PHYSICAL REVIEW D 79, 035005 (2009)

Holographic unparticle Higgs boson
Adam Falkowski'* and Manuel Pérez-Victoria>"

'CERN Theory Division, CH-1211 Geneva 23, Switzerland
2CAFPE and Departamento de Fisica Tedrica y del Cosmos, Universidad de Granada, E-18071, Spain
(Received 22 December 2008; published 6 February 2009)

We propose an extra-dimensional approach to the unparticle Higgs. The nonlocal 4D unparticle Higgs
action is derived as the boundary effective action of a local 5D theory. We review the mechanism to
generate unparticle spectra in the context of warped soft-wall models. Gauge invariance can be simply
implemented and unitarity of the longitudinal WW scattering amplitude is particularly transparent.
Furthermore, the 5D approach uncovers a broader spectrum of phenomenological possibilities. The
unparticle Higgs is accompanied by another continuum formed by Kaluza-Klein excitations of the
standard model gauge fields which, in some cases, may take over the leading role in unitarizing WW

scattering.
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I. INTRODUCTION

Various aspects of unparticles [1] have been wildly
studied in the past year. The notion of unparticles refers
to a new physics sector that displays a continuous spectrum
of excitations and is, most often, conformal over a range of
scales. The main motivation for studying this scenario is
that unparticles lead to collider signals that differ dramati-
cally from those encountered in the conventional particle
physics. At the advent of the CERN LHC, studies of
unconventional phenomenology may be justified. On the
other hand, there has been so far little indication that the
concept of unparticles may shed some new light on the
nagging problems of the standard model (SM), in particu-
lar, on the naturalness problem originating from large
quantum corrections to the Higgs boson mass. But it is
precisely the naturalness problem which is the reason why,
in the first place, we expect new physics at the LHC.

Any new physics that addresses the naturalness problem
should become manifest not far above the electroweak
scale set by the W boson mass. A part of the expected
energy range up to a few hundred GeV has been directly
probed by the Tevatron, with the null result. Indirect
probes, like electroweak precision tests that probe the
new physics up to a few TeV, or flavor physics that is
even more sensitive to generic flavor and CP-violating
new physics (up to 10° TeV in some cases [2]), have
detected nothing either. All the new physics scenarios
that we are aware of, whether supersymmetry, composite
Higgs, or technicolor, are uncomfortable with these nega-
tive search results. If the new physics addressing the nat-
uralness problem does exist at the LHC reach, it must be
stealthy and elusive.

It is conceivable that, if the new physics manifested
itself as a blurry unparticle continuum rather than ordinary
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particles, the sensitivity of the low-energy physics to the
scale of new physics might be reduced. A hint that this is
indeed the case has emerged recently in a model studied in
Ref. [3] (see also [4]). In that model, the Higgs is a pseudo-
Goldstone boson of the usual particle nature, but the vector
bosons beyond those of the SM appear as a continuum.
While electroweak precision tests typically constrain the
masses of new vector resonances to be larger than 2—-3 TeV,
the vector continuum can start well below 1 TeV.

What if the Higgs itself is an unparticle? Such concepts
have appeared in the unparticle literature, but most of the
previous studies [5] were restricted to a particle Higgs
boson mixing with an unparticle sector that is not charged
under the SM. From the naturalness perspective, this is not
very different to mixing the Higgs with an ordinary SM
singlet particle. A new scenario appears in a model pro-
posed recently by Stancato and Terning [6] (see also [7]).
These authors consider a 4D action for an unparticle Higgs
that transforms as a doublet under the SM SU(2); group,
and whose kinetic term in momentum space has the non-
local form (u? — p?)*>~¢, with 1 < d < 2. Therefore, the
unparticle Higgs tree-level propagator has a branch cut for
p? larger than the mass gap w squared, in contrast to the
propagator of a scalar particle (corresponding to d = 1),
which has simply a pole. It turns out, nevertheless, that this
weird object can play the same important role as the
ordinary Higgs particle does: it can break the electroweak
symmetry and unitarize WW scattering. The former is a
simple consequence of the unparticle Higgs acquiring a
vacuum expectation value (vev). Unitarity of WW scatter-
ing is less trivial, because covariantization of the unparticle
Higgs action with respect to the SM local symmetry group
leads to gauge interactions that are completely different
from the SM ones [8]. In particular, the unparticle Higgs
has interaction vertices with an arbitrary number of gauge
bosons, and the coefficients of these vertices depend on the
unparticle Higgs vev. In spite of these unusual features, the
exchange of the unparticle Higgs contributes to the tree-
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level scattering amplitude of two longitudinally polarized
W bosons in a way that renders this amplitude well be-
haved in the ultraviolet (UV). The cancellations that lead to
the unitary behavior turn out to be quite different than in
the SM though: both the direct gauge vertex and the
unparticle Higgs exchange amplitude contain nonanalytic
powers of kinematical invariants, and these two nonana-
Iytic contributions cancel against each other at high
energies.

Thus, electroweak symmetry breaking via the unparticle
Higgs is a new concept in physics beyond the SM. While at
this point it is not clear if it can help with any of the
problems plaguing the SM (although Ref. [6] suggested
that the little hierarchy problem may be reduced), it is
interesting to explore this new direction.

In this paper, we propose another description of the
unparticle Higgs. Our approach is inspired by the AdS/
CFT conjecture, which relates large N strongly coupled
theories to weakly coupled 5D gauge theories in a warped
background [9,10]. If such a large N sector gives rise to the
SM Higgs sector, there should exist a 5D effective descrip-
tion in the language of Randall-Sundrum (RS) type models
[11]. It was demonstrated before [3,12] that unparticle
spectra can be obtained in the so-called soft-wall version
of RS, where the infrared (IR) brane is removed and
effectively replaced by an exponentially decaying warp
factor [13]. We adapt this framework to study the unpar-
ticle Higgs. More precisely, the unparticle Higgs scenario
refers here to spontaneous breaking of electroweak sym-
metry triggered by a scalar field whose spectrum of ex-
citations is (partly) continuous. Conformal symmetry over
arange of scales can be realized if the warped background
is approximately AdS in the region near the UV boundary,
but this is not a necessary ingredient. The focus of this
paper is on issues related to longitudinal WW scattering in
this scenario.

In the 5D description, the Higgs sector is represented by
a 5D scalar field charged under the electroweak group. The
corresponding gauge bosons must then propagate in 5D as
well. This scalar field has a nontrivial potential that forces
its vev, thus breaking the electroweak symmetry. The 5D
setup can accommodate the SM gauge bosons and fermi-
ons of ordinary particle nature, together with Kaluza-Klein
(KK) excitations that form a continuum separated by a
mass gap from the SM. In particular, the oscillations
around the scalar vev display a continuous spectrum, and
they mix with an ordinary particle Higgs living on the UV
boundary of the 5D spacetime. The 4D low-energy effec-
tive description of this setup corresponds to a nonlocal
unparticle Higgs action as in Ref. [6]. The connection is
most transparent using the boundary effective action ap-
proach [14], which amounts to keeping the UV boundary
degrees of freedom as the low-energy variables and inte-
grating out the 5D bulk.

