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The electroweak symmetry breaking (EWSB) sector of the standard model can be far richer and more

interesting than the usual single scalar doublet model. We explore scenarios where the EWSB sector is

nearly scale invariant and consequently gives rise to a light CP even scalar particle. The one-doublet SM is

in that category, as are many other models with either weakly or strongly coupled sectors that trigger

EWSB. We study the couplings of the light scalar to the SM particles that can arise from the explicit

breaking of scale invariance focusing on the possible differences with the minimal SM. The couplings of

the light scalar to light fermions, as well as to the massless gauge bosons, can be significantly enhanced.

We find possible new discovery channels due to the decays of the conformal scalar into eþe� and �þ��

pairs as well as new production channels via light quark annihilation.
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I. INTRODUCTION

One of the main goals of experiments at the Tevatron
and at the upcoming Large Hadron Collider (LHC) is to
unravel the mechanism of electroweak symmetry breaking
(EWSB). The minimal way to obtain EWSB is to add to the
standard model (SM) an SUð2Þ doublet Higgs scalar field
whose vacuum expectation value sets the electroweak scale
v ’ 246 GeV. However, this simple model should perhaps
be regarded as a parametrization rather than a dynamical
explanation of EWSB. In particular, the square of the
Higgs mass parameter must be finely tuned (the hierarchy
problem) and chosen to be of the correct sign in order to
generate the scale v.

Resolving the shortcomings of the minimal Higgs pic-
ture has been the main motivation for constructing exten-
sions of the SM in which new degrees of freedom arise at
the TeV scale. A common perception is that the close
agreement between precision electroweak measurements
[1] and the SM plus a light Higgs favors weakly coupled
TeV scale physics. Extensions of this sort include super-
symmetry [2] or little Higgs and related models [3–6].
However, the electroweak data does not necessarily ex-
clude numerous models with strong dynamics, for ex-
ample, certain variants of technicolor [7,8], or models
with extra dimensions [9–12]. Such models might evade
the experimental constraints if there are additional sym-
metries or if the predictions of the new strong interactions
do not obey the naive dimensional analysis estimates.

Of course, it is also conceivable that the solution to the
hierarchy problem will simply evade us at energies acces-
sible to the LHC. Should this be the case, there is still no
guarantee that the EWSB sector is as simple as the minimal
Higgs doublet, see, for example, Refs. [13–15]. More
complicated scenarios that do not address the hierarchy
problem may seem unmotivated, but soon there will be
data on the particle spectrum in the TeV range, making
theoretical prejudices unnecessary.

With so many dramatically different possibilities for the
EWSB sector, it would be useful to have some sort of
organizing principles for the new particle interactions.
While we do not know of such principles in general, one
may note that a large class of scenarios contain in their
spectrum a CP even scalar field that is light in comparison
to the masses of all other new states. This can be attributed
to an enhanced symmetry, namely, an (approximate) scale
invariance which is spontaneously broken at a scale f � v.
The light scalar can be identified as the pseudo-Goldstone
mode associated with the spontaneous breaking of confor-
mal symmetry. Its mass is naturally light, proportional to
the symmetry breaking scale f times the small parameter
that characterizes deviations from exact scale invariance.
We refer to such a pseudo-Goldstone boson as a dilaton.
A particular example of this framework is the minimal

SUð2Þ doublet model itself. In this case, the only sources of
scale symmetry breaking are in the Higgs potential, and
thus f ¼ v (we are neglecting the small breaking of con-
formal symmetry due to SM loop effects in this discus-
sion). Choosing the mass parameter in the Higgs potential
small compared to v, that is small explicit breaking of scale
symmetry, results in a light Higgs which can be identified
with the dilaton. The underlying conformal invariance at
the scale v also governs all the properties of the light Higgs
particle, for instance tree-level couplings to SM fermions
and gauge bosons. Viewed in this light, Higgs-like phe-
nomenology is a generic feature of theories that contain an
approximate scale symmetry. A similar pattern of cou-
plings can be expected to arise in more complicated
EWSB sectors with a light scalar field in their spectrum.
Reference [16] considered the case where the dilaton

comes from a strongly coupled nearly conformal extension
of the standard model. In such a scenario, most new states
associated with EWSB are heavy and broad (masses and
widths of order �EW � 4�v), making them difficult to
resolve at the LHC. On the other hand, the theory has a
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light, narrow dilaton mode which could easily be mistaken
for the ordinary SM Higgs boson.

In this paper we consider the properties of a light scalar
particle from a more general perspective. In particular, we
identify the new scalar resonance with the dilaton, and
therefore use conformal symmetry to constrain its cou-
plings to the SM. Here, we do not necessarily assume
that it is the only new particle observable at the LHC. Of
course, if other new states are discovered, that will cer-
tainly be crucial for distinguishing between different mod-
els. In any case, the symmetry arguments employed here
would provide a useful way of parametrizing the properties
of the lightest scalar particle in the spectrum.

