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Supersymmetric renormalization of the CKM matrix and new constraints
on the squark mass matrices
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We compute the finite renormalization of the Cabibbo-Kobayashi-Maskawa matrix induced by gluino-
squark diagrams in the minimal supersymmetric standard model with nonminimal sources of flavor
violation. Subsequently we derive bounds on the flavor-off-diagonal elements of the squark mass matrices
by requiring that the radiative corrections to the Cabibbo-Kobayashi-Maskawa elements do not exceed the
experimental values. Our constraints on the associated dimensionless quantities SZ-LR , j > i, are stronger
than the bounds from flavor-changing neutral current (FCNC) processes if the gluino and squarks are
heavier than 500 GeV. Our bound on |5§‘2LR| is stronger than the FCNC bound from D — D mixing for
superpartner masses above 900 GeV. We further find a useful bound on |6’f§R|, for which no FCNC
constraint is known. Our results imply that it is still possible to generate all observed flavor violation from
the soft supersymmetry-breaking terms without conflicting with present-day data on FCNC processes. We
suggest that a flavor symmetry renders the Yukawa sector flavor-diagonal and the trilinear
supersymmetry-breaking terms are the spurion fields breaking this flavor symmetry. We further derive

the dominant supersymmetric radiative corrections to the couplings of charged-Higgs bosons and
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charginos to quarks and squarks.
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L. INTRODUCTION

The generic minimal supersymmetric standard model
(MSSM) contains a plethora of new sources of flavor
violation, which reside in the supersymmetry-breaking
sector. The origin of these flavor-violating terms is easily
understood: In the standard model (SM) the Yukawa ma-
trices are diagonalized by unitary rotations in flavor space
and the resulting basis defines the quark mass eigenstates.
If the same rotations are carried out on the squark fields of
the MSSM, one obtains the super-Cabibbo-Kobayashi-

Maskawa (super-CKM) basis in which no tree-level
|

PACS numbers: 12.60.Jv, 11.30.Hv, 13.25.Hw

flavor-changing neutral current (FCNC) couplings are
present. However, neither the 3 X 3 mass terms M2, ij
and M2 of the left-handed and right-handed squarks nor
the trilinear Higgs-squark-squark couplings are necessarily
diagonal in this basis. The trilinear QH, A%y and
QH,A"uy terms induce mixing between left-handed and
right-handed squarks after the Higgs doublets H,; and H,,
acquire their vacuum expectation values (VEVs) v, and
v,, respectively. In the conventions of Ref. [1] the full 6 X
6 mass matrix for the down squarks reads

d Y2 dLL dLL dLR dLR dLR
(MIL) Alg Al} Agl Al} Al}

dLL* d \2 dLL dRL* dLR dLR
A12 (MZL) A23 A]Z Azz A23

dLLx* dLLx* d 2 dRLx RL* dLR
mz= | AL AnTT (M5)T AR ARt Ay 1)
d dLR* dRL dRL d \2 dRR dRR |’

An AIZ A13 (Mue) A12 A13

dLRx* dLR+* dRL dRR* d 2 dRR
A1~2 Agz Ag3 A1~2 (MZR) A2§

dLRx* dLR+* dLRx* dRR dRR* d 2
A13 A23 A33 A13 A23 (M3R)

and the up-type squark mass matrix is defined in an analo-
gous way with d replaced by ii. Here the A?jLR, i,j=
1,...3, are related to the trilinear terms as

dLR — Ad — Ad
Al.j —Al.jvd—AijvcosB,

LR — Au — AU : ; ;
Al.j = Aijvu = Aijv sinB for j>i.

2

We normalize the Higgs VEVs as v = 4/v2 + v} =
174 GeV and define tanB = v, /v, as usual. The complete

1550-7998/2009/79(3)/035018(16)

035018-1

I
squark mass matrix is given in the appendix, where we also

elaborate on the relationship between weak bases and the
super-CKM basis. The diagonalization of Mf; involves a
rotation of the squark fields in flavor space which leads to
various flavor-changing neutral couplings. In particular,
the gluino now couples to quarks and squarks of different
generations and FCNC processes occur through strong
gluino-squark loops, which easily dominate over the highly
CKM-suppressed weak loops of the SM. Anticipating the

smallness of the off-diagonal elements in Msﬁ one can
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alternatively work in the super-CKM basis and treat the
A?J-XY’S (with X, Y = L or R) as perturbations [1-4]. It is
customary to define the dimensionless quantities

Gxy
pr By
T s LML

In the current era of precision flavor physics stringent
bounds on these parameters have been derived from FCNC
processes, by requiring that the gluino-squark loops do not
exceed the measured values of the considered observables
[1,5-10]. In the recent analysis of Ref. [9] the strongest

constraint has been obtained on 894K with |644R] < 1073

for 4/[M?3];, = m; = 350 GeV.

In this paper we show that charged-current processes
give competitive bounds on the 5?]»LR’S. This is surprising,
because here a supersymmetric loop competes with a SM
tree-level coupling. However, the flavor structure of the
SM is governed by very small Yukawa couplings: In a
weak basis with a diagonal up-type Yukawa matrix Y*
the off-diagonal elements of the down-type Yukawa matrix
Y range from |Y§;| ~1077 to |Y§] ~6 X 107* at the
relevant scale of Mgysy = O(M{, m;). The impact of
supersymmetric loop corrections to these couplings is
most easily understood in the decoupling limit Mgygy >
v: The tree-level and loop-induced Higgs couplings to
down-type quarks are shown in Fig. 1. After electroweak
symmetry breaking all diagrams contribute to the quark
mass matrix. The loop-induced contributions are compa-
rable in size to the tree-level term Y}’ivq if roughly

|A%,l/Msysy = 167°|Y],] or (for down-type quarks)

3)
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[, A ul tanB/ Mgy = 1672 Y],
(Here u is the Higgsino mass parameter.)
In Ref. [11] it was pointed out that such corrections
constitute an important modification of the relation be-
tween the mass and the Yukawa coupling of the bottom
quark. Subsequent papers studied the analogous correc-
tions to the whole down-quark mass matrix for the case
of minimal flavor violation (MFV), i.e. diagonal matrices
M and M? in the super-CKM basis [12-15]. Here the key

effect of the supersymmetric loop correction is the genera-
tion of effective FCNC couplings of neutral Higgs bosons.
One can proceed along these lines to calculate the shift in
the CKM elements induced by squark-gluino loops: The
quark mass matrix calculated from the diagrams in Fig. 1 is
diagonalized in the usual way yielding the loop-corrected
CKM matrix V. This has been done for the MFV case in
Ref. [16] and for the generic case in Ref. [17]. As a
disadvantage, this method is only valid in the decoupling
limit Mgygy >> v. In particular, this is a questionable
approximation for the top quark, whose mass must be set
to zero in the diagrams of Fig. 1. Another difficulty is the
appearance of the Yukawa matrices in the result of these
diagrams, while we only have experimental information on
the CKM matrix and the quark masses. To calculate the
Yukawa matrices from the latter, one has to invert the
relations between the loop-corrected mass matrices and
the Yukawa couplings. But in a phenomenological appli-
cation it is desirable to have the loop-corrected V directly
expressed in terms of CKM elements and (s)particle
masses. All these drawbacks can be avoided if one renorm-
alizes the CKM matrix directly, as it has been done within
the standard model in Ref. [18]. This method further

respectively.
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FIG. 1. Tree-level coupling with Y;’j and FCNC loop corrections with A)‘fi (upper row) and A‘;Z.LL’RR (lower row) in the mass insertion
approximation for Mgygy > v. Replacing the Higgs fields by their VEVs gives the contributions to the down-type quark mass matrix.
The lower diagrams contribute to the mass matrix with an enhancement factor of tanB = v,/v,; compared to the other two

contributions.
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involves only physical quantities and thereby bypasses
another pitfall of the aforementioned calculation from the
diagrams in Fig. 1: For instance, one might be tempted to
derive strong bounds on éfij-RR from the lower right diagram
of Fig. 1. But the result of this diagram can be absorbed
into an unphysical rotation in flavor space of the right-
handed quarks and no such bounds can be found.

