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We investigate the longitudinalWW scattering in models of dynamical electroweak symmetry breaking

featuring a spin-one axial and vector state and a composite Higgs boson. We also investigate the effects of

a composite spin-two state which has the same properties of a massive graviton. Any model of dynamical

electroweak symmetry breaking will feature, depending on the dynamics, some or all of these basic

resonances as part of the low energy spectrum. We suggest how to take limits in the effective Lagrangian

parameter space to reproduce the dynamics of different types of underlying gauge theories, from the

traditional technicolor models to the newest ones featuring nearly conformal dynamics. We study the

direct effects of a light composite Higgs boson and the indirect ones stemming from the presence of a light

axial resonance on the longitudinal WW scattering.
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I. INTRODUCTION

The standard model (SM) constitutes without any doubt
one of the most successful models of nature. Despite such
an astounding success the SM sector describing the break-
ing of the electroweak symmetry has not been experimen-
tally confirmed. In fact, there is a fair chance that it might
be described by a novel strongly coupled dynamics [1]
inspired to the old technicolor models [2,3].

Precision data, as well as flavor changing neutral cur-
rents (FCNC) constraints require the new strong dynamics
to be different from the QCD one. Nearly conformal tech-
nicolor models can simultaneously reduce the tension with
precision data [4,5] and suppress dangerous FCNC [6–9].

In order to be prepared for such a discovery at the Large
Hadron Collider we have introduced a few explicit models
passing the electroweak precision tests as summarized in
[1]. Two examples are minimal walking technicolor
(MWT) [10–13] and ultra minimal technicolor (UMT)
[14]. The models constitute interesting benchmarks for
collider phenomenology [13,15]. Moreover MWT, with
additional adjoint SM fermions, leads to the unification
of the SM couplings [16] and to even new candidates of
cold dark matter type [17–21]. UMT phenomenology is
very rich although its collider signals remain to be ex-
plored. It features a novel intriguing candidate for cold
dark matter, the technicolor interacting massive particle
(TIMP). The TIMP is identified with a pseudo Goldstone
technibaryon. Another relevant fact is that these models
have the potential to explain baryogenesis since they can
lead to a first order electroweak phase transition as a
function of the temperature [22].

To construct these models we used recent explorations
of the phase diagram of strongly coupled gauge theories as
a function of the number of colors, flavors, and matter
representation. We combined novel [23,24] and older ana-
lytic methods [10,12] together with recent first principles
lattice simulations [25–33].
An essential point, which was first made in [34] and then

in [11], is that these models may feature a light composite
Higgs (LCH) boson. In Appendix F of [1] one of the
authors has shown, using the Corrigan and Ramond large
N limit of QCD [35], how a LCH naturally emerges in a
strongly coupled theory with higher dimensional represen-
tations. Near conformal dynamics can further help keeping
this state light relative to the electroweak scale even at a
small number of colors [1,11].
The spin-one sector is also very interesting. Thanks to

the nearly conformal dynamics the second Weinberg sum
rule (WSR) is modified [4]. This allows for the first spin-
one axial resonance to be lighter than the vector one. It is
then interesting to investigate the effect of a LCH and a
light axial resonance (LAR) on the longitudinal WW scat-
tering amplitude. A systematic study of the collider phe-
nomenology of a LCH and a LAR at the LHC has begun in
Ref. [15], where it is shown that the associate Higgs
production together with a SM vector boson is one of the
interesting signals.
We also investigate the effect of a massive spin-two

resonance on the longitudinal WW scattering. This is
also relevant since an isosinglet massive spin-two particle
may very well be misidentified as a massive graviton
stemming from a less natural extra dimensional extension
of the SM.
The analysis presented here generalizes the results of

[36] by adding the LCH and the spin-two state. The present
analysis is valid when the resonance exchanges dominate
the dynamics. It is, in practice, the principle of vector
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meson dominance (VMD). Differently from QCD [37,38]
we have a narrow light composite scalar (the Higgs boson).
Loop corrections can be investigated, however VMD is
expected to be an efficient way to take into account these
corrections.

II. UNITARITY OF PION-PION SCATTERING IN
TECHNICOLOR

Consider a strongly interacting gauge theory with an
SUð2ÞL � SUð2ÞR chiral symmetry. Suppose this new
strong interaction spontaneously breaks the chiral symme-
try to SUð2ÞV. If we identify the electroweak gauge group
with the SUð2ÞL � Uð1ÞR subgroup of SUð2ÞL � SUð2ÞR
this becomes a model of technicolor. At low energy, below
the confining scale, this theory is described by an effective
Lagrangian in which the bound states can be classified
according to the chiral symmetry group.

In the effective theory the scattering amplitudes for the
longitudinal SM gauge bosons approach at large energies
the scattering amplitudes for the corresponding eaten
pions. We mainly analyze the contribution to the ��
scattering amplitude from a spin-zero isosinglet and a
spin-one isotriplet, and consider the case in which a spin-
two isosinglet contributes as well.