There are several features of our holographic approach
that motivate its application to study the unparticle Higgs.
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First of all, the 5D models reveal a broader spectrum of
phenomenological possibilities. Because of the fact that
the electroweak gauge bosons must propagate in the 5D
bulk, the spectrum, apart from the unparticle Higgs, also
contains a continuum of vector excitations. We argue that,
typically, the mass gap for the vector unparticles is smaller
than the one for scalars, so that the vector continuum
should show up at the LHC along with the unparticle
Higgs. Moreover, the vector continuum can also play an
important role in the dynamics of electroweak symmetry
breaking: in certain regions of the 5D parameter space it
gives the dominant contribution to longitudinal WW scat-
tering, much like vector resonances in the Higgsless mod-
els [15].

It can be argued that the presence of a vector continuum
is a generic feature of the unparticle Higgs scenario, and
not just an artifact of the 5D formulation. The fact that the
unparticle Higgs is charged under the SM electroweak
group implies that the hidden sector that gives rise to the
unparticle Higgs has a global SU(2) X U(1) (or larger)
symmetry. The electroweak gauge fields couple to the
conserved currents of this global symmetry. If the hidden
sector is strongly interacting, the two-point correlators of
these currents have a nontrivial spectral representation that
includes resonances and/or a continuum of excitations. The
latter possibility occurs, in particular, when the hidden
sector is conformal over some energy range. As a conse-
quence of coupling to the conserved currents, the external
electroweak gauge bosons mix with the excitations of the
hidden sector (much like the photon mixes with the vector
resonances in ordinary QCD), which effectively leads to
interactions between the SM gauge fields and the hidden
sector. The 5D setup provides a consistent realization of
this scenario.

At a more technical level, the advantage of the 5D
formulation is that the action is manifestly local and gauge
invariant, and the usual methods of perturbative quantum
field theory apply. There has been some debate in the
literature on how to correctly gauge nonlocal unparticle
actions [8,16]. In 5D, on the other hand, gauge invariance
is trivially implemented by the usual covariant derivative
prescription, and it automatically implies that the physical
predictions of the effective unparticle Higgs action are
gauge independent. Simply playing with the parameters
of the 5D model we get, almost effortlessly, a complete
model of the unparticle Higgs with all interactions consis-
tently included. Moreover, our approach allows us to gen-
erate extensions of the original unparticle Higgs
construction; for instance, the unparticle Higgs self-
interactions can easily be made nonlocal. Besides gauge
invariance, various consistency issues become more trans-
parent in 5D. For example, the energy range where the
theory is applicable can be precisely defined. Furthermore,
in the present context we can use with confidence the
Goldstone boson equivalence theorem [17] to calculate
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the longitudinal WW scattering amplitude. This allows us
to find a very clear picture of how various contributions
conspire to make the total amplitude consistent with uni-
tarity. In the longer perspective, the 5D approach should
facilitate a systematic analysis of electroweak precision
observables and collider signals.

Here is the plan. In Sec. II, we introduce our 5D model
based on the SU(3) X SU(2);, X SUR2)x X U(1)yx gauge
symmetry and a bifundamental Higgs field in the bulk. We
explain how this framework can be adapted to study un-
particles. To this end, we review the salient features of the
soft-wall models and the necessary conditions to arrive at a
continuum spectrum. We point out the relevance of propa-
gators in mixed position/momentum space to investigate
5D theories with unparticle-like spectra. We explain how
integrating out the bulk leads to a 4D effective action of the
unparticle type. We also present a concrete example of 5D
background leading to an unparticle effective action. In
Sec. III, we turn to vector KK excitations of the SM gauge
boson, which are a new indispensable ingredient in the 5D
approach. In Sec. IV, we discuss the longitudinal WW
scattering. We explain how the Goldstone boson equiva-
lence theorem can be used in the 5D setting. We show that
the holographic unparticle Higgs (backed by the vector
continuum) fulfills the task of unitarizing the WW scatter-
ing. Our general formalism is illustrated with a specific
example, which exactly reproduces the WW scattering
amplitude found by Stancato and Terning. We conclude
in Sec. V.

II. THE UNPARTICLE HIGGS IN 5D

A. Model

We consider a 5D extension of the SM. The theory
propagates in a warped geometry parametrized by the
warp factor a(z): ds? = a(z)*(dx, — dz*), u =0...3.
The 5th coordinate z runs from R (the UV brane) to infinity,
but the invariant length L = [% a(z) is assumed finite. We
fix a(R) = 1. There is no IR brane, unlike in the standard
RS scenario, which opens the door to realizing unparticles
as a continuum of KK excitations [12]. We refer to the
region of large z as the IR. The SM electroweak gauge
group is embedded in a larger 5D gauge symmetry
SU(2), X SU(2)g X U(1)x. Extending the hypercharge
U(l)y to SU(2)g X U(1)y is necessary from the phenome-
nological point of view, in order to avoid excessive con-
tributions to the Peskin-Takeuchi 7 parameter [18].
Moreover, we introduce the scalar Higgs field ® propagat-
ing in the 5D bulk, in the bifundamental representation
under SU(2); X SU(2)g. The bulk Lagrangian is

1 1

+ % Tr|D, O — V(cb)}, 2.1
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where Dy ® = 9,,® — ig;.R'2Ly® + igp.R/>*PR,,.
The gauge couplings in 5D are dimensionful, and we
denote them as R'/2g, . r. y«. The SM color group is ir-
relevant for the present discussion, and it is ignored
throughout this paper. We are not concerned much with
the SM fermions here, but they can be simply included, for
example, as UV brane-localized chiral fermions coupled to
the bulk Higgs via brane-localized Yukawa interactions, or
as in Ref. [4].

In the following, we will simplify a bit our task by taking
the limit gy. — 0. This corresponds to taking the zero
hypercharge limit in the SM, which makes the masses of
W and Z bosons equal to each other and decouples them
from the photon. The latter lives then entirely in the U(1)y
factor. The case of general gy. does not introduce any
philosophical complications, but makes the relevant for-
mulas lengthier. Moreover, we also assume equal cou-
plings for SU(2); and SU(2)z: g1« = &g« = &+ This
limit will be enough to illuminate the major points related
to WW scattering.

Breaking of the gauge symmetry down to the electro-
magnetic U(1) is realized via two distinct mechanisms: by
boundary conditions and by the Higgs mechanism. The UV
brane is assumed to respect only the electroweak SU(2); X
U(1)y subgroup of the full gauge symmetry group. This is
done in practice by imposing the Dirichlet boundary con-
ditions at z = R for three generators of SU(2)z X U(1)x.
In general, the unbroken generator is a linear combination
of T3 and X, but in our zero hypercharge limit the entire
SU(2)y is broken on the UV brane, while U(1)y, hosting
the photon, is left unbroken. On the other hand, the bulk
Higgs is endowed with a potential V(®) and the boundary
potential  Vyy(®P) that enforce the vev (P)=
R™'20(2)I,x,, which spontaneously breaks SU(2), X
SU((2)g down to the vector SU(2). The UV boundary
potential Vyy allows us to control the boundary conditions
for the Higgs field. For example, if Vyy is vanishing the
Higgs obeys the Neumann boundary conditions 9, P(R) =
0, whereas if Vyyy is very large (for example, the mass term
in V{}y is infinite) the boundary conditions become
Dirichlet, ®(R) = 0. The UV brane Lagrangian, in gen-
eral, also includes the Higgs kinetic term (even if it is set to
zero at tree level it will be induced by loops) and higher-
derivative local terms, but these are not important for the
following discussion.