The main results of our paper are new stringent bounds
on the flavor-off-diagonal entries 6?/” of the squark mass

matrices. These bounds are derived from a fine-tuning
argument, by requiring that no large numerical cancella-
tions should occur between the tree-level CKM elements
and the supersymmetric loop corrections. Translated to
fundamental parameters in the Lagrangian, this means
that the loop diagrams in Fig. 1 involving the trilinear
supersymmetry-breaking terms shall not exceed the values
of the tree-level Yukawa couplings. This reasoning is
modeled after the standard line of arguments used to justify
low-scale supersymmetry: Large cancellations between the
bare Higgs boson masses and loop corrections must be
avoided, leading to superparticle masses at or below the
TeV scale. This argument involves two unphysical quanti-
ties: the bare mass and the corresponding radiative correc-
tions. In our case the quantities Y;’j and A:-’j are separately

unobservable as long as only low-energy quantities are
studied. However, once Higgs or chargino couplings to
squarks are studied, different combinations of Yiqj and A?j
can be investigated and our assumption about the absence
of fine-tuned cancellations can be tested in principle as
discussed in Sec. IV. Another viewpoint on the subject is
provided by ’t Hooft’s naturalness criterion, which links
the smallness of a quantity to a symmetry which is broken
by a small parameter. The rough size of the symmetry-
spoiling parameter can be inferred from the size of the
studied quantity. In the case of the small elements of the
Yukawa matrices the protecting symmetry is a flavor sym-
metry, which corresponds to independent rotations of left-
handed and right-handed fermion fields in flavor space. In
the SM the only parameters breaking this symmetry are the
small Yukawa couplings. In the generic MSSM the flavor
symmetries are broken by both the Yukawa couplings and
the soft supersymmetry-breaking terms and the natural
way to restore the protecting symmetry is to set the small
parameters in both sectors to zero. Scenarios in which the
5?]»LR’S substantially exceed the bounds derived in this

paper are therefore unnatural in ’t Hooft’s sense.

Our paper is organized as follows: In Sec. II we calculate
the one-loop renormalization of the CKM matrix by super-
symmetric QCD effects. In Sec. III we use our results to
derive constraints on the elements A?}LR and A?}LL of the
squark mass matrices in Eq. (1). Here we also reappraise
the idea that flavor violation solely originates from super-
symmetry breaking. In Sec. IV we apply our results to the
renormalization of charged-Higgs and chargino couplings
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to quarks and squarks. Finally we conclude. Conventions
and Feynman rules are collected in the appendix.

II. RENORMALIZATION OF THE CKM MATRIX

To calculate the desired renormalization of the CKM
matrix we must consider squark-gluino loop corrections to
the coupling of the W boson to quarks. There are two
possible contributions: the self-energy diagrams of Fig. 2
and the proper vertex correction. In the limit Mgygy > v
the self-energy contributions reproduce the results of the
diagrams in Fig. 1. (For a discussion of this feature in the
MFV case see Refs. [11,19].) From the considerations in
the introduction we know that we need some parametric
enhancement [by e.g. a factor of |A%,|/(Mgysy|Y};]) > 1]
to compensate the loop suppression and the diagrams of
Fig. 2 involve such enhancement factors. The vertex dia-
grams involving a W coupling to squarks are not enhanced
and moreover suffer from gauge cancellations with non-
enhanced pieces from the self-energies. Therefore we only
need to consider self-energies, just as in the case of the
electroweak renormalization of V in the SM [18].

From now on we work in the super-CKM basis unless
stated otherwise. Since we work beyond tree level, we have
to clarify how we define the super-CKM basis in the
presence of radiative corrections: Starting from some
weak basis with Yukawa matrices Y¢ and Y" we perform
the usual rotations in flavor space

(0)d

0
dpg— UL,R dr g O

upr — UL,R ur.r

“4)

to diagonalize Y9 and the tree-level mass matrices mflo) =

Y9v, and apply the same rotations to d r.r and iy g. This
defines the super-CKM basis in which the elements of M ;
in Eq. (1) are defined. The tree-level CKM matrix is then
given by

VO = gty 5)

To fix the relation between V(© and the physical CKM
matrix V we must define a renormalization scheme. First
note that all radiative corrections discussed in this paper
are finite, so that the notion of minimal renormalization
means that all counterterms are simply equal to zero. Two
possibilities come to mind:

(1) Minimal renormalization of V.—The Lagrangian
contains diagonal Yukawa matrices and V(©) without
counterterms, while the measured CKM matrix V
differs from V© by the radiative corrections in
Fig. 2. Recall that for m; # m; one can treat the
diagrams of Fig. 2 in the same way as genuine vertex
corrections; i.e. there is no need to truncate such
diagrams or to introduce matrix-valued wave func-
tion renormalizations [20].

(i1) On-shell renormalization of V.—The Lagrangian
contains finite counterterms to cancel the flavor-
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FIG. 2. One-loop corrections to the CKM matrix from the down and up sectors. We denote the results of the left and right diagrams

by Dy y; and Dgy;, respectively.

changing self-energies of Fig. 2. These counterterms
arise from a perturbative unitary rotation of the
quark fields in flavor space, ¢ zx— [l +
8UZ‘ zJqr & [18]. This in turn induces a counterterm

8V = sUMyO + yOsyd (6)

to the CKM matrix. In the on-shell scheme we can
identify V = V(O), but after the extra rotation of the
quark fields we are no more in the super-CKM basis
and the bare Yukawa matrices Y¢ and Y* are no
more diagonal.'

We choose method (i), because it involves the super-CKM
basis, so that we can immediately use the A?jxy’s defined in
Eq. (1), permitting a direct comparison with FCNC analy-
ses. This issue of the definition of A?jXY formally goes
beyond the one-loop order, but is numerically highly rele-

vant, because the tree-level elements Vg-)) and the finite
counterterms [SUY J; ; are similar in size: If one works in an
alternative basis in which the (s)quark superfields are
rotated by [1 + 8U7 ], the off-diagonal elements A?jxy
of the squark mass matrices can substantially differ from
those of our definition of the super-CKM basis.

We also need to address the renormalization scheme
used for the quark masses: The supersymmetric loops are
subtracted on-shell, so that we can use the masses which
are extracted from measurements using SM formulas.
While we do not consider gluonic QCD corrections in
this paper, we assume that an MS prescription is used for
the latter. That is, we take MS values for the quark masses
J

1

in our numerical analyses. This procedure is guided by the
decoupling limit discussed in the introduction: The
Yukawa couplings of Fig. 1 enter these diagrams as
short-distance quantities defined in a mass-independent
scheme such as MS and are evaluated at a scale of order
Mgysy. The effective couplings are then evolved down to a
low scale at which the quark masses and V are calculated,
yielding quark masses in the MS scheme, yet with de-
coupled (i.e. on-shell subtracted) supersymmetry (SUSY)
loops.

The self-energies can be divided into a chirality-flipping
and a chirality-conserving part (¢ = u,d and i, f = 1,2,3
labels the incoming and outgoing quark flavors, respec-
tively):

1.(p) = SEE (PP, + S (P2 Py
+ ARG (PP, + SN (pPRL (D)

Since the SUSY particles are much heavier than the five
lightest quarks, it is possible to expand in the external
momentum, unless one external quark is the top. In the
following we consider the self-energies with only light
external quarks and return to the case with a top quark at
the end of this section.

