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In the minimal supersymmetric standard model (the MSSM), the electroweak symmetry is restored as

supersymmetry-breaking terms are turned off. We describe a generic extension of the MSSM where the

electroweak symmetry is broken in the supersymmetric limit. We call this limit the ‘‘sEWSB’’ phase,

short for supersymmetric electroweak symmetry breaking. We define this phase in an effective field theory

that only contains the MSSM degrees of freedom. The sEWSB vacua naturally have an inverted scalar

spectrum, where the heaviest CP-even Higgs state has standard model-like couplings to the massive

vector bosons; experimental constraints in the scalar Higgs sector are more easily satisfied than in the

MSSM.
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I. INTRODUCTION

The minimal supersymmetric extension of the standard
model (MSSM) provides a framework for understanding
the origin of electroweak symmetry breaking (EWSB). The
Higgs fields will acquire vacuum expectation values
(VEV’s) only if their mass parameters live in a window
that produces a nontrivial but stable global minimum in the
Higgs potential. This window always requires supersym-
metry (SUSY) breaking and may occur radiatively [1].

Of the two neutral CP-even states in the MSSM, typi-
cally the lightest CP-even state couples to the massive W
and Z vector bosons like the standard model Higgs (is
‘‘SM-like’’). At tree level, this state has a mass lighter
than mZ because the Higgs potential is stabilized by
Kähler terms proportional to the electroweak (EW) gauge
couplings. As is well known, large SUSY-breaking effects
in the stop-top sector can allow this SM-like Higgs state to
escape LEP-II bounds, but only at the cost of tuning the
parameters of the theory.

However, if EWSB occurs instead in the supersymmet-
ric limit, it is the non-SM-like Higgs CP-even state whose
mass is tied to mZ, not the SM-like Higgs. The SM-like
Higgs state is part of a chiral supermultiplet whose mass is
not related to the electroweak gauge couplings or to mZ at
tree level. We call any vacuum in which the electroweak
symmetry remains broken as SUSY breaking is turned off a
‘‘supersymmetric electroweak symmetry breaking’’ vac-
uum (sEWSB vacuum). Considering again the LEP-II
bounds, the most interesting feature of sEWSB vacua is
that the CP-even scalar spectrum may be inverted com-
pared to the usual spectrum of the MSSM: the heavier
CP-even state, not the lighter, is the SM-like Higgs field. In
the MSSM, it is possible to have viable inverted CP-even
spectra but only with large radiative corrections.

Further, sEWSB will occur with only the mild assump-
tion of a new approximately supersymmetric physics
threshold just above the weak scale that couples to the
MSSM Higgs fields. We can therefore understand sEWSB

most simply by working in an effective theory that only
contains the MSSM degrees of freedom and additional
nonrenormalizable interactions. Focusing on the Higgs
sector of the theory, the most general superpotential that
can arise from integrating out a supersymmetric threshold
at the scale �S is

W ¼ �HuHd þ !1

2�S

ðHuHdÞ2 þ !2

3�3
S

ðHuHdÞ3 þ � � � ;
(1)

where we have suppressed the SUð2ÞL indices andHuHd ¼
Hþ

u H
�
d �H0

uH
0
d. The ellipses represent terms suppressed

by higher powers of the scale �S, and the !i are dimen-
sionless coefficients. Keeping only the first two terms, for
simplicity, we see that the F-flatness conditions are satis-
fied by the origin in field space, and also by a nontrivial
VEV,

hHuHdi ¼ ���S=!1: (2)

Thus, the EW scale may arise as the geometric mean of the
�-term and the scale of some relatively heavy new physics,
and have a purely supersymmetric origin. As we show in
Sec. II B, the spectrum of this vacuum is very simple: most
of the Higgs fields (scalar and fermion components) are
‘‘eaten’’ by the vector superfields and together have masses
equal to mW or mZ. One neutral Higgs superfield remains,
which contains the SM-like Higgs, with mass 2j�j. For
2j�j>mZ, the scalar spectrum is inverted compared to the
decoupling limit of the MSSM: the light CP-even state
with mass mZ is not SM-like, while the heavy CP-even
state is at 2j�j and is SM-like.1

Since we are working in a nonrenormalizable theory, it is
not enough that sEWSB occurs; we require that the effec-

1The requirement that the EFT analysis be reliable (�S some-
what above the EW scale and !1 not extremely large) implies
that the Higgs masses are of order the EW scale. For instance, all
the examples we consider satisfy the general bounds derived in
[2].
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tive field theory (EFT) remain valid in an expansion around
this minimum—all ignored operators beyond the first two
in Eq. (1) should give only small corrections to our analy-
sis. Supersymmetry plays a prominent role in maintaining
the validity of the EFT. Nonrenormalizable operators either
in the Kähler potential or in the superpotential are sup-
pressed by

hHi2
�2

S

� 2

!1

�

�S

; (3)

and can be self-consistently ignored provided � � �S.
SUSY drives this suppression in two ways. First, the sepa-
ration of scales between � and �S is technically natural in
a supersymmetric theory. Second, the sEWSB VEV results
from balancing a dimension-6 term in the scalar potential
against a dimension-4 term, so that hH2i is proportional to
the Higgs quartic times the nonrenormalizable scale,
�2

S=!
2
1. However, holomorphicity and gauge invariance

in the superpotential only allow a quartic term of order
!1�=�S along the Higgs D-flat direction in the scalar
potential. If any larger quartic term were allowed, the
validity of the EFTwould be ruined. Ironically, the absence
of a large quartic term in the Higgs superpotential is
exactly why there is a little hierarchy problem in the
MSSM to begin with.

Given the bounds from direct searches on superpartners,
SUSYmust be broken, and we expect the SUSY limit to be
deformed by soft masses of order the electroweak scale.
We incorporate the effects of SUSY breaking in Sec. III
and show how to consistently identify sEWSB vacua in this
limit. Depending on the parameter choice, the sEWSB
minimum of Eq. (2) may be the only nontrivial minimum
of the theory, or it can be joined by a vacuum which is
continuously connected to the usual EWSB vacuum of the
MSSM in the limit that the nonrenormalizable operators of
Eq. (1) are turned off (MSSM-like vacua). Even with
SUSY breaking turned on, we show in Sec. IV that
sEWSB vacua can share the qualitative features of the
pure SUSY limit: the heavier CP-even state has SM-like
Higgs couplings to massive vector bosons.

One of the main phenomenological tensions in this
vacuum is the forced separation between � and �S. This
ratio should be small, to maintain control of the effective
theory, but there is a tension between making �S large
while keeping the ratio ��S � v2 fixed. The SUSY limit
forces the charginos to have massmW . Pushing these states
above LEP-II bounds requires keeping � as large as pos-
sible when SUSY is broken. In Sec. IV, we show that
charginos and neutralinos near the LEP-II bound are a
fairly generic prediction of sEWSB vacua, and that the
lightest chargino may be lighter than the lightest neutralino
[the gravitino could be the lightest supersymmetric particle
(LSP) in this case]. This next-to-lightest supersymmetric
particle (NLSP) chargino would lead to an enhanced set of
W bosons in cascade decays [3].

In Sec. V we discuss one of the simplest ultraviolet
completions that can lead to sEWSB vacua: adding a
singlet superfield S to the MSSM, with a supersymmetric
mass �S and a trilinear SHuHd coupling. Unlike the next-
to-minimal supersymmetric standard model [4], we do not
explain the origin of the �-term in the MSSM: this UV
theory includes an explicit �HuHd term. It is well known
that the LEP-II limit can also be escaped by integrating out
a singlet superfield in the non-SUSY limit [5]; here we
assume�S is much larger than the scale of SUSY breaking.
The fat Higgs model [6] is another example of a singlet-
extended MSSM theory that exhibits EWSB in the SUSY
limit, but is not described by our EFT since the field S
cannot be decoupled from the spectrum in a supersymmet-
ric limit. The singlet UV completion of our theory belongs
to the more general analyses of theories with singlet super-
fields and the coupling �SHuHd [7].
An EFT approach to parametrize extensions to the

MSSM up to terms of OðH4Þ in the superpotential has
already been used to analyze the effects of the leading,
renormalizable,OðH4Þ terms in the scalar potential [8–10].
These analyses are useful for calculating perturbations to
MSSM-like vacua. The sEWSB vacua require keeping
terms of order OðH4Þ in the superpotential and the full
set ofOðH6Þ terms in the scalar potential that are generated
by the superpotential, a case not seriously considered in
previous studies.

II. SUPERSYMMETRIC ELECTROWEAK
SYMMETRY BREAKING

As we will see, the qualitative physical properties of the
sEWSB vacuum can already be understood in the super-
symmetric limit. It is therefore useful to study in some
detail the physics of EWSB when SUSY is exact, which we
do in this section. We consider the effects of SUSY break-
ing, under the assumption that the heavy threshold �S is
approximately supersymmetric, in Sec. III.

A. Validity of the effective theory on the sEWSB
vacuum

Our main observation is that in the presence of the
higher-dimension operators in the superpotential of
Eq. (1) there is a nontrivial ground state that can be reliably
studied within the EFT framework. The only condition is
that there exists a mild hierarchy between � and the new
physics threshold �S.
Indeed, assuming that the first nonrenormalizable opera-

tor in Eq. (1) is nonvanishing, the F-flatness conditions can
be satisfied both at the origin of field space and at a VEVof
order ��S=!1. This solution exists for any sign of the
dimensionless coefficient !1. It is a solution to the
F-flatness conditions where the two leading terms in Eq.
(1) approximately cancel, while the remaining operators
give contributions that are suppressed by powers of �=�S

(times ratios of dimensionless coefficients). Thus, we can
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capture the physical properties of this vacuum to leading
order in �=�S by keeping the first two terms in Eq. (1).
This defines the zeroth order approximation. Operators in
the superpotential suppressed by 1=�2nþ1

S with n � 1 give
corrections to physical observables that are suppressed by
at least ð�=�SÞn, which we refer to as the nth order
approximation. Notice that the importance of an operator,
whether nonrenormalizable or not, depends on the vacuum
state one is expanding field fluctuations about. In general,
to estimate the relevance of any operator one should do the
power counting after expanding around the VEV of
interest.

