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We compute the finite renormalization of the Cabibbo-Kobayashi-Maskawa matrix induced by gluino-

squark diagrams in the minimal supersymmetric standard model with nonminimal sources of flavor

violation. Subsequently we derive bounds on the flavor-off-diagonal elements of the squark mass matrices

by requiring that the radiative corrections to the Cabibbo-Kobayashi-Maskawa elements do not exceed the

experimental values. Our constraints on the associated dimensionless quantities �dLR
ij , j > i, are stronger

than the bounds from flavor-changing neutral current (FCNC) processes if the gluino and squarks are

heavier than 500 GeV. Our bound on j�uLR
12 j is stronger than the FCNC bound from D� �D mixing for

superpartner masses above 900 GeV. We further find a useful bound on j�uLR
13 j, for which no FCNC

constraint is known. Our results imply that it is still possible to generate all observed flavor violation from

the soft supersymmetry-breaking terms without conflicting with present-day data on FCNC processes. We

suggest that a flavor symmetry renders the Yukawa sector flavor-diagonal and the trilinear

supersymmetry-breaking terms are the spurion fields breaking this flavor symmetry. We further derive

the dominant supersymmetric radiative corrections to the couplings of charged-Higgs bosons and

charginos to quarks and squarks.
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I. INTRODUCTION

The generic minimal supersymmetric standard model
(MSSM) contains a plethora of new sources of flavor
violation, which reside in the supersymmetry-breaking
sector. The origin of these flavor-violating terms is easily
understood: In the standard model (SM) the Yukawa ma-
trices are diagonalized by unitary rotations in flavor space
and the resulting basis defines the quark mass eigenstates.
If the same rotations are carried out on the squark fields of
the MSSM, one obtains the super-Cabibbo-Kobayashi-
Maskawa (super-CKM) basis in which no tree-level

flavor-changing neutral current (FCNC) couplings are
present. However, neither the 3� 3 mass terms M2

~q, M
2
~d

and M2
~u of the left-handed and right-handed squarks nor

the trilinear Higgs-squark-squark couplings are necessarily
diagonal in this basis. The trilinear �QHdA

ddR and
�QHuA

uuR terms induce mixing between left-handed and
right-handed squarks after the Higgs doublets Hd and Hu

acquire their vacuum expectation values (VEVs) vd and
vu, respectively. In the conventions of Ref. [1] the full 6�
6 mass matrix for the down squarks reads

M2
~d
¼

ðM ~d
1LÞ2 �

~dLL
12 �

~dLL
13 �

~dLR
11 �

~dLR
12 �

~dLR
13

�
~dLL�
12 ðM ~d

2LÞ2 �
~dLL
23 �

~dRL�
12 �

~dLR
22 �

~dLR
23

�
~dLL�
13 �

~dLL�
23 ðM ~d

3LÞ2 �
~dRL�
13 �RL�

23 �
~dLR
33

�
~dLR�
11 �

~dRL
12 �

~dRL
13 ðM ~d

1RÞ2 �
~dRR
12 �

~dRR
13

�
~dLR�
12 �

~dLR�
22 �

~dRL
23 �

~dRR�
12 ðM ~d

2RÞ2 �
~dRR
23

�
~dLR�
13 �

~dLR�
23 �

~dLR�
33 �

~dRR�
13 �

~dRR�
23 ðM ~d

3RÞ2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (1)

and the up-type squark mass matrix is defined in an analo-
gous way with ~d replaced by ~u. Here the �~qLR

ij , i; j ¼
1; . . . 3, are related to the trilinear terms as

�
~dLR
ij ¼ Ad

ijvd ¼ Ad
ijv cos�;

�~uLR
ij ¼ Au

ijvu ¼ Au
ijv sin� for j > i:

(2)

We normalize the Higgs VEVs as v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
’

174 GeV and define tan� ¼ vu=vd as usual. The complete

squark mass matrix is given in the appendix, where we also
elaborate on the relationship between weak bases and the
super-CKM basis. The diagonalization of M2

~q involves a

rotation of the squark fields in flavor space which leads to
various flavor-changing neutral couplings. In particular,
the gluino now couples to quarks and squarks of different
generations and FCNC processes occur through strong
gluino-squark loops, which easily dominate over the highly
CKM-suppressed weak loops of the SM. Anticipating the
smallness of the off-diagonal elements in M2

~d;~u
one can
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alternatively work in the super-CKM basis and treat the

�~qXY
ij ’s (with X; Y ¼ L or R) as perturbations [1–4]. It is

customary to define the dimensionless quantities

�qXY
ij ¼ �~qXY

ij

1
6

P
s½M2

~q�ss
: (3)

In the current era of precision flavor physics stringent
bounds on these parameters have been derived from FCNC
processes, by requiring that the gluino-squark loops do not
exceed the measured values of the considered observables
[1,5–10]. In the recent analysis of Ref. [9] the strongest

constraint has been obtained on �
~dLR
23 with j�~dLR

23 j< 10�3

for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

~q�ss
q

¼ m~g ¼ 350 GeV.

In this paper we show that charged-current processes

give competitive bounds on the �~qLR
ij ’s. This is surprising,

because here a supersymmetric loop competes with a SM
tree-level coupling. However, the flavor structure of the
SM is governed by very small Yukawa couplings: In a
weak basis with a diagonal up-type Yukawa matrix Yu

the off-diagonal elements of the down-type Yukawa matrix
Yd range from jYd

31j � 10�7 to jYd
23j � 6� 10�4 at the

relevant scale of MSUSY ¼ OðM~q
s ; m~gÞ. The impact of

supersymmetric loop corrections to these couplings is
most easily understood in the decoupling limit MSUSY �
v: The tree-level and loop-induced Higgs couplings to
down-type quarks are shown in Fig. 1. After electroweak
symmetry breaking all diagrams contribute to the quark
mass matrix. The loop-induced contributions are compa-
rable in size to the tree-level term Yq

fivq if roughly

jAq
fij=MSUSY � 16�2jYq

fij or (for down-type quarks)

jYd
fj�

~dLL
ji �j tan�=M3

SUSY � 16�2jYd
fij, respectively.

(Here � is the Higgsino mass parameter.)
In Ref. [11] it was pointed out that such corrections

constitute an important modification of the relation be-
tween the mass and the Yukawa coupling of the bottom
quark. Subsequent papers studied the analogous correc-
tions to the whole down-quark mass matrix for the case
of minimal flavor violation (MFV), i.e. diagonal matrices
M2

~u and M2
~d
in the super-CKM basis [12–15]. Here the key

effect of the supersymmetric loop correction is the genera-
tion of effective FCNC couplings of neutral Higgs bosons.
One can proceed along these lines to calculate the shift in
the CKM elements induced by squark-gluino loops: The
quark mass matrix calculated from the diagrams in Fig. 1 is
diagonalized in the usual way yielding the loop-corrected
CKM matrix V. This has been done for the MFV case in
Ref. [16] and for the generic case in Ref. [17]. As a
disadvantage, this method is only valid in the decoupling
limit MSUSY � v. In particular, this is a questionable
approximation for the top quark, whose mass must be set
to zero in the diagrams of Fig. 1. Another difficulty is the
appearance of the Yukawa matrices in the result of these
diagrams, while we only have experimental information on
the CKM matrix and the quark masses. To calculate the
Yukawa matrices from the latter, one has to invert the
relations between the loop-corrected mass matrices and
the Yukawa couplings. But in a phenomenological appli-
cation it is desirable to have the loop-corrected V directly
expressed in terms of CKM elements and (s)particle
masses. All these drawbacks can be avoided if one renorm-
alizes the CKM matrix directly, as it has been done within
the standard model in Ref. [18]. This method further

FIG. 1. Tree-level coupling with Yd
ij and FCNC loop corrections with Ad

fi (upper row) and �
~dLL;RR
fi (lower row) in the mass insertion

approximation forMSUSY � v. Replacing the Higgs fields by their VEVs gives the contributions to the down-type quark mass matrix.
The lower diagrams contribute to the mass matrix with an enhancement factor of tan� ¼ vu=vd compared to the other two
contributions.
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involves only physical quantities and thereby bypasses
another pitfall of the aforementioned calculation from the
diagrams in Fig. 1: For instance, one might be tempted to

derive strong bounds on �
~dRR
ij from the lower right diagram

of Fig. 1. But the result of this diagram can be absorbed
into an unphysical rotation in flavor space of the right-
handed quarks and no such bounds can be found.