We now write the result of the left diagram of Fig. 2
(omitting external spinors) as

&

NGl

i 'yMPLDLfiv

with

dRL dRR dLR dLL
mdj(zj' +mg, 255) + my (G + mdjzji

Disi =D Vy

JFi

The diagram with j = i is treated as in the case without
flavor mixing; i.e. the self-energy is truncated and contrib-
utes to the Lehmann-Symanzik-Zimmermann factor in the
usual way. The right diagram Dp; involving E;‘c ; instead is
obtained in a similar way. Since the quarks are light

"That is, in our Feynman diagrammatic approach the FCNC
Higgs couplings of Refs. [12-15] enter the Lagrangian through a
finite FCNC counterterm to Yukawa couplings.

" . ®)
[
compared to the heavy SUSY particles, we can evaluate
the self-energies in Eq. (8) at 572 = 0. 39" and E?Z»LR have
mass dimension 1, while E?i L and 3 b R are dimension-
less. The chirality-flipping self-energies involve at least
one power of v and at least one factor of a trilinear term
or a Yukawa coupling multiplied by wu. To first order in
flavor-changing SUSY parameters these factors contribute
to D; with a parametric enhancement of
|A% v,/ (Msysy max(m,, m,,)) or (using m(qe) = Yiv,) of

i

035018-4



SUPERSYMMETRIC RENORMALIZATION OF THE CKM ...

|AGEE ] tan B/ Mgy - Thus we find the enhancement fac-
tors which we inferred earlier from Fig. 1. Clearly, the
terms with 2¢-% and 39FR in Eq. (8) are suppressed by
mg, /MSUSY compared to the chirality-flipping contribu-
tions and are therefore negligible. The LR and RL self-
energies are

2m;
2qRL LR(p2 = () = S—;CYS(MSUSY)

(0)gRL,LR
X :E: Vi Bolmg, mg),

PHYSICAL REVIEW D 79, 035018 (2009)

satisfying EqRL(O) EqLR*(O) In Eq. (9) we have diago-
nalized the squark mass matrlx with the elgenvalues de-
noted by m, . The quantities V and Vq are
combinations of the rotation matrlces of quarks and
squarks fields and are defined in Eq. (A5) of the appendix,
where also our conventions for the loop functions B, C,
and Dy are listed. In the second order of the mass insertion
approximation (neglecting terms with more than one flavor
change) Eq. (9) becomes (for f # i)

qLR( 2=0) = qa, (MSUSY)i[AqLRCO(mg: [Mz]ff, [M2]1+31+3) + AqLLAqLRDo(mg, [Mé]ff) [M,%]ii’ [Mé]i+3,i+3)

+ A}]-;RA%QRDO('"@ [M%;]ff’ [Mé]f+3,f+3’ [M(%]i+3,i+3)]- (10)

Even if the flavor-changing elements AqLL are small, the
approximation of Eq. (10) breaks down, 1f AqLR is of the
order of (M R)2 for either j =i or j = f, 1e for large
flavor- dlagonal left-right mixing. This is the default situ-
ation for the top squarks and also happens with the bottom
squarks if tanf is large. We therefore work with the exact
formula of Eq. (9).

We now collect the results of the diagrams in Fig. 2 with
the simplification that we neglect all small ratios of quark
masses such as m,/m,. One finds

Dpysi = i V}(;)[AUZ]]‘I', Dgyi = Z[AU”T]f]V(O)
=1
J an
with the matrices
0 EqLR . EqLR
AUY = | L34 "0 1% EqLR .12
m;} D i 0

In our super-CKM scheme (i) the inclusion of the radiative
correction is equivalent to the use of the tree-level coupling
in the #W ™ d vertex with the replacement

VO v =(1+AUHVOU+AU))  (13)

and we identify V with the physical CKM matrix. In the
on-shell scheme (ii) the counterterms SU¢ = —AU¢ and
SU¥ = —AUY cancel the loops and V© =V is main-
tained. It is crucial that 1 + SUY is unitary; otherwise the
unitarity of V (and electroweak gauge invariance) would be
spoiled [18]. To our one-loop order this means that SU7 is
anti-Hermitian. We can easily verify from Eq. (12) that
AU¢ fulfills this criterion owing to EqRL(O) X qLR(O)]

The self-energies do not decouple for Mgqygy — 00 and, in
accordance with the decoupling theorem [21], we find that

|
their mere effect is the renormalization of the CKM matrix,
as implemented in scheme (ii).

It is important to stress that the replacement rule in
Eq. (13) only absorbs the effects of the self-energy dia-
grams of Fig. 2 correctly, if both quark lines are external
lines. If some i jW+ d; vertex appears in a loop diagram,
one or both self-energies are probed off-shell and one must
work with V(© and must calculate the loop diagram with
the nested self-energy explicitly.

We can now understand how to treat self-energies with a
top quark in Eq. (12): If the top quark appears on the
internal line of the right diagram in Fig. 2, that is, j = 3,
the self-energy involved must be evaluated at p> = 0,
because the external quark is up or charm. The unitarity
of V now forces us to evaluate X4RE and Z4KL at p> = 0 as
well. Interestingly, from today’s precmon data in K and B
physics one can determine V from tree-level data only [22].
Of course, none of these measurements involves top de-
cays, so that the values of V,; and V,; inferred from these
measurements (through unitarity of V) indeed correspond
to the definition in Eq. (13), with self-energies Z4RL eval-
uated at p?> = 0. While FCNC processes of K and B
mesons involve V,; or V,;, we cannot determine these
CKM elements from FCNC processes in a model-
independent way, because new particles (in our case
squarks and gluinos) will affect the FCNC loops directly.
Clearly nothing can be learned from measuring the tW ™ d,
couplings (in, for instance, single top production or top
decays) if Msysy > m,, = m,. However, if m, ~
any on-shell t — s or t — d transition involves

uRL(m ) _ EuRL( )

Aol = ,
my

MSUSY

with i=1 or 2.

(14)

Here the first self-energy enters the calculated W™ d,
process explicitly, while 24K5(0) stems from the relation-
ship between V and V(©'. Ag! decouples as m? /M2y, but
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can be sizable for (200 GeV) superpartners, since it
involves poorly constrained FCNC squark mass terms.
We conclude that the flavor structure of tree-level top
couplings can help to study new physics entering
chirality-flipping self-energies, while this effect is unob-
servable in charged-current processes of light quarks: Here
the chirality-flipping self-energies merely renormalize the
CKM matrix; the physical effect in charged-current pro-
cesses with external quark ¢ is suppressed by a factor of
m3/M%sy. The experimental signature would be an ap-
parent violation of CKM unitarity, since the measured
value of V,, or V,; would be in disagreement with the value
inferred from CKM unitarity. Unitarity is restored, once the
correction Ao is taken into account.

Since inverse quark masses enter Eq. (12), we must
address the proper definition of these masses in the pres-
ence of ordinary QCD corrections. If we worked in the
decoupling limit and calculated the diagrams of Fig. 1, we
would encounter the MS-renormalized Yukawa couplings
evaluated at the renormalization scale Q = Mgygy, at
which the heavy SUSY particles are integrated out.
Translating that result into the language of Sec. II amounts
to the evaluation of the inverse quark masses in the MS
scheme at Q = Mgygy. One can derive this (somewhat
surprising) result entirely in the diagrammatic language
of Sec. II, by studying QCD corrections to the diagrams of
Fig. 2 [23]. The first element in this proof is the observation
thate.g. E?fR, viewed as the Wilson coefficient of the two-
quark operator g;Pgq;, renormalizes in the same way as
the quark mass, so that the ratios E;I»LR /m, in Eq. (12) are
independent of Q. Since the SUSY parameters entering 2. ;;
are defined at the high scale Q = Mgygy, our constraints
derived in the next section will involve m, (Msygsy). The
second element in the proof is the explicit analysis of
gluonic corrections to the diagrams of Fig. 2. While at
intermediate steps a quark pole mass enters through the
Dirac equation p/q; = mh"q;, gluonic self-energies add
to m)*" in such a way that the final result only involves the
properly defined MS mass my, [23].