One might also worry about the effects of higher-
dimension operators in the Kähler potential. However,
these enter at next-to-leading order in the 1=�S expansion,
e.g.

K ¼ Hy
u eVHu

�
1þ 1

�2
S

fu

�
þHy

d e
VHd

�
1þ 1

�2
S

fd

�

þ c1
�2

S

jHuHdj2 þ � � � ; (4)

where

fu ¼ 1

2
au1H

y
u eVHu þ 1

2
aud1 Hy

d e
VHd þ ðbu1HuHd þ H:c:Þ

þO
�
1

�2
S

�
; (5)

fd ¼ 1

2
ad1H

y
d e

VHd þ 1

2
aud1 Hy

u eVHu þ ðbd1HuHd þ H:c:Þ

þO
�
1

�2
S

�
: (6)

Their effects on the physical properties of the vacuum of
Eq. (2) are also suppressed by �=�S and correspond to
small corrections to the zeroth order solution described in
the previous paragraph.2 For instance, although the leading
order D-terms imply that tan� ¼ hHui=hHdi ¼ �1, the
higher-dimension Kähler corrections can lead to j tan�j �
1 if au1 � ad1 , or bu1 � bd1 , etc. [see Eqs. (A1)–(A3) in

Appendix A for the general expressions of the D-term
potential]. However, to the extent that �=�S is small,
one finds that j tan�j remains close to 1 in the SUSY limit.
Nevertheless, the Kähler terms can have other phenomeno-
logically relevant effects that are pointed out in Sec. II C.
There may also be terms containing SUSY covariant de-
rivatives that we do not show explicitly, since they lead to
derivative interactions that do not affect the vacuum or
spectrum of the theory.

In summary, it is possible to study the properties of the
sEWSB vacuum from Eq. (1) without a complete specifi-
cation of the physics that gives rise to the tower of higher-

dimension operators, so that an EFT analysis is appropri-
ate. In particular, the theory that includes the higher-
dimension operators has at least two degenerate SUSY-
preserving minima: the origin and a vacuum where EWSB
occurs. These supersymmetric vacua are degenerate and
separated by a potential barrier as shown schematically in
Fig. 1. We can characterize the sEWSB minimum by

hH0
ui � hH0

di �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��S=!1

q
; (7)

which holds up to corrections of order�=�S. Here we have
used a combination of SUð2ÞL �Uð1ÞY gauge transforma-
tions to make both VEV’s real, positive, and in the electri-
cally neutral components. We have also made an additional
field redefinition to make the quantity ��S=!1 real and
positive. In the following we will refer to the vacuum of
Eq. (7) as the ‘‘sEWSB vacuum’’ (short for supersymmet-
ric EWSB vacuum).
One might still wonder if other nontrivial vacua exist

when the superpotential has the form of Eq. (1). In general,
except for the sEWSB vacuum described above, all other
potential solutions to the F-flatness conditions would cor-
respond to VEV’s of order�S, and are therefore outside the
realm of the EFT. In fact, the question of whether such
vacua actually exist or not can only be answered within the
context of a given UV completion. It is logically possible
that additional solutions with VEV’s parametrically
smaller than �S exist, but this can only happen for special
choices of the coefficients !i. For example, solutions that
arise from balancing the �-term with an !n operator [the
operator with coefficient !n in Eq. (1)] exist only if the
coefficients of all !i operators with i < n are suppressed
by appropriate powers of �=�S. This latter quantity has to
be small in order that the !i operators with i > n can be
neglected. In particular, if the !1 operator is generated by
the physics at �S with a coefficient larger than

FIG. 1 (color online). The phase structure of the superpotential
in Eq. (1), keeping only the leading correction, along the tan� ¼
1 slice. Supersymmetry allows us to reliably calculate around the
EWSB minima, since the scale of new physics may be much
larger than all other mass scales in the effective theory.

2Kähler terms suppressed by 1=�2n
S give corrections sup-

pressed by at least ð�=�SÞn.
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Oð�=�SÞ1=2, no such solutions exist. We also assume here
that the!n are smaller than the naı̈ve dimensional analysis
estimate ð16�2Þn [11]. If the physics at �S is strongly
coupled, our analysis cannot reliably establish the exis-
tence of nontrivial minima in the SUSY limit. However,
notice that due to nonrenormalization theorems, it is pos-
sible that all but a finite number of operators in the super-
potential vanish.

In this paper, we concentrate on the sEWSB vacuum of
Eq. (7) for which we do not need to make strong assump-
tions regarding the dimensionless coefficients !i. We ex-
pect that there is a large region of parameter space (hence a
large number of UV completions) where the sEWSB vacua
are physically relevant.

B. Supersymmetric Higgs spectrum

The spectrum and interactions of the Higgs sector in the
sEWSB vacuum are particularly simple due to the con-
straints imposed by the unbroken supersymmetry: the
massive W and Z gauge bosons are components of two
separate massive vector superfields, a charged field with
mass mW and a neutral field with mass mZ. Each massive
vector superfield is made up of a massless vector superfield
and an eaten chiral superfield. The complex massive vector
superfield corresponding to the W� gauge bosons eats the
superfields Hþ

u and H�
d . The massive vector superfield that

contains the Z boson eats the linear combination that does

not acquire a VEV, H 	 ðH0
u �H0

dÞ=
ffiffiffi
2

p
. The orthogonal

combination (or ‘‘superradial’’ mode), h 	 ðH0
u þ

H0
dÞ=

ffiffiffi
2

p
, remains as an additional degree of freedom and

corresponds to the physical Higgs superfield (the fact that
hhi ¼ v signals that these degrees of freedom are respon-
sible for the unitarization of WW scattering).

The scalar components of the superfields, in unitary
gauge, are

Hu ¼ Hþ
u

H0
u

� �
¼

1ffiffi
2

p Hþ
vffiffi
2

p þ 1
2 ðH þ hþ iA0Þ

 !
;

Hd ¼ H0
d

H�
d

� �
¼

vffiffi
2

p þ 1
2 ð�H þ hþ iA0Þ

1ffiffi
2

p H�

 !
:

(8)

Here, h is exactly the SM-like Higgs and we have decom-
posed the scalar sector into mass eigenstates. The scalar
fieldsH andH� have massesmZ andmW , respectively, and
the fields h and A0—in the zeroth order approximation
discussed in the previous subsection—have mass 2j�j.3
Also, the fermions of each eaten superfield form Dirac
partners with the vector superfield gauginos, and have
masses equal to their vector partners. The Higgs super-

partner is a Majorana fermion. The field content and su-
permultiplet structure is as follows:

Mass Scalars Fermions Vectors

0 � � � 1 Majorana A�

mW H� 2 Dirac W�
�

mZ H 1 Dirac Z�

2j�j h, A0 1 Majorana � � �

It is remarkable that in the sEWSB vacuum, the mass of
the SM-like Higgs (which completely unitarizesWW scat-
tering) is fixed by the�-term. In particular, the mass of the
SM-like Higgs is independent of the SM gauge couplings,
contrary to what happens in the MSSM with only renor-
malizable operators. It should also be noted that this mass
can be shifted by order �=�S due to the tower of higher-
dimension operators. The H and H� masses remain tied to
the corresponding gauge boson masses, in the SUSY limit.

C. Subleading corrections, canonical normalization,
and mixing

As mentioned in Sec. II A, the Kähler corrections enter
at second order in the 1=�S expansion. Such corrections
can affect both the spectrum and couplings of various
fields, and appear through additional contributions to the
scalar potential as well as through corrections to the kinetic
terms. It is interesting that the former effects show up as a
multiplicative factor in the F-term potential. As a concrete
example, when the only nonzero coefficient in the Kähler
potential of Eq. (4) is c1, one finds the simple result

VF ¼ jHj2
1þ c1

�2
S

jHj2
���������þ !1

�S

HuHd þ � � �
��������2

; (9)

where jHj2 	 Hy
uHu þHy

dHd. This case arises precisely

when the heavy physics corresponds to an SUð2ÞL �Uð1Þ
singlet (with � ¼ 0), as discussed in Sec. V. One can show
that in the general case the first factor is replaced by a real
function ZðHu;HdÞ, whose exact form is given in Eq.
(A13) of Appendix A. It follows that the Kähler corrections
do not affect the vacuum obtained by imposing F flatness
as if the Kähler terms were of the minimal form. However,
they do affect the spectrum and Higgs self-interactions,
though such effects are unlikely to be of immediate phe-
nomenological relevance.
More relevant from a phenomenological point of view

are certain corrections to the Higgs kinetic terms, which
are of order �=�S. Although in the SUSY limit the prop-
erties of the fields involved in the super-Higgs mechanism,
1ffiffi
2

p ðH0
u �H0

dÞ, Hþ
u and H�

d , are protected, those of the

Higgs superfield itself can receive important corrections.
For instance, the operator proportional to c1 in Eq. (4)
contains contributions to the kinetic terms without the
corresponding corrections to the gauge interactions [in
the sEWSB vacuum of Eq. (7)]:

3One can see that the superfield h has mass 2j�j by using a
supersymmetric gauge transformation to completely remove the
eaten superfields H, Hþ

u ,H
�
d from the theory. The superpotential

then contains the mass term W 
 �h2.
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Z
d2�d2 ��

c1
�2

S

jHuHdj2 ¼ c1v
2

�2
S

�
1

2
@�h@

�h

þ 1

2
@�A

0@�A0

þ ic ��
�
� _�@� �c _�

�
þ � � � ;

where we used the parametrization of Eq. (8) and show
only the kinetic terms, including those of the Higgs
Majorana partner.

