-
comes degenerate in mass with its chiral partner, the
pion. Thus, our approach can possibly solve an inconsis-
tency between low-energy spectroscopy, where a nonquar-
konium structure for f0ð600Þ is favored, and studies at
nonzero temperature, where the scalar partner of the pion
should be sufficiently light (� 0:6 GeV) in order for the
chiral symmetry restoring transition to be crossover.
Since the present work is a first explorative study on the

relevance of the tetraquark at nonzero T, we omitted other
scalar-isoscalar states such as f0ð980Þ, f0ð1500Þ, and
f0ð1710Þ, which would naturally appear in an
SUð3Þ-symmetric model with two scalar nonets and a
glueball state. Also (axial-)vector mesons should be con-
sidered [17,18]. All these fields are important in a more
realistic framework which aims to describe at the same
time vacuum phenomenology and nonzero T properties.
We regard the results of this paper as a motivation to
undertake this more ambitious step in the near future.

[1] W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[2] Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
[3] C. Amsler and N.A. Tornqvist, Phys. Rep. 389, 61 (2004);

F. E. Close and N.A. Tornqvist, J. Phys. G 28, R249
(2002).

[4] A. H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 72,
034001 (2005).

[5] A. Salomone, J. Schechter, and T. Tudron, Phys. Rev. D
23, 1143 (1981); A. H. Fariborz, Int. J. Mod. Phys. A 19,
2095 (2004); M. Napsuciale and S. Rodriguez, Phys. Rev.
D 70, 094043 (2004).

[6] F. Giacosa, Phys. Rev. D 75, 054007 (2007).
[7] R. L. Jaffe, Phys. Rev. D 15, 267 (1977); 15, 281 (1977).
[8] L. Maiani, F. Piccinini, A.D. Polosa, and V. Riquer, Phys.

Rev. Lett. 93, 212002 (2004); F. Giacosa, Phys. Rev. D 74,
014028 (2006).

[9] J. R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004); Mod.
Phys. Lett. A 19, 2879 (2004).

[10] N. Mathur et al., Phys. Rev. D 76, 114505 (2007).
[11] C. Amsler and F. E. Close, Phys. Lett. B 353, 385 (1995);

W. J. Lee and D. Weingarten, Phys. Rev. D 61, 014015
(1999); F. E. Close and A. Kirk, Eur. Phys. J. C 21, 531

(2001); F. Giacosa, Th. Gutsche, V. E. Lyubovitskij, and
A. Faessler, Phys. Rev. D 72, 094006 (2005).

[12] G. ’t Hooft, Phys. Rep. 142, 357 (1986).
[13] C. Vafa and E. Witten, Nucl. Phys. B234, 173 (1984).
[14] F. Karsch, arXiv:hep-ph/0701210; Z. Fodor and S. D.

Katz, J. High Energy Phys. 04 (2004) 050.
[15] J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D

10, 2428 (1974).
[16] J. T. Lenaghan, D.H. Rischke, and J. Schaffner-Bielich,

Phys. Rev. D 62, 085008 (2000).
[17] S. Gasiorowicz and D.A. Geffen, Rev. Mod. Phys. 41, 531

(1969); P. Ko and S. Rudaz, Phys. Rev. D 50, 6877 (1994).
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