The 5D setup we have sketched above is dual to a 4D
strongly coupled sector with a global SU(2); X SU(2)g X
U(l)y symmetry, whose SU(2); X U(1)y subgroup is
weakly gauged by fundamental electroweak gauge fields.
The bulk Higgs field is interpreted as a composite scalar
operator emerging from the strongly coupled sector. The
UV boundary condition amounts to mixing the composite
operator with a normal particle Higgs field of mass ~V/{},,.
The limit of the Dirichlet boundary condition corresponds
to decoupling the fundamental Higgs, leaving only the
composite operator.
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B. Continuum vs discretuum

Coming back to 5D, the Higgs vev should satisfy the
equation of motion and boundary conditions

) V(D) . Vyy (D)
6Z(a3azv) - (ls EY = 0, aZU(R) = RT,
lima3(2)d(z) = 0. (2.2)
7—00

The Higgs fluctuations around that background are pa-
rametrized as ®(x, z) — [R™V20(z) + h(x, z)]I. The dy-
namical scalar field /& obeys the equation of motion and
boundary conditions

[a730.(a?d,) — M* + p2lh =0,

N N 2.3
[0, ~ MRl =0, lima*@h(x2) =0,

where M? = azR% and M3, = %

There is a simple method to investigate if an equation of
motion leads to a discrete set of KK modes or to a con-
tinuous spectrum. The trick consists in rewriting the equa-
tion of motion into a form resembling the Schrodinger
equation by defining the “wave function” ¥ = a3/2h.
This leads to the equation

iz 2
(=02 + V)W = p2¥, V=M1 + 3a | 3(a2) .
2a 4a
2.4)

The Schrodinger potential V(z) depends on both the Higgs
potential (via the mass squared term) and the 5D geometry
(via the derivatives of the warp factor). Now, much as in the
textbook quantum mechanics, the Schrodinger potential
could be an infinite well, in which case the spectrum is
discrete, or it could flatten out and allow for a continuum.
The kind of spectrum we encounter depends on the asymp-
totic behavior of V(z) for z — c0. According to this, the
spectrum of the Higgs excitations can be classified into
three families:

(1) Discretuum, that is, a tower of discrete KK modes,
for V(z)|,—..o — 0. The examples are all hard-wall
IR brane scenarios, or the soft-wall scenarios where
the warp factor decays sufficiently fast, a ~ e~ 9",
a>1.

(2) Unparticles without mass gap for V(z)lz_,oo — 0.
The classical example is that with the AdS metric
a(z) = R/z, which is nothing but a RS2 set-up [19].
On the 4D side, the corresponding theory is Georgi’s
original unparticle model [1].

(3) Continuum with mass gap, for V(z)|.—ec — > > 0.
An example [12] is the warp factor a(z) = e %%?/z
with any mass term that vanishes in the IR, leading
to a mass gap u = 3p.

There is a cornucopia of model building based on discret-
uum, and here we are choosing another direction. For
unparticles charged under the SM gauge interactions, the
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lack of a mass gap is at odds with experiment. This brings
us to the third case: in the following we assume that the
Schrodinger potential asymptotes to a constant x> > 0 in
the IR, so that the 5D scalar field h has a continuous
spectrum of excitations. This is the holographic unparticle
Higgs scenario.

C. Propagator

Before proceeding, we need to develop some tools to
tackle a 5D theory with a continuous spectrum. The usual
approach to perturbative computations in 5D theories goes
via the KK expansion, but in the unparticle Higgs scenario
this is not efficient.' Another, less popular approach uses
the formalism of 5D propagators defined in a mixed mo-
mentum/position representation, which we shortly refer to
as p/z propagators. In general, the p/z propagator
P(p? z,7') describes the propagation of the entire KK
tower of excitations carrying 4D momentum p between
the two points z and 7’ in the extra dimension. It can be
calculated by Fourier transforming the 4D coordinates in
the 5D action, and inverting the kinetic term. This ap-
proach works in the same manner in the unparticle case.
An important feature of the propagator is that its analytic
structure encodes the entire information about the spec-
trum. In particular, the usual discrete KK resonances cor-
respond to poles in the propagator, while the continuum
shows up as a discontinuity of its imaginary part across the
real positive p? axis.

The unparticle Higgs p/z propagator satisfies the equa-
tion

[a3(2)0.(a*(2)9.) — M + p*1P(p* 2, 2)
=a(2)8(z = 2), (2.5)

and the UV boundary condition [0, — M3yR1P(p?, z, 7).
It is convenient to formally solve this equation in an
arbitrary background. To this end, we denote the two
independent solutions of the equation of motion (2.3) as
K(z p?), 8(z, p?). The solution K(z, p?) is defined such
that it asymptotes to e~ P for large Euclidean momenta and
is normalized as K(R, p?) = 1. S(R, p?) is another inde-
pendent solution, and it is convenient to choose it such that
S(R, p?) =0, §'(R, p*>) = 1. In that notation, the unpar-
ticle Higgs propagator for z < 7z’ can be written as

_ K@ p)K(E, p?)

RII(p?)
[(p?) = R'R'(R, p?) — M}y,

P(p? 2, 7) — 8(z, pPHK(Z, p?),

(2.6)

Note that the propagator naturally splits into a ““boundary”
part P®) = R(z, p)K(Z/, p*)/RII, and a “Dirichlet” part
PP = —8(z, p>)K(Z, p?), which vanishes on the UV

1Although one could introduce an IR regulator brane to
proceed in the usual way, and remove the regulator at the end
of the calculation.
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boundary. The boundary-to-boundary propagator is given
by P(p?, R, R) = 1/RII(p?). For reasons that will become
clear in a second, we refer to II(p?) as the kinetic function.