The reason these effects are important is that, although
formally of second order in 1=�S, they correspond to the
leading order corrections to the Higgs gauge interactions,
after a rescaling to restore canonical normalization:

ðh; A0; c Þ ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c1�

!1�S

q ðh; A0; c Þ

�
�
1� c1�

!1�S

�
ðh; A0; c Þ:

Physically, these effects correspond to mixing of the light
fields with the UV physics at the scale �S.

D. Nonrenormalizable operators at the component level

So far we have emphasized the power counting associ-
ated with operators in the Kähler potential and superpo-
tential. It is worth noting how the same picture appears at
the component level, especially since analyzing the vac-
uum structure of the theory in the presence of SUSY
breaking (as is done in Sec. III D) requires a direct study
of the scalar potential.

To zeroth order in �=�S, and assuming for simplicity
that � and !1 are real, one gets an F-term potential with a
quartic interaction, as well as a certain ‘‘dimension-6’’
operator:

Vð0Þ
F ¼ �2jHj2 þ!1�

�S

jHj2ðHuHd þ H:c:Þ

þ !2
1

�2
S

jHj2jHuHdj2; (10)

where jHj2 was defined after Eq. (9). The quartic terms
correspond to the �6 and �7 operators of the two-Higgs
doublet model parametrization of Refs. [12,13]. The rele-
vance of the nonrenormalizable term in Eq. (10) depends
on the particular vacuum one is studying. One should
expand fields in fluctuations around the relevant vacuum
to determine which interactions are important. Since the

sEWSB vacuum scales like �1=2
S , the dimension-6 term

should not be neglected: it can contribute at the same order
as the first two terms in Eq. (10).4 Thus, although it should

be obvious, we stress that the physics we are describing
cannot be captured by the standard SUð2ÞL �Uð1ÞY two-
Higgs doublet model parametrization based on renorma-
lizable interactions [8–10].
Similar comments apply at higher orders. For instance,

at first order in the �=�S expansion, the operator propor-
tional to c1 in Eq. (4) leads to additional quartic operators
(corresponding to �1, �2, and �3 in the two-Higgs doublet
model parametrization of Refs. [12,13]), to an additional
dimension-6 operator, and to a particular ‘‘dimension-8’’
operator, as can be derived from Eq. (9)5:

Vð1Þ
F ¼ � c1�

2

�2
S

jHj4 � c1!1�

�3
S

jHj4ðHuHd þ H:c:Þ

� c1!
2
1

�4
S

jHj4jHuHdj2:

In spite of the different powers of �S in the denominators,
all of these can contribute to physical observables at first
order in the �=�S expansion in the sEWSB vacuum of
Eq. (7). Nevertheless, our argument of Sec. II A, performed
at the level of the Kähler potential and superpotential,
guarantees that the EFT around the sEWSB vacuum has
a well-defined expansion parameter and that the infinite
tower of operators can be consistently truncated, in spite of

the �1=2
S scaling of the sEWSB VEV.

In the next section we consider the effects of SUSY
breaking at tree level. However, we notice here that
although loop effects from supersymmetric partners
can—in the presence of SUSY breaking—give contribu-
tions to the operators that play a crucial role in the deter-
mination of the sEWSB vacuum, these are expected to be
subdominant. For instance, the one-loop contributions to
the �6 and �7 quartic couplings are not logarithmically
enhanced and are proportional to At [14]. If all SUSY-
breaking parameters are of order the EW scale, the corre-
sponding one-loop contributions are of order 3y4t =ð16�2Þ
or smaller, which can easily be subdominant compared to
the quartic coupling in Eq. (10) for �S � ð5–10Þ�, as we
envision here. We therefore do not consider loop effects
any further and restrict ourselves to a tree-level analysis.

III. SUPERSYMMETRY BREAKING

The previous section focused on electroweak symmetry
breaking in the SUSY limit. Although this limit is not fully
realistic, it allows a simple understanding of several prop-
erties of the physics when SUSY breaking is taken into
account. Here we reconsider the analysis including SUSY-

4In fact, it plays an essential role in bounding the potential
from below and stabilizing the vacuum of interest; it also induces
contributions to the quartic interactions of the physical fluctua-
tions about the sEWSB vacuum.

5Note that, for c1 > 0, Vð1Þ
F can be large and negative, which

would seem to lead to a potential unbounded from below.
However, this occurs at large values of the Higgs fields, where
the EFT is not expected to be valid. Indeed, the remaining terms
in the expansion of Eq. (9) make the potential positive, as
required by SUSY.

SUPERSYMMETRIC ELECTROWEAK SYMMETRY BREAKING PHYSICAL REVIEW D 79, 035001 (2009)

035001-5



breaking effects. SUSY-breaking terms are required,
among other reasons, to lift the mass of the photino.
They also break the degeneracy between the origin and
the nontrivial EWSB minimum.

A. Scalar potential

Our main assumption is that the heavy threshold, �S, is
very nearly supersymmetric, so that a spurion analysis is
appropriate.6 To order 1=�S, we must include the effects of
the nonrenormalizable operator

W 
 1

2�S

~XðHuHdÞ2; (11)

in addition to the usual soft terms in the MSSM
Lagrangian, where ~X ¼ �2msoft parametrizes the effective
soft SUSY-breaking effects coming from the heavy sector.
We write, for convenience,msoft ¼ 	!1�, and assume that
j	!1j & Oð1Þ. Thus, the relevant SUSY-breaking terms in
the scalar potential read

VSB ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þ

�
bHuHd � 	

�
!1�

2�s

�

�ðHuHdÞ2 þ H:c:

�
;

and the potential to lowest order in the 1=�S expansion
takes the form

V ¼ VSB þ VD þ jHj2
���������þ !1

�S

HuHd

��������2

; (12)

where jHj2 was defined after Eq. (9). TheD-term potential
is as in the MSSM:

VD ¼ 1
8ðg2 þ g02ÞðjH0

uj2 � jH0
dj2 þ jHþ

u j � jH�
d jÞ2

þ 1
2g

2jHþ
u H

0y
d þH�y

d H0
uj2:

We start by considering the minimization of the poten-
tial, Eq. (12). Using SUð2ÞL transformations, we can take
hHui ¼ ð0; vuÞ, with vu real, without loss of generality. By
redefining the phase of H0

d we can then take, as in the

previous section, ��S=!1 real and positive. Note that the
phases of b and 	�2 are then physical observables.7 For
simplicity, we will assume in the following analysis that
these parameters are real.

We also concentrate in a region of parameter space
where no spontaneous CP violation occurs, which can be
guaranteed provided either

b

j�j2 > 0 or 	�2 > 0:

The first condition ensures that all the solutions to the
minimization equations are real, while the second would
ensure that any putative complex solution is not a mini-
mum of the potential. Although the above are only suffi-
cient conditions to avoid spontaneous CP violation, they
will be enough for our purpose. The possibility of sponta-
neous CP violation in the presence of the higher-
dimension operators, although quite interesting, is beyond
the scope of this work. Furthermore, we also note that for
real solutions to the minimization equations, there are no
charge-breaking vacua, provided only that m2

Hd
is not too

negative. Further details are given in Appendix B.
From here on we restrict ourselves to regions of parame-

ter space where electromagnetism is unbroken and CP is
preserved, so that hH0

ui ¼ vu and hH0
di ¼ vd are always

real. Notice that, unlike in the MSSM without higher-
dimension operators, the sign of tan� ¼ vu=vd is physical.
However, we still have a remaining Uð1ÞY gauge rotation
that we use to choose vd positive, though vu may be
positive or negative. These nontrivial extrema of the po-
tential are described by v2 ¼ v2

u þ v2
d and ��=2<�<

�=2, and must satisfy

s2� ¼ 2b� 4j�j2
ð
s2� � 1Þ
m2

Hu
þm2

Hd
þ 2j�j2ð
s2� � 1Þ2 � 2	�2


; (13)

m2
Z ¼ m2

Hu
�m2

Hd

c2�
� ½m2

Hu
þm2

Hd
þ 2j�j2ð
s2� � 1Þ2�;

(14)

with

v2 	 


�
2��S

!1

�
: (15)

Herem2
Z should be considered a placeholder for v

2 accord-
ing to m2

Z ¼ ðg2 þ g02Þv2=2. For given ultraviolet parame-
ters (m2

Hu
, m2

Hd
, b, �, �s=!1, 	) there may be more than

one solution to the above equations where EWSB occurs,
in addition to the origin where EWSB does not occur. With
our conventions, a valid solution must also have real and
positive 
.
The parameter 
 introduced in Eq. (15) characterizes

how close these solutions are to the sEWSB minimum of
Sec. II: for vanishing soft parameters, one recovers the
SUSY expressions of the previous section, with 
 ! 1
and tan� ! 1. On the other hand, the MSSM limit corre-
sponds to 
 ! 0, or more precisely to the scaling 
 !
1=�S as �S ! 1 [see Eq. (15)]. This also suggests a
definite criterion to distinguish—for finite �S—MSSM-
like minima from minima that involve the higher-
dimension operators in a crucial way. While the VEV in
a MSSM-like minimum tends to a constant as �S becomes

6However, SUSY breaking in the heavy physics sector can be
of the same order as in the MSSM Higgs sector. These soft
masses, together with the �-term, are assumed to be parametri-
cally smaller than�S, which ensures that the EFT analysis holds.