A. Spin-zeroþ spin-one

If a spin-zero isosinglet H and a spin-one isotriplet Va
�

are in the low energy spectrum, the Oðp2Þ Lagrangian
terms contributing to the tree-level pion scattering ampli-
tudes are

L V�� ¼ gV��"
abcVa

��
b@��c; (1)

L H�� ¼ h1MHH�a�a þ h2
F�

H@��a@��
a

þ h3
F�

@�H@��
a�a; (2)

L ���� ¼ g1�
a�a�b�b þ g2

F2
�

�a�a@��b@��
b

þ g3
F2
�

�a@��a�b@��
b; (3)

where F� is the pion decay constant. Since this is a model
of technicolor, F� ’ 246 GeV. Va

� is a parity-odd spin-one

resonance, analog to the QCD � meson, while H is a
composite Higgs boson. Notice that our normalization for

gV�� differs by a factor of
ffiffiffi
2

p
from that of Ref. [38].

The isospin invariant amplitude for the pion-pion elastic
scattering is

Aðs; t; uÞ ¼ 8g1 þ 2ðg3 � 2g2Þ s

F2
�

� ½2MHh1 þ ðh3 � h2Þs=F��2
s�M2

H

� g2V��

�
s� u

t�M2
V

þ s� t

u�M2
V

�
: (4)

Notice that in the way they are written the Lagrangian
terms of Eqs. (1)–(3) are only invariant under the unbroken
SUð2ÞV symmetry, with the pions and the vector trans-
forming as triplets, and the Higgs boson as a singlet of
SUð2ÞV. This implies that the corresponding couplings are
unrelated. However, as explicitly shown in Appendix A, in
our approachH, �a, and Va

� do indeed transform under the

full SUð2ÞL � SUð2ÞR chiral symmetry, which spontane-
ously breaks to the isospin symmetry SUð2ÞV. This implies
the relations

g1 ¼ �h21
2
; (5)

8g1
M2

H

þ 4h1ðh2 � h3Þ
MHF�

� 2ðg3 � 2g2Þ
F2
�

¼ � 1

F2
�

þ 3g2V��
M2

V

;

(6)

which are easy to prove by using the formulas in
Appendix A. Inserting this in Eq. (4) and defining

h � 2h1 �MH

F�

ðh2 � h3Þ (7)

leads to

Aðs; t; uÞ ¼
�
1

F2
�

� 3g2V��
M2

V

�
s� h2

M2
H

s2

s�M2
H

� g2V��

�
s� u

t�M2
V

þ s� t

u�M2
V

�
; (8)

in agreement with the result of Ref. [38] for the ��
scattering in QCD. The latter was obtained in a nonlinearly
realized effective theory, in which the bound states are
classified according to the stability group SUð2ÞV, rather
than the full SUð2ÞL � SUð2ÞR chiral symmetry group. The
two approaches are indeed proven to be equivalent at tree
level.
Notice that the amplitude of Eq. (8) has an s-channel

pole in the Higgs boson exchange. In the vicinity of this
pole the propagator should be modified to include the
Higgs boson width. In order to catch the essential features
of the unitarization process we will take the Higgs boson to
be a relatively narrow state, and consider values of

ffiffiffi
s

p
far

away from MH, where the finite width effects can be
neglected. If the Higgs boson or any other state is not
sufficiently narrow to be treated at the tree level, it would
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be relevant to investigate the effects due to unitarity cor-
rections using specific unitarization schemes as done, for
example, in Ref. [39].

In order to study unitarity of the �� scattering the most
general amplitude should be expanded in its isospin I and
spin J components, aIJ. However, the I ¼ 0 J ¼ 0 compo-
nent,

a00ðsÞ ¼
1

64�

Z 1

�1
d cos�½3Aðs; t; uÞ þ Aðt; s; uÞ

þ Aðu; t; sÞ�; (9)

has the worst high energy behavior and is therefore suffi-
cient for our analysis. Since we are interested in testing
unitarity at few TeV’s in the presence of a light Higgs
boson, we set MH ¼ 200 GeV as a reference value and
study the regions in the ðMV; gV��Þ plane in which a00 is

unitary up to 3 TeV, for different values of h. If the Higgs
mass is larger than 200 GeV but still smaller than or of the
same size of MV , we expect our results to be qualitatively
similar, even though finite width effects might be important
due to the pole in the s-channel. If the Higgs mass is much
larger thanMV the theory is Higgsless at low energies. This
case was studied in Ref. [36] and applies also to the light
Higgs scenario ifH is decoupled from the pions, i.e. h ¼ 0.