D. Effective action

There is a straight path from the p/z propagators to the
boundary effective action. We define the low-energy vari-
able ii(p) = R'2h(p, R), where h(p, z) is the Fourier trans-
form of ﬁ(x, z) with respect to 4D coordinates. As usual,
the quadratic part of the tree-level effective action in
momentum space is given by the inverse of the UV-bound-
ary-to-boundary propagator

1 d*p - N _
Seft = 3 fﬁ h(=p)IL(p*)h(p) + .... (2.7)

The kinetic function I1 in 5D warped models is nonlocal,
and has in general a nontrivial analytic structure in the
complex p? plane. In the soft-wall unparticle scenario,
I1(p?) has a branch cut for p?> > u2. Thus the effective
action is an unparticle Higgs-type action. It is approxi-
mately conformal in the UV if the gravitational back-
ground is approximately AdS in the vicinity of the UV
brane. In particular, I1(p?) ~ (12 — p*)2~ considered in
Ref. [6] can be obtained in specific backgrounds, as we will
see in a moment. Note that only the boundary part of the
propagator contributes to the quadratic unparticle Higgs
action. The Dirichlet part is not irrelevant however, as it
affects the quartic and higher vertices of the gauge fields in
the effective action. In fact, we will show that the Dirichlet
part plays the major role in unitarizing WW scattering.
The formal expressions in Egs. (2.6) and (2.7) will allow
us to discuss the unparticle Higgs physics in full generality,
without referring to a specific background. At the same
time, they can also work as a blueprint that we can readily
fill in each case when the solutions K R S to the equations of
motion are explicitly known. Below, we illustrate our
general discussion with a specific example. Ideally, one
would like to start with a bulk Higgs potential, possibly
motivated by string theoretical and/or holographic consid-
erations [20], and solve the coupled scalar + gravity equa-
tions of motion. For the sake of the present discussions, we
will be satisfied with an ad hoc example where the warp
factor and the mass terms in the equations of motion are
fixed by a simple ansatz. This is a self-consistent procedure
as long as we neglect the gravitational degrees of freedom.

E. Example

‘We now present an example of 5D background that links
our holographic approach to the 4D construction of
Stancato and Terning. We take the warp factor a(z) =

§e*2p(Z*R) and assume pR < 1. Thus, the warp factor

*This is just the usual RS hierarchy, which should be justified
in the context of a complete scalar-gravity action.
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interpolates between AdS spacetime for z << 1/p and the
soft-wall IR cutoff at z ~ 1/p, producing a continuum
spectrum with a mass gap u = 3p. We choose the bulk
Higgs potential V() = )(l(z)(m(zl, — x2(2))$?/2, where
myR* = v> — 4, and the z-dependent functions y; =
e*@R and y, = 9pz/R? originate from some “dila-
tonic” vevs.’ With this potential the equations of motion
can be solved in terms of Bessel functions. The vacuum
equation (2.2) for the bulk Higgs vev is solved by

Z'2K,(1z)

5(2) = voa~¥2(g) — B
R'2K,(uR)

(2.8)

and the constant of integration v, is fixed by the UV
boundary condition 9,0(R) = RV{;,(D). We choose the
boundary Higgs potential as in the SM: Vyy =
miy0?/2 + Agy0*/4. Then the UV boundary conditions
are solved by

2—v

Ky, (uR)
/\UVU(Z) = 7R2 -

K,(uR) ) 29)

— m%v +%(1

or by vy = 0. If the right-hand side of Eq. (2.9) is positive,
then v} > 0 and the electroweak symmetry is broken. Note
that m$,, < 0 is not a necessary condition to trigger elec-
troweak symmetry breaking.

Next, the bulk Higgs mass term is M>(z) = % - 97f’,
which leads to the following solutions to the Higgs equa-

tion of motion (2.3):
S(z, p*) = Ra=3(2)(z/R)"/?
(KB = PPRILG K — p2)

— 1,(4u? = PRIK,(u? - p*2)]

K,Wp* — p*2)
K,(Vu* = p’R)
Inserting these solutions into Eq. (2.6), we obtain the

unparticle Higgs propagator. The kinetic function is given
by

(2.10)

K(z p?) = a32(2)(z/R)"?

3This peculiar choice is motivated by the fact that it links
directly to the unparticle Higgs action of Ref. [6]. We could also
use a simpler dilaton background with y, = 0, in which case we
can still solve the equations of motion in terms of the hyper-
geometric functions, and the boundary unparticle Higgs action
would contain additional nonanalytic terms behaving as
w/v/—p? for momenta above the mass gap. For a simple
Higgs mass term corresponding to y; = 1, y, =0 we were
not able to solve the equations of motion analytically. In any
of these two cases, the solutions near the UV boundary would be
the same as in our example, and thus the effective unparticle
Higgs action would also be the same for | — p?| > u2.
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f1(p?) = uK_,(uR) Vu? = p’K,_, (W u? — p°R)
RK,(uR) RK,(Wu? = p*R)
- Mﬁh’

(2.11)

where M2, = 2Ayyv3. It is nonanalytic in p* and picks
up an imaginary for p?> > u?, so the boundary effective
action (2.7) is of the unparticle type with mass gap w.
Apart from the mass gap, the unparticle Higgs of Eq. (2.11)
is characterized by another mass scale M, that is an
analogue of a mass term, in the sense that ﬁ(O) ~ —Mﬁh.
This role of My, is most transparent for |p| much smaller
than the mass gap: in that case Eq. (2.11) reduces to a
normal particle action, T1(p?) = Zp? — M2, with Z =
[K;_,(uR)K,,,(uR)/K,(uR)*> — 1]/2. The spectral den-
sity of the propagator is positive definite (no ghosts) and, as
long as M%, = 0, it has support in the positive real axis (no
tachyons). It is clear that we need M2, = 0 to avoid insta-
bilities, but otherwise we do not find any consistency
constraints; in particular My, can be much larger than the
mass gap.

When the parameter » is in the range 0 < v <1, the
quadratic boundary effective action at low energies reduces
to the unparticle Higgs free action of Ref. [6]. Indeed, for
|pIR < 1 the kinetic function can be approximated as

[I(p?) =~ R*2C(w)[u? — (u* — p?)” — m*], (2.12)

where  C(v) =2'"2T(1 — »)/T'(»), and
M? R*72"/C(v). After rescaling of i by R™*1/2/C(v)!/?
this is precisely the unparticle Higgs of Ref. [6] with a
scaling dimension d = 2 — v,* and the UV scale A iden-
tified with R™!.

Since Eq. (2.11) is valid for arbitrary » = 0, we do not
have to restrict our analysis to 0 < » < 1. In a sense, Eq.
(2.11) provides a ‘“‘continuation” of the unparticle Higgs
action beyond the open interval 1 < d < 2. In particular,
even though the limit » — 0 of Eq. (2.12) is singular, the
same limit in Eq. (2.11) is perfectly smooth. For |p|R < 1
the » = 0 case can be approximated as

m2V —

1

1
R2log(e’uZ — p?R/2) R*log(e” uR/2)
— M2, (2.13)

(p?) =

Similarly, one should note that the limit » = 1 in the full
holographic expression differs from the usual d = 1 parti-
cle by the presence of nonanalytic logarithmic corrections:

“More precisely, the AdS/CFT interpretation in terms of a dual
operator of dimension d = 2 — v is appropriate once the mass m
has been tuned to small values, so that the unparticle Higgs
propagator is approximately IT1~" ~ (— p2)~. If m is very large,
one would rather expand the propagator as II"" ~ —1/m~2" +
(—p*)?”/m~* and conclude that we deal with a dual operator of
dimension d = 2 + v plus a contact term. This is related to the
usual ambiguity in the AdS/CFT dictionary [21].
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1(p?) = (u? — p?)log(e”y/u? — p>R/2)

— prlog(e” uR/2) — M2, (2.14)
For 1 < v <2 the kinetic function in the same regime is

approximated by

. 1
H(p?) = - p* + R 2CWI[p* = (u? = p?)" = m*]
(2.15)

This time, the leading term is the usual particle kinetic
term, while the nonanalytic terms are suppressed by
(IpIR)**~% and therefore they are subleading. This illus-
trates our previous comments that in the 5D approach
consistency comes almost for free. The 5D model
“knows” that the unparticle Higgs action with d <1 can-
not be consistent, and thus it “remembers” to include a
healthy analytic kinetic term in the effective action that
dominates over the nonanalytic one.’ As a result, the case
with v >1 is, in practice, not much different from an
ordinary particle Higgs. Going to » > 2, higher integer
powers of p? appear in the expansion, which are also
dominant over the nonanalytic terms but suppressed with
respect to the p? term.

