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In this work, we report the first lattice calculation of hyperon axial couplings, using the 2þ 1-flavor

MILC configurations and domain-wall fermion valence quarks. Both the � and � axial couplings are

computed for the first time in lattice QCD. In particular, we find that g�� ¼ 0:450ð21Þstatð27Þsyst and
g�� ¼ �0:277ð15Þstatð19Þsyst.
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I. INTRODUCTION

In recent years lattice QCD calculations have demon-
strated remarkable progress in computing hadron proper-
ties from first principles. In particular, hadron structure has
been a major focus of the lattice QCD community.
Recently the nucleon axial coupling gA has been computed
[1,2] with good precision and has been shown to be in
agreement with the very well-known experimental result
within the systematic and statistical errors of the calcula-
tion. The success of such calculations motivates us to study
the axial couplings for all the octet baryons. The experi-
mental knowledge of such couplings is not as good as in the
case of gA and in certain cases, such as the axial couplings
g�� and g��, their values are not known experimentally,
and theoretical estimates are rather imprecise.

The hyperon axial couplings are important parameters
entering the low-energy effective field theory description
of the octet baryons. At the leading order of SU(3) heavy-
baryon chiral perturbation theory, these coupling constants
are linear combinations of the universal coupling constants
D and F, which enter the chiral expansion of every bar-
yonic quantity, including masses and scattering lengths.
These coupling constants are needed in the effective field
theory description of both the nonleptonic decays of hyper-
ons, and the hyperon-nucleon and hyperon-hyperon scat-
tering phase shifts [3]. Hyperon-nucleon and hyperon-
hyperon interactions are essential in understanding the
physics of neutron stars where hyperon and kaon produc-
tion may soften the equation of state of dense hadronic
matter [4].

Studying the octet baryon axial couplings on the lattice
is no more complicated than computing the nucleon axial
coupling gA. The lack of experimental information in cases
such as g�� and g�� gives us the opportunity to make
predictions using lattice QCD. Previously, there have been
two attempts to determine these coupling constants using
different theoretical approaches: chiral perturbation theory

[5] and the large-Nc limit [6]. Savage et al. [5] use chiral
perturbation theory to work out the one-loop corrections
due to SU(3) symmetry breaking, and predict 0:35 �
g�� � 0:55. Similarly, 0:18 � �g�� � 0:36, after taking
the SU(3) limit, g�� ¼ F, which is 0.5 at the leading order.
Using the large-Nc approach, Dai et al. and Flores-
Mendieta et al. [6] predict a range of 0:30 � g�� � 0:36
and 0:26 � �g�� � 0:30. Both approaches give very
loose bounds on the values of these coupling constants;
hence, a lattice QCD calculation has the opportunity to
make a substantial improvement. Our preliminary results
can be found in Ref. [7].
Lattice QCD calculations can now provide much more

stringent theoretical estimates of these axial couplings. The
various systematic errors that enter such calculations can
be controlled, giving us the ability to compute the predic-
tions of QCD very precisely. The systematic errors that we
need to control are due to the finite lattice spacing, the
finite volume and chiral extrapolations. Lattice calcula-
tions are performed on a discrete space-time in a finite
volume, using Monte Carlo integration to directly evaluate
the path integral; continuum physics is recovered by taking
the lattice spacing to zero (a ! 0) and the volume to
infinity (V ! 1). In addition, using current computer re-
sources, we cannot yet calculate at the physical pion mass.
Using chiral perturbation theory and calculations at mul-
tiple heavier pion masses, which are more affordable, we
can extrapolate quantities of interest to the physical limit.
Such calculations also help to determine the low-energy
constants of the chiral effective theory and allow us to
study the quark-mass dependence of our observables.
The structure of this article is as follows: In Sec. II, we

describe our lattice setup, operators, and the parameters of
the calculation. In Sec. III, we discuss the chiral extrapo-
lation, and finally, our conclusions are presented in Sec. IV.
Our preliminary results can be found in Ref. [7].