7In the MSSM without higher-dimension operators, it is cus-
tomary to use the field reparametrization freedom to choose b
real and positive. We find it more convenient, when studying the
new vacua, to choose ��S=!1 real and positive.
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large, the new vacua are characterized by VEV’s that scale
like

ffiffiffiffiffiffiffi
�S

p
for large �S, provided all other microscopic

parameters are kept fixed (
 remains of order one in this
limit). This is illustrated in Fig. 2. In other words, the new
minima can be described as those that are ‘‘brought in from
infinity’’ when the higher-dimension operators are turned
on. It is important to notice that, as was argued by an
operator analysis in Sec. II A, the EFT gives good control
of the physics of such nonstandard vacua provided

v2

�2
S

� 2


!1

�

�S

� 1:

This approximation becomes even better in the limit de-
scribed above and leads to the interesting situation in
which, although the physics at �S is crucial in triggering
EWSB, the details of that physics actually become unim-
portant. With a slight abuse of notation we will continue
referring to vacua that obey the scaling v� ffiffiffiffiffiffiffi

�S
p

in the

large �S limit as sEWSB vacua, even when SUSY break-
ing is not negligible. The important property is that they
exist only due to the presence of the higher-dimension
operators, while being describable within the EFT
framework.

B. Higgs spectrum

Besides studying the solutions to Eqs. (13) and (14),
which we will do in the next section, it is important to
determine their stability properties. Here we work out the
Higgs spectrum in any extremum where electromagnetism
is unbroken and CP is conserved; the Higgs fields in the
unitary gauge are

Hu ¼
c�H

þ
vs� þ 1ffiffi

2
p ðs�H0 þ c�h

0 þ ic�A
0Þ

 !
;

Hd ¼ vc� þ 1ffiffi
2

p ðc�H0 � s�h
0 þ is�A

0Þ
s�H

�

 !
;

where s� ¼ sin�, c� ¼ cos�, etc. For arbitrary ð
;�Þ, the
charged and CP-odd Higgs masses are then

m2
A0 ¼ 2b

s2�
þ 4
j�j2

s2�
þ 4
	�2;

m2
H� ¼ m2

W þm2
A0 � 4
2j�j2 � 2
	�2;

(16)

while the masses for the two CP-even scalars are given by

m2
H0;h0

¼ �m2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þm4

12

q
;

where

�m 2 ¼ 1

2
m2

Z þ
b

s2�
þ
�
2
c4�
s2�

þ 4
2s22�

�
j�j2;

�m2 ¼ � 1

2
m2

Zs2� � b� 2ð3
� 4
2s2�Þj�j2

� 2
	�2s2�;

m2
12 ¼ � 1

2
m2

Zc2� þ bcot2� þ 2
j�j2cot2�:

The mass mixing angle � satisfies

tan 2� ¼ ��m2

m2
12

:

The angle � is defined to agree with the two-Higgs doublet
model conventions for m2

H0 >m2
h0

of [12,13]. The SUSY

limit occurs as � ! �=4. We note also that the Z-Z-H0

(Z-Z-h0) coupling is proportional to c��� (s���), where

c2��� ¼ 1

2ðm2
H0 �m2

h0
Þ ½3ðm

2
H0 �m2

A0Þ � 2m2
Zs

2
2�

þ ðm2
h0
�m2

ZÞ þ 8
�2s2� þ 4
	�2ðc22� þ 2Þ�:

C. Charginos and neutralinos

The chargino and neutralino spectra are also shifted
from the SUSY limit due to the presence of SUSY break-
ing, in some cases (the photino) drastically. The shifts can
be traced to multiple sources: the presence of the b-ino and
W-ino soft masses ðM1;M2Þ, and the shift of ð
; s2�Þ away
from the SUSY limit because of soft breaking in the Higgs
scalar sector (see Sec. III A).
The chargino mass matrix in the sEWSB vacuum is

L 
 ð ~Wþ; ~Hþ
u Þ M2

ffiffiffi
2

p
mWc�ffiffiffi

2
p

mWs� �ð1� 
s2�Þ
 !

~W�
~H�
d

 !
:

(17)

FIG. 2 (color online). An illustration showing the equipotential
lines in the vu � vd plane for a case with two nontrivial minima.
The nature of these minima can be determined by exploring how
the physics depends on the UV scale �S: the MSSM-like VEV
remains near the origin as �S ! 1, while the sEWSB VEV
scales like

ffiffiffiffiffiffiffi
�S

p
(as indicated by the arrow) for large �S. The

limit is taken with all other microscopic parameters fixed.
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In the SUSY limit ð
; s2�Þ ! ð1; 0Þ and the pure Higgsino

entry in the chargino mass matrix vanishes; both charginos
become degenerate with the W vector-boson. In the more
general case with SUSY breaking turned on, the eigenval-
ues are

m2
�1;�2

¼ 1

2
M2

0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4½m2

Ws2� �M2�ð1� 
s2�Þ�2
M4

0

vuut �
;

M2
0 	 ½M2

2 þ 2m2
W þ�2ð1� 
s2�Þ2�:

The neutralino mass matrix in the sEWSB vacuum is

L 
 1

2
ð ~B; ~W3; ~H0

d;
~H0
uÞ

M1 �mZsWc� mZsWs�
M2 mZcWc� �mZcWs�

�mZswc� mZcWc� 2�
s2� ��ð1� 2
s2�Þ
mZsWs� �mZcWs� ��ð1� 2
s2�Þ 2�
c2�

0
BBB@

1
CCCA

~B
~W3

~H0
d

~H0
u

0
BBB@

1
CCCA;

where cW stands for the weak-mixing angle cos�W . A
massless neutralino with exactly the couplings of the pho-
tino emerges from the spectrum in the SUSY limit.

D. Vacuum structure

The presence of the higher-dimension operators in
Eqs. (1) and (11) leads to a rather rich vacuum structure,
even when restricted to the Higgs sector of the theory.

Let us start by recalling the situation in the MSSM
without higher-dimension operators. The breaking of the
EW symmetry can be simply characterized by the behavior
of the potential at the origin. One considers the signs of the
determinant and trace of the matrix of second derivatives
(evaluated at the origin):

det¼ ðm2
Hu

þ j�j2Þðm2
Hd

þ j�j2Þ � b2;

trace ¼ m2
Hu

þm2
Hd

þ 2j�j2; (18)

so that signðdet; traceÞ ¼ ðþ;þÞ indicates that the origin is
a local minimum (the mass matrix squared has two positive
eigenvalues), while the other cases indicate that the origin
is unstable: ðþ;�Þ is a maximum with two negative ei-
genvalues; ð�;þÞ and ð�;�Þ indicate a saddle point with
one negative and one positive eigenvalue. In the MSSM,
the fact that all the quartic terms arise from the D-terms,
which have a flat direction along jvuj ¼ jvdj, leads to an
additional constraint:

m2
Hu

þm2
Hd

þ 2j�j2 � 2jbj> 0; (19)

which simply states that the quadratic terms should be
positive along the flat direction. This requirement elimi-
nates the cases ð�;�Þ and ðþ;�Þ above [the trace is
automatically positive; hence it is not usually considered].
Using the MSSM minimization conditions [Eqs. (13) and
(14) with 
 ¼ 0], we can eliminate b in favor of � and
ðm2

Hu
�m2

Hd
Þ in favor of m2

Z, so that

trace ¼ � 1

2
m2

Z �
2sec22�

m2
Z

det; (20)

which shows that ‘‘trace’’ depends linearly on ‘‘det’’ with a
�-dependent slope. In addition, due to Eq. (19), for EWSB
only the region signðdet; traceÞ ¼ ð�;þÞ should be con-

sidered. We show this triangular region (light color) in
Fig. 3.
When the higher-dimension operators are included, the

region of parameter space in the ( det, trace) plane that
leads to EWSB is considerably enlarged. To illustrate this,
we also show in Fig. 3 the region that leads to a nontrivial
minimum for fixed tan� ¼ 1 [which from Eq. (14) corre-
sponds to m2

Hu
¼ m2

Hd
]. For simplicity, we took �=�S ¼

1=10, !1 ¼ 2, 	 ¼ 0, and scanned over the other parame-
ters, requiring that jbj, jm2

Hu;d
j & ð�S=5Þ2 to make sure that

the EFT analysis is reliable throughout. We see that not
only are the four quadrants ðþ;þÞ, ðþ;�Þ, ð�;þÞ, and
ð�;�Þ accessible, but also that the stability condition (19)
is no longer necessary [9].

FIG. 3 (color online). Region of parameters in the ( det, trace)
plane of Eqs. (18), that lead to EWSB. The light-shaded trian-
gular region corresponds to the complete EWSB parameter space
in the MSSM (in the absence of higher-dimension operators).
The (blue) dots correspond to theories that break the EW
symmetry, taking !1 ¼ 2, 	 ¼ 0, and for fixed tan� ¼ 1
(m2

Hu
¼ m2

Hd
). We scanned over b and m2

Hu
with jbj, jm2

Hu
j<

ð�S=5Þ2. All points have been normalized so that v ¼ 174 GeV.
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More interestingly, there are regions with multiple
physically inequivalent EWSB minima. This should be
clear from our discussion of the supersymmetric limit in
Sec. II, where we pointed out that two degenerate minima
exists (one that breaks the EW symmetry and one that does
not). If a small amount of SUSY breaking is turned on,
such that the origin is destabilized, the minimum initially at
the origin can become nontrivial but remain near the
origin, while the originally sEWSB minimum is shifted
only slightly. The question then arises as to which of these
two is the true global minimum. In the small SUSY-
breaking limit, this question is readily answered by work-
ing out the shift in the potential energy to leading order in
the soft SUSY-breaking terms:

V � ðm2
Hu

þm2
Hd

þ 2bÞv
2

2
;

where v corresponds to the unperturbed SUSY VEV. For
minima near the origin, this result shows that its energy is
not shifted at lowest order in SUSY breaking. Furthermore,

we learn that the sEWSB minimum with v �
ð2��S=!1Þ1=2 is the global minimum provided m2

Hu
þ

m2
Hd

þ 2b < 0, at least when these parameters are small

compared to �.
In the general case, when SUSY breaking is not neces-

sarily small compared to � (but still assuming it is small
compared to �S so that the EFT gives a reasonably good
description of the physics), we can approach the problem
as follows: both Eqs. (13) and (14) are only quadratic in 
,
but fairly complicated in �. We can solve Eq. (13) to
characterize all extrema by two branches8:


�ð�Þ ¼
ð1þ 1

2	s2� þ s22�Þ
s2�ð2þ s22�Þ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2�ð2þ s22�Þ

ð1þ 1
2	s2� þ s22�Þ2

�
s2�

�
1þm2

Hu
þm2

Hd

2�2

�
� b

�2

�vuut �
: (21)

The sEWSB vacua may be found in either the 
þ or the 
�
branch, while MSSM-type vacua are always in the 
�
branch and are characterized by 
� 1=�S as �S ! 1.