Finally, let us discuss the fine-tuning of the mass term in
the unparticle Higgs action. From naturalness arguments
one would expect myy ~ vy ~ R™!, which leads to M, ~
m ~ R™!'. For phenomenological reasons (and also for
perturbativity of the WW scattering, as we will see later),
m is required to be not much larger than the electroweak
scale. This can be obtained by fine-tuning the brane mass
term mgy,. The degree of this fine-tuning depends on the
parameter v and becomes less severe as we approach v =
0. In the limit » = 0, one needs very mild fine-tuning,
M2 R* ~ 1/ log(R). However, one should not fire cham-
pagne corks yet. As we will discuss later in Sec. IV, fitting
the W boson mass to the observed value requires fine-
tuning that actually becomes worse in the limit » — 0.

III. VECTOR CONTINUUM

In the 5D setting there is a crucial difference compared
to the 4D approach of Ref. [6]. The unparticle Higgs born
from a 5D bulk must always be accompanied by 5D gauge
bosons, which give rise not only to the SM gauge bosons,
but also to either a discretuum or a continuum of vector
excitations. Which of these two possibilities arises is de-
termined by the same method we discussed before in the
context of the unparticle Higgs, that is by the Schrodinger
potential for the gauge bosons. The potential can be found
by transforming the gauge boson equations of motion into

*In order to make the nonanalytic terms dominant one would
have to add a ghostlike kinetic term in the UV brane Higgs
action, with a coefficient tuned to cancel the p2 term in Eq.
(2.15).
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the Schrodinger form, and it is different for the vector and
axial combinations, +2Vy = (Ly + Ry), 24y =
(Ly — Ryy), since only the latter couples to the bulk
Higgs vev. We easily find [3]

al/ (al)2 ) a// (a/)2
Viector = 2a - 4a2 Vaxia = M~ + 2% - 42
3.1

where M?(z) = gZa’®?/2. The potential for U(1)y excita-
tions is the same as for the vector ones.

The vector Schrodinger potential depends only on the
warp factor. From that we conclude that in the 5D unpar-
ticle Higgs scenario the warp factor should decay precisely
as e~ 2P% (up to power-law terms in z) in the far IR. Indeed if
it decayed faster than the exponential, it would affect the
unparticle Higgs Schrodinger potential too and prevent the
existence of the unparticle Higgs continuum (except in the
extremely fine-tuned situation where a negative growing
mass function M? precisely cancels the growing terms
generated by the warp factor in the Schrodinger potential).
If, on the other hand, it decayed slower than the exponen-
tial, then the photon would not be separated by a mass gap
from the continuum. Thus, in 5D the vector continuum with
a mass gap p is typically present when the unparticle
Higgs continuum is present. Recall that the unparticle

Higgs mass gap is u = /(3p) + M?(c0). If M?*(z) van-

ishes in IR, the unparticle Higgs continuum starts at 3p,
that is 3 times above the vector continuum. The situation
where the unparticle Higgs mass gap is smaller than the
vector mass gap is not impossible, but it requires some
engineering. Namely, the mass squared should asymptote
to a negative value satisfying —9p2 < M?*(00) < —8p2.
Clearly, the more generic situation is the one where the
vector continuum is encountered first. This is a very inter-
esting consequence of the holographic unparticle Higgs
scenario.

Since we have to deal with the continuum spectrum of
gauge bosons, it is convenient to introduce the correspond-
ing p/z propagators. They can be computed by the same
token as the unparticle Higgs propagator, that is by invert-
ing the quadratic terms in the 5D action. The additional
complication is that we deal with vector and axial excita-
tions that follow different equations of motion

[a™'9.(ad.) + p*1fy =0, (3.2)

[a™'9.(ad,) + p* = M*(D)]fa = O,
and the two are mixed by the UV boundary conditions
a.Lfv(R) + fa(R)] = 0, Jv(R) = fa(R) =0. (3.4)

Hence, the propagator is a 2 X 2 matrix in the (V, A) space.
As before, it is convenient to write the propagators in terms
of the formal solutions to the equation of motion. We
define K,,(z, p?) as the axial equation of motion (3.3)

(3.3)
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that is regular in the IR (it decays exponentially for large
Euclidean momenta) and normalized as K, (R, p*) = 1.
Similarly, Ky(z, p?) is the IR regular solution to the vector
equation (3.3). Sy(z, p?) (Sy(z, p?)) is another independent
solution to the vector (axial) equation of motion with the
UV boundary conditions S.(R, p?) = 0, S'(R, p?) = 1. We
use the Feynman gauge, in which the propagators are
diagonal in the Lorentz indices, P,, = n,,P. After
some algebra we find, for z < 7/,

_ Ko(z pP)Ko(Z, p*)

Pyy(p*z.2)) () = So(z, pH)Ko(2, p?),
v
Ky (z, pPHKy (2, p?)
Pu(prz ) =" 11_7[(;21) P o Sy Py, p?),
14
Ko(z, p)Ky (2, p?)
Pya(p?z) =" [ (;”2) ;
14

Iy (p?) = Ky (R, p*) + Ky(R, p?). (3.5)
Again, the propagators naturally split into boundary and
Dirichlet parts (the VA propagator has only the boundary
part because the vectors and axials only mix through the
UV boundary conditions). Each propagator has a pole for
p? = m},, defined by the lowest zero of I1,,(p?). It also has
other singularities on the positive p? axis corresponding to
the KK excitations. From the previous discussion we know
that it has a branch cut (signaling the presence of a con-
tinuum) whenever the unparticle Higgs propagator has a
branch cut.

With the propagators at hand we construct the boundary
effective action. We define the low-energy SU(2) gauge
bosons as L, (p) = L'/2L,,(p, R). Integrating out the bulk
at tree level, we get the quadratic effective action

1 d*p -

=5 [ L) 5 ) [ + .
(3.6)

In general, this effective action includes the effects of
integrating out the vector continuum: the kinetic function
picks up an imaginary part for p? larger than the mass gap
p?. If p is much larger then the electroweak scale (as we
discussed, this not generic in 5D if the unparticle Higgs
mass gap is at weak scale) we can neglect the effects of the
continuum. In practice, this is obtained by projecting all
gauge propagators to the zero-mode propagator
P(p? 2, 2) = 1/2Lp?).