II. THE LATTICE CALCULATION

The axial coupling constants are defined as the zero
momentum transfer limit of the axial form factor GAðq2Þ
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that parametrizes the matrix element hBjOjBi where B is
one of the baryonsN,�,�, andO is the local axial current
ð �q���5qÞ. This matrix element takes the form

hBjA�ðqÞjBi ¼ �uBðp0Þ
�
���5GAðq2Þ þ �5q�

GPðq2Þ
2MB

�

� uBðpÞe�iq�x; (1)

where uB is the Dirac spinor, GP is the induced pseudo-
scalar form factor, and q is the momentum transfer.
The axial charge for baryon B is defined as gA;BB ¼
GAðq2 ¼ 0Þ.

On the lattice, we can extract the matrix element
hBjA�jBilat by calculating a three-point function using

zero initial and final momentum for the baryon states.
This matrix element needs to be renormalized, because
we use the local axial current in order to simplify our
calculation. The renormalization constant ZA can be easily
computed through two-point meson correlation functions.
Details of our lattice formulation and methods can be
found in Refs. [2,8].

For the rest of the paper, we will define the renormalized
zero momentum transfer matrix elements as the following:
for the nucleon gA ¼ ZAhNjA�jNilat, the � g�� ¼
ZAh�jA�j�ilat=2 [the factor of 2 is coming from a

Clebsch-Gordan coefficient so that g�� ¼ F in the SU(3)
limit] and for the � g�� ¼ ZAh�jA�j�ilat.

In this calculation, we use (improved) staggered fermion
action (a-squared tadpole-improved staggered fermions)
[9,10] for the sea quarks and domain-wall fermions [11]
for the valence sector. This way we take advantage of the
publicly available gauge configurations generated by
MILC collaboration, only having to compute the valence
quark propagators needed for the matrix elements. In ad-
dition, domain-wall fermions used in the valence sector are
automatically OðaÞ improved and have chiral and flavor
symmetry which simplifies operator mixing, renormaliza-
tion, and chiral extrapolation at finite lattice spacing [12],
making them particularly well suited for the purpose of our
calculation. This mixed-action approach has been success-
fully employed by LHPC and NPLQCD for computations

of nucleon matrix elements [13] as well as scattering
lengths, decay constants [14], and masses [15].1

The gauge configurations are generated with 2þ 1 fla-
vors of staggered fermions (configuration ensembles gen-
erated by the MILC collaboration [17]). The pion mass
ranges from 350 to 750 MeV in a lattice box of size 2.6 fm.
The gauge fields that enter the domain-wall fermion action
are hypercubic smeared to improve the chiral symmetry,
and gauge invariant Gaussian smearing has been used for
the interpolating operators to improve the signal. Our
results are presented in Table I.

III. HYPERON AXIAL COUPLING CONSTANTS

A. SU(3) symmetry breaking

One way to probe SU(3) symmetry breaking in the axial
couplings is to monitor the quantity �SUð3Þ, defined as

�SUð3Þ ¼ gA � 2:0� g�� þ g�� ¼ X
n

cnx
n; (2)

where x is ðm2
K �m2

�Þ=ð4�f2�Þ. Figure 1 shows �SUð3Þ
as a function of x. Note that the value increases monotoni-
cally as we go to lighter pion masses. Our lattice data
suggest that a �SUð3Þ � x2 dependence is strongly pre-

ferred, as the plot of �SUð3Þ=x2 versus x in Fig. 1 also

demonstrates. A quadratic extrapolation to the physical
point gives 0.227(38), telling us that SU(3) breaking is
roughly 20% at the physical point, where x ¼ 0:332 using
the particle data group values [18] for mþ

� , m
þ
K , and f�þ .