The main results of our paper are new stringent bounds

on the flavor-off-diagonal entries �~qLR
ij of the squark mass

matrices. These bounds are derived from a fine-tuning
argument, by requiring that no large numerical cancella-
tions should occur between the tree-level CKM elements
and the supersymmetric loop corrections. Translated to
fundamental parameters in the Lagrangian, this means
that the loop diagrams in Fig. 1 involving the trilinear
supersymmetry-breaking terms shall not exceed the values
of the tree-level Yukawa couplings. This reasoning is
modeled after the standard line of arguments used to justify
low-scale supersymmetry: Large cancellations between the
bare Higgs boson masses and loop corrections must be
avoided, leading to superparticle masses at or below the
TeV scale. This argument involves two unphysical quanti-
ties: the bare mass and the corresponding radiative correc-
tions. In our case the quantities Yq

ij and Aq
ij are separately

unobservable as long as only low-energy quantities are
studied. However, once Higgs or chargino couplings to
squarks are studied, different combinations of Yq

ij and Aq
ij

can be investigated and our assumption about the absence
of fine-tuned cancellations can be tested in principle as
discussed in Sec. IV. Another viewpoint on the subject is
provided by ’t Hooft’s naturalness criterion, which links
the smallness of a quantity to a symmetry which is broken
by a small parameter. The rough size of the symmetry-
spoiling parameter can be inferred from the size of the
studied quantity. In the case of the small elements of the
Yukawa matrices the protecting symmetry is a flavor sym-
metry, which corresponds to independent rotations of left-
handed and right-handed fermion fields in flavor space. In
the SM the only parameters breaking this symmetry are the
small Yukawa couplings. In the generic MSSM the flavor
symmetries are broken by both the Yukawa couplings and
the soft supersymmetry-breaking terms and the natural
way to restore the protecting symmetry is to set the small
parameters in both sectors to zero. Scenarios in which the

�~qLR
ij ’s substantially exceed the bounds derived in this

paper are therefore unnatural in ’t Hooft’s sense.
Our paper is organized as follows: In Sec. II we calculate

the one-loop renormalization of the CKMmatrix by super-
symmetric QCD effects. In Sec. III we use our results to

derive constraints on the elements �~qLR
ij and �~qLL

ij of the

squark mass matrices in Eq. (1). Here we also reappraise
the idea that flavor violation solely originates from super-
symmetry breaking. In Sec. IV we apply our results to the
renormalization of charged-Higgs and chargino couplings

to quarks and squarks. Finally we conclude. Conventions
and Feynman rules are collected in the appendix.

II. RENORMALIZATION OF THE CKM MATRIX

To calculate the desired renormalization of the CKM
matrix we must consider squark-gluino loop corrections to
the coupling of the W boson to quarks. There are two
possible contributions: the self-energy diagrams of Fig. 2
and the proper vertex correction. In the limit MSUSY � v
the self-energy contributions reproduce the results of the
diagrams in Fig. 1. (For a discussion of this feature in the
MFV case see Refs. [11,19].) From the considerations in
the introduction we know that we need some parametric
enhancement [by e.g. a factor of jAq

fij=ðMSUSYjYq
fijÞ � 1]

to compensate the loop suppression and the diagrams of
Fig. 2 involve such enhancement factors. The vertex dia-
grams involving aW coupling to squarks are not enhanced
and moreover suffer from gauge cancellations with non-
enhanced pieces from the self-energies. Therefore we only
need to consider self-energies, just as in the case of the
electroweak renormalization of V in the SM [18].
From now on we work in the super-CKM basis unless

stated otherwise. Since we work beyond tree level, we have
to clarify how we define the super-CKM basis in the
presence of radiative corrections: Starting from some
weak basis with Yukawa matrices Yd and Yu we perform
the usual rotations in flavor space

dL;R ! Uð0Þd
L;R dL;R; uL;R ! Uð0Þu

L;R uL;R (4)

to diagonalize Yq and the tree-level mass matrices mð0Þ
q ¼

Yqvq and apply the same rotations to ~dL;R and ~uL;R. This

defines the super-CKM basis in which the elements of M2
~q

in Eq. (1) are defined. The tree-level CKM matrix is then
given by

Vð0Þ ¼ Uð0Þuy
L Uð0Þd

L : (5)

To fix the relation between Vð0Þ and the physical CKM
matrix V we must define a renormalization scheme. First
note that all radiative corrections discussed in this paper
are finite, so that the notion of minimal renormalization
means that all counterterms are simply equal to zero. Two
possibilities come to mind:
(i) Minimal renormalization of V.—The Lagrangian

contains diagonal Yukawa matrices and Vð0Þ without
counterterms, while the measured CKM matrix V

differs from Vð0Þ by the radiative corrections in
Fig. 2. Recall that for mj � mi one can treat the

diagrams of Fig. 2 in the same way as genuine vertex
corrections; i.e. there is no need to truncate such
diagrams or to introduce matrix-valued wave func-
tion renormalizations [20].

(ii) On-shell renormalization of V.—The Lagrangian
contains finite counterterms to cancel the flavor-
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changing self-energies of Fig. 2. These counterterms
arise from a perturbative unitary rotation of the
quark fields in flavor space, qL;R ! ½1þ
�Uq

L;R�qL;R [18]. This in turn induces a counterterm

�V ¼ �Uuy
L Vð0Þ þ Vð0Þ�Ud

L (6)

to the CKM matrix. In the on-shell scheme we can

identify V ¼ Vð0Þ, but after the extra rotation of the
quark fields we are no more in the super-CKM basis
and the bare Yukawa matrices Yd and Yu are no
more diagonal.1

We choose method (i), because it involves the super-CKM

basis, so that we can immediately use the�~qXY
ij ’s defined in

Eq. (1), permitting a direct comparison with FCNC analy-

ses. This issue of the definition of �~qXY
ij formally goes

beyond the one-loop order, but is numerically highly rele-

vant, because the tree-level elements Vð0Þ
ij and the finite

counterterms ½�Uq
L�ij are similar in size: If one works in an

alternative basis in which the (s)quark superfields are

rotated by ½1þ �Uq
L;R�, the off-diagonal elements �~qXY

ij

of the squark mass matrices can substantially differ from
those of our definition of the super-CKM basis.

We also need to address the renormalization scheme
used for the quark masses: The supersymmetric loops are
subtracted on-shell, so that we can use the masses which
are extracted from measurements using SM formulas.
While we do not consider gluonic QCD corrections in

this paper, we assume that an MS prescription is used for

the latter. That is, we take MS values for the quark masses

in our numerical analyses. This procedure is guided by the
decoupling limit discussed in the introduction: The
Yukawa couplings of Fig. 1 enter these diagrams as
short-distance quantities defined in a mass-independent

scheme such as MS and are evaluated at a scale of order
MSUSY. The effective couplings are then evolved down to a
low scale at which the quark masses and V are calculated,

yielding quark masses in the MS scheme, yet with de-
coupled (i.e. on-shell subtracted) supersymmetry (SUSY)
loops.
The self-energies can be divided into a chirality-flipping

and a chirality-conserving part (q ¼ u; d and i; f ¼ 1; 2; 3
labels the incoming and outgoing quark flavors, respec-
tively):

�q
fiðpÞ ¼ �qRL

fi ðp2ÞPL þ �qLR
fi ðp2ÞPR

þ p6 ½�qLL
fi ðp2ÞPL þ �qRR

fi ðp2ÞPR�: (7)