We close this section by recalling the relationship be-
tween the Yukawa matrices Y?¢ = diag(Y4:, Y%, Y%) and
the quark masses [11,19]:

_ vqLR
Y4 = Mg, _ M Ei"v/‘ (15)
qLR *
Uq(l + Aq’) Uq(l + EWIZ,M)
qi

In Eq. (15) we have used the fact that SR can be decom-

i
posed into EZ-LAR + E?i’l“lf if the physical squark masses are
chosen as input parameters. Ef’iﬁf is proportional to uY%
and 3% is proportional to AZ. If we neglect the A terms

Eq. (15) reduces to the expression of [19] for down-type
quarks. For a detailed discussion of the relation between

PHYSICAL REVIEW D 79, 035018 (2009)

the Yukawa matrices and the quark masses with different
choices of input parameters see [23].

Equation (15) holds in the super-CKM scheme (i), which
has the advantage that no FCNC Yukawa couplings occur.
In the on-shell scheme (ii) the rotations of the quark fields
in flavor space lead to the loop-induced finite FCNC
Yukawa couplings of Refs. [12-15]. In the super-CKM
scheme these effects are reproduced from diagrams with
flavor-diagonal Yukawa couplings and FCNC self-
energies. Finally note that A, can be complex, so that
the entries of Y¢ (and mE,D) = Y%v, entering the squark
mass matrices in Eq. (A7) are not necessarily real.

III. NUMERICAL ANALYSIS

Large accidental cancellations between the SM and
supersymmetric contributions are, as already mentioned
in the introduction, unlikely and from the theoretical point
of view undesirable. Requiring the absence of such can-
cellations is a commonly used fine-tuning argument, which
is also employed in standard FCNC analyses of the 5?;”’8
[1,5-10]. Analogously, we assume that the corrections due
to flavor-changing supersymmetric quantum chromody-
namics (SQCD) self-energies do not exceed the experi-
mentally measured values for the CKM matrix elements
quoted in the Particle Data Table (PDT) [24]. To this end
we set the tree-level CKM matrix V® [working in our
super-CKM scheme (i)] equal to the unit matrix and gen-
erate the measured values radiatively. For simplicity, we
consider the up and down sectors separately. We parame-
terize the squark mass matrix according to Eq. (1). We
choose all diagonal elements of the squark mass matrix to
be equal and denote them by mé For small off-diagonal
elements m; is in good approximation equal to the physical
squark mass.

The quantities 5?7‘13 and 5;’1.RL as defined in Eq. (3)
violate SU(2) and are therefore proportional to the VEV
of a Higgs field. This means that if one scales the SUSY
spectrum by a common factor a, the chirality-flipping
elements 6%LR’RL will scale like 1/a rather than staying
constant as one might naively expect for a dimensionless
quantity. This leads to somewhat counterintuitive bounds
on 5?1.“? and 5?;“, which become stronger for a larger scale
parameter a. However, the inferred bounds on the trilinear
terms A?j stay constant for a >> 1 as expected for a bound
derived from a nondecoupling quantity. Since it is custom-
ary in nearly all treatments of nonminimal flavor violation
to constrain 6;]].XY [1,5-10], we will also follow this con-
vention rather than quoting constraints on Aj’l

We use the standard parameterization for the CKM
matrix and quark masses defined in the MS scheme with
the central PDT values [24]. As discussed at the end of
Sec. II, the masses enter the loop contributions to V in
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Eq. (12) at the renormalization scale Q = Mgygy, at which
the self-energies are calculated.
Because of the V — A structure of the W vertex only

self-energies E.‘;I.LR with f <i enter the renormalization of
the CKM matrix in the approximation m, ;= 0 [see
Eq. (12)]. This implies that for £ <i only 8% is con-
strained in the leading order of the mass insertion approxi-
mation in Eq. (10). In order to constrain 6;1.“ or Bj’fR an
additional insertion of some 67,5 K is needed. Even three
insertions are needed to involve 5?5’“ . These diagrams with
multiple insertions of S?Ify can give useful bounds on one
of these quantities only if the 5;’,{‘ R providing the needed
chirality flip is large. The only candidate is the flavor-
diagonal mass insertion 5;?J.LR’RL and the corresponding

E?[LR can be read off from the last two
terms in Eq. (10). Indeed, we find useful bounds on |5¢4-
in the large- tanB scenario, where 65% /my, is large. The
analogous contributions involving 8{R¥ are suppressed
with respect to those with §7/“89% by a small ratio of
quark masses. The upper limits on 6%& and 5%“ from

contributions to

d LR

PHYSICAL REVIEW D 79, 035018 (2009)

vacuum stability [25], electric dipole moments and FCNC
processes are stronger than ours.
We use the following input parameters [24]:

(2 GeV) = 0.095 GeV, i (m,) = 1.25 GeV,
imy(my) = 4.2 GeV, i, (m,) = 166 GeV,

(16)
[Visl = 0.227, [V, = 0.00396,
[Vep| = 0.0422.
A. Down sector
We present our bounds on [8{F| and [6¢/*] in

Secs. IIT A 1 and IIT A 2, respectively.
1. Constraints on IBZLRI

Constraints from V,; and V.,.—V, and V., are experi-
mentally well known. Their absolute values are nearly
equal and they have opposite sign in the standard parame-
terization, which is respected by the corrections Eq. (12).
Figure 3 shows the dependence of the constraints on the
squark mass with different ratios mgz/m;. In the approxi-
mation my, = 0, only 6{4* is constrained. Looking at the

67,7
0.0025 \ \
\ \ mg=0.5my
0.0020
0.0015 \\ —_ m=2m;
0.0010 \
\ _— m§=8m;]
0.0005 ————
\
mg
1000 2000 3000 4000

FIG. 3 (color online). ~Constraints on |8§¢4%| from V,, or V., as a

5 qLR o v
growing Mgysy, because 0;; Moy *

d LR
161

0.0030

function of the squark mass. The constraints become stronger with

0.0025

0.0020

m;=500 GeV

0.0015

mz=1000 GeV

N

0.0010

\

m;=2000 GeV

0.0005

1000 2000 30

ms

00 4000

FIG. 4 (color online). Constraints on §9%F from V, (or V,,) as a function of the gluino mass.
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0.015 \\ —  mg=2m
0.010
S~ | — m=8my
0.005
\
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1000 2000 3000 4000

FIG. 5 (color online). Constraints on §95%

from |V, | (or |V,,]) as a function of the squark mass.
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675 |
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FIG. 6 (color online). Constraints on 6{’3” from |V,,| as a function of the squark mass.

dependence on the gluino mass (Fig. 4), it is interesting to
note that there is a minimum for m; =~ 1.5m;.

Constraints from V., and V,,.—In this case, the situation
is nearly the same as in the case of V,, except that the
constraints are weaker (see Fig. 5), because m, is much
larger than my. |V,| is essentially fixed by the measured
value of |V,,| through CKM unitarity.