We compare the result of heavy-baryon SU(3) chiral per-
turbation theory [19] for �SUð3Þ as a function of x, and we

find that the coefficient of the linear term in Eq. (2) does
not vanish. This implies that an accidental cancellation of
the low-energy constants is responsible for this behavior.

TABLE I. Results of our calculation.

m010 m020 m030 m040 m050

m� (MeV) 354.2(8) 493.6(6) 594.2(8) 685.4(19) 754.3(16)

m�=f� 2.316(7) 3.035(7) 3.478(8) 3.822(23) 4.136(20)

mK=f� 3.951(14) 3.969(10) 4.018(11) 4.060(26) 4.107(21)

Configurations 612 345 561 320 342

gA;N 1.22(8) 1.21(5) 1.195(17) 1.150(17) 1.167(11)

g�� 0.418(23) 0.450(15) 0.451(7) 0.444(8) 0.453(5)

g�� �0:262ð13Þ �0:270ð10Þ �0:269ð7Þ �0:257ð9Þ �0:261ð7Þ

1Staggered fermions come in four ‘‘tastes’’ which must be
removed by taking fractional powers of the fermionic determi-
nant. Although no theoretical proof of the validity of this
approach exists, there is significant evidence in the literature
that supports the conjecture that the continuum limit of such
formulation is QCD. For a recent review see Ref. [16] and
references therein.
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B. Chiral extrapolation

Ideally, we should adopt a chiral extrapolation that
correctly describes the discretization errors due to finite
lattice spacing as we extrapolate the axial couplings from
the pion masses we used in our calculation to the physical
point. Detmold and Lin worked out the extrapolation for
the forward twist-two matrix element at one-loop order

with finite-volume corrections [19]. From their work, we
see that finite-volume corrections contribute at the order of
10�4 or less given the parameters of our calculation.
Therefore, we will only implement the infinite-volume
chiral perturbation theory and further simplify the formu-
lation by taking mval ¼ msea:

gA ¼ i

81f2
fð54i��nf

2 � 27i��nf
2Þ þ 24K½MK;��

ffiffiffi
6

p
Cð3Dþ FÞ�cn þ 192K½M�;��

ffiffiffi
6

p
CðDþ FÞ�cn

þH½M�; 0�ð�216��nD
2 þ 108��nD

2 � 432F��nDþ 216F��nD� 216F2��n þ 108F2��nÞ
þH½MX; 0�ð�36��nD

2 þ 18��nD
2 þ 216F��nD� 108F��nD� 324F2��n þ 162F2��nÞ

þH½MK; 0�ð�324��nD
2 þ 81��nD

2 þ 486F��nD� 162F��nD� 594F2��n þ 297F2��nÞ
þH½MK;��ð�54��nC

2 þ 27��nC
2 � 20��nC

2 þ 4��nC
2Þ þ TadInt½MK�ð27i��n � 54i��nÞ

þ TadInt½M��ð54i��n � 108i��nÞg; (3)

g�� ¼ 1

162f2
f135��nf

2 þ 54��nf
2 � 96iK½MK;���

ffiffiffi
6

p
Cð3D� FÞ�cn � 96iK½M�;���

ffiffiffi
6

p
CðDþ FÞ�cn

� 96iK½MX;���
ffiffiffi
6

p
CD�cn þH½MX; 0�ð360i��nD

2 þ 144i��nD
2Þ þH½MK; 0�ð945i��nD

2 þ 378i��nD
2

� 162iF��nDþ 324iF��nDþ 945iF2��n þ 378iF2��nÞ þH½M�; 0�ð270i��nD
2 þ 108i��nD

2

� 108iF��nDþ 216iF��nDþ 1890iF2��n þ 756iF2��nÞ þH½M�;���ð90i��nC
2 þ 36i��nC

2

þ 20i��nC
2 � 4i��nC

2Þ þH½MX;���ð135i��nC
2 þ 54i��nC

2 þ 60i��nC
2 � 12i��nC

2Þ
þHðMK;��Þð450i��nC

2 þ 180i��nC
2 þ 220i��nC

2 � 44i��nC
2Þ þ ð�135��n � 54��nÞTadIntðMKÞ

þ ð�270��n � 108��nÞTadIntðM�Þg; (4)