For collider phenomenology, we concentrate on the
operators that explicitly break scale invariance, as it is
these terms that will be most useful for discrimination
between the dilaton and a minimal Higgs scalar. Of par-
ticular interest are operators that involve light SM fields in
addition to the dilaton, which are the most sensitive to the
effects of symmetry breaking. In the SM, the Higgs scalar-
fermion couplings are proportional to the fermion mass.
This is true for the dilaton as well if there are no explicit
violations of scale symmetry. When scale symmetry is
violated by operators involving fermions, the dilaton-
fermion couplings need not vanish in the massless fermion
limit. An enhancement of such couplings is important for
collider phenomenology, through new dilaton production
and decay channels that are negligibly small in the case of
the SM Higgs boson.

The paper is organized as follows. In Sec. II we describe
our setup. There we use symmetry arguments to analyze
the general properties of the dilaton couplings to SM fields.
In Sec. III we illustrate these ideas by showing how they
are realized in perturbative models of extended Higgs
sectors. Our methods are most useful when simple pertur-
bative calculations are not available (that is when EWSB is
induced by spontaneous breaking of conformal symmetry
due to strong interactions), but the reasoning based on
symmetry is clearly general. Section IV is devoted to
phenomenology. We discuss constraints from the
Tevatron and predictions for the LHC. We conclude in
Sec. V.

II. SETUP

We are interested in describing the low-energy limit of
SM extensions in which conformal invariance is sponta-
neously broken at some scale f (or around �CFT � 4�f if
the theory is strongly coupled). We assume f � v, and that
any new particles with electroweak quantum numbers are
heavy, with masses of order TeV. Thus EWSB is parame-
trized in terms of the EW chiral Lagrangian, and we must
include in our effective theory an SUð2Þ matrix of EW
Goldstone bosons UðxÞ. The low-energy theory then con-
sists of an electroweak singlet pseudo-Goldstone boson
related to nonlinearly realized scale symmetry (the dilaton

mode) which is coupled to SM fields plus the chiral EW
Lagrangian.
The couplings of the dilaton mode �ðxÞ to other light

fields depend on how the SM is embedded in the conformal
sector. The most predictive situation (considered in
Ref. [16] and reviewed below) corresponds to the case in
which the SM gauge bosons and fermions arise as compo-
sites of the spontaneously broken conformal field theory
(CFT). The couplings of �ðxÞ to the SM become model
dependent if some of the SM fields are spectators to the
strong CFT dynamics. We consider this case in Sec. II B.

A. Conformally embedded SM fields

If the SM fields are embedded in the conformal sector,
the prescription for coupling them to the dilaton is simple.
Start with the SM Lagrangian renormalized at some scale
�,

L SM ¼ X
cið�ÞOiðxÞ; (1)

where the operator Oi has definite scaling dimension
½Oi� ¼ di, i.e. OiðxÞ ! e�diOiðe�xÞ under the scale trans-
formation x� ! e�x�. Nonlinearly realized scale invari-
ance is then incorporated by introducing a flat direction (or
‘‘conformal compensator field’’) �ðxÞ that transforms ac-
cording to

�ðxÞ ! e��ðe�xÞ (2)

under scale transformations. To make LSM invariant under
scale transformations one then replaces

cið�Þ !
�
�

f

�
4�di

ci

�
�
�

f

�
(3)

in Eq. (1). Introducing a canonical kinetic operator for �ðxÞ
and expanding about the vacuum expectation value (VEV)
h�i ¼ f, one obtains to linear order in the fluctuation �� ¼
�� f

L � ¼ � ��

f
T�

�; (4)

where T�� is the SM energy momentum tensor, and the
trace includes quantum effects due to the conformal anom-
aly. In addition, there are nonlinear couplings of �� to the
SM, which are determined by scale invariance from Eq. (3)
, but these will not play a role in the collider phenomenol-
ogy discussed later in this paper.
The above result gives, for example, tree-level couplings

of �� to massive gauge bosons and fermions that are iden-
tical to those of the minimal Higgs, rescaled by a factor of
v=f:
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L � ¼
�
2 ��

f
þ ��2

f2

�
ðm2

WW
þ
�W

�� þ 1

2
m2

ZZ�Z
�

�

� ��

f

X
c

mc
�c c þ � � � : (5)

This is consistent with the statement that, at tree level, the
minimal Higgs boson is an example of a dilaton mode for
which v ¼ f.

In addition there are loop induced couplings to massless
gauge bosons, which are crucial for collider phenomenol-
ogy. At one-loop order in the gauge couplings and to all
orders in � these take the form

L � ¼
�
�EM

8�
bEMðF��Þ2 þ �s

8�
bGðG��Þ2

�
ln
�

f
: (6)

Here, bEM, bG are one-loop beta function coefficients for
the gauge couplings e and gs, including all CFT states
heavier than the dilaton mass m� (once explicit symmetry

breaking is included; see below). By conformal invariance,
the beta functions including all states (CFT plus SM)
vanish and we may trade bEM, bG for minus the SM beta
function coefficients with all relevant SM fields lighter
than m� [16]. Thus, for example,

bG ¼ 11� 2
3nf; (7)

where nf ¼ 6 is the number of SM quarks. In the case of

the SM Higgs, loops of new heavy colored particles also
induce operators such as those of Eq. (6) (e.g. from new
chiral quarks) as well as dimension-six couplings propor-
tional to HyHðG��Þ2. Prospects for disentangling the con-

tribution of both of these types of operators at the LHC are
discussed in Ref. [17].