Since the SUSY particles are much heavier than the five
lightest quarks, it is possible to expand in the external
momentum, unless one external quark is the top. In the
following we consider the self-energies with only light
external quarks and return to the case with a top quark at
the end of this section.
We now write the result of the left diagram of Fig. 2

(omitting external spinors) as

i
g2ffiffiffi
2

p ��PLDLfi;

with

DLfi ¼
X
j�i

Vfj

mdjð�dRL
ji þmdi�

dRR
ji Þ þmdið�dLR

ji þmdj�
dLL
ji Þ

m2
di
�m2

dj

: (8)

The diagram with j ¼ i is treated as in the case without
flavor mixing; i.e. the self-energy is truncated and contrib-
utes to the Lehmann-Symanzik-Zimmermann factor in the
usual way. The right diagramDRfi involving �

u
fj instead is

obtained in a similar way. Since the quarks are light

compared to the heavy SUSY particles, we can evaluate
the self-energies in Eq. (8) at p2 ¼ 0. �qRL

fi and �qLR
fi have

mass dimension 1, while �qLL
fi and �qRR

fi are dimension-
less. The chirality-flipping self-energies involve at least
one power of v and at least one factor of a trilinear term
or a Yukawa coupling multiplied by �. To first order in
flavor-changing SUSY parameters these factors contribute
to DL with a parametric enhancement of
jAq

jijvq=ðMSUSY maxðmqi ; mqjÞÞ or (using mð0Þ
qi ¼ Yq

iivq) of

FIG. 2. One-loop corrections to the CKM matrix from the down and up sectors. We denote the results of the left and right diagrams
by DLfi and DRfi, respectively.

1That is, in our Feynman diagrammatic approach the FCNC
Higgs couplings of Refs. [12–15] enter the Lagrangian through a
finite FCNC counterterm to Yukawa couplings.
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j�~dLL
ji �j tan�=M3

SUSY. Thus we find the enhancement fac-
tors which we inferred earlier from Fig. 1. Clearly, the
terms with �dLL

fi and �dRR
fi in Eq. (8) are suppressed by

mdi;j=MSUSY compared to the chirality-flipping contribu-
tions and are therefore negligible. The LR and RL self-
energies are

�qRL;LR
fi ðp2 ¼ 0Þ ¼ 2m~g

3�
�sðMSUSYÞ

� X6
s¼1

Vð0ÞqRL;LR
sfi B0ðm~g; m~qsÞ; (9)

satisfying �qRL
fi ð0Þ ¼ �qLR�

if ð0Þ. In Eq. (9) we have diago-
nalized the squark mass matrix, with the eigenvalues de-
noted by mqs . The quantities VqRL

sfi and VqLR
sfi are

combinations of the rotation matrices of quarks and
squarks fields and are defined in Eq. (A5) of the appendix,
where also our conventions for the loop functions B0, C0

and D0 are listed. In the second order of the mass insertion
approximation (neglecting terms with more than one flavor
change) Eq. (9) becomes (for f � i)

�qLR
fi ðp2 ¼ 0Þ ¼ �sðMSUSYÞ

2m~g

3�
½�~qLR

fi C0ðm~g; ½M2
~q�ff; ½M2

~q�iþ3;iþ3Þ þ �~qLL
fi �~qLR

ii D0ðm~g; ½M2
~q�ff; ½M2

~q�ii; ½M2
~q�iþ3;iþ3Þ

þ�~qLR
ff �~qRR

fi D0ðm~g; ½M2
~q�ff; ½M2

~q�fþ3;fþ3; ½M2
~q�iþ3;iþ3Þ�: (10)

Even if the flavor-changing elements �~qLL
fi are small, the

approximation of Eq. (10) breaks down, if �~qLR
jj is of the

order of ðM~q
jL;RÞ2 for either j ¼ i or j ¼ f, i.e. for large

flavor-diagonal left-right mixing. This is the default situ-
ation for the top squarks and also happens with the bottom
squarks if tan� is large. We therefore work with the exact
formula of Eq. (9).

We now collect the results of the diagrams in Fig. 2 with
the simplification that we neglect all small ratios of quark
masses such as ms=mb. One finds

DLfi ¼
X3
j¼1

Vð0Þ
fj ½�Ud

L�ji; DRfi ¼
X3
j¼1

½�Uuy
L �fjVð0Þ

ji

(11)

with the matrices

�Uq
L ¼

0 1
mq2

�qLR
12

1
mq3

�qLR
13

�1
mq2

�qRL
21 0 1

mq3

�qLR
23

�1
mq3

�qRL
31

�1
mq3

�qRL
32 0

0
BBB@

1
CCCA: (12)

In our super-CKM scheme (i) the inclusion of the radiative
correction is equivalent to the use of the tree-level coupling
in the �uWþd vertex with the replacement

Vð0Þ ! V ¼ ð1þ�Uuy
L ÞVð0Þð1þ�Ud

LÞ (13)

and we identify V with the physical CKM matrix. In the
on-shell scheme (ii) the counterterms �Ud

L ¼ ��Ud
L and

�Uu
L ¼ ��Uu

L cancel the loops and Vð0Þ ¼ V is main-
tained. It is crucial that 1þ �Uq

L is unitary; otherwise the
unitarity of V (and electroweak gauge invariance) would be
spoiled [18]. To our one-loop order this means that �Uq

L is
anti-Hermitian. We can easily verify from Eq. (12) that

�Ud
L fulfills this criterion owing to �qRL

fi ð0Þ ¼ ½�qLR
if ð0Þ��.

The self-energies do not decouple for MSUSY ! 1 and, in
accordance with the decoupling theorem [21], we find that

their mere effect is the renormalization of the CKMmatrix,
as implemented in scheme (ii).
It is important to stress that the replacement rule in

Eq. (13) only absorbs the effects of the self-energy dia-
grams of Fig. 2 correctly, if both quark lines are external
lines. If some �ujW

þdi vertex appears in a loop diagram,

one or both self-energies are probed off-shell and one must

work with Vð0Þ and must calculate the loop diagram with
the nested self-energy explicitly.
We can now understand how to treat self-energies with a

top quark in Eq. (12): If the top quark appears on the
internal line of the right diagram in Fig. 2, that is, j ¼ 3,
the self-energy involved must be evaluated at p2 ¼ 0,
because the external quark is up or charm. The unitarity
of V now forces us to evaluate �uRL

31 and �uRL
32 at p2 ¼ 0 as

well. Interestingly, from today’s precision data in K and B
physics one can determine V from tree-level data only [22].
Of course, none of these measurements involves top de-
cays, so that the values of Vts and Vtd inferred from these
measurements (through unitarity of V) indeed correspond
to the definition in Eq. (13), with self-energies �uRL

3i eval-

uated at p2 ¼ 0. While FCNC processes of K and B
mesons involve Vts or Vtd, we cannot determine these
CKM elements from FCNC processes in a model-
independent way, because new particles (in our case
squarks and gluinos) will affect the FCNC loops directly.
Clearly nothing can be learned from measuring the �tWþdi
couplings (in, for instance, single top production or top
decays) if MSUSY � mu3 ¼ mt. However, if mt �MSUSY

any on-shell t ! s or t ! d transition involves

��t
i �

�uRL
3i ðm2

t Þ � �uRL
3i ð0Þ

mt

; with i ¼ 1 or 2:

(14)

Here the first self-energy enters the calculated �tWþdi
process explicitly, while �uRL