0 0.1 0.2 0.3 0.4

mK
2 mπ

2 4π2 fπ
2

0

2

4

0 0.1 0.2 0.3 0.4
0

0.2

0.4

FIG. 1 (color online). (Top panel) The SU(3) symmetry break-
ing measure �SUð3Þ. The circles are the measured values at each

pion mass, the square is the extrapolated value at the physical
point, and the shaded region is the quadratic extrapolation and its
error band. (Bottom panel) �SUð3Þ=x2 plot. Symbols as above, but

the band is a constant fit.
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g�� ¼ 1

162f2
f�27��nf

2 � 108��nf
2 � 48iK½MK;��� ffiffiffi

6
p

CðDþ 5FÞ�cn þ 48iK½M�;��� ffiffiffi
6

p
CðD� FÞ�cn

þ K½MX;���ð�48i
ffiffiffi
6

p
CD�cn � 144i

ffiffiffi
6

p
CF�cnÞ þHðM�; 0Þð�108i��nD

2 � 432i��nD
2 þ 216iF��nD

þ 864iF��nD� 108iF2��n � 432iF2��nÞ þHðMX; 0Þð�18i��nD
2 � 72i��nD

2 � 108iF��nD

� 432iF��nD� 162iF2��n � 648iF2��nÞ þHðMK; 0Þð�297i��nD
2 � 540i��nD

2 � 378iF��nD

� 864iF��nD� 297iF2��n � 1188iF2��nÞ þHðM�;��Þð�27i��nC
2 � 108i��nC

2 þ 10i��nC
2

� 2i��nC
2Þ þHðMX;��Þð�27i��nC

2 � 108i��nC
2 � 30i��nC

2 þ 6i��nC
2Þ

þHðMK;��Þð�81i��nC
2 � 324i��nC

2 � 40i��nC
2 þ 8i��nC

2Þ þ ð27��n þ 108��nÞTadIntðMKÞ
þ ð54��n þ 216��nÞTadIntðM�Þg; (5)

where M�;K are the pion and kaon masses, respectively, MX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

K=3�M2
�=3

q
, f is the decay constant and H, K and

TadIntðmÞ are the functions

H½m;�� ¼ i

16�2

�
2�2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
�
�þ ðm2 � 2�2Þ log

�
m2

�2

��
; (6)

K½m;�� ¼ �1

144�2�

�
�6i log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
�
ð�2 �m2Þ3=2 þ 2ð�5i�3 þ 6im2�� 3ð�m2Þ3=2�Þ

� 3ið3m2�� 2�3Þ log
�
m2

�2

��
; (7)

TadInt ðmÞ ¼ 1

16�2

�
m2 log

�
m2

�2

��
: (8)

In these formulas, there are a total of eight parameters to be
determined: three SU(3) coupling constants ðC;D;FÞ and
five other low-energy constants ð�cn;��n;��n;
��n;��nÞ.

We replace the three mass splittings between the dec-
uplet and octet with their lattice-measured values and re-
place f and the chiral perturbation theory scale � with the
pseudoscalar decay constants calculated using the same
lattices and actions; a similar strategy was adopted by
NPLQCD and LHPC [14,20]. It has also been shown that
such an approach simplifies the mixed-action chiral per-
turbation theory formulae [12]. We perform a simultaneous
fit among multiple axial coupling constants without mak-
ing further assumptions. We attempted to do simultaneous
fitting among all three of gA, g��, and g��, and found the
�2=d:o:f: for such a fit is of order 102. If we limit ourselves
to the lightest three pion masses, the �2=d:o:f: is reduced to
order of 10.