So far our discussion has ignored terms that explicitly
break conformal invariance. Such terms must be present in
order to generate a nonzero mass for the Goldstone boson
�. A simple way to do this is to deform the CFT by adding
an operator of scaling dimension � � 4,

L CFT ! LCFT þ �O: (8)

This has the effect of generating nonderivative couplings
for � of the form

Vð�Þ ¼ �4
X1
n¼1

cn

�
�

f

�
nð��4Þ

; (9)

which can be formally obtained by expanding the CFT
formula for the vacuum energy h0jT exp½iR d4x�OðxÞ�j0i
to all orders in the symmetry breaking operator OðxÞ. The
coefficients cn � �n in Eq. (9) depend on unknown details
of the dynamics in the underlying CFT.

It is not possible to use Eq. (9) to make low-energy
predictions unless there exists a small expansion parame-
ter. We are interested in the case where the explicit break-
ing is small, which means that either the coupling � is
small in units of f (as would be the case for a light minimal

SM Higgs), or because the operator O is nearly marginal,
with scaling dimension j�� 4j � 1 (as in walking techni-
color theories [8,18], or in Randall-Sundrum models with
stabilization similar to that of [19]). Both of these cases are
discussed in more detail in Ref. [16]. We recall here that in
both cases, to first order in the small breaking parameter,
the dilaton potential is completely determined in terms of
the VEV h�i ¼ f and the mass m2

� ¼ d2V=d�2. Writing

Vð�Þ ¼ 1

2
m2

��
2 þ g

3!

m2
�

f
�3 þ � � � ; (10)

we find that m2
� is linearly proportional to the symmetry

breaking parameter,m2
� � �f2, and therefore � is naturally

light relative to the scale f. From now on, we will take the
dilaton mass as the measure for the size of symmetry
breaking and thus we define � � m2

�=f
2 � 1. In addition,

the cubic coupling is given to leading order in the symme-
try breaking by

g ¼
�
�þ 1 for �̂ � 1;
5 for j�� 4j � 1:

(11)

(Here �̂ / � is a dimensionless measure of the coupling �).
Note, in particular, that for the Higgs case, with� ¼ 2, this
agrees with the standard result on the cubic coupling. The
nearly marginal case can be realized, for example, by the
Coleman-Weinberg effective potential for the Higgs [20],
see also Ref. [21]. All other nonderivative self-couplings
are also determined in terms ofm� and f, at least to leading

order in the symmetry breaking parameter.
The effects of symmetry breaking also modify the cou-

plings of � to the SM fields.1 In the symmetry limit the
couplings are given in Eq. (5). Because of symmetry break-
ing, after EWSB the coupling becomes

L Y ¼ ��

f

X
c

mðzÞ �c c ; (12)

where mðzÞ is an analytic function of z ¼ �̂ð�=fÞ��4. In
general, mðzÞ is a matrix in fermion flavor space (see
below) and reproduces the effects of an arbitrary number
of insertions of the symmetry breaking perturbation
�
R
d4xOðxÞ into amplitudes. This gives to linear order in

��,

L Y ¼ �X
c

mc
�c c � ��

X
c

Yc
�c c þ � � � ; (13)

where in the �̂ � 1 case, one gets

1In RS models, for example, such modifications could be
induced by the deviations from AdS due to the backreaction of
the radion stabilization mechanism. Brane localized operators
could also have this effect. See [22,23] for recent studies of
radion phenomenology.
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mc ¼ mð0Þ þ �̂m0ð0Þ;

Yc ¼ 1

f
½mð0Þ þ �̂ð�� 3Þm0ð0Þ�; (14)

while for j�� 4j � 1, we find mc ¼ mð�̂Þ and

Yc ¼ 1

f
½mc þ ð�� 4Þm0ð�̂Þ�: (15)

Because of symmetry breaking, the Yukawa couplings to �
consist both of a term proportional to the fermion massmc

and a mass independent term. While this additional mass
independent correction is unimportant for heavy fermions,
it may in fact dominate for fermions with mc � f. This

can lead to interesting physical consequences, for example,
novel production channels at hadron colliders, u �u ! �,
d �d ! �, and unexpected discovery channels, � ! eþe�,
� ! �þ��, which we will explore in detail below. Note
that this effect is expected to be more natural in the case of
symmetry breaking by a marginal operator, as achieving

Yc � mc =f in the case �̂ � 1 requires a fine-tuning in

Eqs. (14) between terms that are formally of different
orders in the expansion. We discuss an explicit model of
this type in the next section.

In this discussion, we have neglected the flavor structure
of the symmetry breaking couplings. In fact, each term in
the expansion of the function m is an independent 3	 3
matrix in flavor space. Thus the usual bi-unitary trans-
formations that diagonalize the fermion mass matrices
will not necessarily diagonalize the scale symmetry break-
ing part of the fermion Yukawas unless one assumes a
particular flavor ansatz, e.g., minimal flavor violation
[24]. The off-diagonal couplings would mediate flavor-
changing processes like � ! 3e and are constrained by
experiments. For the purposes of this paper, wewill neglect
this issue and assume that the couplings are diagonal in
flavor space but do not necessarily have the same hierarchy
structure as the SM Yukawa matrices.