The dots in Eq. (3.6) stand for an infinite number of
interaction terms, which follow from the interaction verti-
ces in the 5D theory. They can be obtained in the following
way: propagate the fields from the boundary to the bulk,
insert the 5D vertices, connect them with propagators, and
integrate over all possible vertex positions. For instance,
two axial gauge bosons interact with one 5D Higgs field via
(¢2/2)R'2a3D h A%,. This leads to the following interac-
tion term between two gauge bosons and one unparticle
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Higgs in the effective theory:
d*q, d*q, - _ _
ShV-2=c/—1—2L L (q)h(=q, — q2).
eff (277_)4 (277_)4 M(Ql) ,u,(q2) ( q1 q2)
3.7

The coefficient of this vertex can be computed from the
integral

PVA (CI%; R, Z) PVA (C]%’ R: Z)
Pya(g?, R, R) Pya(¢3 R R)

L
=& [ dza¥(2)0(2)

P(p* R, z)

PUOARR) 5:8)

In principle, given a 5D background we can solve the
equations of motion, find the propagators and compute
the overlap integrals to find the interaction terms in the
4D boundary effective theory. Performing this exercise in
the example defined in Eq. (2.10) we would find that the
hL? vertex matches the one in Ref. [6] if we project the
vector propagators inside the integral to the zero-mode
propagators, that is, if we neglect the effects of the vector
continuum. Similarly, the nonlocal quartic vertex in the
boundary effective action contains in this example the
modified four-W vertex of Ref. [6].

IV. WW SCATTERING

We move to the focus point of this paper, which is the
mechanism by which the holographic unparticle Higgs
ensures unitarity of WW scattering. One could perform
this calculation using the unparticle Higgs boundary effec-
tive action, but we find it more convenient to take advan-
tage of the local formulation and compute the amplitude
directly in 5D. To tackle this question we will use the
equivalence theorem, which says that the scattering of
longitudinally polarized vector bosons is equivalent, at
leading order in E?/v?, to the scattering of the Goldstone
bosons eaten by the gauge bosons. In the SM, the eaten
Goldstone bosons are the components of the Higgs doublet
corresponding to SU(2) rotations of the vacuum state. In
5D theories things are a bit more complicated [22] because
the Goldstone bosons are distributed between the bulk
Higgs field @ and the 5th component V¢, A? of the vector
and axial gauge fields. We first explain how to extract the
couplings of the eaten Goldstone boson in 5D theories, and
then compute the longitudinal WW scattering amplitude.
We use our general results to compute the amplitude in the
example introduced earlier in Sec. I E.

A. Goldstones

The Goldstone components in the bulk Higgs ® are
made explicit in the nonlinear parametrization

®(x, z) = (R™20(2) + h(x, 7))e'C" 7.

In fact, G*, V¢, A¢ host the entire tower of Goldstones that

.1
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are eaten by the KK excitations of the gauge fields.® In
order to extract the Goldstones eaten by the W and Z we
have to perform a KK expansion, much as for the gauge
bosons.

To find the profile of an eaten Goldstone, the first step is
to find the profile of the corresponding gauge boson. In the
zero hypercharge approximation that we are assuming
here, the W and Z bosons have the same profile and the
same mass. They are embedded in both the vector and the
axial component of the 5D gauge fields, V¢ (x,z) —
Wa (x)fy(z), A% (x, z) = Wi (x)f4(z). The profiles satisfy
the equations of motion (3.2) and (3.3) with p?> = m3, and
the UV boundary conditions (3.4). The “IR boundary
conditions” in the soft-wall case amount to choosing the
IR regular solutions (the ones denoted by K.(z, p?)) of the
differential equations (3.2) and (3.3). Hence, the profiles
can be written as
fa(@) = aKy(z, my),

fv(2) = aKy(z, m}), (4.2)

where « is fixed by the normalization condition [ a(f3 +
f3) = 1. The relation between my, and the 5D parameters
is determined by the UV boundary conditions, which lead
to the quantization condition ITy(m3,) = K},(R, m3,) +
K}\(R, m},) = 0.

Now, given the profiles of the W and Z gauge bosons, the
corresponding Goldstones G“(x) are embedded into the 5D
fields as

VE(x, 2) = my' 9, fy(2)G(x),
AL(x, 2) = my' 9 fa(2) G (x),
G(x, 2) — my' VR/28.f4(2)G*(x).

(4.3)

This embedding ensures (1) that the kinetic terms for the
Goldstones combine with the W, Z mass terms into % X
(0,G* — myW4)?%, (2) that G*(x) does not mix with the
higher KK excitations, and (3) that there is no mass term
for G%(x). These three properties define G%(x) as the
Goldstone boson eaten by Wi,.

B. Amplitude

Having obtained the Goldstone profiles, we can find the
vertices relevant for WW scattering. This is done by in-
serting the Goldstone profiles (4.3) into the following SD
interactions terms:

(1) Goldstone self-coupling

@0 Gy GPGAGP — 9, GY9, GGG
6R (9, © w © ),

(4.4)

“They also host physical pseudoscalars which are not relevant
for WW scattering, and we can ignore them here.
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(i1) Higgs vertex

3;\

a’v »

WhéﬂG"aMG“, 4.5)
(ii1) Vector vertex
R1/2 ;
- % €< (9, VaVE + 0, ASA

242 b

+ a*9°9,G'G")Vy,. (4.6)

We now have everything we need to compute the longi-
tudinal WW scattering amplitude. Consider the Goldstone
scattering process G*G? — G°G“. The SU(2) structure of
this amplitude can be factored out,

Mab—vcd = 6ab Sch(S, A M) + aucahdM(tJ u, S)

+ 04a0pcM(u, s, 1), 4.7)

so that the amplitude (in the zero hypercharge limit) is
unambiguously described by one function M(s, ¢, u) of the
Mandelstam kinematical variables. The amplitude gets
contributions from the Goldstone quartic self-interactions,
the unparticle Higgs exchange, and the vector boson ex-
change: M(s, t,u) = Mg + M;, + M. Propagation of the
unparticle Higgs and the vector bosons between the verti-
ces is captured by the corresponding p/z propagators, and
we have to integrate over all possible positions of each
vertex in the Sth dimension. We find

2R 4m> o
Mg(s) = ;n—%v(s - ?W) [R a2,

2 (o)
M) = = 256 = 2 [ 08,(2)

X P(s, z, 7)),

2 o0
My(s, t,u) = — ;7;15 ((S — u) /; dzd7 ¢ (2) b, (2)
1%
X Pyy(t,z,7') + (s — 1) [R dzdz' ¢ 4(z)
X ¢o(2)Pyy(u, 2, z’)), (4.8)
where

bu(2) = @®M(2)(fa)?,
bo(2) = al(9.fv)* + (9.f2)* + M*(2)(f2)°]