Although under certain plausible assumptions for the
values of some low-energy constants, the individual axial
couplings can be fitted with reasonable �2=d:o:f:, the
combined fit seems to fail to describe the data. The con-
clusion we derive from this is that SU(3) heavy-baryon
chiral perturbation theory fails to describe the lattice data.
The pion and kaon masses used in our calculation are
probably outside the range of validity of this order of the
perturbative expansion. It is possible that such a unified

description of the axial couplings requires the next order in
chiral perturbation theory or smaller pion masses.
However, since the physical strange quark mass is rather
large, it seems that SU(3) heavy-baryon chiral perturbation
theory might not be useful in helping to extrapolate the
lattice data to the physical point. Here we should not forget
that one of the reasons for our failure to fit with continuum
chiral perturbation theory could be discretization errors
due to taste breaking in the staggered sea sector.
However, such errors should be small and are suppressed
to the next-to-leading order in the expansion, since the
valence-sector domain-wall fermions retain chiral symme-
try. Hence we do not expect that finite lattice spacing
corrections will change our conclusion.

C. Simple chiral forms

Since the continuum chiral extrapolation fails to de-
scribe our data, we take a step back and expand the axial
couplings in terms of the SU(3) breaking parameter x ¼
ðm2

K �m2
�Þ=ð4�2f2�Þ as follows:

gA ¼ Dþ FþX
n

CðnÞ
N xn;

g�� ¼ FþX
n

CðnÞ
�
xn;

g�� ¼ F�DþX
n

CðnÞ
�
xn:

(9)

This form reduces to the known SU(3)-symmetric limit
where the axial couplings are simple linear combinations
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of F and D. In addition, not all the CðnÞ
B (with B 2

fN;�;�g) are independent parameters. Earlier, we found

that the constraint Cð1Þ
N � 2Cð1Þ

�
þ Cð1Þ

�
¼ 0 is preferred by

the data. This suggests a 4-parameter fit to n ¼ 1 order or a
7-parameter fit to n ¼ 2 order if we ignore possible pion
mass dependence of F andD. In order to have a reasonable
fit form with the smallest number of parameters we will
focus on the n ¼ 1 case. Figure 2 shows our lattice data as
a function of ðm�=f�Þ2 with the corresponding chiral
extrapolation; the band shows the jackknife uncertainty.

The �2=d:o:f: is 0.83 and the linear fit parameters are

very poorly determined: Cð1Þ
N ¼ 0:02ð13Þ and Cð1Þ

�
¼

�0:01ð6Þ. This is not surprising, since a small slope is
seen in all three axial charges. At the physical pion mass
point, we find the nucleon axial charge is gA;N ¼ 1:18ð4Þ;
this is consistent with what LHPC obtained, 1.23(8), from
SU(2) chiral perturbation extrapolation [20]. The extrapo-
lated coupling constants g�� and g�� are 0.450(21) and
�0:277ð15Þ respectively. These numbers are consistent
with the existing predictions from chiral perturbation the-
ory [5] and large-Nc calculations but have much smaller
errors. The low-energy chiral parameters areD ¼ 0:715ð6Þ
and F ¼ 0:453ð5Þ, which are not consistent with the recent
determination of D ¼ 0:804ð8Þ and F ¼ 0:463ð8Þ using
semileptonic decay data and assuming SU(3) symmetry
[21]. However, the two calculations do agree within the
range of the SU(3) breaking effect we observed in the
previous section.