3i ð0Þ stems from the relation-

ship between V and Vð0Þ.��t
i decouples asm

2
t =M

2
SUSY, but
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can be sizable for Oð200 GeVÞ superpartners, since it
involves poorly constrained FCNC squark mass terms.
We conclude that the flavor structure of tree-level top
couplings can help to study new physics entering
chirality-flipping self-energies, while this effect is unob-
servable in charged-current processes of light quarks: Here
the chirality-flipping self-energies merely renormalize the
CKM matrix; the physical effect in charged-current pro-
cesses with external quark q is suppressed by a factor of
m2

q=M
2
SUSY. The experimental signature would be an ap-

parent violation of CKM unitarity, since the measured
value of Vts or Vtd would be in disagreement with the value
inferred from CKM unitarity. Unitarity is restored, once the
correction ��t

i is taken into account.
Since inverse quark masses enter Eq. (12), we must

address the proper definition of these masses in the pres-
ence of ordinary QCD corrections. If we worked in the
decoupling limit and calculated the diagrams of Fig. 1, we

would encounter the MS-renormalized Yukawa couplings
evaluated at the renormalization scale Q ¼ MSUSY, at
which the heavy SUSY particles are integrated out.
Translating that result into the language of Sec. II amounts

to the evaluation of the inverse quark masses in the MS
scheme at Q ¼ MSUSY. One can derive this (somewhat
surprising) result entirely in the diagrammatic language
of Sec. II, by studying QCD corrections to the diagrams of
Fig. 2 [23]. The first element in this proof is the observation

that e.g. �qLR
fi , viewed as the Wilson coefficient of the two-

quark operator �qfPRqi, renormalizes in the same way as

the quark mass, so that the ratios �qLR
fi =mqi in Eq. (12) are

independent ofQ. Since the SUSY parameters entering�fi

are defined at the high scale Q ¼ MSUSY, our constraints
derived in the next section will involve mqiðMSUSYÞ. The
second element in the proof is the explicit analysis of
gluonic corrections to the diagrams of Fig. 2. While at
intermediate steps a quark pole mass enters through the

Dirac equation p=qi ¼ m
pole
qi qi, gluonic self-energies add

to m
pole
qi in such a way that the final result only involves the

properly defined MS mass mqi [23].

We close this section by recalling the relationship be-
tween the Yukawa matrices Yq ¼ diagðYq1 ; Yq2 ; Yq3Þ and
the quark masses [11,19]:

Yqi ¼ mqi

vqð1þ�qiÞ
¼ mqi ��qLR

ii;A

vqð1þ �qLR
ii;�

mqi

Þ
: (15)

In Eq. (15) we have used the fact that �qLR
ii can be decom-

posed into �qLR
ii;A þ�qLR

ii;� if the physical squark masses are

chosen as input parameters. �qLR
ii;� is proportional to �Yqi

and �qLR
ii;A is proportional to Aq

ii. If we neglect the A terms

Eq. (15) reduces to the expression of [19] for down-type
quarks. For a detailed discussion of the relation between

the Yukawa matrices and the quark masses with different
choices of input parameters see [23].
Equation (15) holds in the super-CKM scheme (i), which

has the advantage that no FCNC Yukawa couplings occur.
In the on-shell scheme (ii) the rotations of the quark fields
in flavor space lead to the loop-induced finite FCNC
Yukawa couplings of Refs. [12–15]. In the super-CKM
scheme these effects are reproduced from diagrams with
flavor-diagonal Yukawa couplings and FCNC self-
energies. Finally note that �qi can be complex, so that

the entries of Yq (and mðDÞ
q ¼ Yqvq entering the squark

mass matrices in Eq. (A7) are not necessarily real.

III. NUMERICAL ANALYSIS

Large accidental cancellations between the SM and
supersymmetric contributions are, as already mentioned
in the introduction, unlikely and from the theoretical point
of view undesirable. Requiring the absence of such can-
cellations is a commonly used fine-tuning argument, which

is also employed in standard FCNC analyses of the �qXY
ij ’s

[1,5–10]. Analogously, we assume that the corrections due
to flavor-changing supersymmetric quantum chromody-
namics (SQCD) self-energies do not exceed the experi-
mentally measured values for the CKM matrix elements
quoted in the Particle Data Table (PDT) [24]. To this end

we set the tree-level CKM matrix Vð0Þ [working in our
super-CKM scheme (i)] equal to the unit matrix and gen-
erate the measured values radiatively. For simplicity, we
consider the up and down sectors separately. We parame-
terize the squark mass matrix according to Eq. (1). We
choose all diagonal elements of the squark mass matrix to
be equal and denote them by m2

~q. For small off-diagonal

elementsm~q is in good approximation equal to the physical

squark mass.

The quantities �qLR
ij and �qRL

ij as defined in Eq. (3)

violate SUð2Þ and are therefore proportional to the VEV
of a Higgs field. This means that if one scales the SUSY
spectrum by a common factor a, the chirality-flipping

elements �qLR;RL
ij will scale like 1=a rather than staying

constant as one might naively expect for a dimensionless
quantity. This leads to somewhat counterintuitive bounds

on �qLR
ij and �qRL

ij , which become stronger for a larger scale

parameter a. However, the inferred bounds on the trilinear
terms Aq

ij stay constant for a � 1 as expected for a bound

derived from a nondecoupling quantity. Since it is custom-
ary in nearly all treatments of nonminimal flavor violation

to constrain �qXY
ij [1,5–10], we will also follow this con-

vention rather than quoting constraints on Aq
ij.

We use the standard parameterization for the CKM

matrix and quark masses defined in the MS scheme with
the central PDT values [24]. As discussed at the end of
Sec. II, the masses enter the loop contributions to V in
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Eq. (12) at the renormalization scaleQ ¼ MSUSY, at which
the self-energies are calculated.

Because of the V � A structure of the W vertex only

self-energies �qLR
fi with f < i enter the renormalization of

the CKM matrix in the approximation mqf ¼ 0 [see

Eq. (12)]. This implies that for f < i only �qLR
fi is con-

strained in the leading order of the mass insertion approxi-

mation in Eq. (10). In order to constrain �qLL
fi or �qRR

fi an

additional insertion of some �qLR
jk is needed. Even three

insertions are needed to involve �qRL
fi . These diagrams with

multiple insertions of �qXY
jk can give useful bounds on one

of these quantities only if the �qLR
jk providing the needed

chirality flip is large. The only candidate is the flavor-

diagonal mass insertion �qLR;RL
jj and the corresponding

contributions to �qLR
fi can be read off from the last two

terms in Eq. (10). Indeed, we find useful bounds on j�dLL
13 j

in the large- tan� scenario, where �dLR
33 =md3 is large. The

analogous contributions involving �dRR
ij are suppressed

with respect to those with �dLL
ij �dLR

jj by a small ratio of

quark masses. The upper limits on �qRR
fi and �qRL

fi from

vacuum stability [25], electric dipole moments and FCNC
processes are stronger than ours.
We use the following input parameters [24]:

�msð2 GeVÞ ¼ 0:095 GeV; �mcð �mcÞ ¼ 1:25 GeV;

�mbð �mbÞ ¼ 4:2 GeV; �mtð �mtÞ ¼ 166 GeV;

jVusj ¼ 0:227; jVubj ¼ 0:003 96;

jVcbj ¼ 0:0422:

(16)

A. Down sector

We present our bounds on j�dLR
ij j and j�dLL

ij j in

Secs. III A 1 and III A 2, respectively.

1. Constraints on j�dLR
ij j

Constraints from Vus and Vcd.—Vus and Vcd are experi-
mentally well known. Their absolute values are nearly
equal and they have opposite sign in the standard parame-
terization, which is respected by the corrections Eq. (12).
Figure 3 shows the dependence of the constraints on the
squark mass with different ratios m~g=m~q. In the approxi-

mation md1 ¼ 0, only �dLR
12 is constrained. Looking at the
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0.0020
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12
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mg 8mq
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FIG. 3 (color online). Constraints on j�dLR
12 j from Vus or Vcd as a function of the squark mass. The constraints become stronger with

growing MSUSY, because �qLR
ij / v

MSUSY
.

1000 2000 3000 4000
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FIG. 4 (color online). Constraints on �dLR
12 from Vus (or Vcd) as a function of the gluino mass.
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dependence on the gluino mass (Fig. 4), it is interesting to
note that there is a minimum for m~g � 1:5m~q.