Just as in the limit of small SUSY-breaking effects, it is
possible to find potentials that contain multiple, inequiva-
lent, sEWSB and MSSM-type vacua with potential barriers
in between. A complete description of the phase space as a
function of input parameters is difficult to obtain, but it is
straightforward to find examples of EWSB minima that
violate standard MSSM assumptions. For example, the
origin can be unstable and outside of the MSSM-required
light-triangular region in Fig. 3, but a nontrivial sEWSB
vacuum is the stable, global minimum of the theory due to
the physics at �S. More interestingly, there are potentials
with a local MSSM-type minimum that is unstable to decay
to a sEWSB global minimum, or vice versa. These struc-
tures may have interesting implications for cosmology and
the cosmological phase transition to the EWSB vacuum.

IV. SEWSB VACUA: PHENOMENOLOGY

In this section we begin a preliminary analysis of the
phenomenology of the sEWSB vacua. As defined in
Sec. III A, the sEWSB vacua are distinguished from
MSSM-like vacua due to their behavior as �S ! 1, with
all other microscopic parameters fixed. The sEWSB vacua
exhibit a qualitative difference from MSSM-like vacua in
this limit: since the sEWSB vacua depend on the scale �S

to generate electroweak symmetry breaking, v2=��S

tends toward a constant as �S ! 1, even in the presence
of SUSY breaking.

A. Inverted CP-even scalars

Collider experiments have put tight constraints on the
parameter space of the MSSM. These constraints are
mainly due to the LEP-II bound of 114 GeVon the neutral
CP-even state which has SM-like couplings to massive
vector Z bosons. It is much more natural for sEWSB vacua
to satisfy the 114 GeV bound on the SM-like Higgs state,
since sEWSB vacua naturally have an inverted scalar
sector: the heavy CP-even state is SM-Higgs-like and is
subject to the LEP-II bounds, while the light CP-even state
is not SM-like, couples more weakly to Z bosons, and is
more difficult to observe.
Regions where the light CP-even state is not SM-like

exist in the MSSM, but are relatively rare and tuned [15].
The inverted hierarchy spectrum is distinct from the usual
decoupling limit of the MSSM, where an entire SUð2Þ
doublet of fields (Hþ, H0, A0) becomes much heavier
than the weak-scale, while the lighter CP-even state h0 is
increasingly SM-like. In Fig. 4, we qualitatively show in
the mA0 � tan� plane the inverted hierarchy region
(hatched) where H0 is more SM-like than h0 (i.e.
g2
H0ZZ

=g2hSMZZ ¼ c2��� > 1=2). We use a smooth interpo-

lation of LEP-II bounds on the CP-even states only [16] to
describe regions of parameter space where h0=H0 are
allowed (blue/yellow regions). We assume that all super-
partners are sufficiently heavy that no Higgs decay chan-
nels other than the SM ones are open. We take

8To simplify this expression, we assume that � is real, though
this is not necessary. The general case is obtained by making
�2 ! j�j2 and 	 ! 	�2=j�j2.
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Bðh0; H0 ! b �bÞ � 0:85, which is the tree-level approxi-
mation for h0 and H0 in the MSSM if the only important
decays are to tau and bottom pairs.9 The LEP bound onmA0

of about 90 GeV [17] is indicated by the purple arrow in the
plots. At tree level (leftmost panel in Fig. 4) in the MSSM
there is no inverted hierarchy region that is compatible with
LEP-II bounds. Crucially in the inverted hierarchy region,
H0 has too large a coupling to Z bosons, while its mass is
within 10% of mZ.

SUSY-breaking effects from top-stop loops create a
narrow, viable inverted hierarchy region (green region
which is the overlap between blue, yellow, and hatched
regions in the middle panel of Fig. 4). We consider only
quantum corrections from the stop sector. Inverted hierar-
chies occur in the MSSM at large tan� whenever m2

A0 <

m2
Zð1þ�Þ (where � is the size of the quantum correction

to the H0
u �H0

u component of the neutral scalar mass
matrix, normalized by m2

Z).
10 As � increases, the hatched

region of Fig. 4 therefore begins to move to larger mA0 .
Meanwhile, m2

H0 grows in the inverted hierarchy region

(�mZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

p
) and begins to escape the LEP-II bounds

(its Z couplings are relatively unaffected by�). The lighter
CP-even state is bounded from above by mA0 , and the
effect of � is to reduce the couplings of h0 to Z bosons
(for fixed mA0 and tan�, its mass is unaffected). Therefore,

the blue region where h0 passes LEP constraints also
moves to heavier mA0 . This leads to a single region where
both experimental constraints overlap with the inverted
scalar spectrum (shown in green). Although there is a
viable inverted scalar spectrum, m2

A0 �m2
Hd

�m2
Hu

�m2
Z

must be satisfied to a high degree of accuracy in this region
[15].
As is well known, if top-stop corrections are sufficiently

large, a region where h0 is SM-like and escapes LEP-II
bounds appears. This region is shown in red in the right-
most panel of Fig. 4 for � ¼ 0:7. For sufficiently large �,
this region is much larger than the viable inverted hierarchy
region where H0 is SM-like. It is also possible that explicit
CP violation in the third generation squarks leads to a
relaxation of the LEP bounds on the MSSM Higgs sector
at low and intermediate values of tan� [18].
In sEWSB vacua the scalar Higgs properties can change

significantly. When the nonrenormalizable operators of
Sec. III are included, the scalar Higgs sector cannot be
parametrized by tan� and mA0 alone, even at tree level. As
an illustration, we show in Fig. 5 two examples of the
mA0 � tan� plane that exhibit the inverted CP-even scalar
hierarchy region (hatched), fixing the values of j�j, the
sum m2

Hu
þm2

Hd
, and the SUSY-breaking parameter 	 [the

difference m2
Hu

�m2
Hd

is fixed by Eq. (14)].

We see that, unlike in the MSSM, there exists a large,
LEP allowed, inverted hierarchy region at low tan�. For
reference, we also show the regions allowed by the LEP
Higgs searches in the CP-even sector, using the same color
code as in Fig. 4. We perform a tree-level analysis at
leading order in the 1=�S expansion, ignoring loop cor-
rections that depend on additional SUSY-breaking parame-
ters (associated with the third generation). All the points
we consider are within the domain of validity of the EFT.
We do not include in the plots the direct chargino/neutra-
lino exclusion limits, that are expected to impose further

FIG. 4 (color online). Inverted scalar hierarchy region in the MSSM, where the heavier CP-even state H0 is SM-like (hatched
region), together with the LEP-II allowed regions for h0=H0 (blue/yellow)—with and without quantum corrections from top-stop
loops. There is no viable region with an inverted scalar hierarchy without quantum corrections (leftmost plot). Including a correction of
size � ¼ 0:5 leads to a viable inverted scalar hierarchy (green region, middle figure). � is the size of the quantum correction to the
H0

u �H0
u component of the neutral scalar mass matrix, normalized by m2

Z. Setting � ¼ 0:7 (right figure) produces both a viable
inverted scalar hierarchy region (green) and a viable standard hierarchy region (red), where h0 is SM-like. These bounds include
quantum corrections only through their effects on the CP-even mixing angle �, and they assume Bðh0; H0 ! b �bÞ � 0:85. The purple
arrow indicates the approximate LEP bound on mA0 (a possible tan� dependence has not been taken into account).

9This assumption can hold approximately beyond tree level.
For instance, at large tan� these two decay channels are en-
hanced, and the branching fractions can be close to the values
used here even when quantum corrections are included (see, for
instance, Ref. [13]). In the low tan� region, decays of H0 intoW
pairs can be important, but only when mH0 is above the 114 GeV
bound, so that the LEP allowed regions are not expected to
change.
10For degenerate stops and small stop-mixing, the stop masses
must be close to 400 GeV to produce �� 0:5, or 600 GeV to
produce �� 0:7.
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constraints (see Sec. IVC); we have checked that they do
not change the qualitative picture shown in the plots. These
limits depend on the gaugino soft-mass parameters that do
not enter in the scalar sector. The neutralinos can be
sufficiently heavy for the bounds on the Higgs mass from
invisible decays to be satisfied in the regions marked as
allowed in the plots. We also assume that the Higgs decays
into b �b are as important as in the MSSM (we only consider
SM decays in the Higgs sector). The qualitative lesson is
that there are interesting new regions of parameter space
that can be consistent with existing limits, even at tree
level. Furthermore, this tends to happen for j tan�j ¼
Oð1Þ.

B. sEWSB vacua: The j tan�j � 1 limit

To better understand the features discussed in the pre-
vious subsection, we take a j tan�j � 1 limit, where the
analytic expressions in the scalar sector from Sec. III B are
more easily understood. In the formulas of this section we
assume, for simplicity, that � is real.11 Writing tan� ¼
�1þ 2��, the extrema conditions of Eqs. (13) and (14)
reduce to


¼
1
2	�2

3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

ð12	�2Þ2
�
1þm2

Hu
þm2

Hd

2�2
� b

�2

�vuut �
;

��¼� m2
Hd

�m2
Hu

2ðm2
Zþm2

Hu
þm2

Hd
þ2�2ð1�
Þ2Þ

;

where the two branches discussed in Sec. III D are labeled
by  ¼ �.