In order to study the effect of the Higgs exchange on the
scattering amplitude, consider the high energy behavior of
Aðs; t; uÞ,

Aðs; t; uÞ �
�
1

F2
�

� 3g2V��
M2

V

� h2

M2
H

�
s: (10)

This shows that the Higgs exchange provides an additional
negative contribution at large energies, which, together
with the vector meson, contributes to delay unitarity vio-
lation to higher energies. In Fig. 1 a00 is plotted as a

function of
ffiffiffi
s

p
for MV ¼ 1 TeV, MH ¼ 200 GeV, and

different values of gV�� and h. The different groups of
curves from top to bottom correspond to gV�� ¼ 2, 2.5, 3,
3.5, and 4. For comparison, the QCD value that follows
from �ð� ! ��Þ ’ 150 MeV would be gV�� ’ 5:6 [40].
Within each group, the top curve corresponds to the
Higgsless case, h ¼ 0, while the remaining ones corre-
spond, from top to bottom, to h ¼ 0:1, 0.15, and 0.2.
Notice that for small values of gV�� the presence of a light
Higgs delays unitarity violation to higher energies: If the
partial wave amplitude has a maximum near 0.5 the delay
is dramatic. Notice also that unlike the analysis of Ref. [37]
the amplitude zeroes here are not fixed. This is because in
Ref. [37] both gV�� and F� were allowed to scale with the
number of colors, while here F� is kept fix at 246 GeV.

For a given value of MV , the presence of a light Higgs
boson enlarges the interval of values of gV�� for which the
theory is unitary, provided that jhj is not too large. This is
shown in Fig. 2, where the white regions correspond to

values of the parameters for which the I ¼ 0, J ¼ 0 partial
wave amplitude is unitary up to

ffiffiffi
s

p ¼ 3 TeV. As jhj
grows, the allowed region is enhanced, but as jhj becomes
greater than ’ 0:9, the Higgs boson causes the amplitude to
lose unitarity already below

ffiffiffi
s

p ¼ 3 TeV regardless of
gV�� and MV . Since the high energy amplitude is domi-
nated by the term linear in s, from Eq. (10) it follows that
the corresponding bound is essentially on h2=M2

H.
Notice that taking gV�� ¼ 0 does not automatically lead

to a SM-like behavior of the scattering amplitude. This is
most easily seen in the first four plots of Fig. 2, where the
gV�� ¼ 0 axis lies in a nonunitary region. Indeed, as
shown in Appendix A, for gV�� ¼ 0 the physical pions
can still be mixed with the longitudinal component of the
axial meson, that is, the parity-even spin-one isotriplet Aa

�.

In order to achieve a true decoupling limit the spin-one
resonances should be made infinitely heavy, in which case
gV��=MV ! 0 and h ! MH=F�, leading to a SM-like
unitarization of the�� scattering amplitude. It is of course
true that if h attains the numerical value of MH=F�, then
the linear term in s is canceled for gV�� ¼ 0, even though
the spin-one resonances are not decoupled. For MH ¼
200 GeV this gives h ! 0:8. It is therefore expected
that the two separate regions of Fig. 2 merge at around
jhj ’ 0:8.
In this work we focus on theories in which the axial may

be lighter than the vector. Because of parity conservation
the axial resonance cannot directly participate in the tree-
level exchanges of the �� scattering. As mentioned in the

0.5 1.0 1.5 2.0 2.5 3.0

− 0.4

− 0.2

0.0

0.2

0.4

s (TeV)

a 00

MV = 1 TeV

FIG. 1 (color online). I ¼ 0, J ¼ 0 partial wave amplitude for
the �� scattering. Here a Higgs boson with mass MH ¼
200 GeV and a spin-one vector meson with mass MV ¼
1 TeV contribute to the full amplitude. The different groups of
curves correspond, from top to bottom, to gV�� ¼ 2, 2.5, 3, 3.5,
4. The different curves within each group correspond, from top
to bottom, to h ¼ 0, 0.1, 0.15, 0.2. Nonzero values of gV�� and h
give negative contributions to the linear term in s in the ampli-
tude and may lead to a delay of unitarity violation.
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last paragraph the Aa
� field appears indirectly in the ��

scattering, since the pion eaten by the W boson contains a
certain amount of the longitudinal component of Aa

�, as

Eqs. (A15) and (A16) show explicitly. As a consequence

the gV�� and h coupling are affected by the presence of
Aa
�, see Eqs. (A23) and (A36). However, the dependence

on MA comes together with new parameters, which make
both gV�� and h completely free to take on any value. The

FIG. 2. Unitarity of �� scattering up to
ffiffiffi
s

p ¼ 3 TeV in technicolor with a light Higgs boson and a spin-one vector resonance. In the
white region the I ¼ 0, J ¼ 0 partial wave amplitude is within the unitarity bounds,�1=2 � a00 � 1=2. Different values of the Higgs
coupling to pions, h, are considered. The h ¼ 0 case is equivalent to the decoupling limit MH ! 1, even though for h ¼ 0 the Higgs
boson only decouples from the pions, while for MH ! 1 it decouples from the whole theory.
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

− 0.4

− 0.2

0.0
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MV = 1 TeV, MF2 = 3 TeV, g2 = 4 TeV−1

FIG. 3 (color online). Left: Contribution from the spin-two exchanges to the I ¼ 0, J ¼ 0 partial wave amplitude of the ��
scattering. The different groups of curves correspond, from left to right, to MF2