Constraints from V,;,.—The last pair of CKM elements
to be discussed is (V,,;, V,4). In this case |V,,;,| does not fix
|V,ql, because |V,4| is largely affected by the CKM phase.
Now |V,,| is experimentally better known than |V,,|, be-
cause V,; is extracted from FCNC loop processes by
comparing the corresponding experimental result with
the SM prediction. In beyond-SM scenarios, this is not a

valid procedure anymore, because the new particles will
alter the FCNC loop processes. Therefore we can only
exploit the constraint from |V,,| (see Fig. 6). The anti-
Hermiticity of AU¢ in Eq. (12) implies that §9%® gives a
negative contribution of the same size to V,;. This cannot
be the whole contribution, since |V,,| # |V,,| and in the
standard CKM parameterization ReV,; and ReV,;, are both
positive. The hierarchical structure of the CKM matrix is
responsible for a second contribution: Since V,, and V,,
are of third order in the Wolfenstein parameter A, the two-
loop process in Fig. 7 involving the loop contributions to
V,s < A and V,, = A? is important as well. This diagram
adds a contribution of V, V., = 0.0088 to V,,. Together

with the one-loop contribution from S{4¥, this yields the

FIG. 7. Two-loop correction to V,,.
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FIG. 8 (color online). Constraints on 03

correct value for V,;. We stress that this does not imply any
additional constraint on the SUSY parameters entering the
self-energies, to order A* we just reproduced a unitarity
relation of the CKM elements: V,; = =V, + V ,V, =
=V, — VusVis, which (with insertion of V,, =V, ,~1)
equals the product of the first and third rows of the CKM
matrix.

The last possible constraint is the phase of the CKM
matrix, which one could infer from y=
arg(—V:, V.a/(Vi,V.4). However, since vy is large, no
fine-tuning argument can be applied to derive bounds.
Only in a given scenario of radiatively generated CKM
elements, the measured value of vy can be used to derive
a constraint on the complex phases in the mass matrix of

Eq. (1).

2. Constraints on 5;1].“

In the presence of large chirality-flipping flavor-
diagonal elements in the squark mass matrix, also 6;’]-“
can be constrained. This is the case for large Aj?j terms or (if
q = d) for a large value of u tanf. Here we only consider
the second possibility, which is widely studied in the
literature. The strongest constraints are obtained for
8L, because V,, is the smallest entry of the CKM matrix.
We have included the correction term A, of Eq. (15) in our
analysis. Our result is shown in Fig. 8. Our constraint is
compatible with the experimental bound on Br(B; —
ut ™) for values of tanB around 30 or below [26].

from |V,,| as a function of the gluino mass for different values of utanB/(1 + A,).

We next discuss the constraint on §95L: It is clear that
our bound will be looser by a factor of |V.,/V,,l.
Furthermore, for large tanB and typical values of the
massive SUSY parameters we find Br(B;, — uu")
more constraining. To find bounds on 8¢%L from |V,
which comply with Br(B; — u u~) we need a smaller
value of tanf around 20 and therefore a quite large value
for u, if the masses of the nonstandard Higgs bosons are
around 500 GeV. We do not include a bound on 8¢5 in our

table of results in Sec. IIIC.

B. Up sector

In the up sector, everything is in straight analogy to the
down sector. The only difference is that the constraints are
weaker because of the larger charm and top masses. But the
upper bounds are still restrictive, except the ones obtained
from V,; or V., (see Fig. 9). Remarkably, we now have a
powerful constraint on 8%4® from the second diagram in
Fig. 2 with Gu, = U and g4, = b.

C. Comparison with previous bounds

In this section we compare our bounds with those in the
literature, derived from FCNC processes [6,8—10] and

vacuum stability (VS) bounds [25]. We take Mgygy =

‘/[Mé]m = mg; = 1000 GeV:

Quantity Our bound Bound from FCNCs Bound from VS [25]
|575% =0.0011 = 0.006 K mixing [6] =15%x10°*

|o{5" =0.0010 = 0.15 B, mixing [8] =005

| 855" =0.010 =0.06 B— X,y: X,I"I” [9] =005

|of5" =0.032 = 0.5 B, mixing [8] .

| 8131 =0.011 = 0.016 D mixing [10] =12x%x103

|SULR = 0.062 oo =0.22

|5%‘R =0.59 =0.22
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FIG. 9 (color online).

Our value for 65 is calculated with ‘l‘fzﬁ = 20 TeV. The

quoted bound on 84 from b — sy and' B — X, 171 has
been rescaled by an approx1mate factor of 3 from the value
quoted for Mgqygy = 350 GeV in Ref. [9]. The VS bounds
on &//* have also been obtained by scaling the quoted
values for Mgygy = 500 GeV of Ref. [25] by a factor of
1/2. The VS bounds on §*4% and §4%R are obtained by
multiplying the bound on 84 with m,/m.. FCNC effects
are decouplmg and scale as 1 /M3 sy, but the constraints
on 5q are proportional to Mgygy rather than M3 gy,
because the definition of 5qj involves a factor of
v/Mgysy- Both our constraints and the VS bounds on the
trilinear SUSY-breaking terms are 1ndependent of Mqysy
(i.e. nondecoupling), so that the bounds on 64 scale like

Constraints on 85K, 844K and 6{4* as a function of the squark mass for different ratios of mg/m.

1/Mgysy. We conclude that all our bounds on 89-F are
more restrictive than those from FCNC processes for
Mgysy = 500 GeV, and our bound on 8'4R is stronger
than the quoted FCNC bound for Mgygy = 900 GeV.
Substantially stronger bounds than ours are only listed
for the VS bounds on | 844K, [844R| and |5{L%|. However,
the VS bounds related to the latter two quantities are of the
form
Al, <Y®f, (17)
where f = O(Mgysy) depends on other massive parame-
ters of the scalar potential. The bounds are obtained by
studying the scalar potential at tree level and Y2 enters the
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analysis through the quartic coupling of strange squarks to
Higgs bosons. The smallness of Y% makes this coupling
sensitive to large loop corrections and the quoted bounds
have to be considered as rough estimates at best. Our
results for 6‘1’5 K rest on a firmer footing.

D. Supersymmetry breaking as the origin of flavor?

The smallness of the Yukawa couplings of the first two
generations (and possibly also of the bottom and tau cou-
plings) suggests the idea that Yukawa couplings are gen-
erated through radiative corrections [27]. In the context of
supersymmetric theories these loop-induced couplings
arise from the diagrams of Fig. 1 or, in our approach, of
Fig. 2 [28]. The B factories have confirmed the CKM
mechanism of flavor violation, leaving little room for
new sources of FCNCs. This seriously challenges the
idea that flavor violation stems from the same source as
supersymmetry breaking. The surprising discovery of
Sec. III is the finding that this idea is still viable, with
SUSY masses well below 1 TeV, if the sources of flavor
violation are the trilinear terms A?j (Note that the VS
bound on |844%| poses no problem, because one can gen-
erate V., entirely from B%R .) Of course, the heaviness of
the top quark requires a special treatment of Y’ and the
successful bottom-tau Yukawa unification suggests to keep
tree-level Yukawa couplings for the third generation. This
scenario has been studied in Ref. [17], where possible
patterns of the dynamical breaking of flavor symmetries
are discussed.

In the modern language of Refs. [29,30] the global
[U3)P flavor symmetry? of the gauge sector is broken to
[U(2) X U(1) by the Yukawa couplings of the third gen-
eration. Here the three U(2) factors correspond to rotations
of the left-handed doublets and the right-handed down-
type and up-type singlets of the first two generations in
flavor space, respectively. That is, our starting point is
Y" = diag(0, 0, Y*), Y9 = diag(0, 0, Y*). We next assume
that the soft breaking terms A?jLL and A?jRR possess the
same flavor symmetry as the Yukawa sector, which implies
that A%l and A9RR are diagonal matrices with the first two
entries being equal. That is, flavor universality holds for the
first two generations. From a model-building point of view,
it may be easier to motivate that at some scale A%l and
AIRR are proportional to the unit matrix, meaning that they
possess the full [U(3)]® flavor symmetry of the gauge
sector. However, below this fundamental scale this sym-
metry will be reduced to [U(2)]* X U(1) by renormaliza-
tion group (RG) effects from the Yukawa sector and we
restrict our discussion to the [U(2)]® X U(1) case here.
Now we assume that the trilinear terms Af-’j are the spurion
fields which break [U(2)]® X U(1) down to the U(l)g
baryon number symmetry. [After including the lepton sec-

*We only discuss the quark sector here.