The neutral masses reduce to

m2
A0 ¼ 4ð�1þ 	Þ
�2 � 2bþOð��2Þ;

m2
H0 ¼ 1

2½m2
Z þm2

A0 þ 8�2
ð
� 1� 	=2Þ þ jDj�;
m2

h0
¼ 1

2½m2
Z þm2

A0 þ 8�2
ð
� 1� 	=2Þ � jDj�;
D 	 m2

Z þm2
A0 � 8�2
ð2
� 1Þ;

to Oð��2Þ. The mixing angle that determines whether H0

(c2��� > 1=2) or h0 is SM-like (c2��� < 1=2) simplifies

considerably:

c2��� ¼
�
0þOð��2Þ D> 0
1þOð��2Þ D< 0:

(22)

It is easy to understand the result for the mixing angle c2���

(which is the coefficient of the Z-Z-H0 coupling) for
tan�� 1 by appealing to the SUSY limit of Sec. II. In
the SUSY limit, the CP-even field with mass 2� is always
the SM-like Higgs state. When D< 0, it is the heavy H0

field whose mass reduces to the SUSY-limit value of 2j�j
so cos2��� ! 1. When D> 0, it is the light h0 field whose

mass reduces to 2j�j so cos2��� ! 0.

Finally, the charged Higgs mass m2
Hþ is always very

close to the non-SM-like CP-even Higgs mass,

m2
Hþ ¼

�
m2

H0 þ ðm2
W �m2

ZÞ þOð��2Þ D> 0

m2
h0
þ ðm2

W �m2
ZÞ þOð��2Þ D< 0:

In the j tan�j � 1 limit with SUSY breaking included,
larger 
 always tends to push D< 0 so that H0 becomes
the SM-like Higgs state and we have an inverted hierarchy.
Up to corrections of order ��2, we see that the inverted
hierarchy spectra is consistent with LEP bounds with only
one condition: that the heavy CP-even state H0 has mH0 >
114 GeV, and no condition on the mass of the non-SM-like

FIG. 5 (color online). Examples illustrating the inverted hierarchy region in the presence of nonrenormalizable operators, as well as
the regions allowed by LEP. The color code is the same as in Fig. 4. The leading order tree-level expressions of Sec. III are used, and no
loop corrections are included. The charged Higgs direct bounds are satisfied in the LEP allowed regions. The purple arrow indicates the
LEP bound onmA0 . Direct limits on the lightest chargino/neutralino are not shown. The two plots correspond to different choices of the
parameters of the model other than tan� and mA0 .

11See footnote 8 if the complex � expression is needed.
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CP-even state h0. Further, when the inverted hierarchy
holds, m2

H0 ¼ 4�2
ð3
� 2� 	=2Þ which may easily be

larger than 114 GeV for moderate 
 and�. Recall from the
previous subsection that one of the reasons for the rarity of
inverted hierarchies in the MSSM is the difficulty of si-
multaneously satisfying LEP constraints on both CP-even
states.

The definition of sEWSB vacua given in Sec. III A
allows us to see that sEWSB vacua typically have larger

, and hence inverted spectra. This is clear from the  ¼ þ
branch in the expression for 
, but it is also true in the  ¼
� branch. Working in the EFT makes this clear: we require
that �2

S  �2, m2
Hu
, m2

Hd
, b for the validity of the EFT.

Given these input parameters, the only trustworthy vacua
where EWSB occurs satisfy two generic relationships:
v2 ��S� or v2��2 (with any other soft mass possibly
replacing�), depending on whether the nonrenormalizable
terms proportional to�S help stabilize the VEVor not. The
former case is exactly an sEWSB vacuum by our criteria in
Sec. III A, and will have 
�v2=ð��SÞ�Oð1Þ, w hile the
latter is an MSSM-like vacua with 
�v2=ð��SÞ�
ð�=�SÞ.

As a complement to the qualitative picture exhibited in
Fig. 5, we give a couple of numerical examples (with
j tan�j � 1) that illustrate the inverted hierarchy spectrum,
together with the charged Higgs and chargino/neutralino
masses. It should be recalled that these numbers are ex-
pected to be accurate to approximately Oðv2=�2

SÞ. To be

conservative, we require that charginos are heavier than the

kinematic reach at LEP-II, m�þ > 104 GeV, and that neu-

tralinos are heavier than half of the Z mass: m�0 >

45 GeV. Depending on the composition of the charginos
and neutralinos in terms of the underlying Higgsino and
gaugino states, these bounds may be relaxed [19].
We also require that the charged Higgses have mass

greater than the direct LEP-II search bound of 80 GeV
[19]. There are more stringent constraints from the
Tevatron on charged Higgs masses for low tan� when
mHþ <mt �mb. For tan�� 1, mHþ * 110 GeV [19].
These searches ignore the possibility that the charged
Higgs can decay to a chargino/neutralino, which may alter
the limits. Additionally, there are strong indirect con-
straints, mHþ > 295 GeV from the measured rate of b !
s� [20], although additional next-to-next-to-leading-order
corrections appear to weaken this bound [21]. These indi-
rect analyses assume no other sources of new physics
beyond the charged Higgs itself. However, given that the
chargino tends to be light in this theory and is known to
interfere with the charged Higgs contribution to b ! s�
[22], and the spectrum of squarks (which may also interfere
with the charged Higgs contribution) is undetermined, we
restrict ourselves to considering only the direct charged
Higgs bound.
The following sample points have inverted scalar hier-

archies, a wide range of mH0 , and different Z-Z-H0

couplings.

Point 1:

� !1 �=�s b=�2 m2
u=�

2 m2
Hd
=u2 	 M1=� M2=�

�60 1 0.1 �2:2 �1:7 �0:6 0.2 1.5 1.7


 tan� mh0 mH0

g2
H0ZZ

g2
hSMZZ

mA0 mHþ m�þ m�0

0.47 �1:3 120 150 0.98 100 120 110 90

This is a spectrum where H0 is SM-like, but its mass is well above the LEP-II limit and well above the mass of h0.

Point 2:

� !1 �=�s b=�2 m2
u=�

2 m2
Hd
=�2 	 M1=� M2=�

�150 2 0.14 �1:1 �0:99 �0:51 0.2 0.36 0.57


 tan� mh0 mH0

g2
H0ZZ

g2
hSMZZ

mA0 mHþ m�þ m�0

0.20 �1:3 190 210 0.77 185 190 105 60

Point 2 is similar to point 1, but all the scalar masses (including mHþ) are closer to 200 GeV. H0 is not entirely SM-like.

Point 3:

� !1 �=�s b=�2 m2
u=�

2 m2
Hd
=�2 	 M1=� M2=�

�70 3.5 0.19 1.95 �0:45 �0:47 0.7 �1:0 0.86


 tan� mh0 mH0

g2
H0ZZ

g2
hSMZZ

mA0 mHþ m�þ m�0

1.8 0.99 100 350 1 300 90 100 48
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Point 3 has a very heavy spectrum, due to the large value of
!1, and—unlike points 1 and 2—it has tan�> 0. Note
also thatmh0 andmHþ are nearly degenerate, and very split
from mH0 and mA0 . Corrections to these effective field
theory approximations due to unknown physics with
Oð1Þ couplings are expected to be �20% for point 3, but
less than �10% for points 1 and 2.

Values of tan� near 1 are not usually considered in the
MSSM, due to the LEP constraints on the CP-even Higgs
states. We see here that this region is expected to be viable
in a large class of supersymmetric extensions. For

j tan�j � 1 the top Yukawa coupling is yt � 1= sin��ffiffiffi
2

p
, a sizable enhancement compared to either the SM or

the cases normally considered in the MSSM. Since the
couplings of the CP-even Higgses to top pairs are
ght�t=g

SM
ht�t � cos�= sin� and gHt�t=g

SM
Ht�t � sin�= sin� (as-

suming quantum corrections are not particularly large), it
is possible that the gluon-fusion Higgs production cross
section is enhanced compared to the SM.12 Also, since a
heavy SM-like CP-even scalar H0 can have a sizable
branching fraction into W’s when its mass is around the
WW threshold, the Tevatron may be starting to probe the
present scenario [23].

C. Chargino NLSP

In phenomenologically viable sEWSB vacua, it is im-
portant that the lightest neutralino and lightest chargino
have masses that are significantly different from the SUSY
limit. In the SUSY limit, the lightest neutralino is the
photino, which is massless, and the lightest chargino is
degenerate with the W boson. Adding the soft mass M1

raises the photino mass without much difficulty. In the
SUSY limit, the charged Higgsinos have no mass term,
as can be seen from the explicit expression for the chargino
mass matrix in Eq. (17). Large �ð1� 
s2�Þ will help lift

the lightest chargino above the LEP-II bound. This tends to
favor regions with negative s2� < 0, and/or 
 � 1.

It may be the case that the effects of SUSY breaking lift
the lightest neutralino above the lightest chargino. In a
scenario with a low scale of SUSY breaking, when the
gravitino is the LSP, a chargino NLSP may lead to a
charged track that eventually decays into an on-shell W
boson and missing energy [3]. In the example below, the
chargino-neutralino mass difference is only on the order of
5–10 GeV which is approximately the size of additional
�=�S contributions from higher-order operators in the
1=�S expansion that we have not considered. The precise
size of these corrections can only be determined in a given
UV completion.

NLSP chargino:

� !1 �=�s b=�2 m2
u=�

2 m2
Hd
=�2 	 M1=� M2=�

�70 1 0.11 �1:6 �1:7 0.22 0.2 1.5 1.7


 tan� mh0 mH0

g2
H0ZZ

g2
hSMZZ

mA0 mHþ m�þ m�0

0.34 �1:8 120 140 0.82 110 125 100 110

V. ULTRAVIOLET SCENARIOS

So far we have restricted ourselves to an analysis of the
low-energy physics from an EFT point of view. This has
the advantage of making more transparent (and also easier
to analyze) the effects of the heavy physics on the low-
energy degrees of freedom (here the MSSM field content)
and has allowed us to focus on the sEWSB vacua.