¼ 2, 3, 4 TeV. Within each group, the different curves

correspond, from smaller to wider, to g2 ¼ 2; 2:5; 3; 3:5; 4 TeV�1. Right: I ¼ 0, J ¼ 0 partial wave amplitude with all channels
included (spin-zero, -one, and -two). The dashed curves reproduce Fig. 1, with just the spin-zero and the spin-one channels included.
The solid curves contain also the spin-two exchanges, for MF2

¼ 3 TeV and g2 ¼ 4 TeV�1. If unitarity is violated at negative values

of a00, the spin-two exchanges may lead to a delay of unitarity violation.
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relevant way in which a LAR affects the �� scattering
shows up when the WSR’s, together with a small S pa-
rameter, are imposed. As we shall see in the next section,
this constrains the allowed region in the ðMV; gV��Þ plane
in a different way than a theory with a QCD-like dynamics
and a heavy axial does.

B. Spin-zeroþ spin-oneþ spin-two

In addition to spin-zero and spin-one mesons, the low
energy spectrum can contain spin-two mesons as well [38].
The contribution of a spin-two meson F2 to the invariant
amplitude is

A2ðs; t; uÞ ¼ g22
2ðM2

F2
� sÞ

�
� s2

3
þ t2 þ u2

2

�
� g22s

3

12M4
F2

;

(11)

where MF2
and g2 are mass and coupling with the pions,

respectively. A reference value for g2 can be obtained from
QCD: mf2 ’ 1275 MeV and �ðf2 ! ��Þ ’ 160 MeV

give jg2j ’ 13 GeV�1 so that jg2jF� ’ 1:2. Scaling up to
the eletroweak scale results in jg2j ’ 4 TeV�1. The con-
tribution of F2 to the I ¼ 0, J ¼ 0 partial wave amplitude
is given in Fig. 3 (left) for different values of MF2

and g2.

Notice that the amplitude is initially positive, and then it
becomes negative at large values of

ffiffiffi
s

p
. If MF2

is large

enough, the positive contribution can balance the negative
contribution from the spin-zero and spin-one channels,
shown in Fig. 1. This can lead to a further delay of unitarity
violation, as shown in Fig. 3 (right). Here the curves of
Fig. 1 are redrawn dashed, while the full contribution from
spin-zero, spin-one, and spin-two is shown by the solid
lines, for MF2

¼ 3 TeV and g2 ¼ 4 TeV�1. If unitarity is

violated at negative values of a00, then the spin-two con-

tribution delays the violation to higher energies.

III. UNITARITY WITH WALKING DYNAMICS

The analysis of the previous section was for arbitrary
theories with spin-zero, -one, and -two resonances.
However, we are mainly interested in analyzing unitarity
of �� scattering in the presence of a light Higgs boson and
a LAR, i.e. an axial lighter than the vector. If VMD holds,
the former can only be lighter than the latter in a walking
technicolor theory (WT), where the second WSR is modi-
fied [4,13]. Moreover the chances of the axial being lighter
than the vector grow as the conformal window is ap-
proached, and the S parameter decreases. Finally, as al-
ready mentioned in the introduction, a LCH can naturally
emerge in strongly coupled theories with higher dimen-
sional representations.

Thus in order to consider the LAR scenario we impose
the WSR’s modified for a WT theory,

S ¼ 4�

�
F2
V

M2
V

� F2
A

M2
A

�
; (12)

F2
V � F2

A ¼ F2
�; (13)

F2
VM

2
V � F2

AM
2
A ¼ a

8�2

dðRÞF
4
�; (14)

where FV (FA) and MV (MA) are decay constant and mass
of the vector (axial) resonance, dðRÞ is the dimension of the
fermion representation of the underlying gauge theory, and
a is an unknown number, expected to be positive and Oð1Þ
in WT, and zero in a QCD-like theory. To be more specific,
we consider two different gauge theories: MWT, with two
flavors in the adjoint representation of SU(2), and next-to-
MWT (NMWT), with two flavors in the two-index sym-
metric representation of SU(3). In MWT dðRÞ ¼ 3, and the
naive contribution to the S parameter is 1=2� ’ 0:15. As
explained in Ref. [13] it is reasonable to take this as a
realistic estimate of the full S parameter for this theory. In
NMWT dðRÞ ¼ 6, and the naive S is 1=� ’ 0:3. A more
recent theory with near conformal dynamics is ultra mini-
mal technicolor: this has the smallest naive contribution to
the S parameter, S ¼ 1=3� [14]. For comparison we also
show the constraints for a running theory, i.e. a ¼ 0.
The WSR’s of Eqs. (12)–(14) can be generalized to

include more vector and axial resonances. It should be
noticed, however, that for the sum rules to hold, these
resonances should not be broad. A convenient way to
impose this constraint is to exclude regions of the parame-
ter space in which the ratio width/mass is less than a half
for both the vector and the axial,

�V=MV < 1=2; �A=MA < 1=2: (15)