The presence of operators that violate the chiral sym-
metry, like the dilaton coupling to the fermions, spoils the
technical naturalness of fermion masses. Radiative correc-
tions can generate sizable contributions to the mass term.

Defining ��Y ¼ ð�� 4Þm0ð�̂Þ=f in Eq. (15), there is an
interaction of two dilatons with fermions, ��Y ��2 �c c =f
that generates a radiative correction to mc that is of order

�mc � �2

ð4�fÞ2 ��Yf: (16)

By setting the ultraviolet cutoff �� 4�f this becomes
�mc � ��Yf. The amount of fine-tuning depends on �,

with less fine-tuning required when � is small.
For instance, for the muon, lack of fine-tuning would

imply ��Y� 
 10�4. We will consider larger values of

��Y at the expense of possible fine-tuning in the under-
lying theory. However, even for values of this coupling that

are close to natural, there can be a significant collider
signal, see Sec. IV. It is useful to compare this situation
to that in the SM, where the naturalness of small fermion
masses can also be upset by new physics. For example,
heavy states beyond the SM can generate chirality-
violating higher dimensional operators such as

c1
�2

�LH	��eB��;
c2
�2

�LH	��eW��: (17)

These contribute an amount �me � ciev=ð16�2Þ to the
electron mass through radiative corrections. One linear
combination of these operators also contributes to the
magnetic moment and is therefore small, but the orthogo-
nal combination is not tightly constrained. In any case,
there are other operators, for example �LðD�HÞD�e, that

are unconstrained and can also radiatively generate con-
tributions to the electron mass. In theories with strong
interactions or extra dimensions, one expects that the co-
efficients ci can be of order one, or perhaps larger if there
are N � 1 species of heavy states that contribute.
Consequently, the contribution to the electron mass could
be as large as �me � Nv=ð16�2Þ.

B. SM fields as spectators

It is also possible for the SM fields to be realized as
weakly coupled spectators to the CFT dynamics. In this
case, the theory above the scale f consists of the spectator
SM fields coupled to CFT operators. The role of EWSB in
scenarios with SM spectators coupled to a CFT sector has
been studied in Refs. [25–27].
Generically one expects all couplings between the SM

and the CFT that are allowed by the gauge symmetries to
be present. For illustration we will consider the example

L F ¼ OðxÞ �c c ðxÞ; (18)

with c a SM fermion andOðxÞ a CFToperator of engineer-
ing (mass) dimension one and arbitrary scaling dimension
�. For simplicity, we have suppressed EW quantum
numbers.
In the effective theory below the scale f, Eq. (18)

induces both a mass term for c and interactions of c
with any number of scale Goldstone modes. For vanishing
dilaton momenta, all such couplings are related to the
fermion mass, mc ¼ h0jOj0i. E.g., the one-dilaton cou-

pling is fixed by the matrix element

h�ðp� ! 0ÞjOð0Þj0i ¼ � i

f
h0j½QS;Oð0Þ�j0i ¼ mc

f
�;

(19)

where QS ¼ R
d3xS0ðx; 0Þ is the charge generated by the

scale current S� ¼ x�T�
� of the CFT. More generally, the

low-energy theory contains a coupling

L c ¼ �mc

�
�

f

�
�
�c c (20)
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that includes the Yukawa Y ¼ ðmc =fÞ� after expanding

about the VEV.
Thus, under the assumption that couplings induced by

more insertions of the operator Eq. (18) are subleading, one
finds that all dilaton couplings to c are proportional to the
fermion mass mc . This result holds quite generally: any

SM field that acquires a mass term after EWSB has dilaton
couplings proportional to its mass. The proportionality
constant is the dimension of the CFT operator that couples
to the SM field. As shown in [22] this result also holds if
the symmetries allow for couplings that induce mixing
between the SM spectators and the CFT.

It is important to note that the result in Eq. (20) holds
only if multiple insertions of Eq. (18) are somehow sup-
pressed. If this is not the case, then there will be multiple
independent contributions to the parameters mc and the

dilaton Yukawa, spoiling any correlation between them.
Also, while couplings such as that in Eq. (18) break con-
formal symmetry explicitly, it may still be necessary to
deform the CFT as in Eq. (8) in order to stabilize the
dilaton. Again, this will have the effect of inducing dilaton
couplings which are not necessarily proportional to mass.

If the strong and electroweak gauge interactions do not
emerge from the conformal sector, the loop induced cou-
plings �gg, �

 become model dependent. This is true
even for the SM Higgs in the presence of heavy states
associated with new physics. We parametrize our igno-
rance regarding this UV physics in terms of the couplings
in Eq. (6), with bEM, bG replaced by arbitrary coefficients
cEM, cG. Note that we take cEM, cG to include only the
contributions from heavy (non-SM) states. The contribu-
tion of SM particles to � ! gg, � ! 

must be explicitly
added by computing triangle diagrams.