Since we know that the SU(3) breaking in Eq. (2) is
quadratic in x, we expect that one needs to go at least to
n ¼ 2 in order to capture this effect. Hence, when taking
the n ¼ 2 expansion, it is not surprising to see the �2=d:o:f:

improves to 0.57. However, the coefficients cðnÞB remain
poorly determined (most of them are consistent with zero

within the error bar). Note that Cð2Þ
N � 2Cð2Þ

�
þ Cð2Þ

�
¼

1:9ð6Þ is consistent with what we found for the curvature
of �SUð3Þ earlier. The final results, D ¼ 0:711ð7Þ and F ¼
0:452ð5Þ, are consistent with the n ¼ 1 case but are better
determined. The axial couplings in this case are gA ¼
1:28ð6Þ, g�� ¼ 0:39ð6Þ, and g�� ¼ �0:24ð4Þ. The dis-
crepancy between the results of n ¼ 1 and n ¼ 2, which
is at 1 standard deviation, might be taken as an indication
of the systematic error of such extrapolations. However, it
is hard to make an honest determination of such a system-
atic error without further study at lighter pion masses and
higher statistics.
Finally, one can consider that D and F have m2

� depen-
dence as

D ¼ D0 þ cDm
2
�=ð4�2f2�Þ;

F ¼ F0 þ cFm
2
�=ð4�2f2�Þ;

where D0 and F0 are the chiral limit axial couplings. Such
fit forms have more parameters than we can possibly
determine with our data. To better understand how strong

this dependence is, let us assume CðnÞ
B ¼ 0 in Eq. (9). This

gives us cD ¼ �0:03ð7Þ and cF ¼ 0:01ð5Þ, consistent with
zero. In both scenarios, the axial coupling constants are
consistent with the n ¼ 1 extrapolation. The discrepancies
in the extrapolated results for all fitting forms we used is
always at the level of 1 standard deviation. Therefore, we
will assign an upper limit for the systematic error the same
amount as the statistical error due to the extrapolation and
keep the n ¼ 1 results as our central values.
The systematic errors due to finite-volume effects are

expected to be small. LHPC calculated the nucleon axial
coupling constant using a chiral extrapolation with finite-
volume correction [2]; less than a 1% effect is observed.
Furthermore, finite-volume effects (including the � and �
baryons) are also estimated in Ref. [19], using heavy-
baryon chiral perturbation theory. The finite-volume ef-
fects come in at a magnitude no larger than 10�4. Thus, we
take 1% to be an upper bound for the finite-volume system-
atic error in our calculation. Such effect is negligible given
our statistical errors and systematics due to chiral
extrapolation.
The final source of systematic error is the continuum

extrapolation. Precise estimation of such errors requires
computations at several lattice spacings. Unfortunately,
such calculations do not exist yet. To better understand
the discretization errors, we look at a previous study (the
two-flavor case) [22] of the well measured quantity, gA. We
found that by extrapolating their data to our lattice spacing,

0 0.1 0.2 0.3 0.4 0.5

mπ
2 4π 2 fπ

2

0.33

0.28

0.23

g

0 0.1 0.2 0.3 0.4 0.5
mπ

2 4π2 fπ
2

0.2

0.4

0.6

g

0 0.1 0.2 0.3 0.4 0.5
mπ

2 4π2 fπ
2

0.6

0.9

1.2
g

A

FIG. 2 (color online). Lattice data (circles) for gA, g��, and
g�� and chiral extrapolation (lines and bands). The square in
each panel is the extrapolated value at the physical point.
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the gA is consistent with the results from finer lattice
spacings. However, since the details of our calculation
are different, we are conservative and estimate that the
systematic error due to discretization effects is
Oða2�2

QCDÞ � 4%.

IV. CONCLUSION

In this work, we calculate the axial coupling constants
for � and� strange baryons using lattice QCD for the first
time. We do the calculation using 2þ 1 flavor dynamical
configurations with pion mass as light as 350 MeV. We
discussed various potential chiral extrapolations and vari-
ous sources of systematic errors. We conclude that gA ¼
1:18ð4Þstatð6Þsyst, g�� ¼ 0:450ð21Þstatð27Þsyst, and g�� ¼
�0:277ð15Þstatð19Þsyst. In addition, the SUð3Þ axial cou-

pling constants are estimated to be D ¼ 0:715ð6Þstat �
ð29Þsyst and F ¼ 0:453ð5Þstatð19Þsyst. The axial charge cou-

pling of � and � baryons are predicted with significantly
smaller errors than estimated in the past.