Formulas for the decay widths are given in Appendix B.
Integrating these constraints with the unitarity con-

straints of Fig. 2 gives the allowed regions shown in white
in Fig. 4 (left) for S ¼ 0:15, a ¼ 1, dðRÞ ¼ 3 (correspond-
ing approximately to MWT), Fig. 4 (center) for S ¼ 0:3,
a ¼ 1, dðRÞ ¼ 6 (corresponding approximately to
NMWT), and Fig. 4 (right) for S ¼ 0:3, a ¼ 0 (corre-
sponding approximately to a QCD-like theory) [41]. In
particular, the vertical bands are the only regions in which
the WSR’s of Eqs. (12)–(14) can be satisfied. The left band
is determined by Eq. (C3) in Appendix C and disappears
for a ¼ 0. In this band the axial is lighter than the vector.
The right band is determined by Eq. (C4) and is still
present for a ¼ 0. In this band the axial is heavier than
the vector. Above the uppermost curve within each band
the theory exhibits tachyonic states [see Eq. (C6)], and the
corresponding regions are therefore excluded.
The top and bottom horizontal (red) lines in the right

band, together with the lower curve on the left band, come
from the requirement �V=MV < 1=2. The lower (blue)
curve on the right band comes from the requirement
�A=MA < 1=2 for jgAH� � hAH�j ¼ 0, where the cou-
plings gAH� and hAH� are defined in the appendix and
parametrize the strength of the A ! H, � decay. The thick
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closed curves enclose the regions allowed by all the con-
straints except unitarity. The white region is allowed by all
the constraints in each of the plots. The requirement
�A=MA < 1=2 depends on jgAH� � hAH�j and the Higgs

mass. For MH ¼ 200 GeV, values of jgAH� � hAH�j
above �17 give no allowed regions in the heavy regime.
The thick dashed curve in the left band shows how this
constraint is altered for jgAH� � hAH�j ¼ 17.
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FIG. 4 (color online). Constraints for S ¼ 0:15, a=dðRÞ ¼ 1=3 (left), for S ¼ 0:3, a=dðRÞ ¼ 1=6 (center), and for S ¼ 0:3,
a=dðRÞ ¼ 0 (right). Curves arise from: (i) Unitarity up to

ffiffiffi
s

p ¼ 3 TeV (excluded regions are the striped and shaded ones).
(ii) Consistency of the theory (excluded regions are shaded uniformly with gray, located outside the vertical bands and in the upper
parts of the bands). (iii) Spin-one vector decay width (excluded regions are the ones shaded uniformly with red in the upper and lower
parts of the vertical bands). (iv) Axial decay width (excluded regions are the ones shaded uniformly with blue). We used MH ¼
200 GeV. Thick lines enclose the regions allowed by the constraints (ii)–(iv) while the white regions are allowed by all the constraints.
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From Fig. 4 we see that imposing the modified WSR’s
together with a small S parameter and demanding unitarity
of the �� scattering implies:

(i) Unitarity without a Higgs boson at
ffiffiffi
s

p ¼ 3 TeV is
only possible in a restricted region of the parameter
space.

(ii) In the presence of a LAR, the �� scattering can be
unitary at

ffiffiffi
s

p ¼ 3 TeV even without a Higgs boson
and for small values of S. This is in agreement with
the results of Ref. [36]. Of course the reason for this
is that in this case also the vector resonance is forced
to be light and can therefore unitarize the amplitude.

(iii) For larger values of S the vector meson masses
become smaller, and both regimes move to smaller
values ofMV . This makes unitarity without a Higgs
boson possible even with a heavy axial.

(iv) In the presence of a LAR unitarity demands gV�� to
be small, even if a light Higgs boson is in the
spectrum.

(v) With a heavy axial, unitarity demands gV�� to be
large either in the Higgsless scenario or if the cou-
pling of the Higgs boson to the pions is not suffi-
ciently large.

(vi) With a light Higgs boson and a suitable value of the
coupling to the pions, most of the region that is
allowed by the other constraints can be unitarized
up to

ffiffiffi
s

p ¼ 3 TeV, both in the light and the heavy
meson regime. As the jgAH� � hAH�j coupling is
increased, the heavy meson regime becomes less
and less viable for narrow axial resonances, but the
theory is still unitary in a large portion of the
parameter space.

(vii) In a QCD-like theory a LAR is not allowed by the
constraints imposed by the traditional WSR’s.
Therefore in a QCD-like theory gV�� is expected
to be large.

IV. CONCLUSIONS

In this paper we have analyzed the WW scattering in
technicolor models with near conformal dynamics, in
which both a 200 GeV LCH and a LAR are in the low
energy spectrum. As expected, the LCH significantly en-
larges the parameter space in which the tree-level ��
scattering is unitary at a certain scattering energy (which
has been chosen to be

ffiffiffi
s

p ¼ 3 TeV), provided that its
coupling h to the pion is neither too small nor too large.

A LAR affects the analysis on the �� scattering by
imposing constraints on certain regions of the parameter
space which are not constrained by unitarity. The con-
straints are imposed through the modified WSR’s for cer-
tain specific gauge theories (namely MWTand NMWT). In
order for theWSR’s to hold the spin-one resonances should
be narrow: this imposes further constraints on the parame-
ter space. Our analysis shows that in the presence of a LAR
gV�� is required to be small, regardless of the LCH.