Constraints from Vcb and Vts.—In this case, the situation
is nearly the same as in the case of Vus, except that the
constraints are weaker (see Fig. 5), because mb is much
larger than ms. jVtsj is essentially fixed by the measured
value of jVcbj through CKM unitarity.

Constraints from Vub.—The last pair of CKM elements
to be discussed is ðVub; VtdÞ. In this case jVubj does not fix
jVtdj, because jVtdj is largely affected by the CKM phase.
Now jVubj is experimentally better known than jVtdj, be-
cause Vtd is extracted from FCNC loop processes by
comparing the corresponding experimental result with
the SM prediction. In beyond-SM scenarios, this is not a

valid procedure anymore, because the new particles will
alter the FCNC loop processes. Therefore we can only
exploit the constraint from jVubj (see Fig. 6). The anti-
Hermiticity of �Ud

L in Eq. (12) implies that �dLR
13 gives a

negative contribution of the same size to Vtd. This cannot
be the whole contribution, since jVubj � jVtdj and in the
standard CKM parameterization ReVtd and ReVub are both
positive. The hierarchical structure of the CKM matrix is
responsible for a second contribution: Since Vub and Vtd

are of third order in the Wolfenstein parameter �, the two-
loop process in Fig. 7 involving the loop contributions to
Vus / � and Vcb / �2 is important as well. This diagram
adds a contribution of VusVcb ¼ 0:0088 to Vtd. Together
with the one-loop contribution from �dLR

13 , this yields the
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FIG. 6 (color online). Constraints on �dLR
13 from jVubj as a function of the squark mass.
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FIG. 5 (color online). Constraints on �dLR
23 from jVcbj (or jVtsj) as a function of the squark mass.

FIG. 7. Two-loop correction to Vtd.
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correct value for Vtd. We stress that this does not imply any
additional constraint on the SUSY parameters entering the
self-energies, to order �3 we just reproduced a unitarity
relation of the CKM elements: Vtd ¼ �V�

ub þ VcdVts ’
�V�

ub � V�
usVts, which (with insertion of Vtb ’ Vud ’ 1)

equals the product of the first and third rows of the CKM
matrix.

The last possible constraint is the phase of the CKM
matrix, which one could infer from � ¼
argð�V�

ubVud=ðV�
cbVcdÞÞ. However, since � is large, no

fine-tuning argument can be applied to derive bounds.
Only in a given scenario of radiatively generated CKM
elements, the measured value of � can be used to derive
a constraint on the complex phases in the mass matrix of
Eq. (1).

2. Constraints on �dLL
ij

In the presence of large chirality-flipping flavor-

diagonal elements in the squark mass matrix, also �qLL
ij

can be constrained. This is the case for large Aq
jj terms or (if

q ¼ d) for a large value of � tan�. Here we only consider
the second possibility, which is widely studied in the
literature. The strongest constraints are obtained for
�dLL
13 , because Vub is the smallest entry of the CKMmatrix.

We have included the correction term �b of Eq. (15) in our
analysis. Our result is shown in Fig. 8. Our constraint is
compatible with the experimental bound on BrðBd !
�þ��Þ for values of tan� around 30 or below [26].

We next discuss the constraint on �dLL
23 : It is clear that

our bound will be looser by a factor of jVcb=Vubj.
Furthermore, for large tan� and typical values of the
massive SUSY parameters we find BrðBs ! �þ��Þ
more constraining. To find bounds on �dLL

23 from jVcbj
which comply with BrðBs ! �þ��Þ we need a smaller
value of tan� around 20 and therefore a quite large value
for �, if the masses of the nonstandard Higgs bosons are
around 500 GeV. We do not include a bound on �dLL

23 in our

table of results in Sec. III C.

B. Up sector

In the up sector, everything is in straight analogy to the
down sector. The only difference is that the constraints are
weaker because of the larger charm and top masses. But the
upper bounds are still restrictive, except the ones obtained
from Vts or Vcb (see Fig. 9). Remarkably, we now have a
powerful constraint on �uLR

13 from the second diagram in

Fig. 2 with quf ¼ u and qdi ¼ b.

C. Comparison with previous bounds

In this section we compare our bounds with those in the
literature, derived from FCNC processes [6,8–10] and

vacuum stability (VS) bounds [25]. We take MSUSY ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

~q�ss
q

¼ m~g ¼ 1000 GeV:

Quantity Our bound Bound from FCNCs Bound from VS [25]

j�dLR
12 j 	 0:0011 	 0:006 K mixing [6] 	 1:5� 10�4

j�dLR
13 j 	 0:0010 	 0:15 Bd mixing [8] 	 0:05

j�dLR
23 j 	 0:010 	 0:06 B ! Xs�; Xsl

þl� [9] 	 0:05
j�dLL

13 j 	 0:032 	 0:5 Bd mixing [8] 
 
 

j�uLR

12 j 	 0:011 	 0:016 D mixing [10] 	 1:2� 10�3

j�uLR
13 j 	 0:062 
 
 
 	 0:22

j�uLR
23 j 	 0:59 
 
 
 	 0:22
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FIG. 8 (color online). Constraints on �dLL
13 from jVubj as a function of the gluino mass for different values of � tan�=ð1þ�bÞ.
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Our value for �dLL
13 is calculated with � tan�

1þ�b
¼ 20 TeV. The

quoted bound on �dLR
23 from b ! s� and B ! Xsl

þl� has
been rescaled by an approximate factor of 3 from the value
quoted for MSUSY ¼ 350 GeV in Ref. [9]. The VS bounds
on �uLR

ij have also been obtained by scaling the quoted
values for MSUSY ¼ 500 GeV of Ref. [25] by a factor of
1=2. The VS bounds on �uLR

13 and �uLR
23 are obtained by

multiplying the bound on �uLR
12 with mt=mc. FCNC effects

are decoupling and scale as 1=M2
SUSY, but the constraints

on �qLR
ij are proportional to MSUSY rather than M2

SUSY,
because the definition of �qLR

ij involves a factor of
v=MSUSY. Both our constraints and the VS bounds on the
trilinear SUSY-breaking terms are independent of MSUSY

(i.e. nondecoupling), so that the bounds on �qLR
ij scale like

1=MSUSY. We conclude that all our bounds on �dLR
ij are

more restrictive than those from FCNC processes for
MSUSY � 500 GeV, and our bound on �uLR

12 is stronger
than the quoted FCNC bound for MSUSY � 900 GeV.
Substantially stronger bounds than ours are only listed

for the VS bounds on j�uLR
23 j, j�uLR

12 j and j�dLR
12 j. However,

the VS bounds related to the latter two quantities are of the
form

Aq
12 < Yq2f; (17)

where f ¼ OðMSUSYÞ depends on other massive parame-
ters of the scalar potential. The bounds are obtained by
studying the scalar potential at tree level and Yq2 enters the
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FIG. 9 (color online). Constraints on �uLR
12 , �uLR

23 and �uLR
13 as a function of the squark mass for different ratios of m~g=m~q.
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analysis through the quartic coupling of strange squarks to
Higgs bosons. The smallness of Yq2 makes this coupling
sensitive to large loop corrections and the quoted bounds
have to be considered as rough estimates at best. Our

results for �qLR
12 rest on a firmer footing.

D. Supersymmetry breaking as the origin of flavor?

The smallness of the Yukawa couplings of the first two
generations (and possibly also of the bottom and tau cou-
plings) suggests the idea that Yukawa couplings are gen-
erated through radiative corrections [27]. In the context of
supersymmetric theories these loop-induced couplings
arise from the diagrams of Fig. 1 or, in our approach, of
Fig. 2 [28]. The B factories have confirmed the CKM
mechanism of flavor violation, leaving little room for
new sources of FCNCs. This seriously challenges the
idea that flavor violation stems from the same source as
supersymmetry breaking. The surprising discovery of
Sec. III is the finding that this idea is still viable, with
SUSY masses well below 1 TeV, if the sources of flavor
violation are the trilinear terms Aq

ij. (Note that the VS

bound on j�uLR
23 j poses no problem, because one can gen-

erate Vcb entirely from �dLR
23 .) Of course, the heaviness of

the top quark requires a special treatment of Yt and the
successful bottom-tau Yukawa unification suggests to keep
tree-level Yukawa couplings for the third generation. This
scenario has been studied in Ref. [17], where possible
patterns of the dynamical breaking of flavor symmetries
are discussed.