It is nevertheless worth pointing out that the tower of
operators involving only the MSSM Higgs superfields that
we have considered [see e.g. Eq. (1)] already arises in one
of the simplest extensions of the MSSM: the addition of a
SM singlet. To be more precise, consider the renormaliz-
able superpotential

W ¼ �HuHd þ �SHuHd þ 1

2
�SS

2 þ �

3
S3:

If the singlet mass�S is sufficiently large, we can integrate
out S using its supersymmetric equation of motion (we
could keep the SUSY covariant derivative terms)

S ¼ � 1

�S

½�HuHd þ �S2�: (23)

Replacing back in the superpotential and using the above
equation of motion iteratively, one gets the effective super-
potential

Weff ¼ �HuHd � �2

2�S

ðHuHdÞ2 � �3�

3�3
S

ðHuHdÞ3 þ � � � :

The full tower of higher-dimension operators is generated
with, in the notation of Eq. (1), !1 ¼ ��2, !2 ¼ ��3�,
etc. Note also that for � ¼ 0 only the lowest dimension
operator, with coefficient !1, is generated.

12Such a large value of the top Yukawa coupling can lead to the
loss of perturbativity at high energies. However, this would
happen above the new physics threshold at �S, and it is a UV-
dependent issue that we do not address here (see further com-
ments in Sec. V).
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Similarly, replacing Eq. (23) in the minimal kinetic term
for the singlet SyS, one generates the operator in Eq. (4)
proportional to c1, with c1 ¼ j�j2, as well as other higher-
dimension operators whose coefficients are proportional to
�.

The soft SUSY-breaking operator considered in the EFT
of the previous sections can be generated from the follow-
ing terms in the superpotential:

W 
 ��1XSHuHd � 1
2�2�SXS

2;

where �1 and �2 are dimensionless coefficients, and X is a
spurion that parametrizes SUSY breaking in the singlet
sector. If these SUSY-breaking effects are sufficiently
small so that the threshold at �S is approximately super-
symmetric, we can simply use Eq. (23) to obtain the
operator of Eq. (11), with the identification ~X ¼ �ð2�1 �
�2�ÞX.

As illustrated in the sample points discussed in
Sec. IVB, we envision a case where !1 � 1� few. This
is a result of the fact that the weak scale in the sEWSB
vacua arises as the geometric mean between� and�S, that
for phenomenological reasons � cannot be too small, and
from the requirement that the EFT description be valid [see
Eqs. (2) and (3)]. In the singlet UV completion discussed in
this section, we see that !1 � 1� few corresponds to ��
1–2. Thus, the fact that the lightest Higgs scalar is heavier
than in the MSSM can be understood as arising from a
moderately large coupling. In addition, the interesting new
phenomenologically viable regions, with tan�� 1, also
have a top Yukawa coupling yt slightly larger than 1. For

� ¼ yt ¼
ffiffiffi
2

p
and � ¼ 0, the renormalization group equa-

tions for the singlet theory above the scale �S lead to a
Landau pole around 100 TeV. The presence of such a
Landau pole (as well as the issue of gauge coupling uni-
fication) is a UV-dependent question. Note, however, that
we are not required to assume strong coupling at the scale
�S.

Finally, we emphasize here that the EFTapproach allows
one to consider more general scenarios than the addition of
one singlet, even if at the lowest order the singlet theory
already induces all operators considered in the detailed
analysis of Secs. III and IV. The point is that the next-to-
leading order corrections can be different in other UV
completions that also generate the same lowest order op-
erators. In general, the coefficients of operators of higher
dimension need not obey the correlations that follow from
the identification between the EFT and singlet theory co-
efficients discussed above.

VI. CONCLUSIONS

Supersymmetric electroweak symmetry breaking divor-
ces LEP-II constraints from the spectrum of CP-even
masses in the most direct route: the SM-like Higgs mass
is not related to weak SM gauge couplings.

We showed explicitly that sEWSB happens in the most
general effective theory describing the MSSM Higgs de-
grees of freedom. We argued that the sEWSB vacua can be
consistently defined and captured within the EFT, even in
the presence of soft terms that perturb the SUSY limit. In
particular, we showed that although higher-dimension op-
erators play a key role in the appearance of the sEWSB
vacua, the physics is under perturbative control and can be
studied without the specification of a UV completion. This
EFT captures any UV theory that has the following prop-
erties: (i) a nearly supersymmetric threshold just above the
weak scale, (ii) physics beyond the MSSM that couples to
the MSSM Higgs superfields, and (iii) the MSSM low-
energy field content. The vacuum structure of the theory is
quite rich and may have interesting cosmological
consequences.
The EFT approach we use greatly simplifies the analysis

of sEWSB phenomenology. We derived expressions for the
low-energy spectrum that generalize those of the MSSM
with only renormalizable operators. The sEWSB vacua
naturally have an inverted scalar spectrum which is more
easily compatible with the LEP-II experimental con-
straints: it is the heavier CP-even Higgs state that is SM-
like, not the lighter. We also find that typically tan��
Oð1Þ in the sEWSB vacua. In the fermion sector, charginos
may be lighter than neutralinos, leading to NLSP chargino
scenarios. Further phenomenological studies are needed to
understand the full range of collider signatures.
The most important open question deals with the coin-

cidence of scales in the theory. Although the three impor-
tant scales of the theory, �S, �, mS, are separately
technically natural, the clustering of these scales suggests
a common origin. Only in the context of an ultraviolet
theory can one address whether there is a reason for �S to
be slightly above both the � and soft-supersymmetry-
breaking scales.
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APPENDIX A: EXACT SCALAR POTENTIAL FOR
AN ARBITRARY KÄHLER METRIC

In this appendix, we consider the most general Kähler
potential, without SUSY covariant derivatives, in a theory
with two SUð2ÞL doublets, Hu and Hd, with Uð1ÞY charges
�1=2 andþ1=2, respectively. This must be a real function

of the SUð2ÞL �Uð1ÞY invariants Hy
u eVHu, Hy

d e
VHd,

HuHd, and Hy
uH

y
d , where the eV factors ensure gauge

invariance, and  is the SUð2ÞL antisymmetric two-index
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tensor, which we restore explicitly in this appendix. Notice
that we employ a matrix notation and always write HuHd

and Hy
u H

y
d with Hu and Hy

u to the left. This makes it

easier to keep track of signs associated with these SUð2ÞL
contractions. In an expansion in a tower of operators sup-
pressed by a large scale �S, the Kähler potential takes the
form given in Eqs. (4)–(6). The nonminimal character of
the Kähler potential has to be taken into account when
deriving the scalar potential, which in the supersymmetric
limit takes the form V ¼ VD þ VF, where the first term
arises from integrating out the D-terms, while the second
arises from the F-terms. Assuming that the gauge sector is
described by the minimal SUSY kinetic terms,R
d2�W�W� þ H:c:, the D-term potential takes the form

VD ¼ 1
2D

a
2D

a
2 þ 1

2D
2
1; (A1)

where

Da
2 ¼

�
@K

@ðHy
u eVHuÞ

Hy
u �aHu

þ @K

@ðHy
d e

VHdÞ
Hy

d�
aHd

�
V¼0

D1

¼ 1

2

�
@K

@ðHy
u eVHuÞ

Hy
uHu � @K

@ðHy
d e

VHdÞ
Hy

dHd

���������V¼0

(A2)

with �a the SUð2ÞL generators, and

@K

@ðHy
u eVHuÞ

��������V¼0
¼ 1þ au1

�2
S

Hy
uHu þ aud1

�2
S

Hy
dHd þ

�
bu1
�2

S

HuHd þ H:c:

�
þ � � � ;

@K

@ðHy
d e

VHdÞ
��������V¼0

¼ 1þ ad1
�2

S

Hy
dHd þ aud1

�2
S

Hy
uHu þ

�
bd1
�2

S

HuHd þ H:c:

�
þ � � � :

(A3)

In order to derive VF we need to invert the Kähler metric, whose components take the form

g
Hy

u

Hu 	 @Hy
u
@Hu

K ¼ A0 þ A1HuH
y
u þ A2HuðHdÞ þ A3ðHy

d ÞðHdÞ þ A4ðHy
d ÞHy

u ;

g
Hy

u

Hd 	 @Hy
u
@Hd

K ¼ B1HuðHuÞ þ B2HuH
y
d þ B3ðHy

d ÞHy
d þ B4ðHy

d ÞðHuÞ;
g
Hy

d

Hu 	 @Hy
d
@Hu

K ¼ C1HdðHdÞ þ C2HdH
y
u þ C3ðHy

uÞHy
u þ C4ðHy

u ÞðHdÞ;

g
Hy

d

Hd 	 @Hy
d
@Hd

K ¼ D0 þD1HdH
y
d þD2HdðHuÞ þD3ðHy

uÞðHuÞ þD4ðHy
u ÞHy

d ;

(A4)

where the coefficients Ai, Bi, Ci, and Di are, in general, field-dependent gauge invariant functions. Notice also that the
Hermiticity of the Kähler metric implies that A4 ¼ A�

2, D4 ¼ D�
2, C1 ¼ B�

3, C2 ¼ B�
2, C3 ¼ B�

1, and C4 ¼ B�
4, while A0,

A1, A3,D0,D1, andD3 are real. In the above, we use a dyad notation such that, for example,HuðHdÞ is a 2� 2matrix with
components M�

� ¼ H�
u ðHdÞ� ¼ H�

u ��H
�
d , where �, �, � are SUð2ÞL indices. The inverse metric ~g can be similarly

expanded in terms of gauge covariant quantities as

~g
Hy

u

Hu ¼ ~A0 þ ~A1HuH
y
u þ ~A2HuðHdÞ þ ~A3ðHy

d ÞðHdÞ þ ~A4ðHy
d ÞHy

u ;

~g
Hy

u

Hd ¼ ~B1HuðHuÞ þ ~B2HuH
y
d þ ~B3ðHy

d ÞHy
d þ ~B4ðHy

d ÞðHuÞ;
~g
Hy

d

Hu ¼ ~C1HdðHdÞ þ ~C2HdH
y
u þ ~C3ðHy

uÞHy
u þ ~C4ðHy

uÞðHdÞ;

~g
Hy

d

Hd ¼ ~D0 þ ~D1HdH
y
d þ ~D2HdðHuÞ þ ~D3ðHy

uÞðHuÞ þ ~D4ðHy
u ÞHy

d :

(A5)

The coefficients ~Ai, ~Bi, ~Ci, and ~Di are found in a straight-
forward computation fromX

j¼u;d

~g
Hy

i

Hjg
Hy

j

Hk ¼ �ik: (A6)

The terms proportional to the identity give ~A0 ¼ 1=A0 and
~D0 ¼ 1=D0. Further requiring that the coefficients of the
nontrivial SUð2ÞL invariants vanish, and using ðHy

uÞ� �

ðHuÞ� ¼ Hy
uHu and ðHy

d Þ�ðHdÞ� ¼ Hy
dHd, gives four

groups of four equations each that can be solved for
ð ~A1; ~A2; ~B1; ~B2Þ, ð ~A3; ~A4; ~B3; ~B4Þ, ð ~C1; ~C2; ~D1; ~D2Þ, and
ð ~C3; ~C4; ~D3; ~D4Þ.
We record the solution when only the operators explic-

itly shown in Eqs. (4)–(6) are included, assuming that all
their coefficients are real, and specializing, for simplicity,
to the case where au1 ¼ ad1 ¼ aud1 	 a1 and b

u
1 ¼ bd1 	 b1:
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~A 1 ¼� 1

D

�
a1
�2

S

þ a1c1 � b21
�4

SA0

jHj2
�
; ~A3 ¼� 1

D

�
c1
�2

S

þ a1c1 � b21
�4

SA0

jHj2
�
; ~A4 ¼� 1

D

�
b1
�2

S

� 2
a1c1 � b21
�4

SA0

HuHd

�
;

~D0 ¼ ~A0 ¼ 1=A0; ~B2 ¼ ~C2 ¼ ~D1 ¼ ~A1; ~B4 ¼ ~C4 ¼ ~D3 ¼ ~A3; ~A�
2 ¼ ~B�

1 ¼ ~B3 ¼ ~C�
1 ¼ ~C3 ¼ ~D�

2 ¼ ~D4 ¼ ~A4;

(A7)

where

D ¼ 3A2
0 � A0

�
2þ a1 � c1

�2
S

jHj2
�

þ a1c1 � b21
�4

S

ðjHj4 � 4jHuHdj2Þ

¼ 1þ 3a1 þ c1
�2

S

jHj2 þ 4
b1
�2

S

ðHuHd þHy
uH

y
d Þ

þOðH4=�4
SÞ; (A8)

A0 ¼ 1þ a1
�2

S

jHj2 þ b1
�2

S

ðHuHd þHy
u H

y
d Þ; (A9)

and we used the shorthand notation jHj2 ¼ Hy
uHu þ

Hy
dHd. The F-term potential can then be derived from

the superpotential, W, and the inverse metric, Eqs. (A5)
and (A6), according to

VF ¼ X
i;j¼u;d

@W

@Hi

~g
Hy

i

Hj
@Wy

@Hy
j

: (A10)

In general, the fields in the above potential are not canoni-
cally normalized as a result of the nonminimal Kähler
terms, and this should be taken into account when reading
off physical properties such as the spectrum. However, the
minima of the potential are not affected by this.

In the same spirit as above, the superpotential can be
expanded as a power series in the holomorphic gauge
invariant HuHd as

W ¼ �HuHd þ
X1
n¼1

1

nþ 1

!n

�2n�1
S

ðHuHdÞnþ1; (A11)

which leads to the F-term potential (still with noncanoni-
cally normalized kinetic terms)

VF ¼ ZðHu;HdÞ
���������þ X1

n¼1

!n

�2n�1
S

ðHuHdÞn
��������2

; (A12)

where ZðHu;HdÞ is the real function,
ZðHu;HdÞ ¼ jHdj2f ~A0 þ ~A3jHdj2 þ ½ð ~A2 þ ~C1ÞHuHd

þ H:c:�g þ jHuj2f ~D0 þ ~D3jHuj2
þ ½ð ~B1 þ ~D2ÞHuHd þ H:c:�g
þ 2ðRe ~B4ÞjHuj2jHdj2
þ ½ ~A1 þ ~D1 þ 2Re ~B2�jHuHdj2; (A13)

and we used the relations among the ~Ai, ~Bi, ~Ci, ~Di that
follow from the Hermiticity of the inverse metric ~g [see

comment after Eq. (A4)]. In the special case considered in
Eq. (A7), we have

ZðHu;HdÞ ¼ 1

D

�
jHj2

�
1þ b1

�2
S

ðHuHd þHy
u H

y
d Þ
�

þ 2
a1
�2

S

ðjHj4 � 2jHuHdj2Þ
�
; (A14)

whereD is given in Eq. (A8). Setting a1 ¼ b1 ¼ 0 leads to
Eq. (9) in the main text.
It is also straightforward to include SUSY-breaking

effects that can be parametrized by a spurion chiral super-
field X ¼ �2FX. The contributions to the scalar potential
can be written in terms of the inverse Kähler metric derived
above. Consider a Kähler potential of the form

KðHi;H
y
j Þ þ XyK1ðHi;H

y
j Þ þ XKy

1 ðHi;H
y
j Þ

þ XyXK2ðHi;H
y
j Þ; (A15)

where K, K1, and K2 are arbitrary functions (except K and
K2 are real). By using the F-term equations of motion, one
easily finds an F-term potential

VF ¼ ð@Hi
WÞ~g

Hy
i

Hjð@Hy
j
WyÞ þ ½FXð@Hi

WÞ~g
Hy

i

Hjð@Hy
j
Ky

1 Þ
þ H:c:� þ Fy

XFXð@Hi
K1Þ~gHy

i

Hjð@Hy
j
Ky

1 Þ

that generalizes Eq. (A10) [sums over i, j ¼ u, d are
implicit]. The inverse metric ~g is given in Eq. (A5). The
contribution to the potential from the last term in Eq. (A15)

is simply Fy
XFXK2ðHi;H

y
j Þwith the fieldsHi interpreted as

the scalar components. There are no new contributions to
the D-term potential.

APPENDIX B: CP VIOLATION AND
CHARGE-BREAKING MINIMA

Consider the potential of Eq. (12) and look for minima
of the form hHui ¼ ð0; vuÞ, hHdi ¼ ðvCB; vde

i�Þ, where vu,
vd, and vCB are real. We can choose this form for hHui by
performing an appropriate SUð2ÞL rotation. It is also clear
from the form of the potential that, having set Hþ

u ¼ 0, it
depends only on jH�

d j 	 vCB. Furthermore, as discussed in

the main text, we can assume that ��S=!1 is real and
positive, while the phases of b and 	�2 are physically
observable. However, we will assume, for simplicity, that
these two phases vanish and establish simple conditions
such that spontaneous CP violation or charge-breaking
minima do not occur.
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The �-dependent part of the potential takes the form

V 
 x cos�þ ycos2�; (B1)

with

x ¼ �v2s2�

�
bþ 2
j�j2 v

2 þ v2
CB

v2

�
;

y ¼ �v2s22�
	�
2;

(B2)

where 
 > 0was defined in Eq. (15). Hence, the derivative
with respect to � vanishes either for sin� ¼ 0, or when

cos� ¼ � x

2y
¼ � j�j2

	�2s2�

�
v2 þ v2

CB

v2
þ 1

2


b

j�j2
�
:

(B3)

Since j cos�j � 1, this solution is not always physical. In
particular, it does not exist provided b=j�j2 � 0 and 	 &
Oð1Þ [for !1 �Oð1Þ, we are already assuming this latter
condition to ensure that the heavy physics corresponds to
an approximately supersymmetric threshold]. On the other
hand, the solution may be allowed if there is some degree
of cancellation between the two terms in the parentheses.
In this case, one should still check whether the extremum
corresponds to a minimum of the potential or not. In
particular, the second derivative with respect to �, eval-
uated on Eq. (B3), is

@2V

@�2
¼ 2y½1� cos2��; (B4)

which has the sign of y, and hence the sign of �	�2.
Therefore, if 	�2 > 0 this solution cannot be a minimum,
and the minima must be described by real VEV’s. We
always assume one of these two simple, sufficient condi-
tions, b=j�j2 � 0 or 	�2 > 0, in the main text.
With these conditions for real VEV’s, we can address the

issue of dangerous charge-breaking minima, i.e. solutions
with vCB � 0. Setting � ¼ 0, and considering @V=@vCB ¼
0, one can see that any solution with vCB � 0 must satisfy

v2
CB ¼ � 1

ðg2 þ g02Þ f4m
2
Hd

þ v2ðg2 þ g02c2�Þ

þ 4j�j2ð
s2� � 1Þ2g: (B5)

Except for m2
Hd
, all the terms in the braces are explicitly

positive (recall g0 < g). Since v2
CB must be positive,m2

Hd
�

0 (or not too negative) is a sufficient condition to ensure
that charge-breaking extrema do not exist. However, we
note that even if (B5) is positive, one must check that it is
compatible with the remaining extremization conditions,
that any such solution is indeed a minimum, and whether it
is a global as opposed to a local minimum.
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