Furthermore, unitarity in a Higgsless theory is possible
with a LAR, even for small values of the S parameter,
since in this case also the vector resonance is forced to be
light [36].
WT is also compatible with a heavy axial resonance. In

this scenario, which is the only possible for a QCD-like
technicolor, the Higgsless �� scattering demands a large
gV�� and a large S parameter, while the Higgsful ��
scattering is unitary at 3 TeV in a very large portion of
the available parameter space, provided that the coupling h
is within certain bounds.
In the future it would also be interesting to investigate

the unitarity problem in scattering processes such as�� !
VVðAAÞ. This should help shedding light on the general
mechanism for unitarization in models featuring strongly
coupled dynamics. Finally, we remind the reader that the
present analysis can be extended to include broad reso-
nance effects, in which case the amplitude for the ��
scattering cannot be fully perturbative, and some unitariza-
tion schemes must be employed.
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APPENDIX A: LAGRANGIAN AND VERTICES

Technicolor theories with an SUð2ÞL � SUð2ÞR chiral
symmetry and vector resonances can be described by
promoting the latter to gauge fields Aa

L� and Aa
R� of a

mirror gauge group SUð2Þ0L � SUð2Þ0R. The full symmetry
group is then SUð2Þ0L � SUð2ÞL � SUð2ÞR � SUð2Þ0R,
where the electroweak bosons ~Wa

� and ~B� are the gauge

fields of SUð2ÞL and the U(1) subgroup of SUð2ÞR. This
model can be described by the four-site moose diagram of
Fig. 5. The vector fields acquire their ‘‘hard’’ mass through
the SUð2Þ0L � SUð2ÞL ! SUð2ÞL;diag and SUð2ÞR �
SUð2Þ0R ! SUð2ÞR;diag symmetry breaking mechanisms.

‘‘Before’’ chiral symmetry breaking this model contains
massless ~Wa

� and ~B� fields, together with massive vector

FIG. 5. Moose diagram for a chiral resonance model with a
spontaneously broken SUð2ÞL � SUð2ÞR chiral symmetry. Each
circle represents an SU(2) global symmetry. In the thick circles
the full SU(2) symmetry is gauged, in the thin circle only the
U(1) subgroup is gauged. The two circles at the ends of the chain
correspond to the vector mesons, while the internal circles
correspond to the ordinary SM gauge group, which is a subgroup
of the chiral symmetry group. NL and NR are nonlinear sigma
fields, with VEV f. Since a light Higgs boson is included in the
spectrum, M is taken to be a linear sigma field, with VEV v.
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resonances, all transforming under an unbroken
SUð2ÞL;diag � SUð2ÞR;diag symmetry. The very fact that

this chiral symmetry group is different from the original
SUð2ÞL � SUð2ÞR one, in the absence of vector fields, al-
ready shows that the latter do affect the chiral dynamics.

The model contains nonlinear sigma fields NL and NR,

NL ¼ expð2i ~�a
LT

a=fÞ; NR ¼ expð2i~�a
RT

a=fÞ; (A1)

and a linear sigma field M,

M ¼ 1ffiffi
2

p ðvþH þ 2i~�aTaÞ; (A2)

where Ta ¼ 2�a, and �a are the Pauli matrices. Here �a
L

and �a
R are the pions produced in the SUð2Þ0L � SUð2ÞL !

SUð2ÞL;diag and SUð2ÞR � SUð2Þ0R ! SUð2ÞR;diag symmetry

breaking mechanisms, respectively, with vacuum expecta-
tion value (VEV) f, while �a are the pions produced in
SUð2ÞL � SUð2ÞR ! SUð2ÞV, with VEV v. H is of course
the composite Higgs boson.
Assuming, in the limit of decoupled spin-one mesons, a

SM-like Higgs sector, the Oðp2Þ Lagrangian invariant
under the parity transformations

AL� ! AR�; NL ! Ny
R; M ! My (A3)

can be written as

L ¼ � 1

2
Tr½ ~W��

~W��� � 1

4
~B��

~B�� � �ð�Þ
2

Tr½FL��F
��
L þ FR��F

��
R � � 2	ð�Þ

f2
Tr½Ny

LFL��NLMNRFR��N
y
RM

y�

þ f2kð�Þ
4

Tr½D�N
y
LD

�NL þD�N
y
RD

�NR� þ 1

2
Tr½D�M

yD�M� þ r2ð�ÞTr½D�N
y
LNLMD�NRN

y
RM

y�

þ r3ð�Þ
4

Tr½D�N
y
LNLðMD�My �D�MMyÞ þD�NRN

y
RðMyD�M�D�M

yMÞ� �V ðMÞ; (A4)

where

� � 1

v2
Tr½MMy�; (A5)

and the potential can be expanded to quartic order to be

V ðMÞ ¼ �v2


2
Tr½MMy� þ 


4
Tr½MMy�2: (A6)

The covariant derivatives are

D�M ¼ @�M� ig ~Wa
�T

aMþ ig0MB�T
3;

D�NL ¼ @�NL � i~gAa
L�T

aNL þ igNL
~Wa
�T

a;

D�NR ¼ @�NR � ig0B�T
3NR þ i~gNRA

a
R�T

a:

(A7)

The analytic functions �ð�Þ, 	ð�Þ, kð�Þ, r2ð�Þ, r3ð�Þ are
arbitrary [42] and should be expanded around the VEV
� ¼ 1.