This is the complete tree-level scattering amplitude given
in terms of 5D input parameters. Once the 5D background
is chosen, we can always use Eq. (4.8) to calculate (perhaps
numerically) the longitudinal WW scattering amplitude. In
the following, we will analytically extract some general
physical properties of the amplitude.
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C. Discussion

Let us first take a look at the low-energy limit of these
amplitudes. More precisely, we consider the scattering
energy E above the W mass but smaller than the unparticle
Higgs (u) and the vector (p) mass gaps. In that regime, the
amplitude should grow quadratically with energy. In fact,
the low-energy theorems for WW scattering [23] and the
custodial symmetry fix the low-energy behavior of the
amplitude to be M(s, t, u) = sg? /4m?,, up to subleading
corrections suppressed by the mass gap. One obvious con-
tribution of this type is that of the Goldstone self-coupling
amplitude

2

gL [°° 20\ £4
M, =~ M .
o) = s 5L [ amrary

(4.9

This is not, in general, equal to sg7 /4m%, so that there
must be other O(s) contributions to satisfy the low-energy
theorems. One can also see that the unparticle Higgs
exchange is not O(s) but rather of order s?/mj, u? at low
energies. However, a not-so-obvious O(s) contribution is
included in the vector exchange amplitude M. At small
p?, the solutions to the vector equation of motion (3.2) are
approximately momentum independent, K,(z, p?) = 1,
So(z, p*) = [%a™!, so that the Dirichlet part of the vector
propagator is P(VDV) ~ [%a~!. This leads to an O(s) con-
tribution given by

3gZR [ / :
MP(s) = s g4 [ dz' ¢ ,(2) fz dz,(z) [Za‘l,
w JR R R

m

s << pl 4.10)
This contribution can be thought of as that of an effective
four-W vertex obtained after integrating out the vector
continuum. Using the equations of motion and integrating
by parts it can proven that M; and M %,D) at low energies
combine to the total amplitude of the form required by the
low-energy theorems.

There is one important class of 5D models where M
saturates the low-energy theorem and the vector contribu-
tion is subleading. This is the case when electroweak
breaking in the 5D bulk is perturbative. That is to say,
the mass term M?(z) in the axial equations of motion can
be treated as a perturbation, and, in consequence, the IR
regular solution at small p?> can be expanded as
Ky(z p?) =1+ [ra ! [Ralp? — M*(Z")] + O(p*, M*).
This leads to the approximate expressions for the W profile
and mass

1 ) 1 f o0 5
7) = ——, my, =~ — a(z)M-(z2), 4.11
which trivially give Mg (s) = sg? /4m3, + O(m,). The
vector contribution is expected to become relevant when-

ever M? is in some sense large, for example, if it grows in
the IR such that [ aM? diverges.
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Let us now turn to the question how the O(s) contribu-
tion is canceled above the unparticle Higgs and the vector
mass gap. Recall that in the SM the Higgs exchange
4‘;% S_"ini . For s >m3 this cuts
off the O(s) growth of the total amplitude: in short, the
SM Higgs unitarizes WW scattering. In the present case,
unitarization is performed together by the unparticle Higgs
and the vector KK excitations. It is fairly easy to prove that,
for asymptotically UV momenta, the O(s) term cancels in
the total scattering amplitude. This follows from the defi-
nition of the p/z propagators and the fact that at large p? the
Schrodinger equation is approximately solved by the sim-
ple exponentials e*'P%. This leads to an asymptotic large p>
formula for the propagators,

diagram reads M, =~ —

1
Py(p 2 7) = —a7(2)8(z — 7)),
lj (4.12)
Pyy(p? 2 2) = ?a‘l(z)ﬁ(z — 7).

Plugging this into Eq. (4.8) we see that the unparticle Higgs
exchange M, exactly cancels the O(s) terms from the
Goldstone self-coupling amplitude M;. On the other
hand, the vector exchange amplitude My at high energies
(unlike at low energies) does not contribute any O(s) term.
These conclusions are valid for an arbitrary 5D
background.

‘We can divide the 5D scenario into two distinct classes,
depending whether the unparticle Higgs continuum or the
vector continuum gives the dominant contribution to uni-
tarize WW scattering. Let us define the quantity

2L feo
aH/L =m—2[R aMij, (413)

w

which is the leading Goldstone self-coupling amplitude in
the 5D model divided by the low-energy amplitude
sg% /4m3,. We can distinguish two situations

(i) ay/. = 1.Inthat case it is the scalar continuum that
provides the dominant contribution to tame the O(s)
growth of the low-energy WW scattering amplitude.
As we discussed, ay;;, = 1 whenever electroweak
breaking in 5D can be treated perturbatively. This is
a generalization of the SM Higgs mechanism to the
continuum case, for which Ref. [6] coined the name
the unparticle Higgs scenario.

(ii) ap/, << 1. Then it is rather the vector continuum
who is responsible for unitarizing WW scattering.
Since in this case the unparticle Higgs does not
couple significantly to the electroweak gauge bo-
sons, this is clearly a version of Higgsless theories
[15], where the KK modes of electroweak gauge
bosons are a continuum rather than a set of discrete
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resonances. Consequently, this case should be re-
ferred to as the unparticle Higgsless scenario.

Of course, the fact that O(s) terms in the longitudinal
WW scattering always cancel asymptotically does not yet
guarantee perturbative unitarity of the 5D theory. For
example, the continuum may kick in too late to save
unitarity (much like the SM Higgs much heavier 1 TeV is
not consistent with unitarity). Less trivially, the UV limits
of the unparticle Higgs and the vector propagators may
contain nonanalytic powers of momenta that, although
subleading with respect to the 8(z — z’)/p?, may lead to
contributions to WW scattering that grow in UV
Cancellation of these nonanalytic terms should be checked
separately. The above issues are clearly model dependent
and must be studied for each specific 5D background.

Finally, one should remember that tree-level perturba-
tivity in 5D theories is always lost at some energy scale.
This follows from the fact that the gauge and the Yukawa
couplings are dimensionful. For example, a tree-level am-
plitude for a process involving gauge fields and sources
localized near z = z, in the 5th dimension involves the
gauge coupling g2R and the propagator P(p?, z,, z,). From
dimensional analysis and from the UV behavior of the
propagator (4.12) we find that the amplitude for such a
process should be proportional to g2ERa™'(z,). This be-
comes nonperturbative at the energy scale E = A(z,) ~
1672g;%a(z,)R™" and, in general, A(z,) can be smaller
then the UV scale R~ '. Therefore, 5D gauge theories must
be treated as effective theories with a cutoff A(z,) that is
position dependent [24]. In particular, in the far IR of soft-
wall models the cutoff scale becomes smaller than the mass
gap. This does not mean, however, that the theory does not
make sense, but rather that there is a limited set of observ-
ables that can be meaningfully computed within the 5D
framework. For example, computing the effective four-
fermion operator induced by the exchange of the vector
continuum for fermions localized in far IR would be mean-
ingless. On the other hand, for processes localized near the
UV brane, z, ~ R, the amplitude remains calculable up to
energies parametrically larger than the mass gap.