In the modern language of Refs. [29,30] the global
½Uð3Þ�3 flavor symmetry2 of the gauge sector is broken to
½Uð2Þ�3 �Uð1Þ by the Yukawa couplings of the third gen-
eration. Here the three Uð2Þ factors correspond to rotations
of the left-handed doublets and the right-handed down-
type and up-type singlets of the first two generations in
flavor space, respectively. That is, our starting point is
Yu ¼ diagð0; 0; YtÞ, Yd ¼ diagð0; 0; YbÞ. We next assume

that the soft breaking terms �~qLL
ij and �~qRR

ij possess the

same flavor symmetry as the Yukawa sector, which implies
that�~qLL and�~qRR are diagonal matrices with the first two
entries being equal. That is, flavor universality holds for the
first two generations. From a model-building point of view,
it may be easier to motivate that at some scale �~qLL and
�~qRR are proportional to the unit matrix, meaning that they
possess the full ½Uð3Þ�3 flavor symmetry of the gauge
sector. However, below this fundamental scale this sym-
metry will be reduced to ½Uð2Þ�3 �Uð1Þ by renormaliza-
tion group (RG) effects from the Yukawa sector and we
restrict our discussion to the ½Uð2Þ�3 �Uð1Þ case here.
Now we assume that the trilinear terms Aq

ij are the spurion

fields which break ½Uð2Þ�3 �Uð1Þ down to the Uð1ÞB
baryon number symmetry. [After including the lepton sec-

tor the remaining anomaly-free symmetry group is
Uð1ÞB�L.] Note that RG effects do not destroy the symme-
try of the Yukawa sector, because the soft terms do not mix
into the Yukawa couplings. By contrast, in the standard
MFV scenario [30] the role of flavor-symmetric and
symmetry-breaking terms is interchanged, and the latter
(here the Yukawa couplings) mix into the former. Still our
scenario is not completely RG-invariant, because the tri-

linear terms mix into �~qRR
ij and �~qLL

ij . We next apply the

rotations of Eq. (4) to the quark supermultiplets of the first
two generations to render the upper left 2� 2 submatrix of
Aq diagonal and real. That is, the Cabibbo angle arises
from the misalignment of Au with Ad in flavor space. The
u, d, s and c quark masses all arise from supersymmetric
self-energies involving Aq

ii. Note that the RG evolution

destroys the ½Uð2Þ�3 �Uð1Þ symmetry of �~qRR
ij and �~qLL

ij

due to Aq
11 � Aq

22, but only generates off-diagonal �~qLL
12

terms through tiny electroweak loops as in MFV scenarios.
The vacuum stability bound in the first row of the table in
Sec. III C is absent and the corresponding bounds on the
diagonal elements Aq

ii can only be obtained after loop
corrections to the scalar potential are included. The CKM
elements of the third row and column are obtained by
calculating �Uq

L of Eq. (12).
The idea that flavor violation is a collateral damage of

supersymmetry breaking is not only economical, it also
solves one of the most urgent problems of the MSSM: It
was pointed out in [31] that the phase alignment between
Aq
ii and the radiatively generated quark masses suppresses

the supersymmetric contribution to the neutron electric
dipole moment. Since Yd1 ¼ 0, the phase of � does not
enter the neutron electric dipole moment at the one-loop
level.

IV. CHARGED-HIGGS AND CHARGINO
COUPLINGS

CKM elements do not only enter the Feynman rules for
W couplings but also appear in the couplings of charged-
Higgs bosons and charginos. The Feynman rules in the

super-CKM scheme (i) involve Vð0Þ ¼ Uuð0Þy
L Udð0Þ

L

throughout as described in Sec. II. Whenever a charged-
Higgs boson or a chargino couples to an external quark
there are chirally enhanced one-loop corrections similar to
those in Figs. 2 and 7. We can include these diagrams by

working with the tree-level diagrams and replacing Uqð0Þ
L

by

Uq
L ¼ Uqð0Þ

L ð1þ �Uq
LÞ; (18)

if the external quark is left-handed. For instance, we have
shown in Sec. II that the loop corrections to the �ufW

þdi
coupling were correctly included by this replacement [see
Eq. (13)]. That is, in the case of �ufW

þdi coupling one

simply uses the physical CKM matrix Vfi instead of the2We only discuss the quark sector here.
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tree-level CKM matrix Vð0Þ
fi . One immediately notices that

(in the super-CKM scheme) the ~u�fW
þ ~di coupling still

involves Vð0Þ
fi , because the supersymmetric analogues of

the diagrams of Fig. 2 are not chirally enhanced and will
only lead to small corrections of the typical size of ordinary
loop corrections. Enhanced corrections to charged-Higgs
and chargino interactions have been discussed for MFV
scenarios with large tan� in Refs. [15,32]; in this section
we derive the corresponding results for the non-MFV case
using the formalism of Sec. II.

Flavor-changing self-energies lead to anti-Hermitian

corrections to the matrices Uð0Þq
L . Charged-Higgs and char-

gino couplings also involve right-handed fields; the corre-

sponding corrections to Uð0Þq
R are obtained by simply

exchanging the chiralities in the expressions for �Uq
L [cf.

Eqs. (12) and (18)]. The CKM matrix which enters

charged-Higgs or chargino vertices is not the physical

one, because in these cases Vð0Þ does not add up to V
together with enhanced loop corrections. The charged-
Higgs interaction �ufH

þdi has the Feynman rule

� i�ð0Þ
Hþ ¼ iðYuf�Vð0Þ

fi cos�PL þ Vð0Þ
fi Y

di sin�PRÞ: (19)

The effect of self-energies in the external legs is included
by substituting this Feynman rule with

�ð0Þ
Hþ !� X3

j;k¼1

½ð1þ�Uuy
R ÞfjYuj�ð1��Uuy

L ÞjkVki cos�PL

þVfjð1��Ud
LÞjkYdkð1þ�Ud

RÞki sin�PR�: (20)

Using the explicit expression for �Uq
L;R given in Eq. (12)

and expressing Yqj in terms of quark masses through
Eq. (15) the substitution rule of Eq. (20) becomes

�ð0Þ
Hþ ! �X3

j¼1

mu1

1þ�u1

��uRL
12

1þ�u2

��uRL
13

1þ�u3

��uRL
21

1þ�u2

mu2

1þ�u2

��uRL
23

1þ�u3

��uRL
31

1þ�u3

��uRL
32

1þ�u3

mu3

1þ�u3

0
BBBBB@

1
CCCCCA

fj

Vji cos�

vu

PL þ Vfj sin�

vd

md1

1þ�d1

��dLR
12

1þ�d2

��dLR
13

1þ�d3

��dLR
21

1þ�d2

md2

1þ�d2

��dLR
23

1þ�d3

��dLR
31

1þ�d3

��dLR
32

1þ�d3

md3

1þ�d3

0
BBBBB@

1
CCCCCA

ji

PR

2
666664

3
777775: (21)

We observe a cancellation between the inverse quark
masses in �Uq

L [see Eq. (12)] and the factors of mqi from
the Yqi’s in the effective off-diagonal couplings.