Here we are mainly interested in the strongly interacting
sector, which can be obtained by switching off the electro-
weak couplings, g, g0 ! 0. When this is done, the canoni-
cally normalized vector and axial resonances are found to
be

Va
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2	ð1Þ

f2

s
Aa
L� þ Aa

R�ffiffiffi
2

p ;

Aa
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2	ð1Þ

f2

s
Aa
L� � Aa

R�ffiffiffi
2

p ;

(A8)

with masses

M2
V ¼ g2V

4
½f2 � r2ð1Þv2�; (A9)

M2
A ¼ g2A

4
½f2 þ r2ð1Þv2�; (A10)

where the couplings to the vector and the axial, gV and gA,
respectively, are

gV � ~gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2	ð1Þ

f2

q ; gA � ~gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2	ð1Þ

f2

q : (A11)

The decay constants are

FV ¼
ffiffiffi
2

p
MV

gV
; (A12)

FA ¼
ffiffiffi
2

p
MA

gA

�
1� r3ð1Þg2Av2

4M2
A

�
: (A13)

The longitudinal components of Va and Aa are the
canonically normalized eaten pions

�a
V ¼ 2MV

gVf

~�a
L � ~�a

Rffiffiffi
2

p ;

�a
A ¼ 2MA

gAf

~�a
L þ ~�a

Rffiffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2

�

v2

s
~�a;

(A14)

while the remaining orthogonal combination is the canoni-
cally normalized physical pion, eaten by the SM gauge
bosons when the electroweak couplings are switched on:

�a ¼ F�

v
~�a: (A15)

Here F� is �a decay constant,
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F� ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r23ð1Þg2Av2

8M2
A

s
: (A16)

In a technicolor theory F� ’ 246 GeV. Notice that v �
F�, and F� ! v as the longitudinal component of the axial
decouples from the pion. This occurs if either MA ! 1 or
r3 ! 0.

When expanded in terms of the physical fields, Eq. (A4)
gives the Lagrangian terms

L V�� ¼ gV��"
abcVa

��
b@��c; (A17)

L AV� ¼ gAV�F�"
abcVa

�A
b��c

þ hAV�F�"
abcVa

��A
b���c; (A18)

L AAV ¼ gAAV"
abcVa

��A
b�Ac� þ hAAV"

abcAa
��A

b�Vc�;

(A19)

L AH� ¼ gAH�HAa
�@

��a þ hAH�@
�HAa

��
a; (A20)

L H�� ¼ h1MHH�a�a þ h2
F�

H@��a@��
a

þ h3
F�

@�H@��
a�a; (A21)

L ���� ¼ g1�
a�a�b�b þ g2

F2
�

�a�a@��b@��
b

þ g3
F2
�

�a@��a�b@��
b; (A22)

plus other quartic terms which are not relevant for our
analysis. The couplings are found to be

gV�� ¼ FVMV

2F2
�

�
1� g2AF

2
A

2M2
A

�
; (A23)

gAV� ¼ MAMV

F2
�

FA

FV

�
1� g2A

g2V

M2
V

M2
A

�
; (A24)

hAV� ¼ 1

2

MV

MA

FA

FV

�
g2A
g2V

� 1

�
; (A25)

gAAV ¼ 1

2

g2A
g2V

MV

FV

; (A26)

hAAV ¼ MV

FV

; (A27)

gAH� ¼ � gAf
2ffiffiffi

2
p

F�v

�
1� gAFAffiffiffi

2
p

MA

���
1þ g2V

g2A

M2
A

M2
V

��1

� k0ð1Þ � r02ð1Þv2

f2

�
� r03ð1ÞgAvffiffiffi

2
p

F�

; (A28)

hAH� ¼ �FAMA

vF�

�
1� gAFAffiffiffi

2
p

MA

�
; (A29)

h1 ¼ �vMH

2F2
�

; (A30)

h2 ¼ � g2Af
2F�

4vM2
A

�
v2

F2
�

� 1

��
1� k0ð1Þ � r02ð1Þv2

f2

�

� r03ð1ÞgAv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � F2

�

p
ffiffiffi
2

p
MAF�

; (A31)

h3 ¼ 1

v

�
v2

F2
�

� 1

�
; (A32)

g1 ¼ �v2M2
H

8F4
�

; (A33)

g2 ¼� F2
V

8F2
�

�
1� gAFAffiffiffi

2
p

MA

�
2
�
1þ 2

g2V
g2A

M2
A

M2
V

�
ffiffiffi
2

p
FAgA
MA

�
1þ gAFA

2
ffiffiffi
2

p
MA

�
� 2k0ð1Þ

�
1þ g2V

g2A

M2
A

M2
V

��

þ v2

2F2
�

�
�r03ð1Þ

�
1� gAFAffiffiffi

2
p

MA

�
þ r02ð1Þ

2

�
1� gAFAffiffiffi

2
p

MA

�
2
�
;