PHYSICAL REVIEW D 79, 035018 (2009)

tor the remaining anomaly-free symmetry group is
U(1)z_; .1 Note that RG effects do not destroy the symme-
try of the Yukawa sector, because the soft terms do not mix
into the Yukawa couplings. By contrast, in the standard
MFV scenario [30] the role of flavor-symmetric and
symmetry-breaking terms is interchanged, and the latter
(here the Yukawa couplings) mix into the former. Still our
scenario is not completely RG-invariant, because the tri-
linear terms mix into A?J.RR and A?J.LL. We next apply the
rotations of Eq. (4) to the quark supermultiplets of the first
two generations to render the upper left 2 X 2 submatrix of
A1 diagonal and real. That is, the Cabibbo angle arises
from the misalignment of A* with A9 in flavor space. The
u, d, s and ¢ quark masses all arise from supersymmetric
self-energies involving A%. Note that the RG evolution
destroys the [U(2)]* X U(1) symmetry of Aﬁ’jRR and Af-’jLL
due to AY, # A%, but only generates off-diagonal A%*
terms through tiny electroweak loops as in MFV scenarios.
The vacuum stability bound in the first row of the table in
Sec. III C is absent and the corresponding bounds on the
diagonal elements A? can only be obtained after loop
corrections to the scalar potential are included. The CKM
elements of the third row and column are obtained by
calculating AU} of Eq. (12).

The idea that flavor violation is a collateral damage of
supersymmetry breaking is not only economical, it also
solves one of the most urgent problems of the MSSM: It
was pointed out in [31] that the phase alignment between
Al and the radiatively generated quark masses suppresses
the supersymmetric contribution to the neutron electric
dipole moment. Since Y¥1 = 0, the phase of w does not
enter the neutron electric dipole moment at the one-loop
level.

IV. CHARGED-HIGGS AND CHARGINO
COUPLINGS

CKM elements do not only enter the Feynman rules for
W couplings but also appear in the couplings of charged-
Higgs bosons and charginos. The Feynman rules in the
super-CKM  scheme (i) involve V© = UZ(O)T UZ(O)
throughout as described in Sec. II. Whenever a charged-
Higgs boson or a chargino couples to an external quark
there are chirally enhanced one-loop corrections similar to
those in Figs. 2 and 7. We can include these diagrams by

working with the tree-level diagrams and replacing UZ(O)
by

uf = Ui + AUY), (18)

if the external quark is left-handed. For instance, we have
shown in Sec. II that the loop corrections to the ﬁ_fW+di
coupling were correctly included by this replacement [see
Eq. (13)]. That is, in the case of ﬁfW+di coupling one
simply uses the physical CKM matrix V; instead of the
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tree-level CKM matrix V)(g). One immediately notices that
(in the super-CKM scheme) the ﬁ;iWJ“ d; coupling still
involves Vj(-?.), because the supersymmetric analogues of
the diagrams of Fig. 2 are not chirally enhanced and will
only lead to small corrections of the typical size of ordinary
loop corrections. Enhanced corrections to charged-Higgs
and chargino interactions have been discussed for MFV
scenarios with large tanfB in Refs. [15,32]; in this section
we derive the corresponding results for the non-MFV case
using the formalism of Sec. II.

Flavor-changing self-energies lead to anti-Hermitian
corrections to the matrices U(Lo)q. Charged-Higgs and char-
gino couplings also involve right-handed fields; the corre-
sponding corrections to Ug))" are obtained by simply
exchanging the chiralities in the expressions for AU7 [cf.
Egs. (12) and (18)]. The CKM matrix which enters|

PHYSICAL REVIEW D 79, 035018 (2009)

charged-Higgs or chargino vertices is not the physical
one, because in these cases V(' does not add up to V
together with enhanced loop corrections. The charged-
Higgs interaction it H *d; has the Feynman rule

— A, = iy VD cosBP, + VDY sinBPy). (19)

The effect of self-energies in the external legs is included
by substituting this Feynman rule with

3
AW — = S [+ AU v (1 = AU Vi cos P,
k=1

+ V(1 = AUY) 3 Y%(1 + AUR), sinBPg]. (20)

Using the explicit expression for AUZ, z given in Eq. (12)
and expressing Y9 in terms of quark masses through
Eq. (15) the substitution rule of Eq. (20) becomes

m oy s my 3 o3
1+A,, 1+A, T1+A, ] 1+3, 1+A, T+A,
A© S —SURL g, —3uRL Vjicos B Vijsin B _xak o, " sk 5
H _Z [+4,, 1+3,, T1+A, v, L y T4, T+a, T¥A, Pg |. (21)
T T i
1+A143 1+AU3 1+Au3 f] 1+Ad3 1+Ad3 1+Ad3 ]l

We observe a cancellation between the inverse quark
masses in AUZ [see Eq. (12)] and the factors of m, from
the Y¥’s in the effective off-diagonal couplings.

For all Higgs processes the genuine vertex correction
Agl is of the same order as the diagrams with self-energies
in the external leg. Furthermore, in the absence of terms
with the “wrong” VEV in the squark mass matrices there
is an exact cancellation between the genuine vertex cor-
rection and the external self-energies in the decoupling
limit. This cancellation was observed for neutral Higgs
couplings in Ref. [33] and can be understood from
Fig. 1: The upper right diagram involving Adl. merely
renormalizes the Yukawa coupling and maintains the
type-II two-Higgs-doublet model structure of the tree—levelI

tli tli

Higgs sector. Therefore the loop-corrected Higgs cou-
plings are identical to the tree-level ones, provided they
are expressed in terms of Vy; and the physical quark
masses. In our diagrammatic approach A%, enters both

. LR
the proper vertex correction and 271{ and cancels from

the combined result.

We neglect all external momenta, so that our expression
for Agl is not valid for top or H* decays unless the gluino
or the squarks appearing in the loop function are much
heavier than the top quark and the charged-Higgs boson.
The proper vertex correction, to be added to Egs. (20) and
(21), reads

i sfk i

6 3
1 _ 2a (0)uLL+ ,(0)dRR (0)uRL~y,(0)dRL (0)uLRy,(0)dLR (0)uRR,(0)dLL
At = =3 mg 3 DAV VP + VIV PO HGER (VR Py VRV Py ) R

s,t=1 k=1

+(V

sfk tli sfk i

(O)uLLy,(0)dLR Py + y/\OuRLy(0)dLL P,) Hljl LL 4 (

0)uLR+ ,(0)dRR 0)uRR y ,(0)dRL
Vﬁf)k” V,(li) Py + VOURRY0) PHRRYCo(my , mg, my).

sfk i
(22)

The coefficients H;;A# are given in Eq. (A10) of the appendix.