For all Higgs processes the genuine vertex correction

�ð1Þ
Hþ is of the same order as the diagrams with self-energies

in the external leg. Furthermore, in the absence of terms
with the ‘‘wrong’’ VEV in the squark mass matrices there
is an exact cancellation between the genuine vertex cor-
rection and the external self-energies in the decoupling
limit. This cancellation was observed for neutral Higgs
couplings in Ref. [33] and can be understood from
Fig. 1: The upper right diagram involving Ad

fi merely

renormalizes the Yukawa coupling and maintains the
type-II two-Higgs-doublet model structure of the tree-level

Higgs sector. Therefore the loop-corrected Higgs cou-
plings are identical to the tree-level ones, provided they
are expressed in terms of Vfi and the physical quark

masses. In our diagrammatic approach Aq
fi enters both

the proper vertex correction and �qLR
jk and cancels from

the combined result.
We neglect all external momenta, so that our expression

for�ð1Þ
Hþ is not valid for top orHþ decays unless the gluino

or the squarks appearing in the loop function are much
heavier than the top quark and the charged-Higgs boson.
The proper vertex correction, to be added to Eqs. (20) and
(21), reads

�ð1Þ
Hþ ¼ � 2�s

3�
m~g

X6
s;t¼1

X3
k;l¼1

fðVð0ÞuLL
sfk Vð0ÞdRR

tli PR þ Vð0ÞuRL
sfk Vð0ÞdRL

tli PLÞHþLR
kl þ ðVð0ÞuLR

sfk Vð0ÞdLR
tli PR þ Vð0ÞuRR

sfk Vð0ÞdLL
tli PLÞHþRL

kl

þ ðVð0ÞuLL
sfk Vð0ÞdLR

tli PR þ Vð0ÞuRL
sfk Vð0ÞdLL

tli PLÞHþLL
kl þ ðVð0ÞuLR

sfk Vð0ÞdRR
tli PR þ Vð0ÞuRR

sfk Vð0ÞdRL
tli PLÞHþRR

kl gC0ðm~us ; m~dt
; m~gÞ:
(22)

The coefficients HþAB
kl are given in Eq. (A10) of the appendix.

In the case of chargino interactions we must take into account that a squark never comes with an enhanced self-energy,
even if the squark line is an external line of the considered Feynman diagram. Here four different couplings (and their
Hermitian conjugates) occur. Neglecting numerical factors and chargino mixing matrices, the Feynman rules for the
chargino couplings contain the following flavor structures:
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�ufL ~	
þ ~ds:

X3
j¼1

Vð0Þ
fj Y

djW
~d
jþ3;sPR and gw

X3
j¼1

Vð0Þ
fj W

~d
jsPR;

�ufR ~	
þ ~ds:

X3
j¼1

Yuf�Vð0Þ
fj W

~d
jsPL;

~u�t ~	þdiL:
X3
j¼1

W ~u�
jþ3;tY

uj�Vð0Þ
ji PL and gw

X3
j¼1

W ~u�
jt V

ð0Þ
ji PL;

~u�t ~	þdiR:
X3
j¼1

W ~u�
jt V

ð0Þ
ji Y

diPR: (23)

Here gw is the SUð2Þ gauge coupling and W ~q
ij is defined in

Eq. (A1). Again we include the self-energy corrections,
and express Vð0Þ in terms of the physical CKM matrix.
Then the expressions in Eq. (23) become

�ufL ~	
þ ~ds:

X3
l;m¼1

Vflð1� �Ud
LÞlmYdmW

~d
mþ3;sPR and gw

X3
l;m¼1

Vflð1� �Ud
LÞlmW ~d

msPR;

�ufR ~	
þ ~ds:

X3
j;k;l;m¼1

ð1þ �Uuy
L ÞfjYuj�ð1� �Uuy

L ÞjkVklð1� �Ud
LÞlmW ~d

msPL;

~u�t ~	þdiL:
X3
j;k¼1

W ~u�
jþ3;tY

uj�ð1� �Uuy
L ÞjkVkiPL and gw

X3
j;k¼1

W ~u�
jt ð1� �Uuy

L ÞjkVkiPL;

~u�t ~	þdiR:
X3

j;k;l;m¼1

W ~u�
jt ð1��Uuy

L ÞjkVklð1� �Ud
LÞlmYdmð1þ �Ud

RÞmiPR:

(24)

We have seen in this section that in the case of nonminimal
flavor violation the CKM matrix (including loop correc-
tions) entering charged-Higgs and quark-squark-chargino
vertices is not simply the physical one. Instead it has to be
corrected according to Eq. (20) or Eqs. (21) and (24),
leading to potentially large effects.

V. CONCLUSIONS

We have computed the renormalization of the CKM
matrix by chirally enhanced flavor-changing SQCD effects
in the MSSM with generic flavor structure. Our paper
extends the work of [16], which considered the MFV
case. We have worked beyond the decoupling limit
MSUSY � v and our results are valid for arbitrary left-right
mixing and arbitrary flavor mixing among squarks.
Subsequently we have derived upper bounds on the

flavor-changing off-diagonal elements �~qXY
ij of the squark

mass matrix by requiring that the supersymmetric correc-
tions do not exceed the measure values of the CKM ele-
ments. For MSUSY � 500 GeV our constraints on all

elements �
~dLR
ij , i < j, are stronger than the constraints

from FCNC processes. We were further able to derive a
strong bound on �~uLR

13 , a quantity which is not constrained

by FCNCs. For a large value of tan� one can constrain

�
~dLL
13 as well.

As an important consequence, we conclude that it is
possible to generate the observed CKM elements com-

pletely through finite supersymmetric loop diagrams
[17,28] without violating present-day data on FCNC pro-
cesses. In this scenario the Yukawa sector possesses a
higher flavor symmetry than the trilinear SUSY-breaking
terms. Most naturally, first an exact ½Uð2Þ�3 symmetry is
imposed on the quark supermultiplets of the first two
generations: Then the corresponding Yukawa couplings

Yq
ij vanish and the squark mass terms �

~dLL
ij and �

~dRR
ij are

universal for the first two generations. In the second step
the trilinear terms Aq

ij are chosen to break the flavor sym-

metry softly and generate light quark masses and off-
diagonal CKM elements radiatively. This result refutes a
common conclusion drawn from the experimental success
of the CKM mechanism: It is usually stated that the new
physics of the TeV scale must obey the principle of MFV in
the sense of Ref. [30], meaning that the Yukawa couplings
are the only spurions breaking the flavor symmetries. Our
analysis has shown that there is a viable alternative to this
scenario: It is well possible that Yukawa couplings obey an
exact flavor symmetry and the spurion fields breaking this
symmetry are the trilinear breaking terms.
As another application of our results, we have derived

supersymmetric loop corrections to the couplings of
charged-Higgs bosons and charginos to quarks and
squarks. In these couplings the squark-gluino loops which
renormalize the CKM elements are physical and can have a
significant numerical impact because of their chiral en-
hancement. We have further pointed out that the calculated
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flavor-changing self-energies can have observable effects
in the W-mediated production or decay of the top quark,
with the SUSY effects decoupling as m2

t =M
2
SUSY for

MSUSY ! 1.
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APPENDIX: CONVENTIONS AND FEYNMAN
RULES

We denote the tree-level quark mass matrix by mð0Þ
q ¼

Yqvq. The unitary matrices diagonalizing these matrices

and the squark mass matrices are denoted by Uð0Þu;d
L;R and

W ~u;~d, respectively:

Uð0Þuy
L mð0Þ

u Uð0Þu
R ¼ mðDÞ

u ; Uð0Þdy
L mð0Þ

d Uð0Þd
R ¼ mðDÞ

d ;

W ~uyM2
~uW

~u ¼ M2ðDÞ
~u ; W

~dyM2
~d
W

~d ¼ M2ðDÞ
~d

: (A1)

The superscript ðDÞ in Eq. (A1) indicates diagonal matri-
ces. That is, the mass eigenstates of the quarks and squarks
are obtained from the original fields by unitary rotations in

flavor space involving the matricesUð0Þu;d
L ,Uð0Þu;d

R andW ~u;~d

as defined in [34]. The Feynman rules for the quark-
squark-gluino vertices in the basis of mass eigenstates
then read