ACKNOWLEDGMENTS

The authors thank Martin Savage for motivating the
project, and W. Detmold and C.-J. D. Lin for the
Mathematica notebook with their results of Ref. [19] and
helpful discussion on further details. We thank the LHPC
and NPLQCD collaborations for some of the light and
strange quark propagators. These calculations were per-
formed using the Chroma software suite [23] on clusters at
Jefferson Laboratory using time awarded under the
SciDAC Initiative. This work is supported by Jefferson
Science Associates, LLC under U.S. DOE Contract
No. DE-AC05-06OR23177. K. O. acknowledges support
by the Jeffress Memorial Trust Grant No. J-813, DOE
OJI Grant No. DE-FG02-07ER41527, and DOE Grant
No. DE-FG02-04ER41302.

[1] D. Pleiter et al., Proc. Sci., LAT2007 (2007) 129.
[2] R. Edwards et al., Phys. Rev. Lett. 96, 052001 (2006).
[3] S. R. Beane et al., Nucl. Phys. A747, 55 (2005).
[4] J.M. Lattimer et al., Phys. Rep. 442, 109 (2007).
[5] M. J. Savage et al., Phys. Rev. D 55, 5376 (1997).
[6] J. Dai et al., Phys. Rev. D 53, 273 (1996); R. Flores-

Mendieta et al., Phys. Rev. D 58, 094028 (1998).
[7] H.-W. Lin, arXiv:0707.3844.
[8] S. Sasaki et al., Phys. Rev. D 68, 054509 (2003).
[9] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[10] K. Orginos et al., Phys. Rev. D 59, 014501 (1998); 60,

054503 (1999).
[11] D. B. Kaplan, Phys. Lett. B 288, 342 (1992); Nucl. Phys.

B, Proc. Suppl. 30, 597 (1993); Y. Shamir, Nucl. Phys.
B406, 90 (1993); V. Furman et al., Nucl. Phys. B439, 54
(1995).

[12] O. Bar et al., Phys. Rev. D 72, 054502 (2005); B. C.
Tiburzi, Phys. Rev. D 72, 094501 (2005); C. Aubin
et al., Phys. Rev. D 75, 034502 (2007); J.-W. Chen

et al., arXiv:0706.0035, and references therein.
[13] K. Orginos, Proc. Sci., LAT2006 (2006) 018; P. Hagler,

Proc. Sci., LAT2007 (2007) 013, and references therein.
[14] S. R. Beane et al., Phys. Rev. D 77, 014505 (2008), and

references therein.
[15] S. R. Beane et al., Nucl. Phys. B768, 38 (2007); Phys. Lett.

B 654, 20 (2007); R. G. Edwards et al., Proc. Sci.,
LAT2006 (2006) 195.

[16] S. R. Sharpe, Proc. Sci., LAT2006 (2006) 022.
[17] C.W. Bernard et al., Phys. Rev. D 64, 054506 (2001).
[18] W.M. Yao et al., J. Phys. G 33, 1 (2006).
[19] W. Detmold et al., Phys. Rev. D 71, 054510 (2005).
[20] R. G. Edwards et al., Proc. Sci., LAT2006 (2006) 121

[arXiv:hep-lat/0610007].
[21] N. Cabibbo et al., Annu. Rev. Nucl. Part. Sci. 53, 39

(2003).
[22] A. Ali Khan et al., Phys. Rev. D 74, 094508 (2006).
[23] R. Edwards et al., Nucl. Phys. B, Proc. Suppl. 140, 832

(2005).

HUEY-WEN LIN AND KONSTANTINOS ORGINOS PHYSICAL REVIEW D 79, 034507 (2009)

034507-6