In the case of chargino interactions we must take into account that a squark never comes with an enhanced self-energy,
even if the squark line is an external line of the considered Feynman diagram. Here four different couplings (and their
Hermitian conjugates) occur. Neglecting numerical factors and chargino mixing matrices, the Feynman rules for the

chargino couplings contain the following flavor structures:
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3 3
- ~4 T 0 vi7d 0 d
i xtd: Z V}j)de W Pp and g, Z V;j)WJdSPR,
j=1 j=1
-8 ) yd
gyt Y Y rVIWEP,,
j=1
- 0) a0
i ytdy: Y W Y VPP and g, > WEVIP,
Jj=1 Jj=1
0
i dig: Y WV VAP, (23)

~.
I
—

Here g,, is the SU(2) gauge coupling and Wiq; is defined in
J

PHYSICAL REVIEW D 79, 035018 (2009)

Eq. (Al). Again we include the self-energy corrections,
and express V© in terms of the physical CKM matrix.
Then the expressions in Eq. (23) become

3 B 3 5
i xtde Y Vgl = AU, YW,y Pp and g, D V(1 — AUY), Wi, P,

Lm=1

3

ik Lm=1

3 3
ax g Y Wi vt (1= AU VP and g, Y WE(L = AU VP,

=1

jkLm=1

We have seen in this section that in the case of nonminimal
flavor violation the CKM matrix (including loop correc-
tions) entering charged-Higgs and quark-squark-chargino
vertices is not simply the physical one. Instead it has to be
corrected according to Eq. (20) or Egs. (21) and (24),
leading to potentially large effects.

V. CONCLUSIONS

We have computed the renormalization of the CKM
matrix by chirally enhanced flavor-changing SQCD effects
in the MSSM with generic flavor structure. Our paper
extends the work of [16], which considered the MFV
case. We have worked beyond the decoupling limit
Mgysy >> v and our results are valid for arbitrary left-right
mixing and arbitrary flavor mixing among squarks.
Subsequently we have derived upper bounds on the
flavor-changing off-diagonal elements A?jxy of the squark
mass matrix by requiring that the supersymmetric correc-
tions do not exceed the measure values of the CKM ele-
ments. For Mgygy = 500 GeV our constraints on all
elements A;’jLR, i < j, are stronger than the constraints
from FCNC processes. We were further able to derive a
strong bound on AR a quantity which is not constrained
by FCNCs. For a large value of tan8 one can constrain
A9EL ag well.

As an important consequence, we conclude that it is
possible to generate the observed CKM elements com-

Lm=1

S+ Avush et - AU V(= AUY),, WPy

(24)

jk=1

3
Y Wi = AU V(= AUD Y (1 + AUR),.iPR.

|

pletely through finite supersymmetric loop diagrams
[17,28] without violating present-day data on FCNC pro-
cesses. In this scenario the Yukawa sector possesses a
higher flavor symmetry than the trilinear SUSY-breaking
terms. Most naturally, first an exact [U(2)]® symmetry is
imposed on the quark supermultiplets of the first two
generations: Then the corresponding Yukawa couplings
Y f]j vanish and the squark mass terms A?jLL and A?JRR are
universal for the first two generations. In the second step
the trilinear terms A?j are chosen to break the flavor sym-
metry softly and generate light quark masses and off-
diagonal CKM elements radiatively. This result refutes a
common conclusion drawn from the experimental success
of the CKM mechanism: It is usually stated that the new
physics of the TeV scale must obey the principle of MFV in
the sense of Ref. [30], meaning that the Yukawa couplings
are the only spurions breaking the flavor symmetries. Our
analysis has shown that there is a viable alternative to this
scenario: It is well possible that Yukawa couplings obey an
exact flavor symmetry and the spurion fields breaking this
symmetry are the trilinear breaking terms.

As another application of our results, we have derived
supersymmetric loop corrections to the couplings of
charged-Higgs bosons and charginos to quarks and
squarks. In these couplings the squark-gluino loops which
renormalize the CKM elements are physical and can have a
significant numerical impact because of their chiral en-
hancement. We have further pointed out that the calculated
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flavor-changing self-energies can have observable effects
in the W-mediated production or decay of the top quark,
with the SUSY effects decoupling as m?/M3 gy for
Mgysy — 0.
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APPENDIX: CONVENTIONS AND FEYNMAN
RULES

We denote the tree-level quark mass matrix by m(o) =

Y%v,. The unitary matrices diagonalizing these matrices
and the squark mass matrices are denoted by U; (0)" 4 and
Wid, respectively:

U(LO)M "m (MO) U;?)u (D)

—m®, Ot

mOy 04 = m®),

witmzwe =M, waiMEW = M2 (Al
The superscript (D) in Eq. (A1) indicates diagonal matri-
ces. That is, the mass eigenstates of the quarks and squarks
are obtained from the original fields by unitary rotations in
flavor space involving the matrices U""?, /%" and w4
as defined in [34]. The Feynman rules for the quark-
squark-gluino vertices in the basis of mass eigenstates

then read

3
— iV2g, T Y (U WE PR — UMW, PL)  (A2)
=1

()

2 M — M3(1 + 3sin’6y) cos2B1 + m{'m{"
M2 =
—v Al — wt tanSm,

Mv2 (Mé + M%(1 + 3sin®6yy) cos2 1 + m"mQ"
i O

—v, A% — u*cotBm!!
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/

qi s

FIG. 10. Quark-squark-gluino vertex. The Feynman rules for
the left and right diagrams are given in Eqgs. (A3) and (A2),
respectively.

for an incoming quark and

— i2g,T* Z(U;‘j)ﬁ* Py — Ug* Wi, Pr)  (A3)

for an outgoing quark. The interaction vertices are depicted
in Fig. 10. Equations (A2) and (A3) hold in any basis for
the quark and squark fields, provided the quark-squark-
gluino coupling is flavor-diagonal in the original basis, in
which the mass matrices mile and M%) 4 are defined. This

condition is not only fulfilled if the original basis consists
of weak (s)quark eigenstates but also for the super-CKM
basis.

Our starting point is a basis of weak eigenstates: The
squark mass term in the Lagrangian reads

-E mo _(d~z’ EZ’ 52’ d}k?’ E;’ bR)MWz(C?L’ S:L’ I;LJ C;'Ry S:R’ ER)T
— (@}, &}, 1y, g, Cp TR)MY2(ly, €1, Ty, lig, C, Tp)T
with

—v,A4 — m 4 tanB
M3 — I M7 cos2Bsin®6y 1 + m?m®

(A4)
—v, Al — m(o),u cotB
M? + 2 M2 cos2Bsin*Oy1 + my, O O

The physical CKM matrix differs from V(© = U(LO)”T U(Lo)d by the corrections from the finite squark-gluino self-energies,
which are the subject of this paper. In physical processes with external quarks the matrices of Eq. (A1) appear in pairs and it

is useful to define
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3
(0)gRL _ (0)g* (0)q yx 3%
vazq = Z UR]](Z qu+3 SULk?WIZY’
Jok=1
(0)gLR - (0) (0)
sttq = Z ULj;l Wq URk7WZ+3 s’
Jk=1
; (AS)
(0)gLL _ 0)q* 1/ 170)q y173*
st: = ULjf W sULki Wis»
Jk=1
(0)gRR s (0) (0)
_ * *
VYflq = Z UR/;I W]q+3 sURquWI(cI+3 s

=
Il
_

Js

Flavor violation in the squark mass matrices is usuall DX
quantlﬁed in the super-CKM basis, in which m? = m|
and m&,) = mi,D ). Then we can use Eq. (A5) and the

Feynman rules of Eqs. (A2) and (A3) with the substitutions
|

M2 — (v<0>*M2v O+ MZ(1 + 2sin?6y) cos281 + mPmPT

— AUt vo — w* cotpmP't

Thus the trilinear terms of the super-CKM basis A? and
those in the weak basis are related as

A=Al Av=yOtAL (AB)

and AZLR is expressed in terms of A in Eq. (2). SU(2)
symmetry enforces a relation between the upper left 3 X 3
submatrices of M2 and Mfl since they both involve Mé.
The corresponding relation in the super-CKM basis is read
off from Eq. (A7):

AIL = [VOIMZVO], (A9)

for i, j = 1,2,3 and i # j. Equation (A9) was derived in
Ref. [3] with VO = V; ie. Eq. (A9) generalizes the latter
result to the case that radiative corrections to V are
included.