� i
ffiffiffi
2

p
gsT

a
X3
j¼1

ðUð0Þq
Lji W

~q�
js PR �Uð0Þq

Rji W
~q�
jþ3;sPLÞ (A2)

for an incoming quark and

� i
ffiffiffi
2

p
gsT

a
X3
j¼1

ðUð0Þq�
Lji W ~q

jsPL �Uð0Þq�
Rji W ~q

jþ3;sPRÞ (A3)

for an outgoing quark. The interaction vertices are depicted
in Fig. 10. Equations (A2) and (A3) hold in any basis for
the quark and squark fields, provided the quark-squark-
gluino coupling is flavor-diagonal in the original basis, in

which the mass matrices mð0Þ
u;d and M2

~u;d are defined. This

condition is not only fulfilled if the original basis consists
of weak (s)quark eigenstates but also for the super-CKM
basis.
Our starting point is a basis of weak eigenstates: The

squark mass term in the Lagrangian reads

L ~m ¼�ð~d�L;~s�L; ~b�L; ~d�R;~s�R; ~b�RÞMw2
~d
ð~dL;~sL; ~bL; ~dR;~sR; ~bRÞT

�ð~u�L; ~c�L;~t�L; ~u�R; ~c�R;~t�RÞMw2
~u ð~uL; ~cL;~tL; ~uR; ~cR;~tRÞT;

with

Mw2
~d

¼
M2

~q �M2
Zð1þ 1

3 sin
2
WÞ cos2�1þmð0Þ

d mð0Þy
d �vdA

d
w �mð0Þ

d � tan�

�vdA
dy
w ��� tan�mð0Þy

d M2
~d
� 1

3M
2
Z cos2�sin

2
W1þmð0Þy
d mð0Þ

d

0
@

1
A;

Mw2
~u ¼

M2
~q þM2

Zð1þ 2
3 sin

2
WÞ cos2�1þmð0Þ
u mð0Þy

u �vuA
u
w �mð0Þ

u � cot�

�vuA
uy
w ��� cot�mð0Þy

u M2
~u þ 2

3M
2
Z cos2�sin

2
W1þmð0Þy
u mð0Þ

u

0
@

1
A:

(A4)

The physical CKM matrix differs from Vð0Þ ¼ Uð0Þuy
L Uð0Þd

L by the corrections from the finite squark-gluino self-energies,
which are the subject of this paper. In physical processes with external quarks the matrices of Eq. (A1) appear in pairs and it
is useful to define

FIG. 10. Quark-squark-gluino vertex. The Feynman rules for
the left and right diagrams are given in Eqs. (A3) and (A2),
respectively.
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Vð0ÞqRL
sfi � X3

j;k¼1

Uð0Þq�
Rjf W ~q

jþ3;sU
ð0Þq
Lki W

~q�
ks ;

Vð0ÞqLR
sfi � X3

j;k¼1

Uð0Þq�
Ljf W ~q

jsU
ð0Þq
Rki W

~q�
kþ3;s;

Vð0ÞqLL
sfi � X3

j;k¼1

Uð0Þq�
Ljf W ~q

jsU
ð0Þq
Lki W

~q�
ks ;

Vð0ÞqRR
sfi � X3

j;k¼1

Uð0Þq�
Rjf W ~q

jþ3;sU
ð0Þq
Rki W

~q�
kþ3;s:

(A5)

Flavor violation in the squark mass matrices is usually
quantified in the super-CKM basis, in which mð0Þ

u ¼ mðDÞ
u

and mð0Þ
d ¼ mðDÞ

d . Then we can use Eq. (A5) and the
Feynman rules of Eqs. (A2) and (A3) with the substitutions

X3
j¼1

Uð0Þq�
Lji W ~q

js ! W ~q
is;

X3
j¼1

Uð0Þq�
Rji W ~q

jþ3;s ! W ~q
iþ3;s:

(A6)

Next we relate the quantities of Eq. (1), which are defined
in the super-CKM basis, to the parameters of the MSSM
Lagrangian, which are defined in a weak basis. To this end
we have to specify a weak basis as our starting point and
we choose a basis with mð0Þ

d ¼ mðDÞ
d , Uð0Þu

R ¼ Uð0Þd
L ¼

Uð0Þd
R ¼ 1 and Uð0Þu

L ¼ Vð0Þ. Note that mðDÞ
q can be com-

plex, if the threshold corrections �qi in Eq. (15) are com-
plex. The transition from this weak basis to the super-CKM
basis only involves a rotation of the left-handed up-type
supermultiplets with Vð0Þ. Therefore the down squark mass
matrix is unchanged, M2

~d
¼ Mw2

~d
, while

M2
~u ¼

Vð0ÞyM2
~qV

ð0Þ þM2
Zð1þ 2

3 sin
2
WÞ cos2�1þmðDÞ

u mðDÞy
u �Vð0ÞyAu

w �mðDÞ
u � cot�

�Auy
w Vð0Þ ��� cot�mðDÞy

u M2
~u þ 2

3M
2
Z cos2�sin

2
W1þmðDÞy
u mðDÞ

u

 !
: (A7)

Thus the trilinear terms of the super-CKM basis Aq and
those in the weak basis are related as

A d ¼ Ad
w; Au ¼ Vð0ÞyAu

w; (A8)

and �~qLR
ij is expressed in terms of Aq

ij in Eq. (2). SUð2Þ
symmetry enforces a relation between the upper left 3� 3
submatrices of M2

~u and M2
~d
, since they both involve M2

~q.
The corresponding relation in the super-CKM basis is read
off from Eq. (A7):

�
~dLL
ij ¼ ½Vð0ÞyM2

~uV
ð0Þ�ij (A9)

for i; j ¼ 1; 2; 3 and i � j. Equation (A9) was derived in
Ref. [3] with Vð0Þ ¼ V; i.e. Eq. (A9) generalizes the latter
result to the case that radiative corrections to V are
included.

The bounds on �~qXY
ij derived in this paper assume that

the squark-gluino loops at most saturate the measured

elements of V. The extremal values for �~qXY
ij correspond

to the case Vð0Þ ¼ 1, for which the super-CKM basis co-

incides with a weak basis. This limiting case is realized in
the scenario of Sec. III D, in which all of V is generated
through supersymmetric loops.
In the super-CKM basis the coefficients HþAB

ij in

Eq. (22) are given by

HþLR
ij ¼ �Vð0Þ

ij Y
dj cos�� X3

k¼1

Vð0Þ
jk A

d
ki sin�;

HþRL
ij ¼ ��Vð0Þ

ij Y
ui� sin�� X3

k¼1

Vð0Þ
ki A

u�
kj cos�;

HþLL
ij ¼ sinð2�Þ MWffiffiffi

2
p

g2
Vð0Þ
ij ðjYui j2 þ jYdj j2 � g22Þ;

HþRR
ij ¼

ffiffiffi
2

p
MW

g2
Yui�Vð0Þ

ij Y
dj :

(A10)

Finally we quote our conventions for the two-point, three-
point and four-point one-loop functions B0, C0 and D0:

B0ðm1; m2Þ ¼ 1þ
m2

1 lnðQ
2

m2
1

Þ �m2
2 lnðQ

2

m2
2

Þ
m2

1 �m2
2

;

C0ðm1; m2; m3Þ ¼ B0ðm1; m2Þ � B0ðm1; m3Þ
m2

2 �m2
3

¼
m2

1m
2
2 lnðm

2
1

m2
2

Þ þm2
2m

2
3 lnðm

2
2

m2
3

Þ þm2
3m

2
1 lnðm

2
3

m2
1

Þ
ðm2

1 �m2
2Þðm2

2 �m2
3Þðm2

3 �m2
1Þ

;

D0ðm1; m2; m3; m4Þ ¼ C0ðm1; m2; m3Þ � C0ðm1; m2; m4Þ
m2

3 �m2
4

:

The two-point function B0 is UV-divergent; our definition above isMS-subtracted. UV divergence and the renormalization
scale Q drop out from our results thanks to the super-Glashow-Iliopoulos-Maiani mechanism.
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