III. TOY EXAMPLES

We would like to illustrate some of the observations
from the previous section in the context of two perturbative
examples. First, we will consider a model with a Higgs
doublet and a singlet. We will choose the parameters such
that f � v and the lightest scalar, which is a linear combi-
nation of the Higgs field and the singlet, is mostly the
singlet state. We can easily calculate the cubic coupling
of such a scalar using the analysis in Sec. II. Our second
example involves two Higgs doublets. We show that the
Yukawa couplings of the light scalar do not necessarily
vanish in the limit of zero fermion masses.

In the first example, we will concentrate on the scalar
potential only, as other interactions are not relevant for our
analysis. We consider an electroweak doublet H and a real
singlet S. The scalar potential is

VðH; SÞ ¼ �

2

�
HyH � �2

2
S2
�
2 þ �

4
ðS2 ��2Þ2: (21)

More realistic versions of this toy model and their connec-

tion to the simultaneous breaking of EW and conformal
symmetries have been recently studied in [28,29].
The mass term for S breaks the conformal symmetry

explicitly, and to make that breaking small we assume that
� � 1. This ensures that the mass term is small compared
to the expectation value of S. Note that in the formal limit
� ! 0, the field S becomes a flat direction, which can be
identified with the dilaton of the previous section. When
� ! 1, the fluctuations of H about its VEV, hHyHi ¼
�2hS2i=2, are infinitely massive and can be integrated out.
The resulting low-energy effective theory is precisely the
EW chiral Lagrangian for the Goldstone components of the
Higgs field H coupled to an electroweak singlet dilaton
mode proportional to the flat direction S.
Approximate scale invariance can still be used to under-

stand the low-energy dynamics away from the limit � ! 0,
� ! 1. At the minimum of the potential, hSi ¼ � and

hHTi ¼ ð0; v= ffiffiffi
2

p Þ, with v ¼ ��. After EWSB there are
two physical scalars, which we denote as � and �. It is
straightforward to express the fluctuations around the cor-
responding minima S ¼ �þ s and HT ¼ ð0; vþhffiffi

2
p Þ in terms

of the mass eigenstates � and �

h
s

� �
¼ cos sin

� sin cos

� �
� �

�

� �
; (22)

where in terms of the parameters in VðH; SÞ

tan2 ¼ ��v2

�v2ð1� �2Þ=2� ��2
: (23)

We choose the parameters such that � is the lighter mass
eigenstate. It is clear that (in the notation of the previous
section) v=f ¼ sin, since all tree-level couplings of � to
the SM fields are those of the Higgs boson multiplied by
v=f. For f � v the light eigenstate is predominantly the
singlet field s, yet its couplings are Higgs-like due to the
underlying conformal symmetry.
We can now write the potential in Eq. (21) in terms of

the mass eigenstates in Eq. (22) and then calculate the
masses and couplings of the physical states. The expres-
sion is too long to be reproduced here. It is interesting to
note, however, that the cubic coupling of � has a very
simple form when expressed in terms of its mass and the
scale f which governs its couplings to SM fields,

V ¼ 1

2
m2

��
2 þ 1

3!

3m2
�

f
�3 þ . . . ; (24)

where we carried out this calculation to first order in � �
1.
The same result could have been obtained without ex-

plicit reference to the scalar potential. All that matters is
that for energies below the mass of the heavy scalar �, the
theory exhibits an approximate scale invariance. This scale
symmetry plus the (small) sources of symmetry breaking
completely fix the properties of the light mode �. Indeed,
given that the largest source of symmetry breaking in Eq.
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(21) is an operator of scaling dimension � ¼ 2, the result
of Eq. (24) can be obtained quite easily, without explicit
calculation. In particular, Eq. (11) shows that the dilaton
cubic coupling is ð�þ 1Þm2

�=f, in agreement with Eq.

(24). What is interesting here is that this result is universal.
None of the details of the underlying model enter into its
derivation, except for the fact that the lightest scalar is a
dilaton.

We now turn to a discussion of how scale symmetry
breaking affects the couplings to the SM fields. In particu-
lar we will consider fermion Yukawa couplings. Our ex-
ample is essentially a model discussed in Refs. [14,30,31],
but it would be easy to generate similar behavior with more
scalar fields. Consider a two Higgs doublet model where
both doublets couple to the same type of fermions, for
example, the down quarks

L Y ¼ �y1 �QH1d� y2 �QH2dþ H:c: (25)

We are not concerned with possible flavor-changing neu-
tral currents in such a scenario [32] as our example is an
illustration of principle only and its parameters will have to
be fine-tuned anyway. The potential for the two doublets is
taken to be

VðH1; H2Þ ¼ �

2

�
Hy

1H1 ��2

2

�
2 þM2Hy

2H2

� ðgHy
2H1H

y
1H1 þ H:c:Þ þ . . . ; (26)

where we have omitted other quartic terms that are not
relevant for our argument. For large values of M we can

integrate out the doublet H2 by substituting H2 !
gH1H

y
1H1=M

2.

We expand around the minimum of the potential where

the lower component of H1 is approximately ðvþ hÞ= ffiffiffi
2

p
.