The bounds on A?]-X ¥ derived in this paper assume that
the squark-gluino leops at most saturate the measured
elements of V. The extremal values for A?}XY correspond

to the case V@ = 1, for which the super-CKM basis co-
|
m? ln(r% ) —m3 ln(Qz)

2 _ 2 ,
my — my

Bo(ml, mz) =1+

By(my, my) — Bo(m,, m3) _
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w

3
(0)g* (0)g*
Z Uleq Wq qus’ Z UR]zq qu+3s - Wt+35
j=1 =1

(A6)

Next we relate the quantities of Eq. (1), which are defined
in the super-CKM basis, to the parameters of the MSSM
Lagrangian, which are defined in a weak basis. To this end
we have to specify a weak basis as our starting point and
we choose a basis with mfio) = mEID), U = U,EO)d
UV =1 and UP" = v, Note that mEID)Rcan be com-
plex if the threshold corrections A, in Eq. (15) are com-
plex. The transition from this weak basis to the super-CKM
basis only involves a rotation of the left-handed up-type
supermultiplets with V®. Therefore the down squark mass
matrix is unchanged, Mé = Mg2, while

—VOtAL — m®P y cotB (A7)
M2 + 2 M3 cos2Bsin20y 1 + m” Tm(”

|incides with a weak basis. This limiting case is realized in
the scenario of Sec. IIID, in which all of V is generated
through supersymmetric loops.

In the super-CKM basis the coefficients Hj** in

Eq. (22) are given by

3
0) ve 0 :
HjMR = ,UVVEJ-)YZJ cosf3 — kZl Vj(.k)Afi sin,

HiRE = p V(O)Y”'* sinf — Z V(O)A”* cosp,
k= (A10)

HjH = sin(2,8) V(O)(|Y” [2+ Y4 — ¢d),

NS
H;RR \/_ W Yi *V(O)Yd
82

Finally we quote our conventions for the two-point, three-
point and four-point one-loop functions B, Cy and Dy:

2 2 3
mim3 InGid) + m3m3 InG3) + mim? In)
3 1

CO(ml) my, m3) = 2 2
ms — m3

m3)m3 —mi)

(ml - mz)(mz

Co(my, my, m3) — Co(my, my, my)

Dy(my, my, ms, my) = 5 2
ms3 — my

The two-point function By is UV-divergent; our definition above is MS-subtracted. UV divergence and the renormalization
scale Q drop out from our results thanks to the super-Glashow-Iliopoulos-Maiani mechanism.

035018-15



ANDREAS CRIVELLIN AND ULRICH NIERSTE

(1]
(2]
(3]
(4]
(5]

(6]
(71

(8]

(9]
[10]

[11]

[12]

[13]

F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini,
Nucl. Phys. B477, 321 (1996).

L.J. Hall, V.A. Kostelecky, and S. Raby, Nucl. Phys.
B267, 415 (1986).

M. Misiak, S. Pokorski, and J. Rosiek, Adv. Ser. Dir. High
Energy Phys. 15, 795 (1998).

A.J. Buras, A. Romanino, and L. Silvestrini, Nucl. Phys.
B520, 3 (1998).

J.S. Hagelin, S. Kelley, and T. Tanaka, Nucl. Phys. B415,
293 (1994).

M. Ciuchini et al., J. High Energy Phys. 10 (1998) 008.
F. Borzumati, C. Greub, T. Hurth, and D. Wyler, Phys.
Rev. D 62, 075005 (2000).

D. Becirevic et al., Nucl. Phys. B634, 105 (2002).

L. Silvestrini, Annu. Rev. Nucl. Part. Sci. 57, 405 (2007).
M. Ciuchini, E. Franco, D. Guadagnoli, V. Lubicz, M.
Pierini, V. Porretti, and L. Silvestrini, Phys. Lett. B 655,
162 (2007).

L.J. Hall, R. Rattazzi, and U. Sarid, Phys. Rev. D 50, 7048
(1994); M. S. Carena, M. Olechowski, S. Pokorski, and
C.E.M. Wagner, Nucl. Phys. B426, 269 (1994).

C. Hamzaoui, M. Pospelov, and M. Toharia, Phys. Rev. D
59, 095005 (1999).

K.S. Babu and C.F. Kolda, Phys. Rev. Lett. 84, 228
(2000).

G. Isidori and A. Retico, J. High Energy Phys. 09 (2002)
063.

A.J. Buras, P.H. Chankowski, J. Rosiek,
Slawianowska, Nucl. Phys. B659, 3 (2003).

T. Blazek, S. Raby, and S. Pokorski, Phys. Rev. D 52, 4151
(1995).

J. Ferrandis and N. Haba, Phys. Rev. D 70, 055003 (2004).
W.J. Marciano and A. Sirlin, Nucl. Phys. B93, 303 (1975);
A. Denner and T. Sack, Nucl. Phys. B347, 203 (1990); A.
Barroso, L. Brucher, and R. Santos, Phys. Rev. D 62,
096003 (2000); P. Gambino, P.A. Grassi, and F
Madricardo, Phys. Lett. B 454, 98 (1999); A. Denner, E.
Kraus, and M. Roth, Phys. Rev. D 70, 033002 (2004); C.

and L.

[19]

[20]
(21]

(22]
(23]

[24]

[25]

035018-16

PHYSICAL REVIEW D 79, 035018 (2009)

Balzereit, T. Mannel, and B. Plumper, Eur. Phys. J. C 9,
197 (1999); K. P. O. Diener and B. A. Kniehl, Nucl. Phys.
B617, 291 (2001); B. A. Kniehl and A. Sirlin, Phys. Rev.
Lett. 97, 221801 (2006); Phys. Rev. D 74, 116003 (2006).
M. S. Carena, D. Garcia, U. Nierste, and C. E. M. Wagner,
Nucl. Phys. B577, 88 (2000).

H. E. Logan and U. Nierste, Nucl. Phys. B586, 39 (2000).
T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856
(1975).

U. Nierste, Int. J. Mod. Phys. A 21, 1724 (2006).

Lars Hofer, Ulrich Nierste, and Dominik Scherer (unpub-
lished).

W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2000).

J. A. Casas, A. Lleyda, and C. Munoz, Nucl. Phys. B471, 3
(1996); J. A. Casas and S. Dimopoulos, Phys. Lett. B 387,
107 (1996).

G.L. Kane, C. Kolda, and J.E. Lennon, arXiv:hep-ph/
0310042.

S. Weinberg, Phys. Rev. Lett. 29, 388 (1972); Phys. Rev. D
5, 1962 (1972).

W. Buchmuller and D. Wyler, Phys. Lett. 121B, 321
(1983).

R.S. Chivukula and H. Georgi, Phys. Lett. B 188, 99
(1987).

G. D’ Ambrosio, G. F. Giudice, G. Isidori, and A. Strumia,
Nucl. Phys. B645, 155 (2002).

F. Borzumati, G.R. Farrar, N. Polonsky, and S.D.
Thomas, arXiv:hep-ph/9805314; Nucl. Phys. B555, 53
(1999).

G. Isidori and A. Retico, J. High Energy Phys. 11 (2001)
001.

P. H. Chankowski and L. Slawianowska, Phys. Rev. D 63,
054012 (2001).

Manuel Drees, Rohini M. Godbole, and Probir Roy,
Theory and Phenomenology of Sparticles: An Account of
Four-Dimensional N = 1 Supersymmetry in High Energy
Physics (World Scientific, Hackensack, NJ, 2004), p. 555.