(A34)

g3 ¼ � F2
V

8F2
�

�
1� gAFAffiffiffi

2
p

MA

�
2
�
1� 4

g2V
g2A

M2
A

M2
V

þ
ffiffiffi
2

p
FAgA
MA

�
1þ gAFA

2
ffiffiffi
2

p
MA

��
: (A35)

The coupling h defined in Eq. (7) is then

h ¼ �MH

v

�
1� g2Af

2

4M2
A

�
v2

F2
�

� 1

��
1� k0ð1Þ � r02ð1Þv2

f2

�

� r03ð1ÞgAv2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � F2

�

p
ffiffiffi
2

p
MAF

2
�

�
: (A36)

A few words should be said about the decoupling limits.
The spin-one mesons can be decoupled from the pions and
the Higgs boson by letting f ! 1, as shown by Eqs. (A9)
and (A10). If this occurs the Higgs boson-pion system
becomes identical to the SM one, as the equations above
show explicitly. For the axial to be decoupled alone, i.e.
without the vector, one must have 	 ! f2=v2, since in this
case gA ! 1 and gV stays finite. When this occurs the
Higgs boson-pion system differs from the SM one, because
of the presence of the vector resonance. Finally, notice that
setting gV�� ! 0 does not necessarily lead to a SM h
coupling. In fact when gV�� ! 0 the spin-one resonances
are still there to mix with the Higgs boson-pion system.

UNITARITY IN TECHNICOLOR PHYSICAL REVIEW D 79, 035010 (2009)

035010-9



APPENDIX B: DECAY WIDTHS

The spin-one meson decay channels are V ! �,�, V !
A, �, V ! A, A for the vector, and A ! V, �, A ! H� for
the axial. The partial decay widths are

�V!�� ¼ g2V��MV

48�

�
1� 4M2

�

M2
V

�
3=2

; (B1)

�V!A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2

V;M
2
A;M

2
�Þ

q
24�M3

V

�
g2AV�

�
3þ 
ðM2

V;M
2
A;M

2
�Þ

4M2
VM

2
A

�
þ 6gAV�hAV�ðM2

V þM2
A �M2

�Þ
þ 2h2AV�ð
ðM2

V;M
2
A;M

2
�Þ þ 6M2

VM
2
AÞ
�
; (B2)

�V!AA ¼ MV

48M4
A�

�
1� 4M2

A

M2
V

�
3=2½g2VAAM4

V

þ ð4g2AAV þ 6hAAVgAAV þ h2AAVÞM2
VM

2
A

þ 3g2AAVM
4
A�; (B3)

�A!V� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2

V;M
2
A;M

2
�Þ

q
24�M3

A

�
g2AV�

�
3þ 
ðM2

V;M
2
A;M

2
�Þ

4M2
VM

2
A

�
þ 6gAV�hAV�ðM2

V þM2
A �M2

�Þ
þ 2h2AV�ð
ðM2

V;M
2
A;M

2
�Þ þ 6M2

VM
2
AÞ
�
; (B4)

�A!H� ¼ ðgAH� � hAH�Þ2 
ðM
2
A;M

2
H;M

2
�Þ3=2

192�M5
A

; (B5)

where


ðx; y; zÞ � x2 þ y2 þ z2 � 2xy� 2yz� 2zx: (B6)

APPENDIX C: CONSTRAINTS FROM THE WSR’S

Taking F�, S, a, and the gAH� coupling as input,
Eqs. (12)–(14) and Eq. (15) impose constraints on the
parameter space ðMV; gV��Þ. Equations (12)–(14) give

F2
A ¼ 1� 2�aS

dðRÞ
1� M2

VS

8�F2
�
� 4�2aF2

�

dðRÞM2
V

F2
�

2
� F2

� > 0; (C1)

M2
A ¼

1� 8a�2F2
�

dðRÞM2
V

M2
VS

4�F2
�
� 1

M2
V > 0; (C2)

which in turn imply the inequalities

4�

S

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�aS

dðRÞ

s �
<

M2
V

F2
�

<
8�2a

dðRÞ ; (C3)

4�

S
<

M2
V

F2
�

<
4�

S

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�aS

dðRÞ

s �
: (C4)

Equation (B1) gives

g2A ¼ 2M2
A

F2
A

�
1� 2F2

�gV��
FVMV

�
> 0; (C5)

which implies the bound

gV�� <
FVMV

2F2
�

; (C6)

where FV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
A þ F2

�

q
, and FA is given by Eq. (C1). This

last inequality must be satisfied in order to prevent ta-
chyonic states from showing up in the theory.
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