The Yukawa terms in Eq. (25) become

L Y ¼ �y1 �d

�
vþ hffiffiffi

2
p

�
d� y2 �d

g

M2

�
vþ hffiffiffi

2
p

�
3
dþ H:c:

(27)

Therefore the mass of the d quark is

md ¼ vffiffiffi
2

p
�
y1 þ gv2

2M2
y2

�
; (28)

while its Yukawa coupling is

yd ¼ 1ffiffiffi
2

p
�
y1 þ 3gv2

2M2
y2

�
: (29)

These results agree with the general argument leading to
Eq. (14), where we identify the relevant source of scale
symmetry breaking with the dimension-six operator

ðHy
1H1Þ3 induced by integrating out H2 through its equa-

tion of motion.
The original Yukawa couplings, y1 and y2, enter the

equations above in two independent linear combinations.

For light fermions, it is possible to balance the two terms

such that md ! 0 while yd ! �y1
ffiffiffi
2

p
. In this limit, the

Yukawa coupling of the light fermion can be significantly
enhanced compared to the case of the SM with a Higgs
doublet, where the Yukawa coupling is proportional to
fermion mass. Of course, this limit has been achieved by
fine-tuning, which may be less severe in models with large
couplings. We may also find out experimentally that there
are fine-tunings in the fermion sector and the Yukawas of
the light fermions are much larger than naively expected.

IV. COLLIDER PHENOMENOLOGY

We parametrize the light dilaton couplings that are
relevant for collider physics in terms of the following
effective Lagrangian,

L � ¼ � ��

f

X
c

ðmc þ �yð1Þc vÞ �c c þ
�
2 ��

f
þ ��2

f2

�

	
�
m2

WW
þ
�W

�� þ 1

2
m2

ZZ�Z
�

�
þ ��

f

	
�
�EM

8�
cEMðF��Þ2 þ �s

8�
cGðG��Þ2

�
; (30)

where the fluctuations about the VEV h�i ¼ f are given in
terms of a canonically normalized field �� with mass m�.

The constant � � m2
�=f

2 parametrizes the size of devia-

tions from exact scale invariance. As discussed in Sec. II,
the couplings to massless gauge bosons, encoded in the
coefficients cEM and cG, depend sensitively on assumptions
about ultraviolet physics. In particular, if it is assumed that
the electroweak and QCD couplings become asymptoti-
cally conformal, then cEM, cG are the respective one-loop
beta function coefficients, calculated including all relevant
fields lighter than m�.

We will investigate the properties of the dilaton mode at
colliders as a function of the model parameters m�, f, the

nine additional contributions to the Yukawa couplings yð1Þc ,

and the dilaton couplings to the massless gauge bosons cEM
and cG. Instead of sampling the vast multidimensional
parameter space, we will only study several representative
regions where the dilaton properties can be significantly
modified relative to those of the SM Higgs boson. See
Ref. [33] for an overview of the prospects for the determi-
nation of Higgs couplings at the LHC.

A. New production channels

For the minimal SM Higgs boson, the main production
mechanisms at a hadron collider are the gluon-gluon fusion
mechanism gg ! �, associated production with W=Z bo-
sons q �q ! V þ �, weak vector boson fusion processes
qq ! V�V� ! qqþ �, and associated production with a
top quark pair, gg, q �q ! t�tþ � [34]. These are also the
dominant channels for the case of a light dilaton.
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For a light dilaton, the cross sections of the tree-level
processes scale as ðv=fÞ2 compared to the SM Higgs
production cross sections. The gluon fusion mechanism,
on the other hand, depends crucially on the coupling cG.
For instance, embedding QCD in the conformal sector will
result in an enhancement in cG which may overcome the
scaling suppression factor ðv=fÞ2 in the cross section.

A possible enhancement of the couplings between � and
the first generation quarks opens the new production chan-
nels u �u ! �, d �d ! � at the LHC and the Tevatron. For
example, at the LHC the tree-level cross section for these
processes (employing the narrow width approximation) is

	LOðpp ! �Þ ¼ 	�
0��

dLq �q

d��
; (31)

where

	�
0 ¼ �v2m2

�

3f6
ðyð1Þq Þ2 (32)

and

dLq �q

d��
¼

Z 1

��

dx

x
fqðx;�2

FÞf �q

�
m2

�

xs
;�2

F

�
: (33)

Here, fq, f �q are the parton distribution functions for q ¼ u,

d and �� ¼ m2
�=s, with s the collider center of mass energy

squared, is the usual Drell-Yan variable. In our plots below,

we take yð1Þu , yð1Þd ¼ 1 and v=f ¼ 0:3. We use the CTEQ5

parametrization for the parton distribution functions and
choose the factorization scales to be �F ¼ m�. The total

hadronic cross sections at leading order (LO) are shown in
Figs. 1 and 2 for the Tevatron and the LHC, respectively.

Given the choices of parameters in Fig. 1, the cross
sections of the light quark annihilation channels are
roughly 1 pb at the Tevatron over the entire range of
masses. The quark annihilation cross sections exceed the
gluon fusion channel for m� > 150 GeV, even when the

gg� coupling constant is enhanced to cG ¼ 11� 2nf=3.

At LHC energies, the q �q ! � cross sections increase with
increasing m� for reasonable values of the mass. The sum

of the u, d channels is about 10 pb for m� � 120 GeV and

about 20 pb for m� � 700 GeV.