D. Example

We close this general discussion with a sample compu-
tation based on the example introduced earlier in Sec. I E.
In that example we were able to solve the equations of
motion in terms of the Bessel functions. For 0 < v < 1 and
|p?|R* < 1, the boundary effective action turned out to of
the unparticle Higgs type; see Eq. (2.12). The vacuum
equation for the bulk Higgs vev #(z) could be solved by
b ~ voa 3?7'2K,(uz); see Eq. (2.8). Note that [aM? is
finite because the Bessel function K, is exponentially
damped at large z. In the following, we assume that v is
small enough that we can treat M>(z) perturbatively. This
implies that we can express the electroweak scale v in
terms of the 5D parameters as
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v =R [T

_ U_(Z)[K1+V(ILLR)K1—V(MR) _ 1]
2 K,(uR)* '

(4.14)

which leads to v ~ v, for » > 1 and v ~ vo(uR)” "' for
0 < v < 1. From Eq. (2.9), the natural value of vgis ~R™!,
which is unacceptable. For » > 1 this leads to the usual
hierarchy problem: mf in the brane Lagrangian has to be
fine-tuned in order to lower the W mass from the natural
UV scale R™! down to the electroweak scale. For » < 1 the
electroweak scale v is enhanced with respect to vy, so that
we need even more fine-tuning than in the SM. So, our
conclusion is that approaching » — 0, that is, for the
unparticle Higgs dimension approaching d = 2, we lose
rather than gain on naturalness. On the other hand, once we
tune v ~ wu, the mass term in the unparticle Higgs action
given by m” ~ v,R'~” becomes suppressed with respect to
the mass gap in the limit v — 0.

In the perturbative case, @y, = 1 and we can ignore the
contribution of the vector continuum to the WW scattering
amplitude. It turns out that in this example we are able to
analytically perform the integrals over z in the unparticle
Higgs exchange amplitude. It is illuminating to split that
amplitude into the boundary and the Dirichlet parts, cor-
responding to the analogous splitting of the unparticle
Higgs propagator. Keeping the leading term in m%,, the
result is given by

81
Mg(s) = :
G(S) S4m%‘/
2 2 [T 2 72
MP(s) = — S Yo L)+ My ] (4.15)

dm3, v? I1(s)
2 2
8L + 8L

(D)
MP(s) ~ —s 5L
w ) S4m%4, 4m3,

2
Vi A
U—g[H(s) + M2 1.

Note that the O(s) term from the Goldstone self-coupling
amplitude M is exactly canceled by the Dirichlet part of
the unparticle Higgs exchange amplitude, in agreement
with our general arguments. There are other “dangerous”
terms as the kinetic function f[(s) grows at large s; in
particular, M;B) (s) may grow with a nonanalytic power of
s. [t is clear, however, that the ““bad’ UV behavior cancels
out in the total amplitude: as soon as f[(s) > Mﬁh, the
growth of MELB ) is canceled by the second term in MELD ),
Let us see this explicitly for 0 < » < 1 and |s|R?> < 1, in
which case the total amplitude can be approximated as

2 2—2v
M(s, tn) = 25 B (2 = )7 = ]
w
(MZ _ S)V _ MZV
8 {(,u2 — 8 =t m 1} + Olmy)
+ O(R?). (4.16)
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The first term in the curly brackets comes from the bound-
ary part, the second from the Dirichlet part. Each of them
separately grows as (—s)” above the mass gap, but the
growing terms perfectly cancel once s > m?. These two
terms are exactly the nonanalytic contributions found in
Ref. [6]: the boundary part corresponds to the unparticle
Higgs exchange amplitude in the 4D model, while the
Dirichlet part corresponds to the part coming from the
modified four-W vertex in the 4D model. This demon-
strates that the 4D construction of Ref. [6] can be recovered
as a special case of the holographic approach.

There are a few more things worth noting about the
amplitude (4.16). First, for s << u? we recover the usual
SM amplitude with the Higgs mass squared replaced by
m?” u?~2" /v. Thus, if the mass gap is much larger than the
electroweak scale, the unparticle Higgs behaves like a
particle Higgs, for all practical purposes. Next, the cancel-
lation of the nonanalytic growing terms would never occur
in the limit m — oo. This is the case of the Dirichlet
boundary conditions on the UV brane, which can be inter-
preted as decoupling the fundamental Higgs living on the
boundary and leaving only the composite Higgs from the
bulk. Finally, for m — 0 the total amplitude vanishes at the
leading order in m3,, due to our choice of a quadratic bulk
potential (which is dual to local scalar self-interactions).
The reason is that, in this limit, apart from the unparticle
Higgs continuum the propagator includes a zero-mode
Higgs with a flat profile. Then the unparticle Higgs con-
tinuum, being orthogonal to the Higgs zero-mode, is also
orthogonal to the SM W and Z bosons. Thus, the triple
vertex of the Higgs continuum with two W bosons van-
ishes, and only the zero-mode Higgs contributes to WW
scattering. The cancellation of the growing pieces for finite
m can be understood from the m — 0 limit, and the fact
that m is a dimensionful parameter.

V. CONCLUSIONS

In summary, we have discussed the 5D approach to the
unparticle Higgs. We reviewed the mechanism to generate
unparticle-type spectra in the context of soft-wall warped
models. We developed quite powerful techniques to study
this class of theories: the mixed momentum/position space
propagators defined in arbitrary soft-wall backgrounds,
and the 5D version of the Goldstone boson equivalence
theorem. We also made explicit the link to the 4D unpar-
ticle Higgs construction via the boundary effective action.

The advantage of the 5D approach is that it allows us to
construct, almost effortlessly, unparticle scenarios that are
automatically gauge invariant and fully consistent. The
cancellations leading to a unitary WW scattering amplitude
are particularly transparent. Furthermore, the SD parame-
ter space uncovers a broader spectrum of phenomenologi-
cal possibilities. The unparticle Higgs appears alongside
with another continuum consisting of KK excitations of the
SM gauge fields, and the mass gap of this vector continuum
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is typically smaller than that of the unparticle Higgs. In
some cases, the vector continuum can take over the leading
role in unitarizing WW scattering, leading to a new class of
models that we called unparticle Higgsless. In this paper,
we did not give a 5D background leading to the Unhiggless
case, but this class certainly deserves a dedicated study.
The fact that the unparticle Higgs can unitarize WW
scattering does not put it on equal footing with the SM
Higgs yet. One should not forget that the latter also pro-
vides loop contributions to electroweak precision observ-
ables that, as long as the SM Higgs is not much heavier
than 115 GeV, fit very well into precision measurements
performed at LEP and the Tevatron. The real challenge is

PHYSICAL REVIEW D 79, 035005 (2009)

to find an alternative scenario that would effectively do
both: unitarize WW scattering and naturally fit the elec-
troweak precision observables. This issue will be addressed
in a separate publication.
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