The growth of the cross section with mass is due to the
symmetry breaking Yukawa couplings in Eq. (30), which
increase with m2

� for fixed f. This is, of course, very

different than for processes mediated by dilaton couplings
that are already present in the symmetry limit � ! 0. Such
couplings are independent of m� and the relevant cross

sections decrease rapidly as m� increases. For large m�,

the u �u, d �d channels become comparable to the gg channel
with cG ¼ 11� 2nf=3 and surpass it for m� > 350 GeV.

Another possible production mechanism resulting from
enhanced u �u�, d �d� couplings is dilaton bremsstrahlung
associated with one or two jets, e.g., ug ! u� ! u�. We

have checked that at the LHC, the cross section of brems-
strahlung associated with one jet is �1 pb but still smaller
than that of the q �q ! � channel.

B. New discovery channels

For a dilaton with Higgs-like couplings, the dominant
decay channel is � ! b �b in the low mass region and � !
WW=ZZ in the high mass region. Just as for the SM Higgs,
different strategies must be employed in order to extract
the dilaton signal depending on the precise value ofm� and

FIG. 1 (color online). Tevatron production cross sections for
different channels at LO as a function ofm�. Shown are the cross

sections u �u ! � with yð1Þu ¼ 1, d �d ! � with yð1Þd ¼ 1, and gg !
� for two different coupling values. The gg1 curve corresponds
to a SM like gg� coupling arising solely from the top quark loop
while the gg2 curve corresponds to the scenario where the SM is
fully embedded in the CFT such that cG ¼ 11� 2nf=3.

FIG. 2 (color online). LHC production cross sections for dif-
ferent channels at LO as a function of m�. The correspondence

between line types and processes is as in Fig. 1.
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the dominant production mechanism. For example, the
most promising discovery mode for the gluon fusion chan-
nel is � ! ZZ ! 4l or � ! WW ! ll�� if � is suffi-
ciently heavy. As we discussed earlier, new heavy states
can modify the couplings gg� and 

�, as is also the case
for the minimal SMHiggs couplings if there is new physics
[35,36]. The � ! 

 process can be very important in the
SM. It is likely that the 

� coupling will be suppressed
compared to the SM 

h coupling [16], thus we do not
discuss this channel further.

The possibility of enhanced Yukawa couplings to light
SM fermions would imply new discovery channels that are
not significant in the case of the SMHiggs. For example, an

enhancement in the �‘ �‘ vertex, with ‘ ¼ e,�would result
in experimentally clean new discovery signatures � !
eþe�, � ! �þ�� which are negligible for the SM
Higgs due to the small Yukawa couplings.

For illustration, we consider a point in parameter space
with an ‘‘anomalous’’ Yukawa coupling to muons, but with
all other light fermion Yukawas proportional to their mass

(in the notation of Eq. (30), we set yð1Þc ¼ 0 except for c ¼
�). In this case we can compare with the existing studies of
h ! �þ�� via gluon fusion [37,38], see also [39,40]. In
these references, it is shown that for the minimal Higgs,
gg ! h ! �þ�� is rather clean but requires a large
integrated luminosity of L ¼ 300 fb�1 for a 3	 signal in
the mass range mh � 115–140 GeV.

In the dilaton case, the enhancement of this process can
be dramatic. The cross section for the gg ! � ! �þ�� is
proportional to 	ðgg ! �Þ 	 BRð� ! �þ��Þ. The cross
section 	ðgg ! �Þ, as we discussed above, is sensitive to
contributions from physics beyond the SM. Because of the
enhanced ��þ�� coupling, the branching fraction
BRð� ! �þ��Þ may also deviate significantly from that
of the minimal Higgs, BRðh ! �þ��Þ � 10�4 in the
mh � 115–140 GeV mass range.

The gg ! � ! �þ�� channel is potentially accessible
at the Tevatron. Therefore, the null search result for new
scalar particles decaying into final states containing muon
pairs [41] places limits on the model parametersm�, f, and

yð1Þ� . Using the 95% upper limits on 	ðp �p ! �Þ 	
BRð� ! �þ��Þ for several values of m� in the range

150 GeV to 800 GeV reported in Ref. [41], we present

the constraints on the parameters v=f and yð1Þ� in Figs. 3
and 4. In these plots we assume that only the coupling to
muons is enhanced, with the couplings to other light fer-
mions suppressed by their mass.

Figure 3 shows the limit on v=f as a function of m�,

where we set yð1Þ� ¼ 1. The most stringent limits on v=f
correspond to large	ðgg ! �Þ (large cG), while the bound
on v=f relaxes as m� increases. There are two effects

responsible for this: the decrease in 	ðgg ! �Þ for large
masses, and BRð� ! �þ��Þ becomes negligible com-
pared to the WW, ZZ channels as m� increases. We do

not consider m� > f as this corresponds to badly broken

scale symmetry. The boundary m� � f is also indicated in

Fig. 3. Figure 4 illustrates the bounds for m� ¼ 150 GeV

expressed as a limit on yð1Þ� as a function of v=f.
A scalar with enhanced couplings to leptons could have

been observed at LEP. The absence of significant devia-
tions from the SM predictions at LEP implies constraints
on such couplings. As an example, we consider the LEP2
data in the eþe� ! �þ�� channel [42], which constrains

the product yð1Þe yð1Þ� . The bounds are presented in Fig. 5.
These bounds are very stringent at the center of mass

FIG. 3 (color online). Upper limits on v=f as a function of m�

implied by the Tevatron lepton pair data. We assume yð1Þ� ¼ 1

and all other yð1Þc ¼ 0. The different curves correspond to bounds

for several choices of the �gg coupling cG. Also shown is the
line m2 ¼ f2 beyond which approximate scale symmetry no
longer holds.

FIG. 4 (color online). Upper limits on yð1Þ� as a function of v=f
implied by the Tevatron lepton pair data. We assume m� ¼
150 GeV, yð1Þ� � 0, and all other yð1Þc ¼ 0. From left to right,

cG ¼ 11� 2=3nf, 4, 2, 1.
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energies where LEP collected data. They are correspond-
ingly weak away from the LEP2 mass range.

In Fig. 6 we display the dilaton branching fractions in
the case where only the muon couplings are enhanced. We

choose v=f ¼ 0:3 and yð1Þ� ¼ 1. As for the minimal SM
Higgs boson, for m� > 160 GeV the dilaton decays pri-

marily intoWW, ZZ pairs. Form� < 150 GeV, the�þ��

channel becomes comparable to the b �b channel. The dila-
ton mass and the muon Yukawa coupling are correlated, so
at large m� the BRð� ! �þ��Þ actually increases. Even

though our analysis has focused on the possibility of an
enhanced ��þ�� coupling, enhancements for the cou-

plings to eþe� or �þ�� can also lead to other clean
discovery channels. For m� < 2mW , these Yukawa cou-

plings are more important than they are for a heavy dilaton
which mainly decays into weak gauge bosons.
Finally, we present the 5	 discovery range for m� ¼

150 GeV in the ðv=f; yð1Þ� Þ plane, assuming an inte-
grated luminosity L ¼ 30 fb�1: Reference [37] (their
Fig. 1) summarizes the magnitude of the modification to
	ðgg ! h ! �þ��Þ due to new physics, � ¼
	New=	SMjgg!h!�þ�� required for both 3	 and 5	 level

discoveries with L ¼ 300 fb�1 in both the ATLAS and
CMS detectors at the LHC. By rescaling their plot, we find
that in our case a 5	 discovery at L ¼ 30 fb�1 requires
� ¼ 17:4 for m� ¼ 150 GeV. The parameter space acces-

sible at the LHC is presented in Fig. 7, taking into account
bounds from direct searches at the Tevatron.

V. CONCLUSIONS

The breaking of electroweak symmetry could be trig-
gered by the dynamics of a nearly conformal sector. In such
a case there will be a light pseudo-Goldstone boson, the
dilaton, associated with the spontaneous breaking of con-
formal symmetry. We investigated properties of the dila-
ton, focusing on possible deviations from the properties of
the SM Higgs boson.
This scenario would be most interesting if the nearly

conformal sector is strongly interacting. However, few
details of our analysis depend on the presence of strong
interactions. The nonderivative couplings of the dilaton
depend on the dimensions of operators that explicitly break

FIG. 6 (color online). Dilaton branching ratios as a function of

m� for v=f ¼ 0:3, cG ¼ 1. We have set yð1Þ� ¼ 1 and yð1Þc ¼ 0 for

all other fermions.

FIG. 7 (color online). Potential 5	 discovery regions in the
gg ! � ! �þ�� channel for a dilaton with m� ¼ 150 GeV

with both ATLAS and CMS detectors collecting an integrated
luminosity of 30 fb�1 each. For each value of cG shown, the
discovery region lies between the two solid (dashed) lines. The
lower curves represent bounds on the discovery region while the
upper curves represent the Tevatron bounds from Fig. 4.

FIG. 5. 95% CL upper limit on the product � ¼ ðv=fÞ2yð1Þe yð1Þ�

implied by the LEP2 data, as a function of m�. The plot only

shows a small range of m� around the energies for which LEP2

collected data, where the bounds are most stringent.

STANDARD MODEL COUPLINGS AND COLLIDER . . . PHYSICAL REVIEW D 79, 035017 (2009)

035017-9



conformal invariance. These in turn depend on the details
of the underlying theory.

We considered contributions to the dilaton-fermion cou-
plings arising from small explicit conformal symmetry
breaking. Since the Yukawa couplings in the SM are
proportional to the fermion masses, we studied the mod-
ifications of the Yukawa couplings to the light fermions.
Such couplings can be significantly enhanced and this can
lead to novel hadron collider phenomenology. Even mod-
est enhancements of the couplings to the light fermions are
of great phenomenological relevance. First, new produc-
tion channels like u �u ! �, d �d ! � may become more
important than the gluon fusion channel. Second, new

clean discovery signatures like � ! eþe�, �þ�� can be
viable unlike in the case of the SM Higgs boson. These
processes might provide a handle on the dynamics at
energy scales beyond the reach of the LHC.
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